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Privacy-preserving Network Path Validation
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The end-users communicating over a network path currently have no control over the path. For a better

quality of service, the source node often opts for a superior (or premium) network path to send packets to the

destination node. However, the current Internet architecture provides no assurance that the packets indeed

follow the designated path. Network path validation schemes address this issue and enable each node present

on a network path to validate whether each packet has followed the specific path so far. In this work, we

introduce two notions of privacy—path privacy and index privacy—in the context of network path validation.

We show that, in case a network path validation scheme does not satisfy these two properties, the scheme

is vulnerable to certain practical attacks (that affect the privacy, reliability, neutrality and quality of service

offered by the underlying network). To the best of our knowledge, ours is the first work that addresses privacy

issues related to network path validation. We design PrivNPV, a privacy-preserving network path validation

protocol, that satisfies both path privacy and index privacy. We discuss several attacks related to network path

validation and how PrivNPV defends against these attacks. Finally, we discuss the practicality of PrivNPV

based on relevant parameters.
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1 INTRODUCTION

Next-generation networks aim to provide more control over network paths to the end-users and
service providers. More command over network paths not only enables the end-users to select
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5:2 B. Sengupta et al.

paths themselves to get uninterrupted services but also lets the service providers serve their users
in a more reliable manner. This helps to build a robust communication network where packets
traverse across the network in a fast and secure way.

Although higher control over network paths is desirable, the current Internet architecture does
not support such control over paths. For example, an end-user (source) may decide a superior (e.g.,
high-speed) network path for communicating with a service provider (destination), and she wishes
to pay higher for availing this path as per the service level agreement (SLA) with the corresponding
Internet service providers (ISPs). However, the current Internet provides no guarantees that the
packets would follow the same path as specified. Specifically, once a packet leaves the source
node, it is beyond the control of the source. So, the (possibly malicious) intermediate nodes can
forward the packets along a completely different (and inferior) path to reach the destination node.
Upon receiving the packets, the destination node has no means to verify whether the packets have
traversed through the specified superior path. However, to run their business smoothly, honest
intermediate nodes present on the network path would try to maintain a better quality of service
and detect a deviation from the correct execution of the protocol. To be precise, every honest on-
path node has a stake in enforcing the specified path to be followed by the packets and discarding
corrupted packets in order not to waste downstream resources further.

To verify whether packets have followed the network path specified by the source node, net-

work path validation (or path validation) schemes come into play [19, 28]. In a path validation
protocol, the source node enforces the network path to be followed by all the nodes present on
the path to forward packets. Moreover, every on-path node can check whether the packets have
traversed through the specified path so far. This is typically achieved by enabling on-path nodes to
embed proofs in a packet such that downstream nodes can verify these proofs to validate the path.
However, a malicious on-path node can inject packets of its choice (with the spoofed source) into
the path. In a network protocol with source authentication, every node present on a network path
can validate whether a packet propagated along that path originates from the designated source
node. We note that path validation schemes require modifications in the existing Internet routing
logic for packets. However, they are essential for the next-generation Internet architectures like
SCION [31, 47], NEBULA [2], and others [12].

In a path validation scheme, the source node and the destination node do not trust all the inter-
mediate nodes present on the path (otherwise, path validation would not be required at all), and
thus they do not want to leak additional information available from the network path (e.g., their
personal preferences while selecting the path) to these nodes. Existing path validation schemes
do not hide the network path from the intermediate nodes. As we will see shortly, revealing the
path to the (possibly malicious) intermediate nodes makes these schemes vulnerable to various at-
tacks. In this work, we introduce two privacy notions relevant to path validation: path privacy and
index privacy. The notion of path privacy states that an intermediate node cannot identify other
nodes present on the path. We note that a node can always identify its neighbor (predecessor and
successor) nodes as a packet comes from one of them and the node has to forward the packet to
the other. So, the notion of path privacy described in this work does not include the privacy of
neighbor nodes. However, our notion of path privacy preserves the privacy of all other on-path
nodes. However, the notion of index privacy states that an intermediate node cannot learn its own
index/node-index (or exact position) on the path.

Why are path privacy and index privacy important? We note that path privacy does not guar-
antee index privacy in general. To be precise, we can find some cases where, in spite of achieving
path privacy, a path validation scheme leaks the index of an intermediate node to the node itself.
For example, we consider an n-hop network path where neighbor information of all n nodes are
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Privacy-preserving Network Path Validation 5:3

encrypted and stored sequentially in the path variable (say, PATH). The source node allows the ith
on-path node Ni to identify Ni−1 and Ni+1 by decrypting only the ith ciphertext of the sequence
embedded in PATH. It is not hard to see that path privacy is protected in such a scheme. However,
the node Ni can easily identify its own index i from the sequence—which prevents the scheme
from satisfying index privacy. We now discuss some practical situations where both path privacy
and index privacy are crucial.

—Preserving source anonymity: In mobile crowd sensing [14], mobile nodes (e.g., smart-
phones) collect various types of data with the help of embedded sensors and send the data
to a server for analysis (e.g., measuring air pollution level, sensing traffic congestion in an
area). Similarly, in the eMbedded-Gateway-Cloud (MGC) model [24, 25], a smartphone acts
as a gateway connecting embedded IoT devices to a cloud sever and sends the data col-
lected from IoT devices to the cloud server. For example, the smartphone collects data from
low-power wearable fitness trackers (or patient monitoring devices) and sends the collected
real-time data to a cloud server that provides utility services. In these situations, path vali-
dation without path/index privacy may reveal sensitive information (e.g., physical location)
of the source node to possibly malicious on-path nodes.

—Protecting neutrality: In a path validation protocol without path privacy, knowledge
of the revealed path can be combined with external information—which helps a malicious
node to mount certain attacks. Let us consider the following example. Suppose the desti-
nation node D is a service provider, and there are two consumer nodes S1 and S2 that send
service-requests to D. Let there be a malicious node (say, N ) that is present on both paths
S1 ∼ D and S2 ∼ D. Without path privacy, N has the complete knowledge of both paths, and
it can thus identify the service provider D. Now, N sharing strong business relations with
S1 (or S2) can intentionally drop the requests sent by S2 (or S1) to favor S1 (or S2) with undue
advantages (e.g., better service quality). Similarly, an ISP can favor a particular destination
(e.g., a website for online shopping) by dropping packets destined to other nodes that pro-
vide similar services—which makes many end-users leave slow websites and switch to the
fast one [20, 23, 44].

—Preventing attacks that exploit index-information: As we have discussed above, path
privacy does not guarantee index privacy. In a path validation scheme without index pri-
vacy, an intermediate node can derive non-trivial information from the knowledge of its
own index on the path. We consider the following example. Given the path-length n (in-
cluding the source and destination nodes), if the (n − 1)th on-path node (say, N ) knows
its own index, then N easily derives an additional piece of information that it is the pre-

destination node (i.e., its next-hop on the path is the destination node)—which does not pro-
tect anonymity of the destination node D. Moreover, if N happens to be the pre-destination
node for two or more network paths ending at D (but originating from different source
nodes), then N can selectively forward the packets sent by a particular source node only
(similar to the example described above). Similar situation arises for the second on-path
node, which, given its node-index, can easily identify its predecessor node as the source.

—Preventing identification of critical nodes: In a network, there exist critical nodes that
have large degrees (i.e., they are connected to many other nodes in the network and are
likely to be part of many network paths), and corruption/disruption of such nodes causes
widespread damages [36]. In the absence of path privacy, a network attacker compromising
a single node on a network path can identify all the on-path nodes. This helps the attacker
to identify one or more critical nodes in case it compromises multiple nodes each from a
different network path. Then, the attacker can attempt to corrupt such a critical node to
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5:4 B. Sengupta et al.

Fig. 1. A network path between the source node S and the destination node D.

maximize its capability of designing efficient attack strategies that may potentially affect
many other network paths.

—Defending against an attacker having control over a small fraction of nodes: In
a network, multiple nodes can be compromised by a network attacker (or adversary), and
they can collude with each other to mount certain attacks [1, 17]. Given that the attacker
can control a small fraction of on-path nodes in a path validation scheme with path privacy,
the whole path may be revealed to the attacker if the protocol does not satisfy index privacy.
For example, an attacker, having control over only three nodes (N2,N5 and N8) as shown in
Figure 1, can identify all nodes present on the network path S ∼ D (we note that each on-
path node knows its neighbors, which the node receives a packet from or sends a packet to).

Our contribution: We summarize our major contributions to privacy-preserving path validation
as follows.

• We introduce, for the first time, two notions of privacy in the context of path validation: path

privacy and index privacy. Path privacy ensures that an intermediate node cannot identify
other on-path nodes (except its neighbors). This notion also includes the anonymity of the
source and destination nodes. However, index privacy guarantees that an intermediate node
cannot learn its node-index on the path. These two notions are crucial for path validation
to prevent certain attacks as discussed above.

• We construct PrivNPV, a privacy-preserving network path validation protocol satisfying
both path privacy and index privacy. Moreover, the destination node in PrivNPV can check
whether the packets originate from the designated source node.

• Once the network path and keys are set up for a PrivNPV session, an on-path node has to
perform only (lightweight) symmetric-key cryptographic operations to validate and process
subsequent payload-packets.

• We analyze the security of PrivNPV based on various attacks. In addition to the attacks
relevant to path validation protocols (in general), we consider other possible attacks specific
to a privacy-preserving path validation protocol.

• Finally, we discuss the practicality of PrivNPV based on relevant parameters.

Organization: The rest of the article is organized as follows. Section 2 describes the problem
and background related to this work. In Section 3, we discuss the challenges in constructing a
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Privacy-preserving Network Path Validation 5:5

Table 1. Notations Used

Notation Description Notation Description

S ∼ D network path S = N1 − N2 − · · · − Nn = D E symmetric-key encryption scheme

of length n with source S , destination D , MAC message authentication code

Ni = identity of ith on-path node Π pseudo-random permutation

s1 | |s2 concatenation of strings s1 and s2 K key space of E, MAC and Π

H, H ′, H1, H2 hash functions S space of session-identifiers

T timestamp M output space of H2

G =
〈
д
〉

д is a generator of the group G Zq, Fq finite field of prime order q

MPK public parameters of KGC MSK master secret key of KGC

PKi public key of Ni SKi secret key of Ni

ski anonymous key shared between S and Ni sk non-anonymous key shared between S and D

ids session-identifier P random pseudonym of source (per session)

pathE encrypted path rD random element associated with D (per session)

ri encrypted next-node info for Ni r ′j ri such that j = Πsk (i )

CAF chained authentication field A array of verification fields

σ bit-string containing P, ids , T , rD A adversary

σ1 bit-string containing P, ids , T , rD, pathE σ2 short digest of σ1

payload payload in a packet dp short digest of (payload, σ )

privacy-preserving path validation protocol and the techniques we employ to address these chal-
lenges. We provide the detailed construction of PrivNPV, our privacy-preserving network path
validation protocol, and discuss its properties in Section 4. In Section 5, we analyze the security of
PrivNPV. We describe the practicality of PrivNPV in Section 6 and conclude the article in Section 7.

2 PROBLEM DEFINITION AND BACKGROUND

2.1 Definition

A network path (or path) of length n between a source node S and a destination node D is an
ordered collection of nodes N1 = S,N2,N3, . . . ,Nn−1,Nn = D such that packets sent by S traverse
the intermediate nodes N2,N3, . . . ,Nn−1 in the same order to reach D. The ith on-path node is
identified by its node-identifier Ni . We denote such a network path either by N1 − N2 − · · · − Nn

or simply by S ∼ D (omitting the intermediate nodes). For 2 ≤ i ≤ n − 1, the intermediate node Ni

has a predecessor node Ni−1 (the node that Ni receives a packet from) and a successor node Ni+1

(the node that Ni sends a packet to) along the path. The source (or destination) node has only a
successor (or predecessor) node along the path. The source node S decides the network path and
lets D know the same. The notations we use in this article are enlisted in Table 1. We now describe
some notions related to a privacy-preserving path validation protocol as follows.

Definition 1 (Path Validation [4, 19, 28]). A network protocol is called a network path validation
(or path validation) protocol if it satisfies both path enforcement and path verification defined as
follows.

(1) A network protocol satisfies path enforcement if a source node S decides a network path
S ∼ D to communicate with a destination node D and every intermediate node on S ∼ D
is directed to follow that specific path to send packets from S to D.

(2) A network protocol satisfies path verification if every node present on a network path
S ∼ D receives authenticated proofs (along with packets) from its upstream nodes, such
that it can verify whether the packets have so far traversed the path specified by S .

ACM Transactions on Internet Technology, Vol. 20, No. 1, Article 5. Publication date: February 2020.



5:6 B. Sengupta et al.

Path validation schemes assume that the source node knows the exact path a packet should
traverse to reach the designated destination node. Path validation can be used in both inter- and
intra-AS (autonomous system) scenarios. For either type of application scenario, we need the cor-
responding routing protocol to find out the network topology and regulated forwarding paths.
For example, Kim et al. [19] assume that the source node has access to the information of each
node (along with the information of the AS it belongs to) present on the path. The source node
also knows which intermediate nodes along the path may opt for validating the path. They argue
that the routing information can be obtained from the Border Gateway Protocol (BGP) [34], or the
source node can be provided with this information by the respective ISPs. Similarly, for intra-AS
path validation, routing information can be obtained from mainstream Interior Gateway Protocols
(IGPs) like Open Shortest Path First (OSPF) protocol [27].

Definition 2 (Source Authentication [19]). A path validation protocol satisfies source authentica-
tion if a source node S authenticates each packet sent along a network path S ∼ D, such that every
node on the path can validate whether the packet originates from the designated source node S .

Definition 3 (Path Privacy). A path validation protocol satisfies path privacy if any intermediate
node present on a network path S ∼ D cannot identify other nodes (except its predecessor and
successor nodes) on that path. In general, a set of intermediate nodes colluding with each other
cannot identify any other nodes unless those nodes are predecessor or successor to at least one of
the colluding nodes.

Definition 4 (Index Privacy). A path validation protocol satisfies index privacy if any intermedi-
ate node present on a network path S ∼ D cannot learn its node-index on that path.

Definition 5 (Privacy-preserving Path Validation). A path validation protocol is privacy-
preserving if it satisfies both path privacy and index privacy.

An intermediate node has to identify its neighbor nodes to forward (or receive) packets correctly.
Thus, the notion of path privacy defined above does not include the privacy of neighbor nodes.
The notions of path privacy and index privacy preserve the privacy of all other nodes (including
the anonymity of the source node S and the destination node D).

2.2 Related Work

Researchers have proposed various solutions to secure and verify network paths. We hereby dis-
cuss key solutions and refer interested readers to a recent survey on path validation [4] for more
details.

Secure routing protocols [15, 18] are designed to find the best path (e.g., the shortest path) be-
tween a source node and a destination node such that the path finding process is secure against
certain attacks. However, these protocols do not ensure that the path thus selected is actually
followed by the packets sent later. In source routing, the source node embeds the path in packet
headers such that the intermediate nodes know the exact path to be followed [40, 43]. However,
the intermediate nodes are assumed to be honest and follow the path correctly—this assumption
does not suffice in practice where nodes present on the path can be malicious. Traceroute enables
the intermediate nodes either to mark a passing packet with their respective identifiers (packet

marking) or to store a packet-digest locally (packet logging). For packet marking, an intermedi-
ate node marks packets either probabilistically [35, 38] or deterministically [7, 42]—these marks
are later checked by the destination node. In case of packet logging, the destination node asks
for digests from the intermediate nodes to retrieve the path followed [37]. However, these marks
and digests are not designed to be cryptographically secure—which makes them vulnerable to
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Privacy-preserving Network Path Validation 5:7

forgery. Path enforcement enables the source node to embed the path directives in packet headers
such that every on-path node can forward those packets along the specified path [3, 9, 33]. Unlike
source routing, path directives are secure against malicious tampering. Path verification proto-
cols [30, 45] are similar to traceroute protocols, except that the packet-marks (or packet-digests)
in a path verification protocol are cryptographically secure in that a malicious node cannot forge
them.

Path validation protocols achieve both path enforcement and path verification. There exist a
few path validation schemes in the literature. All of them ensure path enforcement by including
path directives in the packets. ICING [28] embeds, in a packet, a verification field for each inter-
mediate node. The source node initially populates these verification fields with authenticators. As
the packet passes through each intermediate node, the node verifies the proofs (that were com-
puted by its upstream nodes) present in its verification field. It also inserts proofs into each of the
verification fields corresponding to its downstream nodes. Thus, every on-path node can verify
whether a packet has traversed the path specified by the source node. In the origin and path trace
(OPT) protocol [19, 46], each intermediate node lets the source and destination nodes know a se-
cret key generated for a session. Based on these keys, the source node later computes message
authentication codes (MACs)1 and embeds them in the corresponding verification fields present
in a packet-header. Each on-path node can check, using its verification field and a proof sent by its
predecessor node, if the packet has followed the designated path so far. These proofs form a chain
of MACs, and the destination node validates the path by verifying the proof sent by its predecessor
node. The design of the orthogonal sequence verification (OSV) [5, 6] protocol is similar to that of
OPT, except that OSV uses orthogonal sequences to make the generation of the verification fields
and proofs faster.

Unlike the path validation schemes described above, alibi routing [22] addresses avoidance rout-
ing, where it is validated if the packets have avoided traversing through certain forbidden nodes
(or a geographic region). The idea is to select a trusted node located far from a forbidden node
and enforce the packets traverse through this trusted node. If a packet passes through both of the
nodes, then it encounters much higher latency compared to when it traverses through the trusted
node only—this difference in latency can be detected by the destination node.

Changes required in the current Internet architecture to incorporate path validation:
Path validation requires modifications in the existing Internet routing logic for packets, that are
necessary to achieve stronger security guarantees, i.e., path enforcement and path verification.
Path validation schemes demand more computational logic on routers, which is required for pars-
ing packet headers and performing cryptographic operations. However, this computational logic
can be efficiently implemented in both software [19, 28] and hardware [28]. However, the rout-
ing protocol also needs to be updated—which can be done through firmware/software upgrade
on routers. In OPT [19], an autonomous system (AS) can announce its path validation function-
ality within BGP update messages—which enables end-hosts to get the information required for
deciding a path.

On the possibility of extending similar protocols to achieve path/index privacy: We now
discuss whether the existing path validation schemes (or apparently similar protocols) can be ex-
tended incrementally to design a path validation protocol with path/index privacy.

Extending ICING: In ICING [28], apart from the path variable (say, PATH) containing the whole net-
work path, a verification field is embedded in the packet for each on-path node. An intermediate

1Given a message and a secret key, a MAC scheme outputs a “digest” for the message. A MAC scheme is secure if it is

computationally hard to produce the digest for a message m, given that the digest for m is not available already.
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5:8 B. Sengupta et al.

node (say, Ni ) identifies each of its downstream nodes (i.e., Ni+1,Ni+2, . . .) from PATH and in-
serts proofs πi,i+1,πi,i+2, . . . into the verification fields Vi+1,Vi+2, . . ., respectively. We note that
the proofs πi,i+1,πi,i+2, . . . are computed using the public keys of the corresponding downstream
nodes Ni+1,Ni+2, . . .—which requires Ni to identify these nodes. Similarly, the node Ni has to
identify its upstream nodes N1,N2, . . . ,Ni−1 to verify the proofs π1,i ,π2,i , . . . ,πi−1,i present in the
verification field Vi . As each node has to know every other node present on the path, path/index
privacy cannot be achieved without making non-trivial changes in the design of ICING.

Extending OPT/OSV: OPT [19, 46] involves a key setup phase where a special packet P circulates
along the path. To enable all nodes to identify their neighbors, P embeds the whole path (in a
variable PATH) in clear—thus neither path privacy nor index privacy is achieved in OPT. To achieve
path privacy, the whole path must not be given in clear, but there should be some mechanism such
that each node knows its successor node to forward packets. Let us consider the scenario if PATH
were not embedded in P . Even then, an intermediate node could learn its index as follows. Each
node in OPT appends its (encrypted and authenticated) secret key to P . So, a node can simply
count the number of such secret keys already appended to P to get its own index. Last, in the OPT
protocol, origin-path-verification (OPV) fields are included in the header of a packet to enable
validation. These fields are ordered according to the node-indices, so that a node can identify
and validate the corresponding OPV value—this reveals respective indices of the nodes. To extend
OPT to achieve path/index privacy, these issues must be addressed—which requires substantial
changes in the OPT design. We note that similar issues arise in the orthogonal sequence verification
(OSV) [5, 6] protocol, which borrows similar design from OPT.

Using onion routing/Tor: In onion routing [41] and Tor [13], the source node encrypts packets in a
specific order (using several layers) such that each intermediate node can decrypt only one layer
and pass this partially decrypted packet to its next hop (information of the next node is obtained
from this partially decrypted packet). Finally, when the packet reaches the destination node, the
destination node decrypts the last layer of encryption to retrieve the original payload. These tech-
niques appear to be probable solutions for privacy-preserving network path validation. However,
onion routing/Tor provides neither path verification nor source authentication. To achieve path
verification, each intermediate node must obtain authenticated proofs [19, 28] from the upstream
nodes, such that it can verify all the nodes on the path (up to that node) using those proofs. We note
that encryptions do not provide such authenticated proofs. It is not straightforward to design such
a privacy-preserving path validation protocol without revealing the mapping between a proof and
the node that generates it (and still enabling a downstream node to verify whether the proof has
been generated by that node). The key setup phase for transmitting a packet through the Tor net-
work is expensive due toO (n2) rounds of communication with n Tor-routers (to set up a key with
each Tor-router Ni , it requires communication between pairs N1 − N2,N2 − N3, . . . ,Ni−1 − Ni ). As
the number of routers in a typical Tor-circuit is quite small (e.g., 3), this cost is not too high. How-
ever, this technique is not suitable for privacy-preserving path validation where the number of
on-path nodes can be large (say, 40). We note that Catalano et al. [8] later reduced the number of
communication rounds required for setup to O (n). Along with other techniques, we exploit the
anonymous key-agreement technique of Reference [8] for our privacy-preserving path validation
scheme.

2.3 An Anonymous Key-Agreement Protocol

Catalano et al. [8] proposed a certificateless anonymous key-agreement protocol between nodes
present in a network. In this protocol, a node is associated with an identity (say, ID), and a trusted
party, called the Key Generation Center (KGC), issues a partial secret key pI D associated with ID
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Privacy-preserving Network Path Validation 5:9

to the node. In a one-way anonymous key-agreement protocol, a node is allowed to authenticate
itself, without revealing its identity, to another node. However, the former node is able to identify
the latter node that it authenticates itself to.

Let G =
〈
д
〉

be a multiplicative group of prime order q, where д is a generator of the group, and
H : {0, 1}∗ → Zq and H ′ : {0, 1}∗ → K be two hash functions, where K is the output space of H ′.
The KGC selects a random element x from Zq and sets y = дx ∈ G; it outputs the master secret
key MSK = x and the public parameters MPK = (q,G,д,y,H ,H ′).

For a node with identity ID, the KGC verifies ID, selects a random elements aI D ∈ Zq and sets
bI D = д

aI D . The KGC uses the master secret key MSK = x to compute cI D = aI D + H (ID | |bI D )x
and sends the partial secret key pI D = (bI D , cI D ) to the node. Once the node gets pI D from the
KGC, it selects a random element xI D ∈ Zq and sets yI D = д

xI D . The node outputs the public key
PKI D = (bI D ,yI D ) and the secret key SKI D = (cI D ,xI D ).

The identities and the corresponding public keys of all nodes are maintained in a public list

so that any node in the network can search for the credentials of another node to establish a
shared key anonymously. Suppose a node N1 wants to establish a shared key with another node
N2, such that N2 cannot identify N1. N1 selects a random element w ∈ Zq and sets P = дw as its
pseudonym. It gets N2’s public key PK2 = (b2,y2) from the public list of identities. Given PK2, the

node N1 computes the shared key sk2 ← H ′(z2,1 | |z2,2), where z2,1 = (b2y
H (N2 | |b2 ) )w and z2,2 = y

w
2 .

However, given P and the secret key SK2 = (c2,x2), the node N2 computes the shared key sk2 ←
H ′(z2,1 | |z2,2), where z2,1 = Pc2 and z2,2 = Px2 . We note that the shared keys computed by N1 and
N2 are same as both of them compute the same values z2,1 = д

wc2 and z2,2 = д
wx2 .

3 CHALLENGES FOR CONSTRUCTING A NETWORK PATH VALIDATION

PROTOCOL WITH PATH/INDEX PRIVACY

In this section, we first discuss the challenges for constructing a path validation protocol with
path/index privacy. Then, we describe the techniques we use to address these challenges.

Challenges: We mention the design challenges as follows.

• The source node in existing path validation schemes embeds the whole network path in a
packet such that each on-path node can know the path and check, using proofs computed
by its upstream nodes, whether the packet has actually traversed that path. The main chal-
lenge in designing a privacy-preserving path validation protocol is to hide the path from the
intermediate nodes with an assurance that these nodes still can validate the path (without
knowing it) and forward packets correctly.

• One possible way to achieve path privacy is to encrypt individual nodes present on the
path so that an intermediate node can decrypt only the ciphertext intended for it (to obtain
validation and forwarding information). This requires the source node and an intermediate
node to compute a unique shared session key such that the intermediate node can decrypt
only the ciphertext that was generated by the source node using the same key. However,
the source node has to then establish a separate secure channel for each of the intermedi-
ate nodes to set up the corresponding session key—which demands much communication
overhead (especially, for a path with a large number of nodes).

• Even if the source node establishes a dedicated secure channel with an intermediate node to
set up a session key, source anonymity is still not preserved, since setting up such a channel
requires the credentials (e.g., public key) of the source node to be known to the intermediate
node.

• We recall that path privacy does not guarantee index privacy, and a path validation proto-
col achieving path privacy (but not index privacy) is still vulnerable to certain attacks as
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discussed in Section 1. To achieve index privacy, the protocol must be designed in such a
way that intermediate nodes cannot learn their respective node-indices. To be precise, the
order of the ciphertexts must not reveal node-indices on the path.

Our approach to address the challenges: We adopt the following techniques to address the pre-
ceding challenges. We provide the detailed construction of our privacy-preserving path validation
protocol satisfying both path privacy and index privacy in Section 4.

• In the setup phase of our path validation protocol, the session keys (shared between the
source node S and the intermediate nodes) are generated in such a way that S does not
need to form a dedicated secure channel for each intermediate node to communicate the
corresponding shared session key. Moreover, to not reveal the identity of S to the inter-
mediate nodes, we use a one-way anonymous key-agreement protocol [8], where S picks a
random pseudonym for a session and computes the session keys based on a secret associated
with this pseudonym and the respective public keys of the intermediate nodes. S embeds
this pseudonym in a setup-packet and sends it along the network path. An intermediate
node can compute the same session key using its secret key and the pseudonym embedded
in the setup-packet. In addition, the source node and the destination node agree upon an-
other (non-anonymous) session key that enables the destination node to authenticate the
source node.

• The source node encrypts each node present on the path. The successor-node information
for an intermediate node N is encrypted in such a way that only N can decrypt its cor-
responding ciphertext using its session key (however, N cannot decrypt the ciphertexts
intended for other nodes).

• Message authentication codes (MACs) are employed in a chained fashion [19], such that a
single incorrect MAC makes all the subsequent MACs in the chain invalid. To be specific,
the source node embeds in a packet a verification field for each on-path node. The MAC
present in the verification field corresponding to a particular on-path node takes as input
another MAC that is computed using the secret key of the predecessor node of that on-path
node—which forms a chain of MACs in the same order as that of the nodes present on the
network path. So, if the MAC computation is corrupted somewhere along the path (e.g.,
bypassing some honest on-path nodes, or changing the order of MAC computations), the
next honest on-path node can detect the same as the MAC verification at its end will fail.
Thus, an on-path node can validate all MACs (computed by its upstream nodes) by verifying
only the MAC sent by its predecessor node.

• For each intermediate node N , the source node S embeds a verification field in the packet
such that N can check if all the upstream nodes have followed the protocol correctly. How-
ever, to preserve index privacy, N must not learn its index from the list of verification fields.
To address this concern, we use a pseudo-random permutation2 (PRP) to shuffle the verifi-
cation fields. This shuffling is done by S using its secret key (that is not shared with any of
the intermediate nodes). Moreover, to let N correctly identify the verification field intended
for it, S encrypts N ’s permuted index using the session key shared with N . This can be
done in a similar way as described above for encrypting the successor-node information.
In fact, both of them are encrypted together in our path validation protocol, and an inter-
mediate node uses its session key to decrypt the corresponding ciphertext and obtains both
information.

2A pseudo-random permutation over a domain D is computationally indistinguishable from a random permutation over

D.
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Fig. 2. An overview of the steps performed by the on-path nodes in PrivNPV during: (a) the setup phase and

(b) a payload-forwarding phase.

• Pseudo-random permutations (PRPs) are typically defined for large domains (e.g., 128-bit
AES). However, the number of nodes present on a network path is comparatively much
smaller (15–20, on an average). Thus, we need PRPs with small domains for our path valida-
tion protocol. There exist a few small-domain PRP constructions in the relevant literature.
Such a PRP (e.g., FastPRP [39]—which is efficient and can be applied to arbitrarily small
domains) is suitable for our path validation protocol.

4 PRIVNPV: A PRIVACY-PRESERVING NETWORK PATH VALIDATION PROTOCOL

In this section, we describe PrivNPV, the first privacy-preserving network path validation protocol.
We assume that a source node S sets up a session with a destination node D, where S decides a
path of length n and lets D know the specified path. Figure 2 illustrates the steps performed by the
on-path nodes during the setup and payload-forwarding phases.

Long-Term Keys for Node-Identifiers: To achieve source anonymity in PrivNPV, we use the
anonymous key-agreement protocol [8] described in Section 2.3. We recall that the master secret
key and the public parameters of the KGC are MSK = x and MPK = (q,G,д,y,H ,H ′), respec-
tively, where G is a multiplicative group of prime order q, д is a generator of G, and H ,H ′ are
two hash functions. For ease of representation, as in References [8, 28], we describe our protocol
considering G as a multiplicative group. In practice, operations in G can be performed much more
efficiently for an (additive) elliptic curve group [21] than for a multiplicative group of the same
order. Thus, for efficiency reasons, G is typically realized as an elliptic curve group (over the fi-
nite field Fq ) [8, 28]. We note that multiplication and exponentiation operations in a multiplicative
group are equivalent to addition and scalar multiplication operations, respectively, in an additive
group.

To enable S and D to establish a (non-anonymous) shared key also, we use Diffie-Hellman key
exchange protocol [11] as follows. In addition to the partial secret key pI D (see Section 2.3), the
KGC issues another secret key uI D to a node with identity ID. The node outputs the public key
PKI D = (bI D ,yI D ,vI D = д

uI D ) and the secret key SKI D = (cI D ,xI D ,uI D ). Suppose N1 and N2 want
to establish a non-anonymous shared key with each other. N1 and N2 computeH ′(vu1

2 ) andH ′(vu2

1 )
as their secret keys, respectively. Since vu1

2 = v
u2

1 = д
u1u2 , they compute the same secret key.

The secret key-public key pair ((cI D ,xI D ), (bI D ,yI D )) are used for anonymous key agreement,
and the secret key-public key pair (uI D ,vI D ) is used for non-anonymous key agreement. In
PrivNPV, the shared session keys obtained from these long-term keys are used to validate packets.
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4.1 Setup Phase for Path and Keys

Suppose a source node selects a network path N1 − N2 − · · · − Nn to communicate with a desti-
nation node, where Ni is the publicly known identity associated with the ith on-path node. We
have S = N1 as the source node, D = Nn as the destination node and N2,N3, . . . ,Nn−1 as the inter-
mediate nodes. Let E = (KeyGene , Enc,Dec) be a secure symmetric-key encryption scheme and
MAC = (KeyGenm ,MACS,MACV) be a secure message authentication code. Let Π be a secure
pseudo-random permutation (PRP) over the set of node-indices [1,n]. The schemes E,MAC and Π
share the same key spaceK , which is equal to the output space ofH ′. LetS be the space of session-
identifiers. LetH1 : {0, 1}∗ → S andH2 : {0, 1}∗ → M be collision-resistant hash functions,3 where
M is the output space of H2. We refer to Section 6.1 for possible realization of these cryptographic
primitives.

Processing at the source node: LetT be the current timestamp. We assume that on-path nodes
in a session are loosely time synchronized (e.g., using the network time protocol (NTP) [26]).
The source node S selects a random element w ∈ Zq and sets P = дw as its pseudonym. For the

current session, S selects a random element rD ∈ {0, 1}128 for the destination node D and computes
a session-identifier ids = H1 (P||T | |rD ). The random element rD serves the purpose of generating
different session-identifiers for different destination nodes. S performs the following steps.

—For each i ∈ [2,n], S establishes a shared session key with the ith on-path node Ni . It
searches Ni in the public list of identities to obtain Ni ’s public key PKi = (bi ,yi ,vi ). Given
ids , the source node S computes the following session keys

ski ← H ′(zi,1 | |zi,2 | |ids ) for each i ∈ [2,n],

sk1 ← skn , sk ← H ′
(
vu1

n
�
�
�
ids

)
,

(1)

where zi,1 = (biy
H (Ni | |bi ) )w and zi,2 = y

w
i for i ∈ [2,n]. The session key shared between S

and Ni for the particular session ids is ski . We note that S and D share two session keys
skn (using anonymous agreement) and sk (using non-anonymous agreement).

—S encrypts the network path as pathE ← Encsk1
(n | |N1 | |N2 | | · · · | |Nn−1 | |Nn ). S takes a bit-

string σ1 = P||ids | |T | |rD | |pathE and computes a short digest σ2 = H2 (σ1). S computes
the PRP Π over the set [1,n] (using the secret key sk) to obtain the permuted indices
Πsk (1),Πsk (2), . . . ,Πsk (n). Then, for each on-path node, S encrypts that node’s successor
information and its permuted index as

ri ← Encski
(σ2 | |Ni+1 | |Πsk (i )), for each i ∈ [1,n − 1],

rn ← Encskn
(σ2 | |N1 | |Πsk (n)).

(2)

—S shuffles the sequence R1 = {r1, r2, . . . , rn } of ciphertexts using Π (and the secret key sk)
to form another sequence R2 = {r ′1, r ′2, . . . , r ′n } such that r ′

Πsk (i )
= ri for each 1 ≤ i ≤ n. We

note that r ′
Πsk (i )

is the ciphertext intended for the ith on-path node.

—The source node S processes the setup-packet Ps as follows. S includes the bit-string σ1, the
sequence R2, an array A of verification fields and a chained authentication field CAF in Ps

(see Figure 3). S computes the initial CAF value asCAF1 = MACSsk1
(σ2). Then, it sets N0 =

Nn and includesCAF = CAF1 and A[Πsk (1)] = MACSsk1
(σ2 | |N0) in the packet Ps . For each

index i ∈ [2,n − 1], S computes a CAF valueCAFi = MACSski
(CAFi−1) and setsA[Πsk (i )] =

MACSski
(σ2 | |Ni−1 | |CAFi−1) in Ps . S also sets A[Πsk (n)] = MACSsk (σ2 | |Nn−1 | |CAFn−1) in

Ps . We note that, for any i ∈ [2,n − 1], the value CAFi is computed using MACS that takes

3For a collision-resistant hash function, it is computationally hard to find two inputs whose hash values are equal.
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Fig. 3. Initial structure of the setup-packet Ps .

CAFi−1 and ski as input—which forms a chain of MACs that ensures that one invalid MAC
computation in this chain makes all the subsequent MACs invalid.

—Finally, S sends the setup-packet Ps to its successor node N2 on the path.

Processing at an intermediate node: The intermediate node Ni (2 ≤ i ≤ n − 1) processes the
incoming setup-packet Ps as follows.

—Ni parses the bit-string σ1 as P||ids | |T | |rD | |pathE and checks whether ids
?
= H1 (P||T | |rD ).

It also computes σ2 = H2 (σ1).
—Given P and the secret key SKi = (ci ,xi ,ui ), the node Ni computes the session key

ski ← H ′(zi,1 | |zi,2 | |ids ), (3)

where zi,1 = Pci and zi,2 = Pxi . We note that, as both S and Ni compute the same values
zi,1 = д

wci and zi,2 = д
wxi , the session key ski computed in Equation (3) is the same as that

in Equation (1).
—Ni uses the session key ski to decrypt the elements of R2 = {r ′1, r ′2, . . . , r ′n } one by one and

checks whether the plaintext thus obtained begins with σ2 = H2 (σ1). Among these cipher-
texts, only one r ′j is decrypted correctly (for some j ∈ [1,n]). We note that all other cipher-

texts present in R2 were originally encrypted (by S) using keys different from ski . Thus,
decrypting these other ciphertexts using ski produces random plaintexts that, with high
probability, do not begin with σ2.

—Ni obtains (Πsk (i ),Ni+1) after decrypting r ′j and checks if j
?
= Πsk (i ). We note that the ci-

phertext r ′
Πsk (i )

∈ R2 is the same as ri ∈ R1.

—Let N ′i−1 be the node from which Ni has received the setup-packet Ps . Ni computes tempi =

MACSski
(σ2 | |N ′i−1 | |CAF ) using the CAF value (which is CAF = CAFi−1 currently) from Ps .

If tempi = A[Πsk (i )], then Ni is convinced that all previous CAF values have been computed
correctly—which enables path verification by Ni . If the path is verified to be correct, then Ni

computes CAFi = MACSski
(CAF ) and sets CAF = CAFi in the setup-packet Ps .

We note that if Ni and Ni−1 have followed the protocol correctly, then Ni−1 = N ′i−1. Oth-
erwise, the order of the node-sequence has not been followed properly, and Ni computes
MAC on an incorrect input N ′i−1 � Ni−1 (which is detected by the next honest node present
on the path).

—If any preceding verification fails, then the node Ni drops the setup-packet Ps . Otherwise,
Ni stores (ids , ski ,Πsk (i ),Ni−1,Ni+1) and sends the updated Ps to the next on-path node
Ni+1.

Processing at the destination node: The destination node D processes the packet Ps as follows.

—D parses the bit-string σ1 as P||ids | |T | |rD | |pathE and checks whether ids
?
= H1 (P||T | |rD ).

It computes the hash value σ2 = H2 (σ1).
—Given P and the secret key SKn = (cn ,xn ,un ), D computes the session keys

skn ← H ′(zn,1 | |zn,2 | |ids ), sk1 ← skn , (4)
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Fig. 4. Initial structure of a payload-packet Pp .

where zn,1 = Pcn and zn,2 = Pxn . As both S and D essentially compute the same values
zn,1 = д

wcn and zn,2 = д
wxn , the session key skn computed in Equation (4) is the same as

that in Equation (1).
—D uses the session key sk1 to decrypt pathE to obtain the network path (and n). Given

the public key PK1 = (b1,y1,v1) of the source node N1 = S and its own secret key SKn =

(cn ,xn ,un ), the destination node D computes the session key

sk ← H ′
(
vun

1 | |ids

)
. (5)

As vu1
n = v

un

1 = д
u1un , the session key sk computed in Equation (5) is the same as that in

Equation (1).

—Let N ′n−1 be the node from which D has received Ps . D checks if Nn−1
?
= N ′n−1.

—D uses sk to compute Πsk (n) and temp = MACSsk (σ2 | |Nn−1 | |CAF ), where the current CAF
value present in Ps is CAF = CAFn−1. If temp = A[Πsk (n)], then D is convinced that all
previous CAF values have been computed correctly—which enables path verification by D.

—If any preceding verification fails, then D drops Ps . Otherwise, D stores
(ids , sk,Πsk (n),Nn−1), encrypts the string P||ids | |T | |rD using sk and sends it to S
as a confirmation. The path D ∼ S need not be the same as S ∼ D (in reverse order), and it
does not require any path validation.

4.2 Payload-Forwarding Phase

After the path and session keys are set up, S transmits payload-packets along the same path. The
payload embedded in a payload-packet contains the actual data that the source node S wants to
send to the destination node D through the decided network path. The payload can be in clear or
in an encrypted format (if S and D decide to hide the content of the payload). In the latter case, S
encrypts the payload using a key shared with D before putting it in the payload-packet.

Processing at the source node: Given ids , T and rD , the source node S proceeds as follows.

—S processes a payload-packet Pp as follows. It takes the bit-string σ = P||ids | |T | |rD and
includes a short digest dp = H2 (payload| |σ ) along with payload in Pp .
S includes an array A of verification fields and a chained authentication field CAF in Pp

(see Figure 4). S computes the initial CAF value as CAF1 = MACSsk1
(dp ). S sets N0 = Nn ,

and it includes CAF = CAF1 and A[Πsk (1)] = MACSsk1
(dp | |N0) in the packet Pp . For each

index i ∈ [2,n − 1], S computes a CAF valueCAFi = MACSski
(CAFi−1) and setsA[Πsk (i )] =

MACSski
(dp | |Ni−1 | |CAFi−1) in Pp . S also sets A[Πsk (n)] = MACSsk (dp | |Nn−1 | |CAFn−1) in

Pp . We note that, for any i ∈ [2,n − 1], the value CAFi is computed using MACS that takes
CAFi−1 and ski as input—which forms a chain of MACs, which ensures that one invalid
MAC computation in this chain makes all the subsequent MACs invalid.

—Finally, S sends the payload-packet Pp to its successor node N2 on the path.

Processing at an intermediate node: The intermediate node Ni (2 ≤ i ≤ n − 1) processes the
incoming payload-packet Pp as follows.

—Ni parses σ as P||ids | |T | |rD and checks whether dp
?
= H2 (payload| |σ ).
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Table 2. Properties of Path Validation Schemes

Schemes
Path Path Index Source/destination Source

validation privacy privacy anonymity authentication

ICING [28] � ✗ ✗ ✗ �
OPT [19, 46] � ✗ ✗ ✗ �
OSV [5, 6] � ✗ ✗ ✗ �
PrivNPV � � � � �†

†Source authentication is done by the destination node only.

—Ni stores the tuple (ski ,Πsk (i ),Ni−1,Ni+1) corresponding to ids (these values were com-
puted/obtained during the setup phase). Let N ′i−1 be the node from which Ni has re-

ceived the packet Pp . The intermediate node Ni checks whether Ni−1
?
= N ′i−1. Ni takes the

CAF value (which is CAF = CAFi−1 currently) from the incoming packet Pp and computes
tempi = MACSski

(dp | |Ni−1 | |CAF ). If tempi = A[Πsk (i )], then Ni is convinced that all pre-
vious CAF values have been computed correctly—which enables path verification by Ni . In
that case, Ni computesCAFi = MACSski

(CAF ) and setsCAF = CAFi in the payload-packet
Pp .

—If any preceding verification fails, then Ni drops Pp . Otherwise, Ni sends the updated Pp to
Ni+1.

Processing at the destination node: The destination node D processes the packet Pp as follows.

—D parses σ as P||ids | |T | |rD and checks if dp
?
= H2 (payload| |σ ).

—We note that D stores (sk,Πsk (n),Nn−1) corresponding to ids (these values were computed
during the setup phase). Let N ′n−1 be the node from which D has received the packet Pp . D

checks whetherNn−1
?
= N ′n−1 and computes temp = MACSsk (dp | |Nn−1 | |CAF ) using the CAF

value (which isCAF = CAFn−1 currently) from Pp . If temp = A[Πsk (n)], thenD is convinced
that all CAF values have been computed correctly—which enables path verification by D.

—If any preceding verification fails, then D drops the payload-packet Pp .

4.3 Properties of PrivNPV

We discuss the properties of PrivNPV as follows. Based on some of these properties, a comparison
among path validation schemes is given in Table 2.

• Path enforcement: During the setup phase, the source node enforces the path by embed-
ding, for each intermediate node Ni , the successor node Ni+1 in the ciphertext ri intended
for Ni (this encryption is done using the session key shared with Ni ).

• Path verification: Every ith on-path node (i ∈ [2,n]) can check, using ski (or sk), CAFi−1

and A[Πsk (i )], if a packet has traversed along the previous nodes mentioned in the path.
This is ensured by the chain of MACs computed according to the node-sequence. A single
malicious (incorrect or out-of-order) MAC computation makes the subsequent MACs in-
valid. Such a mismatch in the MAC can be easily detected by the next honest intermediate
node and D. Path verification is enabled in both setup and payload-forwarding phases.

• Path privacy: PrivNPV achieves path privacy in that each intermediate node can identify
its predecessor and successor nodes only (instead of the whole path). This is ensured by en-
crypting the neighbor information using that node’s session key. However, an intermediate
node cannot decrypt the ciphertexts intended for other nodes.
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Fig. 5. The minimum number of intermediate nodes to compromise to reveal the whole path in PrivNPV: (a)

with path privacy (but without index privacy) and (b) with both path privacy and index privacy.

We note that the malicious intermediate nodes controlled by an attacker can combine
their knowledge (information about their respective predecessor and successor nodes) to
identify parts of the network path. Suppose the attacker aims to identify the whole path
by corrupting the minimum number of intermediate nodes such that: (1) every honest on-
path node (i.e., the source node, or the destination node, or an honest intermediate node)
has at least one malicious node as its neighbor, and (2) malicious nodes are located as far as
possible from one another. Figure 5(a) illustrates the situation for PrivNPV if it had achieved
only path privacy (without index privacy). To satisfy both conditions, the number of honest
nodes in between two successive malicious nodes can be at most two, and the attacker must
corrupt the nodes N2 and Nn−1. Thus, the attacker has to corrupt at least 	n

3 
 intermediate
nodes to learn the whole network path.

• Index privacy: Due to the use of the PRP Π, the index of any intermediate node present
on the path is not revealed from the sequence R2 of shuffled ciphertexts.

Figure 5(b) illustrates a situation for PrivNPV with both path privacy and index privacy,
where an attacker attempts to identify the whole path by corrupting the minimum number
of intermediate nodes. To satisfy both conditions mentioned above, the number of honest
nodes in between two successive malicious nodes can be at most one, and the attacker must
corrupt the nodes N2 and Nn−1. Thus, the attacker has to corrupt at least 	n

2 
 intermediate
nodes to learn the whole network path. We observe that index privacy increases this bound
from 	n

3 
 to 	n
2 
.

• Source and destination anonymity: Due to path privacy and index privacy, source
anonymity and destination anonymity are preserved in PrivNPV. For each session, S = N1

chooses a random pseudonym P that is sufficient for an intermediate node to compute the
shared session key. An intermediate node can only identify the source node by P and the
destination node D = Nn by a random element rD . However, the identity of S (or D) is not
revealed to any intermediate node; even N2 (or Nn−1) cannot identify if its predecessor (or
successor) node is the source (or destination) node. We note that the destination node D can
identify S and authenticate if a packet originates from S .

In addition to source and destination anonymity, PrivNPV achieves unlinkability across
multiple sessions in the sense that an intermediate node present on two or more network
paths for these sessions cannot link if the packets from these paths are generated by the
same source node or destined to the same destination node. This follows from the fact that
the source node selects a random pseudonym P and a random element rD for each session.
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• Source authentication: The destination nodeD derives the shared key sk using the public
key of S . During the setup/payload-forwarding phase,D validates the MAC value computed
using sk and stored at A[Πsk (n)]. Therefore, source authentication is done implicitly by D.
In case a malicious node attempts to spoof a source, this MAC authentication fails.

• Symmetric-key cryptography: The payload-forwarding phase in PrivNPV involves only
(fast) symmetric-key primitives—that results in fast computation at each node. The setup
phase requires public-key primitives (for computing shared session keys). However, we note
that public-key operations are necessary for two parties generating a shared key without
establishing a dedicated channel between them.

5 SECURITY OF PRIVNPV

5.1 Security Assumptions

A computationally-bounded network attacker is considered to be an adversary A in privacy-
preserving path validation. We assume thatA is Byzantine (i.e., it can deviate from the protocol in
an arbitrary and malicious fashion) and can corrupt some intermediate nodes (these nodes can col-

lude to mount certain attacks collectively). The adversarial model and attacks are similar to those
described in the existing path validation schemes [4, 19, 28]. We assume that A has no control
over the end-hosts (i.e., S and D are considered to be honest). Otherwise, as both of them have
the complete knowledge of the path, A is always able to know the path—which is not possible
to prevent by any means. However, this assumption is rational as the end-hosts may not want to
reveal the path to intermediate nodes whom they do not trust. Moreover,A may attempt to iden-
tify the honest on-path nodes or to learn the index of a node it controls. We require the following
assumptions for PrivNPV to be secure.

—The hash functions H and H ′ used for key agreement are assumed to be random func-
tions [8]. The encryption scheme E, the MAC scheme MAC and the PRP Π used in PrivNPV
are secure. The hash functions H1 and H2 are collision-resistant.

—Each node is identified by its identity/node-identifier (e.g., Ni ), and the Key Generation
Center (KGC) issues a partial secret key to the node based on its identity. The public key of
each node is included in a public list available to all nodes in the network. In PrivNPV, we
consider G to be an elliptic-curve group [21] over the finite field Fq , where q is a 160-bit
prime. Thus, the size of each secret key in Zq (and the corresponding public key in G) is
160 bits.

5.2 Security Analysis: Possible Attacks and Defenses

We discuss the possible attacks an adversaryA can mount on a privacy-preserving path validation
scheme and how PrivNPV defends against them.

• Path-revealing attack: A malicious intermediate node tries to learn the network path
partially or fully. We note that it can always identify its predecessor and successor nodes.

Defense: In PrivNPV, as the path is encrypted, an intermediate node cannot identify
the on-path nodes except its neighbors. A malicious intermediate node, without having the
secret session key of an honest node, cannot decrypt the ciphertext intended for that honest
node. We note that an attacker can compromise some of the intermediate nodes and learn
parts of the network path from the neighbor information of those nodes. However, as we
have discussed in Section 4.3, the attacker has to compromise at least 	n

2 
 intermediate
nodes in PrivNPV to learn the whole network path of length n.

• Index-revealing attack: A malicious intermediate node can attempt to learn its index on
the network path to mount certain attacks similar to that described in Section 1.
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Defense: The source node in PrivNPV shuffles the ciphertexts using the pseudo-random
permutation Π. As an intermediate node does not know the secret key sk for Π, it cannot
learn its node-index on the network path. Moreover, as PrivNPV satisfies both path privacy
and index privacy, a malicious intermediate node (even N2 or Nn−1) cannot identify S and
D only from the random pseudonym P and the random element rD , respectively.

• Counterfeit attack: In a counterfeit attack, A aims to propagate an incorrect packet so
that the packet passes verification. This type of attacks includes packet-alteration attacks
(modifying a packet) and packet-injection attacks (injecting a packet ofA’s choice). Packet-
injection attacks also include replay attacks where A injects older packets into the path.

Defense: In a packet-alteration attack, a malicious intermediate node tries to alter a packet
without being noticed by the next honest on-path node. In PrivNPV, these attacks are pre-
vented by using short digests (σ2 in the setup phase and dp in the payload-forwarding
phase). The digest σ2 = H2 (σ1) is used as an input to the encryption operations (see Equa-
tion (2)), and dp = H2 (payload| |σ ) is included in the packet itself (see Figure 4). These di-
gests are computed using a collision-resistant hash function—which ensures that tampering
with the input would produce a different digest. Moreover, these digests are fed as input to
MAC computations. Thus, an incorrect value of a digest would produce a different MAC
value (despite having the corresponding secret key)—an honest node can easily detect this
anomaly (as the MACs are chained) and drop the packet. Similarly, as all MAC, encryption
and PRP operations need secret keys, it is hard for a malicious node to tamper withCAF , the
verification fields of A or the permuted ciphertexts (embedded in a packet) without being
detected by an honest node.

In a packet-injection attack, a malicious node S ′ in the network tries to impersonate an-
other node S as the source node and inject a packet (of its choice) along a network path. In
PrivNPV, the destination node D authenticates the source node S using the shared session
key derived from the public key of S . Therefore, the only possibility of successfully mount-
ing such an attack is to guess/compute the secret key of S—which is hard for the malicious
node S ′. Replay attacks are prevented in PrivNPV by embedding the session-identifier and
timestamp in the packet (in an authenticated fashion), which can be validated by every node
on the path.

• Denial-of-service (DoS) attack: In a DoS (or distributed DoS) attack, the adversary tries
to make the on-path nodes perform memory-intensive and/or computation-intensive work.
Replay attack (injecting older packets into the path) is one such example that not only
increases traffic in the network but also enhances redundant computation (e.g., verification)
for an honest node.

Defense: In PrivNPV, each intermediate node Ni stores only (ids , ski ,Πsk (i ),Ni−1,Ni+1)
corresponding to a session—this small amount of storage rules out memory exhaustion
of an intermediate node. In terms of computational overhead, the intermediate nodes in
PrivNPV need to perform only a small number of symmetric-key cryptographic operations
in a payload-forwarding phase (see Table 3). For each payload-packet Pp , these symmetric-
key operations can be performed efficiently. However, in the setup phase, an intermediate
node has to perform some computation-intensive work (e.g., it has to perform expensive
exponentiation operations and n

2 decryption operations on an average)—which may help
the adversary to effectively mount DDoS attacks on one or more intermediate nodes. In case
such an attack occurs in the setup phase and the source node S does not get a confirma-
tion (from the destination node D) of receiving the valid setup-packet Ps after a predefined
timeout period, S decides a new network path to communicate with D.

As we have discussed earlier, replay attacks are hard to mount in PrivNPV.
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• Coward attack: The adversary performs a coward attack when the attack is less likely to be
detected. For example, it can mount any attack mentioned above when the path validation
protocol is not being executed (e.g., when the key setup is not done, or when packets are
being sent without authentication to achieve fast propagation).

Defense: Due to the additional computational burden needed for verification, the path-
validation procedure may be invoked only when there are anomalies regarding packet loss
(or delay), or when the source node and the destination node set up a new network path to
be followed for communication [4]. After these issues are resolved (or the setup is done),
every packet transmitted onwards is not checked for validation—which the adversary can
utilize to mount some of the attacks mentioned above. In this scenario, it is hard to detect
such attacks. Among the existing path-validation schemes, only OPT [19] addresses this
issue by executing the path validation probabilistically (i.e., for random packets). Thus, the
adversary fails to predict when a validation would be run—which makes it execute the
protocol correctly all the time. We can also use this method in PrivNPV to prevent such
coward attacks. However, path validation may be applied only to specific packets that are
required to follow a specific path chosen by the source node. However, to ensure validation
of all the packets, authentication (and verification) must be enabled for each of them. In
that case, PrivNPV is still practical as only a few (efficient) symmetric-key cryptographic
operations needed to be performed in the payload-forwarding phase (see Table 3 for the
number of cryptographic operations performed by the nodes).

• Out-of-order traversal: One or more malicious nodes (controlled by A) can send the
packet through all (or some) of the specified nodes but not in the order decided by the source.
It includes the case where an honest node on the path is bypassed by the malicious nodes.

Defense: In PrivNPV, the CAF values must be computed in the same order as that of the
nodes present on the network path. These values form a chain of MACs, where each MAC
in the chain is computed from its previous MAC using the session key of the corresponding
on-path node. For an out-of-order traversal that involves at least one honest node N , the
CAF value of N cannot be computed correctly without its session key—which makes all
subsequent CAF values incorrect. This is detected by the next honest on-path node.

Finally, we mention some issues that path validation does not address well in general [19, 28].
They remain unresolved in PrivNPV as well.

—An out-of-order traversal, that involves only some nodes controlled by A, may not
be detected in a path validation scheme (e.g., A, having control over the nodes
Ni ,Ni+1,Ni+2,Ni+3, can always make a packet traverse through Ni − Ni+2 − Ni+1 − Ni+3 or
Ni − Ni+3, and it can still generate correct CAF values using the session keys of these nodes).

—In a path-detour attack, a malicious intermediate node (say, Ni ) sends a packet
through an unspecified path Ni − N ′1 − N ′2 − · · · − N ′l − Ni+1 (where the detour nodes are
N ′1,N

′
2, . . . ,N

′
l
). If Ni and Ni+1 collude with each other, then they can always produce cor-

rect CAF values—which makes such an attack hard to detect.
—Path validation does not ensure the delivery of a packet to the destination node D. A node

can drop a packet maliciously. However, if a packet fails verification at an honest node, then
the node drops it to avoid wasting downstream resources.

—D cannot identify the exact node where a packet (if any) has been dropped or corrupted.
—Some of the intermediate nodes in a path validation scheme may fail to respond perma-

nently or temporarily due to various reasons (e.g., accidentally or under the influence of
certain attacks). This may result in packet losses at the destination node D. This issue can
be addressed by borrowing ideas from the reliable data-transmission mechanisms of the

ACM Transactions on Internet Technology, Vol. 20, No. 1, Article 5. Publication date: February 2020.



5:20 B. Sengupta et al.

Table 3. Number of Cryptographic Operations Performed by the Source Node S , an Intermediate Node

N , and the Destination Node D During Different Phases of PrivNPV/OPT/ICING, Respectively

Operations
Setup phase Payload-forwarding phase

S N D S N D

Exponentiation 3n − 1/0/ ∼ 2/0/ ∼ 3/0/ ∼ 0/0/n 0/0/n 0/0/n

Hash 2n + 1/1/ ∼ 3/0/ ∼ 4/1/ ∼ 1/2/n + 1 1/0/n + 1 1/0/n + 1

PRP (Π) 1/0/ ∼ 0/0/ ∼ 1/0/ ∼ 0/0/0 0/0/0 0/0/0

Encryption/

decryption
n + 2/0/ ∼ n†/1/ ∼ 2/n − 2/ ∼ 0/0/0 0/0/0 0/0/0

MAC 2n − 1/0/ ∼ 2/0/ ∼ 1/0/ ∼ 2n − 1/2n − 2/‡ 2/2/‡ 1/n + 1/‡
PRF 0/2/ ∼ 0/1/ ∼ 0/3/ ∼ 0/0/4n 0/0/n + 3 0/0/n + 3

Authenticated

encryption/decryption
0/2/ ∼ 0/0/ ∼ 0/2/ ∼ 0/0/0 0/0/0 0/0/0

Signature

generation/verification
0/0/ ∼ 0/1/ ∼ 0/n − 2/ ∼ 0/0/0 0/0/0 0/0/0

∼ICING does not consider a separate setup phase for a session. Each packet in ICING carries a payload along with

authentication information.
†In the worst case, an intermediate node in PrivNPV tries to decrypt n − 1 ciphertexts before it finds the ciphertext

intended for it (an intermediate node finds the corresponding ciphertext after n
2 decryption operations, on an average).

‡MAC computations in ICING use pseudorandom functions (PRFs) and hash functions; we have thus added the respective

counts to that of the corresponding operations.

Transmission Control Protocol (TCP) [32]. The packet losses can be detected by associat-
ing sequence numbers with the packets sent along S ∼ D and by enabling S to receive an
acknowledgment from D for each of these packets. For a temporary disruption, the source
node detects the same (e.g., based on duplicate acknowledgments or a timeout parameter)
and retransmits the lost packets along the same path. However, in case some of the interme-
diate nodes fail permanently, recovery techniques like finding alternative path dynamically
can be applied. However, as the source node in a path validation scheme initially fixes the
network path and packets are allowed to traverse that particular path only, these recovery
techniques are not suitable for path validation. This requires the source node to decide an-
other path (and set up session keys with the nodes on this path) to further communicate
with the destination node—which increases the complexity of the path validation protocol
significantly.

6 PRACTICALITY OF PRIVNPV

6.1 Realization of Cryptographic Primitives

The AES-128 block cipher [29] can be used for symmetric-key primitives in PrivNPV as follows.
The encryption scheme E can be instantiated using AES-128 in cipher-block-chaining (CBC)
mode; the MAC scheme MAC can be realized as CMAC-AES; the PRP Π can be constructed using
FastPRP [39] (FastPRP uses AES-128 to generate required pseudo-random bits). For the initial key
agreement, G is taken to be an elliptic curve group over Fq , where q is a 160-bit prime. Thus,
for the node Ni , each component of PKi = (bi ,yi ,vi ) and SKi = (ci ,xi ,ui ) is 160-bit long. The
output space for the hash function H is {0, 1}160. The output space for each of the hash functions
H ′,H1,H2 is {0, 1}128, that is, S = K =M = {0, 1}128. We can use SHA-256 for computing the
hashes and truncate the 256-bit outputs to 128-bit values. We take the identity of a node (e.g., Ni )
to be an element of {0, 1}128. Based on these possible instantiations, each of the following elements
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is 16-bytes long: ids ,σ2,dp ,CAF , sk, sk2, sk3, . . . , skn−1, skn , A[1],A[2], . . . ,A[n],N1,N2, . . . ,Nn .

As Π operates over [1,n], we have Πsk (1), Πsk (2), . . . ,Πsk (n) ∈ {0, 1} 	log2 n 
 . A timestamp T is
typically represented using 4 bytes. Each of the ciphertexts r1, r2, . . . , rn is 64-bytes long (after
padding the plaintexts appropriately).

6.2 Storage Overhead per Packet

The storage overhead for the setup-packet Ps per on-path node is roughly attributed to an element
ofA (the list of verification fields) and an element ofR2 (the sequence of shuffled ciphertexts). Thus,
the storage overhead for Ps (per on-path node) is around 80 bytes. However, the storage overhead
for a payload-packet Pp (per on-path node) is due to an element ofA—which accounts for 16 bytes.

6.3 Computation per Node

Table 3 shows cryptographic operations (to be performed by the source node S , an interme-
diate node N and the destination node D) during the setup and payload-forwarding phases of
PrivNPV/OPT/ICING. From Table 3, we make the following observations regarding PrivNPV.

—Most of the computations are done in the setup phase.
—Only a few symmetric-key operations need to be performed in the payload-forwarding

phase.
—During the setup phase, S has to perform some of the cryptographic operations for each on-

path node (i.e., the number of times each of these operations to be performed by S grows
linearly with the path-length n).

—The number of times any cryptographic operation to be performed by D is independent
of n. This holds for an intermediate node also, except that it has to perform n

2 decryption
operations (on an average) in the setup phase.

Estimation of time required per node: We estimate the time required by the source node S , an inter-
mediate node N , and the destination node D in different phases of a PrivNPV session as follows.
The (additive) elliptic curve group G is defined over the finite field Fq for a 160-bit prime q. Ac-
cording to the benchmarks given in Reference [16], an exponentiation operation (or, equivalently,
a scalar multiplication operation in the additive group) takes around 0.75 milliseconds when evalu-
ated on a 1.83 GHz Intel Core 2 Duo processor. FastPRP [39] requires aroundn logn pseudo-random
bits that are generated by encrypting non-negative integers using AES-128 with the secret key sk .
For example, for n = 20, Π requires around 100 bits, which can be obtained by invoking AES-128
once (i.e., AES-128sk (0)); for n = 40, it requires around 240 bits, which can be obtained by invoking
AES-128 twice (i.e., AES-128sk (0) and AES-128sk (1)). For symmetric-key cryptographic primitives
involved in PrivNPV, we consider the widely used cryptographic benchmarks [10] evaluated on
a 1.83 GHz Intel Core 2 Duo processor: Each hashing takes 0.55 microseconds (using SHA-256),
each encryption/decryption takes 0.56 microseconds (using 128-bit key AES-CBC), and each MAC
operation takes 0.56 microseconds (using CMAC-AES)—assuming 64-byte inputs for these primi-
tives. Figures 6(a) and 6(b) show the time required for performing cryptographic operations in the
setup and payload-forwarding phases, respectively, for varying path-length n.

In practice, the path-length n is small (e.g., 15–20, on an average). Thus, the per-session com-
putational cost for each node is low (e.g., for n = 20, the nodes S , N , D take around 44.31, 1.51,
2.25 milliseconds, respectively, in the setup phase and 22.95, 1.67, 1.11 microseconds, respectively,
in the payload-forwarding phase). The computational cost in the setup phase (one-time per session)
is predominated by expensive public-key operations. However, we note that public-key operations
are necessary for a pair of nodes computing a shared key without establishing a dedicated channel
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Fig. 6. Time required for performing cryptographic operations in: (a) the setup phase and (b) the payload-

forwarding phase. (c) Storage required at the source S , an intermediate node N , and the destination D.

between them. Once the network path and session keys are set up for a session, S typically trans-
mits many payload-packets. As the computational cost in each payload-forwarding phase is small
(in the order of microseconds), these payload-packets are processed fast at each on-path node.

6.4 Storage per Node

Along with the specified network path, the source node S in a PrivNPV session (identified
by ids ) stores the following: P, ids , T , rD , the keys (sk, sk2, sk3, . . . , skn ) and the permuted
indices (Πsk (1),Πsk (2), . . . ,Πsk (n))—which accounts for total 576 + n(128 + 	log2 n
) bits. For
example, this storage is around 405 bytes for n = 20. The destination node D stores a tuple
(ids , sk,Πsk (n),Nn−1). For example, D stores around 49 bytes for n = 20. Each intermediate node
Ni (2 ≤ i ≤ n − 1) stores a tuple (ids , ski ,Πsk (i ),Ni−1,Ni+1). Thus, for a path of length 20, each in-
termediate node stores around 65 bytes. Figure 6(c) shows the storage required at different on-path
nodes for varying n.

6.5 Comparison among Path Validation Schemes

In this section, we compare the PrivNPV protocol with ICING [28] and OPT [19] based on cer-
tain parameters. Unlike ICING and OPT, the PrivNPV protocol offers privacy of the path being
validated. However, such privacy comes at a cost. For some of these parameters, PrivNPV has an
extra overhead compared to ICING and OPT. PrivNPV enjoys similar efficiency for the rest of the
parameters.

We recall that ICING is designed based on aggregate MACs and self-certifying names. Each node
in the network locally computes a unique public/private key pair. It then broadcasts the public key
(self-certifying name) to other nodes. Given the public key of a node, another node computes a
shared key using its private key and stores the shared key at its end. In addition to the specified
path, each ICING packet contains a verification field for each on-path node. An intermediate node
identifies each of its downstream nodes from the path and inserts authenticated proofs (MACs) into
the respective verification fields. We note that the verification field for a particular node contains a
single MAC that is an aggregation of the MACs computed by all of its upstream nodes. Each node
verifies the MAC in its verification field, inserts MACs in the verification fields for its downstream
nodes, and forwards the packet to its successor node. MAC computations in ICING are done using
pseudorandom functions (PRFs) and hash functions.

In the key setup phase of OPT, the source node sends a packet along the path. Each intermediate
node computes a secret key (by applying a pseudorandom function on the session-identifier) and
puts it in the packet in an encrypted and authenticated format. The destination node decrypts
these secret keys, checks their authenticity, performs authenticated encryption on them and sends
them to the source node. The source node performs authenticated decryption and sets these secret
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Table 4. Storage and Communication Overhead Required in Path Validation Schemes

Storage
(in terms of number

of items stored)

S N D
ICING (per session) n + 1 2 2n + 1
OPT (per session) n + 2 0 n + 2

PrivNPV (per session) 2n + 4 5 4
ICING (long term) 0 ≤ 400,000 0
OPT (long term) 1 1 2

PrivNPV (long term) 3 3 3

Number of packets
communicated during
key setup in a session

ICING 4n + 4
OPT 2

PrivNPV 2

keys as session keys shared with the corresponding intermediate nodes. Later, while sending a
packet, the source node embeds in the packet a chain of MACs computed using the session keys
such that the intermediate nodes can validate the path using these MACs.

We compare PrivNPV with ICING and OPT as follows. Storage overheads per payload-packet
(per on-path node) are 42, 16, and 16 bytes for ICING, OPT, and PrivNPV, respectively. To process
packets, each node needs some (long-term/per-session) storage. Table 4 shows the comparison in
terms of storage required for different nodes (the figures for ICING/OPT are taken from Reference
[19]). In PrivNPV, each node Ni has to store its long-term secret key SKi = (ci ,xi ,ui ). Per-session
storage for the source node S in PrivNPV is higher as it stores all the permuted node-indices
to populate the verification fields later. The destination node D has to store only a tuple of four
elements for a PrivNPV session. An intermediate node N in PrivNPV needs a little extra amount of
storage (compared to ICING/OPT) for its session key, permuted index, and neighbor information.

The computational overhead in PrivNPV (compared to ICING and OPT) is due to exponentiation,
encryption/decryption operations, and PRP computations (see Table 3). This overhead is attributed
to path/index privacy offered by PrivNPV. For a source node S transmitting a large number of
payload-packets in a session, the amortized cost for these operations is reduced significantly (e.g.,
forO (n) packets transmitted in a session, the cost per packet is constant). Therefore, this overhead
is practical and justified.

In a PrivNPV session, S lets each node Ni know its permuted index and successor node by
embedding the ciphertext ri in Ps —this requires sending one packet to D along S ∼ D. In case Ps

passes the verification at D, D encrypts the string P||ids | |T | |rD using sk and sends it to S as a
confirmation. We note that, in addition to per-session communication, PrivNPV nodes joining the
network need to communicate with the KGC initially to obtain their respective secret key-public
key pairs and to include their identities (along with the public keys) in a public list.

6.6 Hiding Path-Length

An intermediate node in PrivNPV can infer the path-length n from the size of A (or R2). One
possible way to hide the actual path-length is to pad the path by adding dummy fields (for dummy
intermediate nodes) in A and R2. As an intermediate node on the actual path derives its next-node
from its respective ciphertext, these dummy nodes are never traversed. Similarly, S puts random
elements into the dummy fields ofA andR2 (which are never checked/decrypted by any node). This
hides the path-length to some extent (e.g., its upper bound is still revealed). If all paths are padded
to be of length n = nmax (say) to minimize leakage further, then nmax should be large enough to
accommodate the paths consisting of a large number (say, 40) of intermediate nodes. However,
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for such a large nmax, this length-hiding routing becomes inefficient (compared to that without
padding) in case the path consists of a few (say, less than 5) intermediate nodes.

7 CONCLUSION AND FUTURE WORK

Network path validation enables a source node to enforce packets to traverse along a specified
network path, such that every on-path node can check if the packets have followed that path so
far. In this work, we have addressed certain privacy concerns that may arise in network path val-
idation. We have introduced two privacy notions: path privacy and index privacy. These notions
are crucial to preserve privacy of on-path nodes in a path validation scheme and to defend against
certain attacks mounted by a network attacker. Path privacy and index privacy also provide source
anonymity and destination anonymity in the presence of malicious intermediate nodes controlled
by the attacker. We have constructed PrivNPV, the first privacy-preserving network path vali-
dation protocol, that exploits mostly lightweight cryptographic operations to achieve both path
privacy and index privacy. PrivNPV also enables the destination node to verify if the packets are
indeed generated by the source node. We have analyzed the security of PrivNPV where we have
considered, in addition to attacks related to path validation schemes, other possible attacks specific
to privacy-preserving path validation. Finally, we have discussed the practicality of PrivNPV and
compared PrivNPV with existing path validation schemes based on storage, communication and
computational overhead required. We mention some future research directions related to privacy-
preserving network path validation.

—Network path validation schemes are designed for next-generation Internet architecture
that is more secure and robust than the current Internet, and the ability of each on-path
node to validate the network path comes at a cost of reduced efficiency attributed to the
cryptographic primitives used in these schemes. Thus, the latency incurred by packet pro-
cessing in PrivNPV does not reach the line rate of the current Internet—which demands
further investigation whether we can design a privacy-preserving network path validation
scheme with lower latency that copes up with the line rate of the current Internet.

—We have analyzed privacy and security of PrivNPV based on certain possible attacks. We
note that analyzing security of a network protocol formally is far more complex than an-
alyzing that of a cryptographic protocol. This is due to the fact that the analysis has to
consider arbitrary network topologies. Among the existing path validation schemes, only
OPT [19] was later analyzed formally in Reference [46] for its security guarantees based
on reasoning logics. It does not appear to be straightforward to combine reasoning log-
ics (as used in Reference [46] for security analysis) with the typical cryptographic proof
techniques (as used in Reference [8] for privacy analysis). We leave the formal privacy and
security analysis of PrivNPV as a future work.

—As we have discussed in Section 5.2, a malicious intermediate node in a path validation
scheme can drop or corrupt a packet, and the destination node cannot identify the exact
node where a packet (if any) has been dropped or corrupted. If an intermediate node in a
path validation scheme corrupts a packet, then the next honest on-path node can inform
the source/destination node about the probable location of the corruption (e.g., by sending
another packet to the source/destination node). However, for a malicious packet drop, it is
hard for the source/destination node to get notified about the probable location of the packet
drop, since the next honest on-path node never receives the packet. Unfortunately, for a
privacy-preserving path validation scheme with path privacy (e.g., PrivNPV), the aforemen-
tioned technique does not work for packet corruption due to source/destination anonymity.
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It appears to be non-trivial to come up with techniques to address the issue for a privacy-
preserving path validation scheme like PrivNPV.

—PrivNPV employs a trusted Key Generation Center (KGC) for one-way anonymous key
agreement, such that an intermediate node can compute a session key shared with the
source node without knowing the actual identity of the source. This shared key helps
the intermediate node to validate if a packet has traversed through the specified path
so far. However, PrivNPV (like many other protocols relying on trusted third parties) is
vulnerable to certain attacks if the KGC is compromised by an attacker. In that case, the
attacker can attempt to learn the session keys and the network paths followed by packets,
or to tamper with the public parameters published by the KGC. However, without such a
trusted third party, it seems to be quite challenging to generate shared session keys while
preserving source anonymity.
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