
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2021

Expediting the accuracy-improving process of SVMs for class Expediting the accuracy-improving process of SVMs for class

imbalance learning imbalance learning

Bin CAO
Zhejiang University of Technology

Yuqi LIU
Zhejiang University of Technology

Chenyu HOU
Zhejiang University of Technology

Jing FAN
Zhejiang University of Technology

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Citation Citation
CAO, Bin; LIU, Yuqi; HOU, Chenyu; FAN, Jing; ZHENG, Baihua; and JIN, Jianwei. Expediting the accuracy-
improving process of SVMs for class imbalance learning. (2021). IEEE Transactions on Knowledge and
Data Engineering. 33, (11), 3550-3567.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5097

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5097&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Bin CAO, Yuqi LIU, Chenyu HOU, Jing FAN, Baihua ZHENG, and Jianwei JIN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5097

https://ink.library.smu.edu.sg/sis_research/5097

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Expediting the Accuracy-improving Process of
SVMs for Class Imbalance Learning

Bin Cao, Member, IEEE, Yuqi Liu, Chenyu Hou, Jing Fan, Baihua Zheng, and Jianwei Yin

Abstract—To improve the classification performance of support vector machines (SVMs) on imbalanced datasets, cost-sensitive
learning methods have been proposed, e.g., DEC (Different Error Costs) and FSVM-CIL (Fuzzy SVM for Class Imbalance Learning).
They relocate the hyperplane by adjusting the costs associated with misclassifying samples. However, the error costs are determined
either empirically or by performing an exhaustive search in the parameter space. Both strategies can not guarantee effectiveness and
efficiency simultaneously. In this paper, we propose ATEC, a solution that can efficiently find a preferable hyperplane by automatically
tuning the error cost for between-class samples. ATEC distinguishes itself from all existing parameter tuning strategies by two main
features: (1) it can evaluate how effective an error cost is in terms of classification accuracy; and (2) it changes the error cost in the
right direction if it is not effective. Extensive experiments show that compared with the state-of-art methods, SVMs that are equipped
with ATEC can not only obtain comparable improvements in terms of F1 score of minority class, area under the precision-recall curve
(AUC-PR) and area under the ROC curve (AUC-ROC) scores, but also outperform the grid-search parameter tuning strategy by two
orders of magnitude in terms of the training time when a high F1 score is required.

Index Terms—Class imbalance learning, SVMs, Classification.

F

1 INTRODUCTION

C LASSIFICATION is a fundamental task in many machine
learning based applications. Lots of classification ap-

proaches have been proposed over the last decades, among
which, the Support Vector Machines (SVMs) have achieved
great success in many classification tasks [1], [2]. However,
standard SVMs assume the training samples are close to
uniform distribution across different classes, and hence their
performance could be significantly compromised by the
imbalanced data distribution that exists in many applica-
tions, e.g., Twitter spam detection [3], video surveillance
[2] and customer churn prediction [4]. This is because the
SVM classifier model learned from an imbalanced dataset
can be severely biased toward the majority class and easily
misclassify the minority samples.

Therefore, it is very important to further improve the
existing classification algorithms to make sure they are
able to adapt to the imbalanced datasets and be able to
achieve high accuracy even when the underlying datasets
are imbalanced. In this paper, we focus on the imbalanced
learning problem of binary classification [5], and treat the
minority class and the majority class as the positive class
and the negative class respectively.

To build a desirable SVM classifier that can perform
well for both the majority and the minority classes, many

• B.Cao, Y.Liu, C.Hou and J.Fan are with the College of Computer Science,
Zhejiang University of Technology, Hangzhou, China
E-mail: bincao@zjut.edu.cn, yqliu@zjut.edu.cn, houcy@zjut.edu.cn, fan-
jing@zjut.edu.cn

• B.Zheng is with the School of Information Systems, Singapore Manage-
ment University.
E-mail:bhzheng@smu.edu.sg

• J.Yin is with the College of Computer Science, Zhejiang University of
Technology, Hangzhou, China
E-mail: zjuyjw@zju.edu.cn

• The Corresponding Author is Jing Fan (fanjing@zjut.edu.cn).

Manuscript received May 10, 2019

techniques have been developed. In general, they can be
categorized into two clusters, sampling-based methods and
cost-sensitive SVMs (CS-SVM) [1], [6], [7]. The former at-
tempts to create balanced data distributions by using dif-
ferent sampling strategies, e.g., oversampling and under-
sampling, while the latter adopts different error costs for
different classes. Moreover, CS-SVMs have been empirically
observed to outperform the sampling-based methods in
many application domains [8]. For example, Different Error
Costs (DEC) [6] and Fuzzy SVM for Class Imbalance Learning
(FSVM-CIL) [1] are the two CS-SVM representatives that
improve the SVMs effectively. They reduce the class imbal-
ance by assigning higher error costs to the minority class
samples. By incorporating these costs in the SVM learning
process, it is possible to derive a hyperplane that can help
mitigate the skewness toward the minority class, and hence
the final classification accuracy for the minority class can be
possibly increased. Note that, different from DEC where all
the within-class samples share the same error costs, FSVM-
CIL can reflect the importance of each training sample by
assigning different weights to different samples, and hence
FSVM-CIL is more robust to the outliers and noise.

The classification accuracy of the CS-SVM is significantly
affected by the aforementioned error costs. Consequently,
it is extremely important to assign proper values to error
costs. In real implementations, we can determine the error
costs either based on empirical values or by an exhaustive
search in the parameter space. Here a dilemma arises. An
assignment based on empirical values is simple but it cannot
guarantee effective classification results. On the other hand,
an assignment via exhaustive searches, e.g., grid search,
can guarantee that the generated SVM classifier is able to
achieve the best performance on validation set but it is
extremely expensive. Therefore, it is very desirable to have
an approach that is both efficient and effective. In this paper,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the efficiency refers to the time required to find the proper
values of error costs, and the effectiveness is measured by
the accuracy of the SVM classifier.

However, to the best of our knowledge, none of the exist-
ing approaches can achieve both efficiency and effectiveness
simultaneously. Bayesian optimization technique [9] [10]
is widely used to automatically tune hyperparameters of
various machine learning algorithms, and the loss function
on the data set is usually used as the optimization goal.
However, in imbalanced learning, simply optimizing the
loss function on the highly skewed data set may result in
a biased result. In recent studies, LexiBoost [11] is the latest
method that attempts to handle class imbalance without cost
tuning. However, LexiBoost is actually an ensemble learning
technique while we focus on addressing the efficiency and
effectiveness of cost tuning for CS-SVM. Gu et al. [12]
proposed an efficient approach to find the optimal hyperpa-
rameters (i.e. error costs for positive and negative samples)
and obtain the global minimum cross validation error for
CS-SVM. However, the algorithm cannot be extended to
other assessment metrics currently, e.g., F1 value or receiver
operating characteristic (ROC) curve.

Therefore, motivated by the above findings and the
universal existence of imbalanced class distribution, we
dedicate this paper to a novel solution, namely Auto-Tuning
of the Error Costs (ATEC). Different from all existing methods,
ATEC is able to i) evaluate how effective an error cost is in
terms of classification accuracy; and ii) change the value in
the right direction if it is not effective. With the help of these
two unique and desirable features, ATEC is expected to
finish the auto-tuning process within a very short duration
and meanwhile, the generated classifier is expected to be
able to achieve a good classification accuracy. Note ATEC
is built on top of SVMs and it is not to change the inner
implementation of standard SVM or its improved versions
(e.g., DEC and FSVM-CIL). Instead, ATEC can be viewed
as an add-in component that can help existing SVMs to
quickly find a proper value of the error cost such that the
generated preferable hyperplane is able to achieve a good
classification accuracy on class-imbalance datasets. In brief,
the main contribution of this paper is three-fold.

1) We propose a guidance on the selection of error
costs. To be more specific, the proposed guidance
is able to evaluate how effective a given hyperplane
H is in terms of classifying class-imbalance data and
to direct the adjustment of the error cost and hence
the hyperplane H if H’s classification accuracy is
not high.

2) Based on the proposed guidance, we propose ATEC,
a method to efficiently and effectively locate a
proper value of the error cost and hence help to
improve existing SVM classifiers (e.g., DEC and
FSVM-CIL) on the class-imbalance data.

3) We perform extensive experiments with tens of real
imbalanced datasets from multiple domains. The
result shows that the algorithms that are equipped
with ATEC not only outperform their original forms
for most, if not all of, the datasets in terms of F1
score of minority class, area under the precision-
recall curve (AUC-PR) and area under the ROC

TABLE 1
Frequently Used Notations

Notation Description
N number of samples
x, y vector and label {−1, 1} of a sample
p total dimension of x
w, b normal vector and bias of a hyperplane
α the Lagrange multipliers
Φ a mapping function that transforms the data to another feature space
C+, C− error cost of positive class and negative class
f the probability density function of samples distribution
Z a new axis from dimensionality reduction
H a classification hyperplane
E+, E− the entropy of positive interval and negative interval
d+, d− the length of positive interval and negative interval

k the error cost ratio C+

C−

curve (AUC-ROC) scores, but also require much less
running time in order to achieve the same F1 scores.

The remainder of this paper is organized as follows.
Section 2 presents preliminaries. Section 3 introduces the
concept of preferable hyperplanes and presents a guidance to
measure whether a given hyperplane is preferable. Section 4
presents the design and the implementation details of ATEC.
Section 5 reports the results of experimental evaluation
and Section 6 reviews the related work. Finally, Section 7
concludes this paper.

2 PRELIMINARIES

In this section, we first briefly review the SVM algorithm,
together with two improved versions of SVM for imbal-
anced datasets, i.e., DEC and FSVM-CIL; we then present
the concept of entropy, which will be used to evaluate the
classification effectiveness of a given hyperplane. Table 1
summarizes the frequently used notations in the paper.

2.1 SVM
Let’s consider a binary classification problem. Given a n-
dimensional hyperspace, there are N samples represented
by (xi, yi), i = 1, 2, · · · , N , where xi ∈ Rp is a p-dimensional
feature vector, and yi ∈ {−1, 1} is the class of each sample.
The goal of the SVM algorithm is to find a separating
hyperplane that can split the samples properly, i.e., dividing
them into two classes as correctly as possible. Moreover,
considering that some real-word datasets are nonlinearly
separable, a mapping function Φ is usually introduced in
SVMs to transform the data into a higher dimensional fea-
ture space. Thereafter, a possible separating hyperplane that
resides in the higher dimensional space can be produced
and it can be denoted by w · Φ(x) + b = 0, where w is the
normal vector to the hyperplane.

For example, in Figure 1(a), circles and stars represent
positive and negative samples respectively. As observed,
there is no good hyperplane that can separate them properly
in the original feature space. However, after these samples
are mapped to a higher dimensional space, a separating
hyperplane as shown in Figure 1(b) could be found. Finally,
this hyperplane can be transformed back to the original
feature space and a classifying boundary denoted by a black
circle in Figure 1(c) could be generated.

Hence, if these samples are completely separable, the
SVM algorithm tries to find a hyperplane so that samples
of the two classes can be distributed on different sides of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

!"

!#

!"

!#

(a) Samples are non-linearly separable

!"

!#

$

(b) Samples are classified in a higher
dimensional space

!"

!#

!"

!#

(c) The final hyperplane

Fig. 1. An example to illustrate the effectiveness of the mapping function Φ of SVMs

the hyperplane and the margin of the hyperplane (i.e., the
distance from the hyperplane to the nearest data point on
each side) is maximal. Such hyperplane can be found by
solving the following optimization problem:

min
w,b

1

2
||w||2 (1)

s.t. yi(w · Φ(xi) + b) ≥ 1 ∧ i ∈ [1, N]

However, many real-world datasets are not completely
linearly separable even after they are mapped to a higher
dimensional feature space. To address this, SVM introduces
a slack variable ξi for each sample so that some of them can
be misclassified. In this way, we can find the hyperplane by
solving the following soft-margin optimization problem:

min
w,b

1

2
||w||2 + C

N∑
i=1

ξi (2)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi ∧ ξi ≥ 0 ∧ i ∈ [1, N]

where C can be viewed as the error cost for a training
sample.

Usually, Equation (2) can be solved by introducing La-
grange multipliers αi and constructing a Lagrangian rep-
resentation. Finally, the optimal values for αi can be com-
puted, and w can be recovered as follows:

w =
∑
i=1

αiyiΦ(xi) (3)

Then based on Equation (3), the SVM decision function can
be given by

f(x) = sign(w · Φ(x) + b)

= sign(
∑
i=1

αiyiK(xi, x) + b) (4)

where K(xi, x) = Φ(xi) · Φ(x) is a kernel function, so that
computing the mapping function Φ(x) can be replaced by a
kernel function. There are various kinds of kernel functions
corresponding to different mapping Φ, such as Gaussian
kernel function, polynomial kernel function, etc.

As mentioned before, standard SVM performs well in
classifying balanced datasets, but it can not produce sat-
isfactory results when dealing with imbalanced datasets.
Therefore, some methods are proposed to improve the
performance of SVM, among which DEC [6] and FSVM-
CIL [1] are two representatives. Without loss of generality,
we assume the positive class is the minority class and the
negative class is the majority class.

DEC. The main idea of DEC is that the error costs for
positive and negative samples should be different. In order
to amend the standard SVM to classify positive samples
correctly, the error cost for the positive class should be
bigger than that of the negative class. In other words, DEC
assigns C+ and C− as the error costs to the positive samples
and the negative samples respectively, with C+ > C−.
Accordingly, the optimization problem in Equation (2) could
be modified as follows:

min
w,b

1

2
||w||2 + C+

∑
{i|yi=1}

ξi + C−
∑

{i|yi=−1}

ξi (5)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi ∧ ξi ≥ 0 ∧ i ∈ [1, N]

Through solving Equation (5), DEC can move the hyper-
plane towards the negative class by setting C+

C− > 1. Empir-
ically, C− is usually fixed to 1 while C+ is tuned within the
range (1,+∞).
FSVM-CIL. Similar to DEC, FSVM-CIL also assigns differ-
ent error costs C+ and C− to positive and negative classes,
with C+ > C−. In addition, FSVM-CIL uses a membership
function to assign a value between 0 and 1 to each within-
class sample, which can further reflect the importance of a
sample in its own class. In this way, FSVM-CIL becomes less
sensitive to noise and outliers. Accordingly, the optimization
problem in Equation (5) is modified as follows:

min
w,b

1

2
||w||2 + C+

∑
{i|yi=1}

f(xi)ξi

+ C−
∑

{i|yi=−1}

f(xi)ξi (6)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi ∧ ξi ≥ 0 ∧ i ∈ [1, N]

Function f(xi) ∈ [0, 1] in Equation (6) is the membership
function used to measure the importance of each sample
within a class. f(xi) can be defined in multiple ways, e.g.,
based on the distance from the own class center. However,
there is no best definition since it is dataset-dependent.

2.2 Entropy

In information theory, an entropy [13] is defined as the
average amount of information produced by a stochastic
source of data. In other words, it can be used to measure
the uncertainty of data. For example, given a variable V
and a set of possible values {v1, v2, · · · , vn}, we assume the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

probability of V being vi is Pi. The entropy of the variable
V can be calculated by Equation (7).

E(V) =
n∑
i=1

−Pi logb Pi (7)

Here, b is the base of the logarithmic function which is
usually set to 2, and E(V) refers to the average information
needed if we want to know the exact value of V . Based on
the maximum entropy theory [14], we know that the value
of E(V) will be the maximum when the probability of each
value is identical, i.e., ∀i ∈ [1, n], Pi = 1

n .

3 ERROR COSTS SELECTION

SVM improvements such as DEC and FSVM-CIL contrive to
reduce the class-imbalance problem by assigning different
error costs C+ and C− to positive and negative classes
with C+ > C−. However, as mentioned in Section 1, it
is hard to determine a proper value for C+

C− so that the
corresponding hyperplane is able to differentiate positive
samples from negative samples. The main reason behind
this is that existing approaches have no idea of whether
the hyperplane is in a good position or not. Although
Akbani et.al [15] empirically affirmed that the setting of
C+

C− = I.R. (the ratio of the number of negative samples
to that of positive samples) can produce good results, it
heavily depends on the nature of the datasets and cannot
guarantee the generated hyperplane can always achieve a
good classification performance for all the datasets. Hence,
knowing where a good hyperplane with high classification
accuracy should be located in the search space of all possible
C+

C− values is critical for further improving existing SVMs.
Instead of employing a general rule such as C+

C− = I.R., we
propose a more specific guidance that considers the nature
of the underlying dataset on choosing a proper value for
C+

C− . In the following, we first present a space reduction
technique, then convert the problem of choosing a proper
value for C+

C− to a guidance on a preferable hyperplane in
the reduced space.

3.1 Multi-Dimensional Space Reduction

Given the training samples which usually consist of mul-
tiple features, automatically finding a good hyperplane in
such a multi-dimensional space is challenging. In our work,
we strategically simplify this problem by projecting these
multi-variable samples to a one-dimensional space, and we
then search for a good hyperplane in this reduced space
instead of the original high dimensional space. To imple-
ment this idea, we have to decide the dimension used for
space reduction. Though there are many different dimension
reduction methods, we choose the dimension based on the
hyperplane learned from original samples. Specifically, we
can invoke an existing SVM classifier (e.g., DEC) to output
an initial hyperplaneH based on given error costs and select
the dimension that is perpendicular to H for reduction. The
intuition behind is that the samples can be classified by the
SVM hyperplane H, i.e., the positive and negative classes
are expected to be on different sides of the hyperplane.
Consequently, if we simply project all the samples to the

𝑑𝑖𝑚$

𝑑𝑖𝑚% 𝑧

𝑂

hyperplane

!"

!# $

%

hyperplaneH

(a) Space reduction example

𝑓(𝑧, 𝑐))

𝑧∗

𝑧

𝑓(𝑧, 𝑐,)

(b) Data distribution along Z-axis
Fig. 2. An illustration example for the proposed guidance

dimension that is orthogonal toH, the separation of positive
and negative samples remains the same.

We plot an example in Fig. 2(a) for illustration. Circles
and stars in Fig. 2(a) refer to two types of samples in a two-
dimensional space;H is a hyperplane derived by an existing
SVM technique. Note that, the hyperplane H might not be
optimal and it could mis-classify certain samples. The space
reduction technique proposed in this paper constructs a new
axis (namely Z-axis) that is orthogonal to H. Obviously, the
direction of Z-axis is consistent with that of the normal
of H. If we project a sample x to the Z-axis, Equation (8)
defines the position of x on Z-axis. Let point O denote the
intersection between Z-axis and H. The classifier based on
H in the original 2-D space is equivalent to a classifier based
on point O along Z-axis.

z =
w · Φ(x) + b

||w||
(8)

Note that the numerator (w ·Φ(x) + b) in Equation (8) is the
separating hyperplane. Similar to the computation of SVM,
z can be computed with Lagrange multipliers αi. Specifi-
cally, based on Equation (3) and Equation (4), Equation (8)
can be rewritten as follows:

z =

∑
i=1

αiyiK(xi, x) + b√∑
i=1

αiyiΦ(xi) ·
∑
j=1

αjyjΦ(xj)

=

∑
i=1

αiyiK(xi, x) + b√∑
i,j
αiαjyiyjK(xi, xj)

(9)

3.2 The Guideline for Preferable Hyperplanes

Based on the multi-dimensional space reduction, we are
ready to identify a good hyperplane through analyzing the
data distribution along the Z-axis. As shown in Fig. 2(b),
assume the projected samples on Z-axis are distributed as
a Gaussian, and f(z, c) and f(z, c+) are the probability
density functions of negative (c) and positive (c+) sam-
ples respectively. Based on the minimum misclassification
rate decision rule [16], we know that the best boundary
on the Z-axis should lie in the position where the probability
densities of positive and negative classes are the same, i.e.,
f(z, c) = f(z, c+). For example, the dotted line (z = z∗)
is the best separation between the classes in Fig. 2(b). It can
be explained by the fact that if a boundary is at the position
where f(z, c) > f(z, c+), we will misclassify the positive
samples into the negative class. Therefore, only when the
boundary is at the position that f(z, c) = f(z, c+) can

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

we assure that the probability of misclassifying reaches the
minimum.

Although the above analysis is correct in theory, it is not
practical in reality due to the difficulty of finding the prob-
ability density function for samples in real scenarios [17].
Actually, acquiring the exact probability density function
for samples is one of the most challenging tasks. In this
paper, we adopt entropy as an alternate. To be more specific,
given a set of samples and a hyperplane H, we calculate
the entropy within a certain area on both sides of H based
on Equation (7). The assumption behind this is that if both
the entropy on one side of H and that on the other side
of H reach their maximum, the hyperplane H is possibly a
preferable hyperplane with good classification performance
since the uncertainty of the samples on both sides reach the
maximum.

Motivated by this, we propose a guideline that can
heuristically judge whether the hyperplane is preferable,
i.e., the hyperplane is able to generate good and desirable
classification performance. Suppose the origin of the Z-axis
for a given hyperplane is O, based on which we define
two intervals along the Z-axis. They are the positive interval
and the negative interval, marked as [0, d+] and [−d−, 0]
respectively. In addition, we useE+ andE− to represent the
entropy of samples mapped to the positive interval and that
of samples mapped to the negative interval respectively. For
example, take the positive interval I1 in Fig. 3 as an example.
There are two data points in I1, with one being positive and
the other being negative. Consequently, the corresponding
entropy E+ is −(1

2 log2
1
2 + 1

2 log2
1
2) = 1. Then, the guideline

of a preferable hyperplane could be formalized as follows:

E+ = E− = MAX ∧ d+ = d− (10)

Specifically, Equation (10) tries to achieve two goals,
namely maximum entropy and equal interval length. The first
goal of maximum entropy aims at locating the margin
between two classes. E+ = E− = MAX indicates that
both the entropy on the positive side and that on the nega-
tive side reach their maximum values, i.e., numbers of the
positive and negative samples are approximately equivalent
in both positive and negative intervals. Note that, this goal
only works for soft-margin classification tasks. We skip the
discussion of hard-margin problems in this paper since they
are overly sensitive to noise in data which makes them less
applicable in real applications.

The second goal of equal interval length is to further
restrict the area where a preferable hyperplane might be
located at and to make it more resilient to noise. We use
a counterexample plotted in Fig.3 to explain the intention
behind imposing the constraint of d+ = d−. Assume the
white circles and the black stars denote the negative samples
and the positive samples respectively, and they are currently
separated by a hyperplane H . Let I1 and I2 represent inter-
vals corresponding to the positive and negative directions
of the hyperplane H , then d+ and d− represent the lengths
of I1 and I2 respectively. Note that I1 and I2 are very
different, i.e., d+ < d−. In both intervals, the number of
positive samples is the same as that of negative samples,
hence the probability distributions of positive and negative
samples are also same. Consequently, both E+ and E−

reach 1, the maximum value an entropy can reach. However,

𝑑𝑖𝑚1

𝑑𝑖𝑚2

Η

𝐼1

𝐼2

Η′
𝐼1
′

𝐼2
′

Fig. 3. An example for illustrating d+ = d−

hyperplane H is not preferable as it misclassifies many
samples. An alternate hyperplane H ′ denoted by the thick
line in Fig.3 performs much better since the misclassification
of H ′ reaches the minimum within the range constructed
by the intervals I ′1 and I ′2. Hence, the requirement of equal
interval length is to avoid the false-signal derived from
similar cases.
Discussion. Our guideline presented in Equation (10) is able
to move the hyperplane to the right location to achieve
a desirable classification performance in most cases (as to
be demonstrated by our simulation study presented later).
However, we also understand that this guideline is based
on heuristics and it cannot guarantee the output hyperplane
is always able to achieve the best classification accuracy.
In the following, we highlight two extreme cases where
our guideline might not work. First, if there are multiple
locations along the Z-axis, with their own d+ and d−,
that define multiple subareas where both entropy E+ and
entropy E− reach the maximum (i.e., multiple subareas
containing roughly equal number of positive samples and
negative samples), this guideline might not work. We use
the example shown in Fig. 4(a) to illustrate this case. We
plot two hyperplanes H and H ′, together with their corre-
sponding positive intervals I1, I ′1 and negative intervals I2
and I ′2. Areas defined by I1∪I2 and I ′1∪I ′2 refer to two sub-
areas where the number of positive samples is equivalent
to the number of negative samples. Apparently, both H and
H ′ satisfy Equation (10). However, H , but not H ′, is the
global optimal. Under this case, there is a possibility that our
guideline constrained by Equation (10) might return hyper-
plane H ′ as the desirable hyperplane although hyperplane
H could achieve a much higher classification accuracy. Sec-
ond, if none of the locations (including the optimal location)
along Z-axis satisfies the conditions listed in Equation (10),
our guideline might miss the optimal hyperplane. Refer to
the example shown in Figure 4(b). The hyperplane H is able
to achieve the best classification accuracy, while H does
not satisfy Equation (10). It’s possible that our guideline
misjudges hyperplane H as non-preferable as conditions
listed in Equation (10) are not valid under H . Nevertheless,
this guideline is expected to provide correct guides in most
of the cases. The experimental results to be reported in
Section 5 will demonstrate its power.

4 ATEC IMPLEMENTATION

In this section, we propose a solution named ATEC to
improve existing SVMs by Automatically Tuning the Error
Cost. Specifically, ATEC consists of the following two main
modules, i.e., Hyperplane Generation and Evaluation (GE) Mod-
ule and Hyperplane Adjustment Module. The former adopts

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

𝑑𝑖𝑚1

𝑑𝑖𝑚2 Η

Η′
𝐼1
′

𝐼2
′

𝐼1
𝐼2

(a) Case 1: multiple sub-areas sat-
isfy Equation 10

𝑑𝑖𝑚1

𝑑𝑖𝑚2

Η

𝐼1
𝐼2

(b) Case 2: none location in Z-
axis satisfies Equation 10

Fig. 4. Illustration of extreme cases that our guideline does not work

an existing SVM technique to generate a hyperplane H
based on a given error cost ratio C+

C− (denoted as k) and
makes full use of the aforementioned guidance to evaluate
the performance of H and to find out the right direction
along the reduced one-dimensional space that H should
be moved to if H is not preferable. Guided by the output
from the GE module, the latter performs the adjustment of
the hyperplane. To be more specific, it changes the value
of k and invokes the GE module again to generate a new
hyperplane. Based on the evaluation result of the new
hyperplane, it might perform a new adjustment to further
tune the value of k. In other words, ATEC gradually adjusts
the value of k and hence the position of the hyperplane via
multiple iterations.

4.1 Hyperplane Generation and Evaluation

This module takes a set of training samples, a support vector
machine, and an error cost ratio as input, and outputs a
hyperplane generated based on the given error cost ratio
and a variable sign that indicates the adjustment required.
The main idea is to invoke an existing SVM technique to
generate a hyperplane H and to adopt guidance proposed
in Section 3 to evaluate H based on the reduced one-
dimensional space of Z-axis. The ultimate goal is to find out
(1) whether H is already a preferable hyperplane, and (2) if
not, which direction shall H be moved to for better clas-
sification power. Before we present the detailed algorithm,
we first explain all the evaluation outcomes. According to
Equation (10), there are in total five cases, detailed in the
following.

Case 1: E+ = E− ∧ d+ = d−. The guideline defined in
Equation (10) is fully satisfied, and the current hyperplane
is preferable. Consequently, sign is set to 0, indicating no
further adjustment is required.

Case 2: E+ = E− ∧ d+ > d−. The maximum entropy
goal is met, but not the goal of equal interval length. We
set sign to 1, indicating that the hyperplane shall be moved
toward the positive direction of Z-axis.

Case 3: E+ = E− ∧ d+ < d−. Like Case 2, we set sign to
−1, indicating that the hyperplane shall be moved toward
the negative direction of Z-axis.

Case 4: E+ < E−. According to Equation (7) and the fact
that there are two possible values {1,−1} of y, the entropy
reaches its maximum value if P (y = 1) = P (y = −1) = 0.5.
Given the fact that E+ < E− and E− ≤ 1, we can conclude
that the difference between P (y = 1) and P (y = −1) of the
positive interval is larger than that of the negative interval.
Accordingly, we shall move the hyperplane toward the neg-

Algorithm 1: Hyperplane Generation and Evalua-
tion (in short: GE)

Input : Training samples S = {xi, i = 1, · · · , N}; A
support vector machine SVM ; k = C+

C− .
Output: A pair of (c, sign) where sign indicates which

direction the hyperplane c should be moved to.
1 c← learning a SVM classifier based on k;
2 Z-axis← mapping S based on c and Equation (8);
3 E+, E−, d+, d− ← 0;
4 for each point zi on the positive side of the Z-axis do
5 Ei ← calculate the entropy for the interval [0, zi];
6 if Ei ≥ E+ ∧ zi > d+ then
7 E+ ← Ei, d+ ← zi;

8 for each point zi on the negative side of the Z-axis do
9 Ei ← calculate the entropy for the interval [zi, 0];

10 if Ei ≥ E− ∧ |zi| > d− then
11 E− ← Ei, d− ← |zi|;

12 if E+ = E− ∧ d+ = d− then
13 sign← 0;

14 else if (E+ = E− ∧ d+ > d−) ∨ E+ > E− then
15 sign← 1;

16 else
17 sign← −1;

18 return (c, sign);

ative direction (i.e., set sign to −1) to have more negative
samples located along the positive interval to increase E+.

Case 5: E+ > E−. This case is the opposite of Case 4.
Given the fact that E− < E+ and E+ ≤ 1, we can conclude
that the difference between P (y = 1) and P (y = −1) of the
negative interval is larger than that of the positive interval.
Accordingly, we shall move the hyperplane toward the
positive direction (i.e., set sign to 1) to have more positive
samples located along the negative interval to increase E−.

Algorithm 1 lists the pseudo code of the GE module.
First, it employs a given support vector machine SVM to
learn a hyperplane c based on the input error cost k (line 1).
Second, it constructs a Z-axis orthogonal to the hyperplane c
and maps all the samples to Z-axis according to Equation (8)
(line 2). Next, it tries to find a proper positive interval
with maximal entropy (lines 4-7). To be more specific, each
sample zi mapped to the positive side of the Z-axis defines
a candidate positive interval [0, zi]. It adopts a brute-force
approach to evaluate all the candidate positive intervals,
and chooses the one with the maximum entropy as the
positive interval. It finds the negative interval following
the same approach (lines 8-11). Thereafter, it sets sign to
a proper label (i.e., -1, 0, or 1) based on the values of E+,
E−, d+ and d−, as discussed above (lines 12-17). Finally, it
returns c and sign to complete one iteration of hyperplane
generation and evaluation.

4.2 Hyperplane Adjustment

Hyperplane adjustment module performs the real adjust-
ment of a hyperplane, guided by the output of the previous
module. It takes in four parameters as input, including i)
the training set S, ii) a support vector machine SVM , iii)
count that defines the upper-bound of the total number of
adjustments, and iv) increment that decides how significant

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 2: Hyperplane Adjustment
Input : Training set S; A support vector machine

SVM ; count; increment.
Output: a preferable SVM classifier;

1 k ← 1, iter ← 0, sign←∞;
2 while iter < count ∧ sign 6= 0 do
3 (c, sign)← GE(S, SVM , k);
4 iter ← iter + 1;
5 if sign = −1 then
6 k ← k + increment;

7 else if sign = 1 then
8 increment← increment/2;
9 k ← k − increment;

10 return classifier c;

each adjustment shall be. It outputs a hyperplane which is
expected to be able to achieve a good classification perfor-
mance.

Algorithm 2 lists the pseudo-code of hyperplane adjust-
ment. Parameter k refers to the error cost ratio (k = C+

C−),
parameter iter counts the number of adjustments being
performed, and label sign guides the adjustment. Without
any knowledge of the dataset, it sets the initial value of k
to 1 (i.e., assuming C+ = C−). Meanwhile, it sets iter to
0 and sets sign to ∞ to finish the initialization. Thereafter,
it starts a sequence of adjustments indicated by the while
loop (lines 2-9). In each iteration of the loop, it invokes
GE (i.e., Algorithm 1) to generate a hyperplane c based on
the current k and evaluate the performance of c (line 3),
increases the counter iter by one (line 4) and adjusts the
error cost ratio k accordingly (lines 5-9).

Note that the adjustment label sign returned by GE has
three possible values, i.e., −1, 0, and 1. If sign is −1, we
move the current hyperplane toward the negative direction
of Z-axis. To this end, we increase k because a bigger k
implies a higher cost of misclassifying the positive class
so that the hyperplane learned based on this bigger k is
expected to be less skewed toward the positive class (the
minority class). Similarly, if sign is 1, we decrease k which
decreases the cost of misclassifying the positive class so that
the hyperplane learned based on this smaller k is expected
to be more skewed toward the positive class. The adjust-
ment of k is based on the input parameter increment. Note
that in order to make the auto-adjustment less sensitive to
the value of increment, we reduce the value of increment
by half whenever k is reduced (line 8) to enable a finer
tuning gradually. If sign is 0, we can safely terminate the
loop as the current hyperplane is expected to be able to
achieve a good classification performance. The total number
of times the loop is performed is bounded by parameter
count.

Those who are familiar with existing SVM techniques
may notice that ATEC requires two inputs (i.e., count and
increment) while existing SVM techniques only require one
input (i.e., k). Does ATEC bring benefits to the tuning of k
as the number of parameters ATEC relies on is larger than
that of SVM? The answer is definitely yes. The classification
accuracy of standard SVM and its variants is extremely
sensitive to the value of k, and a small change in k could

cause a significant change in the classification accuracy.
However, ATEC is far less sensitive to the parameters count
and increment which will be further demonstrated via
experimental study to be presented later. In addition, count
and increment are bounded to each other, as stated in
Theorem 1.

Theorem 1. Let k∗ denote a proper setting of k under which
the generated hyperplane is expected to achieve a good
classification accuracy. Given count = m, R = [k

∗−1
m ,

(k∗ − 1) · 2(m−1)] defines a range such that as long as
increment is within the range R, the k tuned by ATEC
is expected to be close to k∗ or be equivalent to k∗.

Proof. The main idea of Algorithm 2 is to tune k to make
it close to k∗ as much as possible after m iterations. There
are two extreme cases which help define the boundary of
increment. In one extreme, the value of increment is so
small that ATEC needs to keep adding increment to k for m
times to move k nearer to k∗. Consequently, k

∗−1
m defines the

lower bound of increment. In the other extreme, the value
of increment is very big such that 1 + increment already
exceeds k∗. In this case, ATEC needs to keep deducting
increment

2 , increment22 , increment23 , . . . from k in the remaining
m − 1 iterations. In other words, after m − 1 iterations of
reduction, k = 1 + increment

2(m−1) . Therefore, (k∗ − 1) · 2(m−1)

defines the maximum value of increment. �
Given the fact that count is not a small integer (e.g.,

≥ 10), [k
∗−1
count , (k∗ − 1) · 2(count−1)] defines a relatively wide

range for increment. In other words, count can be easily
fixed at an integer (e.g., 10 or 20) and increment has a wide
range of value options. Consequently, it is not hard for ATEC
to select proper count and increment to obtain a preferable
hyperplane. Our empirical studies to be presented in Sec-
tion 5 will further demonstrate the insensitivity of ATEC to
parameters.

5 EXPERIMENT

In this section, we study the performance of ATEC from
two perspectives, i.e., effectiveness and efficiency. Similar to
existing work on class-imbalance learning [18], [19], [20], we
use F1 score of the minority class, area under the precision-
recall curve (AUC-PR) and area under the ROC curve (AUC-
ROC) as the main performance metrics. We use RBF kernel
[21] for all SVMs and tune the parameters C and γ to the
optimum by performing grid-parameter-search. The grid
search algorithm performs an exhaustive search through a
manually specified subset of the hyperparameter space of
a learning algorithm and outputs the settings that achieve
the highest score in the validation procedure, typically
measured by stratified cross validation on the data set. All
experiments in our work are evaluated on a server with
Intel(R) Core(TM) i5-6500 CPU 3.20 GHz processor and 8
GB RAM with Windows 7 and Python 3.6.4. Besides, we use
the well-known libsvm software package [22] to implement
all SVMs used in this paper.

5.1 Datasets

We employ two groups of datasets that are widely used for
class-imbalance learning, namely Reuters-21578 and KEEL.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2
Description of five datasets from Reuters-21578

Dataset Total Pos. Neg. I.R.
coffee vs cocoa 211 68 143 2.10
trade vs jobs 582 68 514 7.56
grain vs cotton 636 62 574 9.26
acq vs coffee 2353 143 2210 15.45
acq vs cocoa 2278 68 2210 32.50

TABLE 3
Descriptions of the KEEL datasets

Dataset Total Pos. Neg. I.R.
wisconsin 683 239 444 1.86
pima 768 268 500 1.87
iris0 150 50 100 2.00
haberman 306 81 225 2.78
vehicle2 846 218 628 2.88
new-thyroid1 215 35 180 5.14
yeast3 1484 163 1321 8.10
vowel0 988 90 898 9.98
led7digit-0-2-4-5-6-7-8-9 vs 1 443 37 406 10.97
ecoli-0-1 vs 5 240 20 220 11.00
cleveland-0 vs 4 173 13 160 12.31
glass4 224 13 201 15.46
page-blocks-1-3 vs 4 472 28 444 15.86
dermatology-6 358 20 338 16.90
zoo-3 101 5 96 19.20
shuttle-6 vs 2-3 230 10 220 22.00
winequality-red-4 1599 53 1546 29.17
poker-9 vs 7 244 8 236 29.50

Reuters-21578, to be more specific Reuters-21578 Text Cat-
egorization Test Collection [23], is from news media and con-
tains documents from different text categories. We only con-
sider documents of those categories having sizes larger than
50 (a total of seven categories), and generate five synthetic
datasets with different I.R. values. Each synthetic dataset is
generated by simply merging two text categories that are in
different sizes, with one serving as the majority (negative)
class and the other serving as the minority (positive) class.
Table 2 lists the detailed descriptions of these five datasets.
For preprocessing these text documents, we use Stanford
NLP tool [24] to perform the word segmentation and to
remove stop-words and punctuation. Moreover, we use a
vector to represent each word in a document based on the
popular pre-trained word2vec model provided by Google
[25], where 300-dimensional vectors for 3 million words and
phrases are involved, and represent the document based on
the average of all the word-vectors.

KEEL is from KEEL-dataset repository [26] that involves
different domains, such as health, business, plant and etc.
There are tens of imbalanced datasets in the repository
and each domain contains multiple datasets. We select
one dataset from each domain as the representative for
evaluation, in total 18 datasets. Table 3 lists the detailed
descriptions of these datasets.

5.2 Effectiveness Study

To evaluate the effectiveness of ATEC, we evaluate seven
variants of SVMs and four non-SVM algorithms that are
widely used for class-imbalance problem. Seven SVM vari-
ants include (1) DEC, a SVM variant which merely considers
different error costs between classes; (2) FSVM-CILcen

lin , a
variant of FSVM-CIL where the membership function is
designed based on the distance from the own class center

2 4 6 8 10 12 14 16 18 20
Count

0.0

0.2

0.4

0.6

0.8

F1
 v

al
ue

acq_vs_cocoa
ecoli-0-1_vs_5
led7digit-0-2-4
-5-6-7-8-9_vs_1

(a) DEC-ATEC

2 4 6 8 10 12 14 16 18 20
Count

0.2

0.4

0.6

0.8

F1
 v

al
ue

acq_vs_cocoa
ecoli-0-1_vs_5
led7digit-0-2-4
-5-6-7-8-9_vs_1

(b) FSVM-CILcen
lin -ATEC

2 4 6 8 10 12 14 16 18 20
Count

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1
 v

al
ue

acq_vs_cocoa
ecoli-0-1_vs_5
led7digit-0-2-4
-5-6-7-8-9_vs_1

(c) FSVM-CILhyp
lin -ATEC

Fig. 5. ATEC v.s. count (increment = 100)

[1]; (3) FSVM-CILhyp
lin , a variant of FSVM-CIL where the

membership function is designed based on the distance
from the actual hyperplane [1]; (4) DEC-ATEC, where
we use ATEC to improve DEC; (5) FSVM-CILcen

lin -ATEC,
which is the improved FSVM-CILcen

lin algorithm with ATEC;
(6) FSVM-CILhyp

lin -ATEC, where we combine FSVM-CILhyp
lin

with ATEC; and (7) GWSVM-RU [27], the state-of-the-art
SVM variant for class-imbalance problem. We purposely
include GWSVM-RU into our comparison study to demon-
strate that applying ATEC technique on other C+

C−
based

SVMs is able to achieve the state-of-the-art improvement.
The non-SVM algorithms we used are: (1) EasyEnsemble
[28], an ensemble method combined with undersampling;
(2) CBO (Cluster-Based Oversamping) [29] that employs the
K-means technique to separately cluster the majority class
and the minority class and performs random oversampling
to balance between clusters in each class and balance be-
tween classes; (3) LexiBoost [11], a boosting method based
on a lexicographic linear programming framework which
does not need to set error costs; and (4) Dual-LexiBoost
[11], a dual method of LexiBoost. In the following, we first
study the sensitivity of ATEC to its parameters count and
increment, and we then compare the performance of above
eleven algorithms.

5.2.1 Inside ATEC
In order to find a proper value of C+

C−
, ATEC requires two

parameters count and increment as inputs. Accordingly,
we first study their impact on the effectiveness of ATEC and
then propose a guideline to help those users who want to
use ATEC to improve SVMs for class-imbalance problems
to determine the parameters. We report the results of three
different datasets from different domains (i.e., acq vs cocoa
from Reuters-21578, led7digit-0-2-4-5-6-7-8-9 vs 1 and ecoli-
0-1 vs 5 from KEEL). We observe similar findings from
other datasets but skip those results for space-saving.

Firstly, we fix increment to 100 and vary count from 2
to 20 to observe the performance changes of three SVM
variants with ATEC. Figures 5(a), 5(b) and 5(c) plot the
results of F1 value of DEC-ATEC, FSVM-CILcen

lin -ATEC and
FSVM-CILhyp

lin -ATEC respectively. We can see that with the
increase of count, there is a rough trend that F1 value
firstly grows up and then stabilizes in all cases. It means
that classifying performance can be improved by increasing
count and it will converge to a stable result.

Next, we fix count to study the impact of increment.
We perform two sets of experiments by fixing count to 10
and 20 respectively. We evaluate the performance of SVMs
with ATEC and that of their original SVMs without ATEC,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0.
7

0.
8

acq_vs_cocoaATEC
Original

0.
6

0.
8

led7digit-0-2-4
-5-6-7-8-9_vs_1

ATEC
Original

10 210 1 100 101 102 103 104 105 106 1070.
75

0.
87

ecoli-0-1_vs_5ATEC
Original

0.0 0.2 0.4 0.6 0.8 1.0
Increment

0.0

0.2

0.4

0.6

0.8

1.0

F1
 v

al
ue

(a) count = 10

0.
7

0.
8

acq_vs_cocoaATEC
Original

0.
6

0.
8

led7digit-0-2-4
-5-6-7-8-9_vs_1

ATEC
Original

10 210 1 100 101 102 103 104 105 106 1070.
75

0.
87

ecoli-0-1_vs_5ATEC
Original

0.0 0.2 0.4 0.6 0.8 1.0
Increment

0.0

0.2

0.4

0.6

0.8

1.0

F1
 v

al
ue

(b) count = 20

Fig. 6. DEC-ATEC v.s. increment

0.
7

0.
8

acq_vs_cocoaATEC
Original

0.
4

0.
8

led7digit-0-2-4
-5-6-7-8-9_vs_1

ATEC
Original

10 210 1 100 101 102 103 104 105 106 1070.
75

0.
87

ecoli-0-1_vs_5ATEC
Original

0.0 0.2 0.4 0.6 0.8 1.0
Increment

0.0

0.2

0.4

0.6

0.8

1.0

F1
 v

al
ue

(a) count = 10

0.
7

0.
8

acq_vs_cocoaATEC
Original

0.
4

0.
8

led7digit-0-2-4
-5-6-7-8-9_vs_1

ATEC
Original

10 210 1 100 101 102 103 104 105 106 1070.
75

0.
87

ecoli-0-1_vs_5ATEC
Original

0.0 0.2 0.4 0.6 0.8 1.0
Increment

0.0

0.2

0.4

0.6

0.8

1.0
F1

 v
al

ue

(b) count = 20

Fig. 7. FSVM-CILcen
lin -ATEC v.s. increment

0.
7

0.
8

acq_vs_cocoaATEC
Original

0.
4

0.
8

led7digit-0-2-4
-5-6-7-8-9_vs_1

ATEC
Original

10 210 1 100 101 102 103 104 105 106 1070.
75

0.
87

ecoli-0-1_vs_5ATEC
Original

0.0 0.2 0.4 0.6 0.8 1.0
Increment

0.0

0.2

0.4

0.6

0.8

1.0

F1
 v

al
ue

(a) count = 10

0.
7

0.
8

acq_vs_cocoaATEC
Original

0.
4

0.
8

led7digit-0-2-4
-5-6-7-8-9_vs_1

ATEC
Original

10 210 1 100 101 102 103 104 105 106 1070.
75

0.
87

ecoli-0-1_vs_5ATEC
Original

0.0 0.2 0.4 0.6 0.8 1.0
Increment

0.0

0.2

0.4

0.6

0.8

1.0

F1
 v

al
ue

(b) count = 20

Fig. 8. FSVM-CILhyp
lin -ATEC v.s. increment

with the results plotted in Figures 6, 7 and 8. The solid lines
represent the performance of the algorithms with ATEC
while the dotted lines represent the performance of the
original algorithms where the error cost ratio is set to the
imbalance ratio of the dataset.

In most cases, F1 value, with an increase of increment, is
observed to firstly grow up to reach a relatively stable value.
Thereafter, a further increase of increment forces F1 value to
decrease. Besides, F1 value corresponding to the algorithms
with ATEC is higher than that of the respective original
algorithms when the increment is within a certain range.
What’s more important, this range is influenced by count.
Take acq-cocoa dataset as an example. DEC-ATEC performs
better than DEC when count is 10 and increment is within
[1, 103] (see Figure 6(a)). When count is set to 20, the range
of increment within which DEC-ATEC can perform better
than DEC is extended to [0.5, 106] (see Figure 6(b)). It can
be explained by Theorem 1. That is, the upper bound of
increment has an exponential relationship with countwhile
the lower bound of increment has an inverse relationship
with count. When count increases, the lower bound of
increment will decrease slightly while its upper bound will

grow up exponentially. This phenomenon is consistent with
Theorem 1.

Based on the above observations, we can conclude that
ATEC is not sensitive to its parameters and it is easy to select
the parameter values for ATEC to get desirable results, e.g.,
using relatively small numbers of count and increment (e.g.
both≥ 20), ATEC can probably produce a better hyperplane
for the given SVM.

5.2.2 Overall Performance
After we evaluate the sensitivity of ATEC on the parameters
count and increment, we are ready to report the F1 score,
AUC-PR and AUC-ROC of the eleven algorithms. In total,
we perform three-fold stratified cross validation on Reuters
datasets and five-fold stratified cross validation on KEEL
datasets. In the following, we first explain the experiment
settings of different algorithms and then report the experi-
mental results. For all seven SVM variants, we adopt differ-
ent parameter settings (i.e., SVM’s hyperparameters C and
γ) for Reuters and KEEL datasets because the datasets have
very different distributions. On Reuters datasets, log2 C is
selected from {0, 1, . . . , 8, 9} and log2 γ is selected from
{−9,−8, . . . ,−2,−1}. On KEEL datasets, we first conduct
a coarse grid-parameter-search to find the optimal values
of C and γ (say C∗ and γ∗) over the following ranges:
lgC = {−2,−1, . . . , 6, 7}, lg γ = {−11,−10, . . . ,−2,−1}.
We then conduct a fine-grained grid-parameter-search to
find the final value of parameters over the ranges: lgC =
{C∗ − 0.9, C∗ − 0.8, . . . , C∗ + 0.8, C∗ + 0.9}, lg γ = {γ∗ −
0.9, γ∗ − 0.8, . . . , γ∗ + 0.8, γ∗ + 0.9}. For all the original
SVMs without ATEC, we perform the training where the
error cost ratio k is set to I.R. of the dataset. For the
SVMs with ATEC, we set the hyperparameters count = 20
and increment = 100. For EasyEnsemble, Classification
And Regression Tree (CART) [30] is used to train weak
classifier, and the number of AdaBoost [31] learners and
the number of rounds in each AdaBoost are set to 20
and 100, respectively. For CBO, the K-means parameter of
determining the number of clusters is selected from {2, 3, 4}
since the smallest number of training samples is 4, i.e., as
shown in Table 3, four out of five positive samples in zoo-3
can only be used for five-fold training, and after sampling,
CART is adopted to train classifier on the balance data. For
LexiBoost and Dual-LexiBoost, we conduct corresponding
experiments by using the same settings and source code as
the original [11].
Reuters Datasets. F1, AUC-PR and AUC-ROC results on
Reuters datasets are reported in Table 4, Table 5 and Table
6 respectively. In addition, we report the variance of cross
validation in the brackets. There are three main observa-
tions. First, the variance is less than 0.1 for all cases, which
demonstrates the evaluation scores measured by three-fold
cross validation are stable in text data. Second, SVMs with
ATEC always outperform the original versions without
ATEC for both F1 score and AUC-PR, which demonstrates
the effectiveness of ATEC. In terms of AUC-ROC, SVMs
with ATEC outperform the original versions without ATEC
in two datasets with substantial advantages; in the other
three datasets, the difference between SVMs with ATEC
and their original versions without ATEC is not significant.
Third, among five Reuters datasets, the algorithm with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 4
F1 Values of the Reuters-21578

acq vs
cocoa

trade vs
jobs

acq vs
coffee

coffee vs
cocoa

grain vs
cotton

DEC 0.789(0.007) 0.803(0.002) 0.825(0.001) 0.711(0.002) 0.605(0.001)
DEC-ATEC 0.813(0.002) 0.808(0.002) 0.874(0.000) 0.724(0.007) 0.615(0.001)
FSVM-CILcen

lin 0.788(0.003) 0.790(0.002) 0.823(0.000) 0.711(0.002) 0.579(0.003)
FSVM-CILcen

lin -
ATEC

0.827(0.002) 0.792(0.001) 0.858(0.000) 0.713(0.005) 0.635(0.000)

FSVM-CILhyp
lin 0.788(0.000) 0.798(0.002) 0.828(0.000) 0.723(0.003) 0.561(0.001)

FSVM-CILhyp
lin -

ATEC
0.813(0.007) 0.801(0.001) 0.862(0.000) 0.734(0.004) 0.629(0.000)

EasyEnsemble 0.364(0.000) 0.666(0.002) 0.522(0.004) 0.679(0.006) 0.407(0.000)
CBO 0.437(0.011) 0.651(0.001) 0.425(0.002) 0.644(0.006) 0.362(0.002)
LexiBoost 0.567(0.002) 0.656(0.002) 0.747(0.001) 0.659(0.001) 0.318(0.002)
Dual-
LexiBoost

0.500(0.003) 0.704(0.000) 0.560(0.000) 0.729(0.000) 0.344(0.000)

GWSVM-RU 0.839(0.002) 0.746(0.006) 0.857(0.001) 0.792(0.004) 0.461(0.006)
DEC-BOA(20) 0.844(0.004) 0.725(0.005) 0.781(0.001) 0.653(0.006) 0.407(0.011)
DEC-
BOA(1000)

0.743(0.012) 0.688(0.036) 0.764(0.002) 0.725(0.000) 0.411(0.013)

FSVM-CILcen
lin -

BOA(20)
0.834(0.003) 0.737(0.005) 0.754(0.000) 0.642(0.005) 0.413(0.012)

FSVM-CILcen
lin -

BOA(1000)
0.785(0.008) 0.708(0.022) 0.818(0.005) 0.700(0.013) 0.401(0.042)

FSVM-CILhyp
lin -

BOA(20)
0.832(0.001) 0.702(0.002) 0.783(0.000) 0.629(0.006) 0.418(0.011)

FSVM-CILhyp
lin -

BOA(1000)
0.799(0.009) 0.658(0.031) 0.828(0.001) 0.713(0.005) 0.358(0.035)

TABLE 5
AUC-PR of the Reuters-21578

acq vs
cocoa

trade vs
jobs

acq vs
coffee

coffee vs
cocoa

grain vs
cotton

DEC 0.838(0.002) 0.858(0.001) 0.901(0.001) 0.815(0.005) 0.624(0.004)
DEC-ATEC 0.852(0.004) 0.891(0.001) 0.907(0.001) 0.816(0.005) 0.671(0.003)
FSVM-CILcen

lin 0.860(0.005) 0.858(0.000) 0.898(0.000) 0.824(0.005) 0.639(0.004)
FSVM-CILcen

lin -
ATEC

0.864(0.006) 0.881(0.000) 0.907(0.001) 0.827(0.004) 0.681(0.003)

FSVM-CILhyp
lin 0.846(0.002) 0.858(0.000) 0.899(0.001) 0.802(0.004) 0.624(0.005)

FSVM-CILhyp
lin -

ATEC
0.856(0.005) 0.879(0.000) 0.909(0.002) 0.808(0.005) 0.665(0.003)

EasyEnsemble 0.719(0.005) 0.833(0.001) 0.829(0.002) 0.793(0.008) 0.584(0.004)
CBO 0.497(0.002) 0.652(0.004) 0.430(0.003) 0.708(0.006) 0.381(0.001)
LexiBoost 0.241(0.000) 0.526(0.007) 0.555(0.001) 0.483(0.004) 0.188(0.000)
Dual-
LexiBoost

0.607(0.002) 0.748(0.000) 0.652(0.000) 0.783(0.000) 0.513(0.000)

GWSVM-RU 0.891(0.005) 0.847(0.014) 0.887(0.000) 0.867(0.004) 0.564(0.022)
DEC-BOA(20) 0.852(0.010) 0.769(0.019) 0.877(0.001) 0.727(0.008) 0.473(0.032)
DEC-
BOA(1000)

0.858(0.009) 0.813(0.021) 0.889(0.000) 0.866(0.006) 0.526(0.044)

FSVM-CILcen
lin -

BOA(20)
0.868(0.006) 0.753(0.023) 0.870(0.002) 0.719(0.003) 0.469(0.024)

FSVM-CILcen
lin -

BOA(1000)
0.884(0.006) 0.755(0.019) 0.900(0.000) 0.858(0.006) 0.545(0.048)

FSVM-CILhyp
lin -

BOA(20)
0.883(0.005) 0.756(0.019) 0.871(0.002) 0.715(0.004) 0.476(0.033)

FSVM-CILhyp
lin -

BOA(1000)
0.869(0.008) 0.810(0.015) 0.893(0.001) 0.868(0.004) 0.513(0.042)

ATEC achieves the best performance in three datasets while
GWSVM-RU ranks the first in the other two datasets (i.e.,
acq vs cocoa and coffe vs cocoa) for both F1 score and
AUC-PR. It indicates that SVMs with ATEC are compa-
rable with the state-of-the-art SVM variant. According to
the above observations, we can conclude that i) ATEC can
improve the performance of existing SVM variants in term
of F1 value of minority class, AUC-PR and AUC-ROC on
text datasets, and ii) ATEC can help SVMs improve F1 value
and AUC-PR score more effectively, as compared with AUC-
ROC. Besides, our intuition that C+

C−
= I.R. is not the best

choice for all cases is correct. The ratio of inter-class cost
errors, i.e. C+

C−
found by ATEC is better than I.R. in our

experiments.
KEEL Datasets. To further verify our conclusion made
based on above experiments, we run the experiments on

TABLE 6
AUC-ROC of the Reuters-21578

acq vs
cocoa

trade vs
jobs

acq vs
coffee

coffee vs
cocoa

grain vs
cotton

DEC 0.963(0.001) 0.963(0.000) 0.982(0.000) 0.855(0.005) 0.884(0.002)
DEC-ATEC 0.962(0.001) 0.965(0.000) 0.980(0.000) 0.861(0.004) 0.898(0.001)
FSVM-CILcen

lin 0.964(0.002) 0.965(0.000) 0.983(0.000) 0.861(0.004) 0.886(0.001)
FSVM-CILcen

lin -
ATEC

0.962(0.001) 0.966(0.000) 0.979(0.000) 0.874(0.002) 0.893(0.001)

FSVM-CILhyp
lin 0.962(0.001) 0.961(0.000) 0.983(0.000) 0.843(0.005) 0.875(0.001)

FSVM-CILhyp
lin -

ATEC
0.961(0.002) 0.963(0.000) 0.980(0.000) 0.857(0.002) 0.891(0.000)

EasyEnsemble 0.967(0.000) 0.945(0.001) 0.975(0.000) 0.839(0.004) 0.799(0.011)
CBO 0.762(0.006) 0.782(0.004) 0.685(0.002) 0.719(0.001) 0.623(0.001)
LexiBoost 0.835(0.002) 0.859(0.000) 0.862(0.000) 0.700(0.000) 0.656(0.001)
Dual-
LexiBoost

0.903(0.001) 0.911(0.000) 0.902(0.000) 0.803(0.000) 0.717(0.002)

GWSVM-RU 0.964(0.001) 0.968(0.001) 0.974(0.000) 0.888(0.007) 0.884(0.002)
DEC-BOA(20) 0.955(0.001) 0.953(0.001) 0.975(0.000) 0.828(0.002) 0.837(0.006)
DEC-
BOA(1000)

0.957(0.001) 0.965(0.001) 0.979(0.000) 0.881(0.007) 0.894(0.003)

FSVM-CILcen
lin -

BOA(20)
0.957(0.001) 0.951(0.001) 0.974(0.000) 0.838(0.004) 0.844(0.006)

FSVM-CILcen
lin -

BOA(1000)
0.961(0.001) 0.961(0.001) 0.975(0.000) 0.890(0.005) 0.878(0.007)

FSVM-CILhyp
lin -

BOA(20)
0.960(0.001) 0.951(0.001) 0.976(0.000) 0.856(0.008) 0.834(0.007)

FSVM-CILhyp
lin -

BOA(1000)
0.958(0.001) 0.963(0.001) 0.982(0.000) 0.882(0.004) 0.844(0.011)

KEEL dataset. Table 7, Table 8 and Table 9 respectively
report the corresponding F1 value, AUC-PR score and AUC-
ROC score. We also list the variance of cross validation in
the brackets. From Table 7 we can see: (1) ATEC is able to
improve the F1 score of the original algorithm in 15 out of
18 datasets. (2) Algorithms equipped with ATEC become
the only best performer in 3 datasets and the best per-
former together with many other algorithms in 6 datasets.
GWSVM-RU is the only best performer in 3 datasets. On the
contrary, CBO and LexiBoost respectively become the only
best performer in 1 dataset. The advantage of using ATEC is
more obvious when we use AUC-PR metric. For the results
shown in Table 8: (1) ATEC enhances the AUC-PR value of
the original algorithm in 17 out of 18 datasets.(2) Algorithms
equipped with ATEC become the only best performer in 3
datasets and the best performer together with many other
algorithms in 7 datasets. GWSVM-RU and Dual-LexiBoost
become the only best performer in 2 datasets respectively.
On the contrary, EasyEnsemble becomes the only best per-
former in 1 dataset. The results of AUC-ROC are shown in
Table 9: (1) ATEC could improve the AUC-ROC score of the
original algorithm in 17 out of 18 datasets. (2) Algorithms
equipped with ATEC become the only best performer in 2
datasets and the best performer together with many other
algorithms in 9 datasets. GWSVM-RU becomes the only best
performer in 2 datasets and EasyEnsemble becomes the only
best performer in 1 dataset.
Discussion. Furthermore, we compute the ranks of all
eleven algorithms based on their performances in KEEL
dataset. In our rankings, the best performer ranks 1, the
second best gets the rank of 2, etc. Note that in the case
of ties, the average of the ranks that would have been
assigned without ties is assigned. For example, DEC-ATEC
and FSVM-CILcen

lin -ATEC tie for first place on ecoli-0-1 vs 5,
hence they both are assigned the ranks of 1.5 (i.e., 1+2

2). After
that, we conclude their final average ranks of all datasets in
Table 10. We have the following three main observations.
First, LexiBoost and Dual-LexiBoost have the low rankings,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

reflecting that their performance on these datasets is less
stable than that of SVM variants. Second, algorithms with
ATEC achieve higher rankings than their original versions
in most cases. Third, among seven SVM variants, GWSVM-
RU and the algorithms with ATEC have the highest ranking
in terms of F1 scores while algorithms with ATEC perform
consistently better than GWSVM-RU in terms of AUC-PR.
For AUC-ROC, ATEC does not demonstrate a big impact
as the SVMs with ATEC and those without ATEC perform
similarly. All these observations remain valid on Reuters
dataset, as reported in Table 10. Based on the above results
and discussion, we can safely conclude that ATEC not only
improves existing SVM variants effectively but also remains
competitive with the state-of-the-art imbalanced methods.
In addition, we have observed that compared with the
results of AUC-PR and F1 value, the advantage of using
ATEC is not significant in AUC-ROC. This might be caused
by ATEC’s unique characteristics, i.e., ATEC will not be
biased toward either the minority class or the majority class,
while ROC curves prefer the classifiers biased toward the
majority class [32].

5.2.3 Friedman Test
In order to show the difference among 11 algorithms on the
effectiveness, we further conduct a statistic significance test
based on the average ranks reported in Table 10. We select
the Friedman test [33] that can be used to investigate the dif-
ference among the various classifiers on multiple datasets.
The null-hypothesis indicates that all the algorithms are
equivalent so that they shall share equivalent average ranks.
Take KEEL datasets as an example. The results of Friedman
statistic FF on F1 value, AUC-PR and AUC-ROC score are
reported in Table 10. The p-values computed by the values
of statistic FF are smaller than 0.00011, which indicates that
the null-hypothesis is rejected with high probability. That is
to say the compared algorithms are significantly different.
This conclusion remains also valid on Reuters dataset.

5.2.4 Comparison with Bayesian Optimization
In this subsection, we perform the comparative experiment
of ATEC and the Bayesian Optimization Algorithm (BOA).
BOA is a universal method for tuning hyperparameters and
is widely used in practice. In order to demonstrate the supe-
rior capability of ATEC in tuning the error cost for between-
class samples, we implement another three variants of SVM
that rely on BOA, instead of ATEC, for parameter tun-
ing, including (1) DEC-BOA; (2) FSVM-CILcen

lin -BOA; and
(3) FSVM-CILhyp

lin -BOA. We use the popular library Hyperopt
to implement BOA that requires three inputs, including
the minimum objective function, the number of iterations
and the range of hyperparameter. We set the objective to
(1 − Mv), with metrics Mv taking the F1 value, or AUC-
PR, or AUC-ROC score. Apparently, the objective function
that minimizes (1 − Mv) actually aims at maximizing the
corresponding metric. The value of Mv is evaluated as the
average of 4-fold cross-validation on the training dataset.
We are only able to perform 4-fold as the smallest training
dataset zoo-3 has only 4 samples. We set the number of

1. The p-value is computed from the source - http://graphpad.com/
quickcalcs/PValue1.cfm.

iterations to be either 20 or 1000. Note, count value of
ATEC that determines the number of iteration is set to 20.
In addition to value of 20, we also test the performance of
BOA under 1000 iterations to explore the effectiveness of
BOA with the sufficient number of iterations. We obtain
the optimal error cost after executing BOA and apply the
optimal error costs to train SVM variants.

To save space, we report the results of SVMs with BOA
in Tables 4 - 9, at the last six rows. For each SVM variant
with BOA, we report two versions with different number
of iterations, indicated by the number (either 20 or 1000)
inside the bracket. In terms of F1 values, SVM variant with
ATEC performs better than that with BOA in 16 out of
23 datasets and 5 ties; in terms of AUC-PR score, SVM
variant with ATEC outperforms that with BOA in 14 out
of 23 datasets and 7 ties; in terms of AUC-ROC score, SVM
variant with ATEC outperforms that with BOA in 12 out
of 23 datasets and 9 ties. These statistics demonstrate that
ATEC is superior to BOA in most datasets under all three
performance metrics. Furthermore, we report the average
performance under three different metrics on 23 datasets in
Table 11. Note a higher value indicates a better performance
for the respective performance metric (i.e., F1 score, AUC-
PR score or AUC-ROC score). First, SVM variant with ATEC
always achieves a much higher value than the version with
BOA, which indicates that ATEC tunes the error cost more
effectively than BOA. Second, SVM variant with BOA per-
forms better when the number of iterations is increased from
20 to 1000. It suggests that 20 iterations are not sufficient
for BOA tuning the error cost while ATEC can achieve a
reasonably good performance under 20 iterations.

5.3 Efficiency Study

In addition to the effectiveness, algorithm efficiency is also
an objective when we design ATEC. In this set of exper-
iments, we study the efficiency of ATEC when searching
for a proper value of C+

C−
. Because of space limitation, we

only report the performance of DEC-ATEC. The reason
that we select DEC-ATEC as the representative is because
many error-cost based SVM variants, e.g., FSVM-CILcen

lin ,
are derived from DEC and DEC could serve as a base of
error-cost based SVM variants. Note that ATEC is an add-
on component to error-cost based SVMs for tuning C+

C−
to

a proper value. We expect the findings from DEC-ATEC
to remain valid on other error-cost based SVM variants.
Indeed our expectation is consistent with what we find
from another set of comparison experiments on other error-
cost based SVMs and their enhanced versions with ATEC,
whose results are skipped for space-saving. We report the
time required by the popular grid-search strategy for tuning
the value of C+

C−
to provide a benchmark.

5.3.1 Evaluation of Different Factors

First of all, we study the efficiency of ATEC by evaluating
the impact of four factors that might affect the efficiency,
including sample sizes, imbalance ratios (I.R.), count and
increment. By default, we set the sample size and I.R. ac-
cording to the original dataset and set count and increment
to 20 and 100 respectively. We then change the value of one

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 7
F1 Values of the KEEL datasets

cleveland-
0 vs 4

dermatology-
6

ecoli-0-
1 vs 5

glass4 haberman iris0 led7digit-
0-2-4-5-6-
7-8-9 vs 1

new-
thyroid1

page-blocks-
1-3 vs 4

DEC 0.771(0.019) 1.000(0.000) 0.871(0.006) 0.933(0.018) 0.521(0.005) 1.000(0.000) 0.711(0.032) 0.987(0.001) 0.869(0.009)
DEC-ATEC 0.656(0.034) 1.000(0.000) 0.914(0.005) 0.933(0.018) 0.495(0.003) 1.000(0.000) 0.823(0.013) 0.987(0.001) 0.873(0.007)
FSVM-CILcen

lin 0.730(0.062) 0.971(0.003) 0.892(0.003) 0.933(0.018) 0.518(0.006) 1.000(0.000) 0.723(0.031) 0.987(0.001) 0.869(0.009)
FSVM-CILcen

lin -ATEC 0.800(0.027) 0.971(0.003) 0.914(0.005) 0.933(0.018) 0.488(0.007) 1.000(0.000) 0.823(0.013) 0.987(0.001) 0.887(0.012)
FSVM-CILhyp

lin 0.793(0.013) 1.000(0.000) 0.833(0.013) 0.933(0.018) 0.536(0.004) 1.000(0.000) 0.681(0.011) 0.987(0.001) 0.869(0.009)
FSVM-CILhyp

lin -ATEC 0.740(0.062) 1.000(0.000) 0.892(0.003) 0.933(0.018) 0.504(0.011) 1.000(0.000) 0.801(0.013) 0.987(0.001) 0.874(0.011)
EasyEnsemble 0.450(0.021) 0.978(0.002) 0.641(0.024) 0.468(0.020) 0.427(0.005) 1.000(0.000) 0.486(0.024) 0.898(0.004) 0.816(0.004)
CBO 0.507(0.082) 0.978(0.004) 0.806(0.023) 0.660(0.085) 0.367(0.008) 1.000(0.000) 0.699(0.008) 0.911(0.010) 0.982(0.001)
LexiBoost 0.261(0.022) 0.949(0.001) 0.871(0.001) 0.826(0.007) 0.451(0.000) 1.000(0.000) 0.723(0.002) 0.958(0.002) 0.726(0.000)
Dual-LexiBoost 0.273(0.034) 0.801(0.002) 0.836(0.001) 0.720(0.016) 0.510(0.000) 1.000(0.000) 0.768(0.006) 0.917(0.000) 0.636(0.000)
GWSVM-RU 0.807(0.020) 1.000(0.000) 0.855(0.018) 0.867(0.027) 0.511(0.005) 1.000(0.000) 0.823(0.013) 1.000(0.000) 0.873(0.007)
DEC-BOA(20) 0.610(0.054) 0.978(0.002) 0.155(0.000) 0.933(0.018) 0.419(0.000) 0.604(0.001) 0.548(0.023) 0.948(0.002) 0.836(0.016)
DEC-BOA(1000) 0.530(0.114) 0.978(0.002) 0.114(0.052) 0.933(0.018) 0.370(0.019) 0.604(0.001) 0.805(0.013) 0.926(0.004) 0.862(0.010)
FSVM-CILcen

lin -BOA(20) 0.594(0.032) 0.950(0.010) 0.191(0.001) 0.893(0.019) 0.428(0.000) 0.696(0.001) 0.488(0.010) 0.960(0.001) 0.856(0.023)
FSVM-CILcen

lin -BOA(1000) 0.594(0.032) 0.950(0.010) 0.564(0.027) 0.893(0.019) 0.477(0.003) 0.707(0.002) 0.620(0.025) 0.933(0.004) 0.817(0.024)
SVM-CILhyp

lin -BOA(20) 0.646(0.059) 0.978(0.002) 0.833(0.013) 0.893(0.019) 0.458(0.006) 0.990(0.000) 0.540(0.010) 0.917(0.007) 0.806(0.017)
FSVM-CILhyp

lin -BOA(1000) 0.605(0.120) 0.978(0.002) 0.833(0.013) 0.893(0.019) 0.493(0.006) 0.990(0.000) 0.793(0.016) 0.973(0.001) 0.821(0.016)
pima poker-

9 vs 7
shuttle-
6 vs 2-3

vehicle2 vowel0 winequality-
red-4

wisconsin yeast3 zoo-3

DEC 0.686(0.002) 0.581(0.106) 1.000(0.000) 0.981(0.000) 1.000(0.000) 0.180(0.001) 0.967(0.000) 0.747(0.001) 0.600(0.240)
DEC-ATEC 0.650(0.003) 0.467(0.160) 1.000(0.000) 0.984(0.000) 1.000(0.000) 0.206(0.008) 0.968(0.000) 0.795(0.001) 0.600(0.240)
FSVM-CILcen

lin 0.689(0.002) 0.481(0.062) 1.000(0.000) 0.977(0.000) 1.000(0.000) 0.177(0.001) 0.965(0.000) 0.751(0.002) 0.400(0.240)
FSVM-CILcen

lin -ATEC 0.660(0.001) 0.360(0.198) 1.000(0.000) 0.977(0.001) 1.000(0.000) 0.208(0.002) 0.965(0.000) 0.792(0.002) 0.533(0.204)
FSVM-CILhyp

lin 0.681(0.001) 0.433(0.151) 1.000(0.000) 0.981(0.000) 1.000(0.000) 0.187(0.013) 0.969(0.000) 0.748(0.002) 0.600(0.240)
FSVM-CILhyp

lin -ATEC 0.660(0.003) 0.400(0.151) 1.000(0.000) 0.984(0.000) 1.000(0.000) 0.204(0.003) 0.967(0.000) 0.798(0.001) 0.600(0.240)
EasyEnsemble 0.645(0.002) 0.183(0.006) 1.000(0.000) 0.945(0.001) 0.822(0.000) 0.114(0.001) 0.953(0.000) 0.665(0.001) 0.094(0.006)
CBO 0.589(0.001) 0.333(0.071) 1.000(0.000) 0.930(0.001) 0.889(0.002) 0.128(0.006) 0.951(0.000) 0.704(0.006) 0.467(0.178)
LexiBoost 0.562(0.000) 0.373(0.009) 1.000(0.000) 0.843(0.000) 0.995(0.000) 0.080(0.001) 0.959(0.000) 0.697(0.001) 0.800(0.010)
Dual-LexiBoost 0.653(0.000) 0.373(0.009) 1.000(0.000) 0.803(0.000) 0.995(0.000) 0.080(0.001) 0.965(0.000) 0.728(0.000) 0.667(0.006)
GWSVM-RU 0.687(0.000) 0.581(0.106) 1.000(0.000) 0.981(0.000) 1.000(0.000) 0.171(0.002) 0.962(0.000) 0.802(0.001) 0.600(0.240)
DEC-BOA(20) 0.571(0.000) 0.244(0.050) 0.083(0.000) 0.977(0.000) 0.995(0.000) 0.102(0.001) 0.790(0.024) 0.643(0.009) 0.600(0.240)
DEC-BOA(1000) 0.630(0.003) 0.278(0.072) 0.083(0.000) 0.977(0.000) 0.995(0.000) 0.118(0.009) 0.876(0.001) 0.789(0.002) 0.600(0.240)
FSVM-CILcen

lin -BOA(20) 0.526(0.000) 0.360(0.198) 0.083(0.000) 0.973(0.000) 0.984(0.000) 0.110(0.002) 0.964(0.000) 0.657(0.009) 0.400(0.240)
FSVM-CILcen

lin -BOA(1000) 0.654(0.001) 0.360(0.198) 0.083(0.000) 0.977(0.000) 0.984(0.000) 0.143(0.002) 0.965(0.000) 0.782(0.003) 0.400(0.240)
FSVM-CILhyp

lin -BOA(20) 0.632(0.003) 0.215(0.062) 1.000(0.000) 0.979(0.000) 1.000(0.000) 0.108(0.005) 0.873(0.031) 0.689(0.004) 0.600(0.240)
FSVM-CILhyp

lin -BOA(1000) 0.669(0.001) 0.467(0.160) 1.000(0.000) 0.979(0.000) 1.000(0.000) 0.199(0.001) 0.957(0.000) 0.794(0.001) 0.600(0.240)

200 400 600 800 1000
sample size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tim
e(

s)

iris0
new-thyroid1
ecoli-0-1_vs_5
glass4
poker-9_vs_7

(a) v.s. sample size

2 3 4 5 6 7 8 9 10 11
IR value

0.00

0.04

0.08

0.12

0.16

0.20

tim
e(

s)

iris0
new-thyroid1
ecoli-0-1_vs_5
glass4
poker-9_vs_7

(b) v.s. I.R. value

0 5 10 15 20
counts

0.00

0.02

0.04

0.06

0.08

0.10

tim
e(

s)

iris0
new-thyroid1
ecoli-0-1_vs_5
glass4
poker-9_vs_7

(c) v.s. count

10 1100 101 102 103 104 105 106 107

Increment

0.00

0.04

0.08

0.12

0.16

0.20

tim
e(

s)

iris0
new-thyroid1
ecoli-0-1_vs_5
glass4
poker-9_vs_7

(d) v.s. increment

Fig. 9. Efficiency Evaluation of different factors for ATEC (default: count = 20, increment = 100, sample size and IR are decided by the original
datasets)

parameter only when we study the impact of that parameter,
with results depicted in Figure 9.

The impact of the sample size on the DEC-ATEC training
time is plotted in Figure 9(a). All five datasets have their
original sample size in the range of [150, 250]. We can see
that as the number of samples increases, the training time
required by DEC-ATEC increases approximately linearly.
This is expected since SVM requires a longer time for train-
ing more samples. However, the growth rate varies from
dataset to dataset and particularly, the iris0 dataset requires
an almost constant training time. Multiple factors could
cause the difference among growth rates, e.g., the different
feature dimension sizes and the dataset distribution. In
summary, DEC-ATEC spends less than 1 second in training

consistently across all the testing cases.
The DEC-ATEC training time under different I.R. values

is plotted in Figure 9(b). We could observe that I.R. value has
a limited impact on the training time of DEC-ATEC. Take
galss4 dataset as an example. When the I.R. value increases
from 2 to 11, the training time fluctuates around 0.04s. In
fact, as stated in Section 4, ATEC itself is related to param-
eters count and increment. In this set of tests, since count,
increment and the sample size are fixed, the training time
is relatively stable. The fluctuations are probably caused by
the SVM core which is slightly affected by the imbalance
ratio and data distribution behind.

The relationship between the parameter count and the
time needed for searching the preferable hyperplane of DEC

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 8
AUC-PR of the KEEL datasets

cleveland-
0 vs 4

dermatology-
6

ecoli-0-
1 vs 5

glass4 haberman iris0 led7digit-
0-2-4-5-6-
7-8-9 vs 1

new-
thyroid1

page-blocks-
1-3 vs 4

DEC 0.862(0.007) 1.000(0.000) 0.931(0.002) 0.958(0.007) 0.521(0.013) 1.000(0.000) 0.811(0.005) 1.000(0.000) 0.873(0.013)
DEC-ATEC 0.794(0.102) 1.000(0.000) 0.931(0.002) 0.958(0.007) 0.525(0.012) 1.000(0.000) 0.817(0.013) 1.000(0.000) 0.870(0.032)
FSVM-CILcen

lin 0.801(0.066) 1.000(0.000) 0.933(0.003) 0.892(0.008) 0.513(0.012) 1.000(0.000) 0.805(0.009) 1.000(0.000) 0.871(0.014)
FSVM-CILcen

lin -ATEC 0.806(0.018) 1.000(0.000) 0.933(0.003) 0.958(0.007) 0.531(0.008) 1.000(0.000) 0.829(0.011) 0.996(0.000) 0.866(0.034)
FSVM-CILhyp

lin 0.864(0.012) 1.000(0.000) 0.921(0.002) 1.000(0.000) 0.524(0.019) 1.000(0.000) 0.806(0.009) 1.000(0.000) 0.873(0.013)
FSVM-CILhyp

lin -ATEC 0.874(0.016) 1.000(0.000) 0.921(0.002) 0.958(0.007) 0.555(0.019) 1.000(0.000) 0.824(0.010) 1.000(0.000) 0.870(0.032)
EasyEnsemble 0.657(0.083) 1.000(0.000) 0.822(0.031) 0.681(0.071) 0.383(0.007) 1.000(0.000) 0.711(0.059) 0.982(0.001) 1.000(0.000)
CBO 0.607(0.055) 0.980(0.008) 0.809(0.025) 0.749(0.015) 0.449(0.014) 1.000(0.000) 0.740(0.042) 0.927(0.004) 0.983(0.002)
LexiBoost 0.303(0.011) 0.956(0.001) 0.811(0.003) 0.834(0.006) 0.382(0.002) 1.000(0.000) 0.789(0.003) 0.965(0.001) 0.671(0.002)
Dual-LexiBoost 0.429(0.008) 0.832(0.001) 0.858(0.001) 0.795(0.008) 0.592(0.000) 1.000(0.000) 0.779(0.005) 0.929(0.000) 0.700(0.000)
GWSVM-RU 0.854(0.042) 1.000(0.000) 0.916(0.014) 0.958(0.007) 0.507(0.014) 1.000(0.000) 0.841(0.008) 1.000(0.000) 0.934(0.017)
DEC-BOA(20) 0.738(0.055) 1.000(0.000) 0.891(0.004) 0.958(0.007) 0.400(0.017) 1.000(0.000) 0.661(0.032) 1.000(0.000) 0.812(0.038)
DEC-BOA(1000) 0.738(0.055) 1.000(0.000) 0.895(0.004) 0.958(0.007) 0.448(0.014) 1.000(0.000) 0.754(0.033) 1.000(0.000) 0.836(0.031)
FSVM-CILcen

lin -BOA(20) 0.626(0.046) 1.000(0.000) 0.918(0.002) 0.958(0.007) 0.411(0.005) 1.000(0.000) 0.606(0.036) 1.000(0.000) 0.715(0.055)
FSVM-CILcen

lin -BOA(1000) 0.869(0.017) 1.000(0.000) 0.918(0.002) 0.958(0.007) 0.441(0.008) 1.000(0.000) 0.733(0.038) 1.000(0.000) 0.827(0.047)
FSVM-CILhyp

lin -BOA(20) 0.779(0.041) 0.989(0.001) 0.921(0.002) 0.922(0.013) 0.327(0.020) 1.000(0.000) 0.783(0.006) 0.996(0.000) 0.823(0.042)
FSVM-CILhyp

lin -BOA(1000) 0.760(0.050) 1.000(0.000) 0.921(0.002) 0.939(0.007) 0.443(0.010) 1.000(0.000) 0.788(0.019) 0.996(0.000) 0.847(0.034)
pima poker-

9 vs 7
shuttle-
6 vs 2-3

vehicle2 vowel0 winequality-
red-4

wisconsin yeast3 zoo-3

DEC 0.726(0.002) 0.643(0.093) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.159(0.018) 0.992(0.000) 0.821(0.006) 1.000(0.000)
DEC-ATEC 0.734(0.002) 0.652(0.084) 1.000(0.000) 0.998(0.000) 1.000(0.000) 0.174(0.015) 0.992(0.000) 0.825(0.005) 1.000(0.000)
FSVM-CILcen

lin 0.725(0.002) 0.633(0.122) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.156(0.018) 0.992(0.000) 0.825(0.002) 1.000(0.000)
FSVM-CILcen

lin -ATEC 0.738(0.002) 0.633(0.122) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.171(0.004) 0.992(0.000) 0.823(0.005) 1.000(0.000)
FSVM-CILhyp

lin 0.726(0.002) 0.718(0.095) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.164(0.005) 0.992(0.000) 0.822(0.006) 1.000(0.000)
FSVM-CILhyp

lin -ATEC 0.733(0.003) 0.708(0.080) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.160(0.005) 0.992(0.000) 0.824(0.004) 1.000(0.000)
EasyEnsemble 0.667(0.002) 0.115(0.005) 1.000(0.000) 0.982(0.000) 0.986(0.000) 0.120(0.002) 0.990(0.000) 0.789(0.003) 0.441(0.210)
CBO 0.652(0.001) 0.612(0.089) 1.000(0.000) 0.932(0.000) 0.899(0.003) 0.155(0.005) 0.962(0.000) 0.745(0.003) 0.710(0.104)
LexiBoost 0.530(0.000) 0.560(0.007) 1.000(0.000) 0.668(0.005) 0.995(0.000) 0.117(0.001) 0.925(0.001) 0.612(0.006) 0.805(0.010)
Dual-LexiBoost 0.711(0.000) 0.537(0.020) 1.000(0.000) 0.826(0.000) 0.995(0.000) 0.265(0.001) 0.968(0.000) 0.764(0.000) 0.767(0.002)
GWSVM-RU 0.724(0.002) 0.651(0.075) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.163(0.013) 0.992(0.000) 0.820(0.007) 1.000(0.000)
DEC-BOA(20) 0.618(0.002) 0.643(0.093) 1.000(0.000) 0.996(0.000) 1.000(0.000) 0.082(0.001) 0.989(0.000) 0.790(0.010) 1.000(0.000)
DEC-BOA(1000) 0.729(0.001) 0.647(0.090) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.095(0.002) 0.991(0.000) 0.816(0.005) 1.000(0.000)
FSVM-CILcen

lin -BOA(20) 0.644(0.007) 0.633(0.122) 1.000(0.000) 0.995(0.000) 1.000(0.000) 0.145(0.007) 0.991(0.000) 0.801(0.006) 0.825(0.122)
FSVM-CILcen

lin -BOA(1000) 0.722(0.002) 0.633(0.122) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.118(0.003) 0.991(0.000) 0.811(0.006) 0.658(0.175)
FSVM-CILhyp

lin -BOA(20) 0.671(0.001) 0.692(0.078) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.141(0.001) 0.991(0.000) 0.805(0.006) 1.000(0.000)
FSVM-CILhyp

lin -BOA(1000) 0.722(0.003) 0.692(0.078) 1.000(0.000) 0.997(0.000) 1.000(0.000) 0.119(0.002) 0.990(0.000) 0.817(0.005) 1.000(0.000)

by ATEC is plotted in Figure 9(c). We can observe that as
count increases, ATEC requires longer training times for
most datasets. However, it’s worth noting that when count
reaches 10, the training time corresponding to iris0 dataset
becomes stable. This is because that ATEC can perfectly sep-
arate iris0 samples after 10 iterations so that ATEC algorithm
will stop searching even when count is larger than 10 and
hence the time remains stable.

For the last factor of increment, we vary its value from
10−1 to 107 on all datasets and report the performances in
Figure 9(d). We find that as increment increases exponen-
tially, there is almost no obvious difference in the training
time for most datasets. This is because that we fix count to
20, and ATEC repeats the while-loop of Algorithm 2 exactly
count = 20 times in those datasets. Dataset iris0 is the
only exception. Different from other datasets, the training
time corresponding to iris0 dataset increases as increment
changes its value from 10−1 to 104, and it then becomes
stable. Most likely it is because when increment has not yet
reached 105, ATEC is able to find a preferable hyperplane
before the total number of adjustments reaches count (i.e.,
the while-loop in Algorithm 2 is terminated because of
condition sign = 0 but not iter = count). In other words,
as increment increases its value, the number of adjustments
ATEC requires before the preferable hyperplane could be
found increases (but still smaller than 20) which explains
the increase of the training time. When increment reaches
105, ATEC is not able to find the preferable hyperplane

even after it performs 20 adjustments. That is to say when
increment ≥ 105, ATEC performs exactly count = 20
adjustments which explain the stable training time. Hence,
based on the above analysis, we can conclude that com-
paring with the factors of sample size and count that have
a significant influence on the training time of ATEC, the
increment factor has a moderate impact while the effect
from imbalance ratio factor is minor.

5.3.2 Comparison with Grid Search

We further study the efficiency of ATEC by comparing DEC-
ATEC with the grid-search, a commonly used parameter
tuning strategy. To this end, we fix desirable F1 values
for different datasets and record the training time required
by two techniques to achieve the given F1 score. To make
grid-search comparable with ATEC, we adopt the following
settings to perform the grid-search. We restrict the search
space to the range [1,1000] and apply a variable count in
grid-search to control the search step size (that is similar to
ATEC). Specifically, if count is 10, it splits the range [1,1000]
into 10 consecutive sub-ranges, e.g., [1,100], [100,200], · · ·
and we select the median of each sub-range as the error cost
ratio k for training DEC, e.g., 50, 150, . . . , 950. Then, we
adopt the best error cost on cross validation as the result
of the grid-search. In this way, we can respectively increase
the value of count one by one for DEC-ATEC and the grid-
search, and record their corresponding training time when
the given F1 value is achieved.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 9
AUC-ROC of the KEEL datasets

cleveland-
0 vs 4

dermatology-
6

ecoli-0-
1 vs 5

glass4 haberman iris0 led7digit-
0-2-4-5-6-
7-8-9 vs 1

new-
thyroid1

page-blocks-
1-3 vs 4

DEC 0.987(0.000) 1.000(0.000) 0.991(0.000) 0.998(0.000) 0.725(0.004) 1.000(0.000) 0.968(0.000) 1.000(0.000) 0.979(0.000)
DEC-ATEC 0.980(0.000) 1.000(0.000) 0.991(0.000) 0.998(0.000) 0.730(0.002) 1.000(0.000) 0.965(0.001) 1.000(0.000) 0.991(0.000)
FSVM-CILcen

lin 0.985(0.000) 1.000(0.000) 0.991(0.000) 0.998(0.000) 0.723(0.001) 1.000(0.000) 0.967(0.001) 1.000(0.000) 0.984(0.000)
FSVM-CILcen

lin -ATEC 0.982(0.000) 1.000(0.000) 0.992(0.000) 0.998(0.000) 0.741(0.001) 1.000(0.000) 0.966(0.001) 1.000(0.000) 0.990(0.000)
FSVM-CILhyp

lin 0.988(0.000) 1.000(0.000) 0.993(0.000) 1.000(0.000) 0.730(0.002) 1.000(0.000) 0.966(0.001) 1.000(0.000) 0.979(0.000)
FSVM-CILhyp

lin -ATEC 0.988(0.000) 1.000(0.000) 0.992(0.000) 0.998(0.000) 0.731(0.002) 1.000(0.000) 0.965(0.001) 1.000(0.000) 0.991(0.000)
EasyEnsemble 0.946(0.003) 1.000(0.000) 0.953(0.003) 0.961(0.002) 0.622(0.003) 1.000(0.000) 0.943(0.002) 0.996(0.000) 1.000(0.000)
CBO 0.786(0.037) 0.999(0.002) 0.882(0.037) 0.818(0.031) 0.553(0.002) 1.000(0.000) 0.895(0.008) 0.960(0.003) 0.999(0.000)
LexiBoost 0.684(0.000) 0.974(0.000) 0.919(0.001) 0.940(0.002) 0.589(0.000) 1.000(0.000) 0.894(0.002) 0.981(0.001) 0.913(0.000)
Dual-LexiBoost 0.660(0.011) 0.962(0.000) 0.936(0.001) 0.925(0.002) 0.663(0.000) 1.000(0.000) 0.902(0.002) 0.981(0.000) 0.948(0.000)
GWSVM-RU 0.977(0.000) 1.000(0.000) 0.990(0.000) 0.998(0.000) 0.739(0.003) 1.000(0.000) 0.966(0.001) 1.000(0.000) 0.996(0.000)
DEC-BOA(20) 0.940(0.002) 1.000(0.000) 0.986(0.000) 0.998(0.000) 0.541(0.003) 1.000(0.000) 0.927(0.001) 1.000(0.000) 0.921(0.015)
DEC-BOA(1000) 0.940(0.002) 1.000(0.000) 0.986(0.000) 0.998(0.000) 0.716(0.001) 1.000(0.000) 0.942(0.001) 0.999(0.000) 0.897(0.011)
FSVM-CILcen

lin -BOA(20) 0.971(0.000) 1.000(0.000) 0.989(0.000) 0.998(0.000) 0.640(0.007) 1.000(0.000) 0.959(0.001) 0.999(0.000) 0.912(0.007)
FSVM-CILcen

lin -BOA(1000) 0.958(0.002) 1.000(0.000) 0.990(0.000) 0.998(0.000) 0.706(0.002) 1.000(0.000) 0.964(0.001) 0.999(0.000) 0.987(0.000)
FSVM-CILhyp

lin -BOA(20) 0.982(0.000) 0.999(0.000) 0.992(0.000) 0.996(0.000) 0.619(0.005) 1.000(0.000) 0.940(0.001) 0.999(0.000) 0.940(0.005)
FSVM-CILhyp

lin -BOA(1000) 0.986(0.000) 1.000(0.000) 0.936(0.013) 0.996(0.000) 0.723(0.001) 1.000(0.000) 0.961(0.001) 0.999(0.000) 0.957(0.004)
pima poker-

9 vs 7
shuttle-
6 vs 2-3

vehicle2 vowel0 winequality-
red-4

wisconsin yeast3 zoo-3

DEC 0.834(0.000) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.755(0.005) 0.996(0.000) 0.977(0.000) 1.000(0.000)
DEC-ATEC 0.831(0.000) 0.981(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.744(0.005) 0.996(0.000) 0.976(0.000) 1.000(0.000)
FSVM-CILcen

lin 0.831(0.000) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.753(0.009) 0.996(0.000) 0.976(0.000) 1.000(0.000)
FSVM-CILcen

lin -ATEC 0.833(0.000) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.770(0.009) 0.996(0.000) 0.974(0.000) 1.000(0.000)
FSVM-CILhyp

lin 0.834(0.000) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.756(0.006) 0.996(0.000) 0.977(0.000) 1.000(0.000)
FSVM-CILhyp

lin -ATEC 0.832(0.001) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.753(0.003) 0.996(0.000) 0.977(0.000) 1.000(0.000)
EasyEnsemble 0.799(0.001) 0.862(0.011) 1.000(0.000) 0.993(0.000) 0.998(0.000) 0.685(0.003) 0.994(0.000) 0.971(0.000) 0.853(0.060)
CBO 0.677(0.000) 0.648(0.038) 1.000(0.000) 0.951(0.001) 0.936(0.003) 0.555(0.003) 0.963(0.000) 0.838(0.001) 0.790(0.042)
LexiBoost 0.654(0.000) 0.780(0.012) 1.000(0.000) 0.864(0.000) 0.999(0.000) 0.544(0.002) 0.956(0.000) 0.749(0.002) 0.861(0.001)
Dual-LexiBoost 0.726(0.000) 0.770(0.013) 1.000(0.000) 0.899(0.000) 0.999(0.000) 0.540(0.002) 0.978(0.000) 0.920(0.000) 0.969(0.000)
GWSVM-RU 0.836(0.000) 0.979(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.710(0.009) 0.996(0.000) 0.975(0.000) 1.000(0.000)
DEC-BOA(20) 0.734(0.002) 0.977(0.001) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.673(0.011) 0.995(0.000) 0.973(0.000) 0.980(0.002)
DEC-BOA(1000) 0.828(0.000) 0.977(0.001) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.678(0.009) 0.995(0.000) 0.973(0.000) 1.000(0.000)
FSVM-CILcen

lin -BOA(20) 0.759(0.001) 0.979(0.000) 1.000(0.000) 0.998(0.000) 1.000(0.000) 0.736(0.009) 0.995(0.000) 0.972(0.000) 0.970(0.004)
FSVM-CILcen

lin -BOA(1000) 0.831(0.001) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.749(0.008) 0.996(0.000) 0.973(0.000) 0.949(0.004)
FSVM-CILhyp

lin -BOA(20) 0.759(0.002) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.705(0.013) 0.995(0.000) 0.974(0.000) 1.000(0.000)
FSVM-CILhyp

lin -BOA(1000) 0.827(0.001) 0.979(0.000) 1.000(0.000) 0.999(0.000) 1.000(0.000) 0.725(0.008) 0.995(0.000) 0.975(0.000) 1.000(0.000)

TABLE 10
Average Ranks of Different Algorithms

Datasets Reuters-21578 KEEL
Performance Metrics F1

scores
AUC-

PR
AUC-
ROC

F1
scores

AUC-
PR

AUC-
ROC

Friedman statistic FF 12.57 20.36 9.21 10.26 13.37 17.71
DEC 4.8 5.4 5.0 4.6 4.7 4.5
DEC-ATEC 2.6 2.9 3.8 4.1 3.9 4.7
FSVM-CILcen

lin 6.6 4.0 3.4 5.4 5.2 4.7
FSVM-CILcen

lin -ATEC 3.4 1.9 3.5 4.8 4.5 4.3
FSVM-CILhyp

lin 5.2 5.8 5.5 4.8 4.1 3.8
FSVM-CILhyp

lin -ATEC 2.4 3.4 5.0 4.1 4.2 4.1
GWSVM-RU 4.0 4.8 3.4 4.1 4.8 4.5
EasyEnsemble 9.4 7.8 6.4 9.5 8.3 7.5
CBO 10.4 10.2 10.8 8.5 8.9 9.3
LexiBoost 9.4 10.8 10.2 8.2 9.5 9.6
Dual-LexiBoost 7.8 9.0 9.0 7.8 8.0 9.1

TABLE 11
Average Metrics of KEEL and Reuters Datasets

Performance Metrics F1 scores AUC-PR AUC-ROC
DEC-ATEC 0.791 0.844 0.950
DEC-BOA(20) 0.628 0.795 0.921
DEC-BOA(1000) 0.643 0.820 0.940
FSVM-CILcen

lin -ATEC 0.788 0.845 0.952
FSVM-CILcen

lin -BOA(20) 0.630 0.780 0.932
FSVM-CILcen

lin -BOA(1000) 0.666 0.809 0.945
FSVM-CILhyp

lin -ATEC 0.791 0.849 0.950
FSVM-CILhyp

lin -BOA(20) 0.718 0.806 0.933
FSVM-CILhyp

lin -BOA(1000) 0.756 0.825 0.943

The comparison results between ATEC and grid-search
on five different KEEL datasets are reported in Figure 10.
The target F1 scores vary from dataset to dataset because of
their different distributions and other reasons. For example,

it is easy for DEC to obtain a F1 score of 0.95 by merely
training once on new-thyroid1 dataset (Figure 10(b)); on the
other hand, even after we set count to a large value, DEC can
only achieve F1 score of 0.4 on poker-9 vs 7 dataset (Figure
10(e)). Two observations can be derived from Figure 10.
First, for a given dataset, the required training time of both
ATEC and grid-search techniques extends together with the
increase of F1 scores. Second, grid search grows its training
time at a much faster rate than ATEC and ATEC outperforms
the grid-search by up to two orders of magnitude when
the desired F1 score is set to a high value. For example,
as shown in Figure 10(e), both grid-search and ATEC spend
less than 0.01 second to reach F1 score of 0.2, but as F1 value
increases to 0.4, the time goes up to 17.88 seconds for grid-
search which is 255 times more than that of for ATEC, i.e.,
0.07s.

The fact that tuning a parameter requires 17.88 seconds is
not unacceptable in real applications. However, there could
be more parameters for tuning in SVMs and the size of the
dataset could be much larger. If we employ grid-search to
tune every single parameter, the final training time could be
very expensive, e.g., a few hours. Hence, it is meaningful
to perform ATEC to help reduce the time required to turn
the error cost ratio without sacrificing the classification
accuracy.

Last but not least, we study the trade-off between ef-
ficiency and effectiveness under 25 different count values.
To be more specific, we perform in a total of 50 tests for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

0.94 0.95 0.96 0.97 0.98 0.99
F1 value

1.5

1.0

0.5

0.0
lo

g(
tim

e)
(s

)

grid search
ATEC

(a) iris0

0.95 0.96 0.97 0.98
F1 value

1.5

1.0

0.5

0.0

0.5

lo
g(

tim
e)

(s
)

grid search
ATEC

(b) new-thyroid1

0.2 0.4 0.6 0.8
F1 value

2

1

0

1

lo
g(

tim
e)

(s
)

grid search
ATEC

(c) ecoli-0-1 vs 5

0.78 0.80 0.82 0.84 0.86
F1 value

1.5

1.0

0.5

0.0

0.5

lo
g(

tim
e)

(s
)

grid search
ATEC

(d) glass4

0.25 0.30 0.35 0.40
F1 value

2

1

0

1

lo
g(

tim
e)

(s
)

grid search
ATEC

(e) poker-9 vs 7

Fig. 10. Efficiency study by comparing ATEC with grid search in the KEEL datasets

0 10 20 30 40 50
average rank of the training time

10

15

20

25

30

35

40

45

av
er

ag
e

ra
nk

 o
f F

1
va

lu
e

grid search
ATEC

(a) Reuters datasets

0 10 20 30 40 50
average rank of the training time

15

20

25

30

35

40

45
av

er
ag

e
ra

nk
 o

f F
1

va
lu

e
grid search
ATEC

(b) KEEL datasets

Fig. 11. Comparing ATEC with grid search in effectiveness and efficiency

each dataset, 25 tests for ATEC under 25 different count
values and the other 25 tests for grid searches. Note that
we have 5 datasets under Reuters and 18 datasets under
KEEL, and the total number of tests we run is 50× (5 + 18).
To facilitate the presentation of the results and to save space,
we consider the average ranks across multiple datasets in-
stead of the absolute F1 scores/training times in individual
tests. Among the 50 tests corresponding to one dataset,
the one with the highest F1 score gets rank 1, the one
with the second highest F1 score gets rank 2 and so on
in the dimension of F1 scores. Similarly, the one incurring
the shortest training time gets rank 1, the one incurring
the second shortest training time gets rank 2 and so on
in the dimension of training time. Let’s take ATEC with
count = 10 as an example. In terms of F1 score, its ranks
in five Reuters datasets are 5, 5, 7, 6, and 4 respectively.
In terms of training time, its ranks in five Reuters datasets
are 38, 42, 39, 40, and 45 respectively. It will be represented
as a circle of 〈5.4, 40.8〉 in Figure 11(a), with x-axis value
5.4 indicating the average F1 score rank (5+5+7+6+4

5) and
y-axis value 40.8 indicating the average training time rank
(38+42+39+40+45

5) across five Reuters datasets. The results
are reported in Figure 11. Ideally, a point shall be located at
the left lower part of the plot where both the rank of training
time and the rank of F1 value are small. In general, both
ATEC and grid-search take more training time to acquire a
higher ranking of F1 value. However, the scatters of ATEC
are completely below that of grid-search on both Reuters
and KEEL datasets. This demonstrates the superiority of
ATEC in terms of optimization efficiency, i.e., using less time
to derive a good classifier.

6 RELATED WORK

The related work on classifying imbalanced datasets can
be grouped into three categories, namely sampling methods,

algorithmic methods and hyperparameters optimization methods.
Sampling Methods. The purpose of sampling methods is to
provide a new balanced dataset by oversampling the minor-
ity class or undersampling the majority class with different
sampling mechanisms. A classical mechanism is synthetic
sampling. SMOTE [34] is a representative. It creates an ar-
tificial dataset based on existing minority examples. Based
on SMOTE, some adaptive sampling methods are proposed,
such as Borderline-SMOTE [35] and ADA-SYN [36]. Later,
Liu et al. propose an EasyEnsemble mechanism [28] that
trains multiple learners by undersampling the majority class
and then combines the outputs of those learners. There
are also other ensemble-based variant methods proposed
recently [37], [38]. Besides, some works combine sampling
methods and SVM. For example, GSVM-RU [20] samples
the important examples of the majority class by utilizing
the SVM’s support vector sets, and Qi et al. [27] pro-
posed GWSVM-RU which improves GSVM-RU by using
the weighted SVM. Different from above sampling methods,
ATEC makes no change to the dataset.
Algorithmic Methods. Algorithmic approaches relieve the
imbalance by modifying typical classification algorithms.
Wonji et.al [39] introduce a new weight adjustment factor
for boosting algorithms by utilizing SVMs on imbalanced
data. Khan et.al [40] propose a cost-sensitive deep neural
network. Datta et.al [11] propose LexiBoost that takes the
equal average hinge losses from the classes as the opti-
mization goal to solve the imbalance problem without cost
tuning. Similar to ATEC, the imbalance is addressed through
the optimal trade-off between the classes. However, ATEC
takes the equal maximizing entropy from the hyperplane
sides as the goal to adjust the error cost. In addition, some
imbalance algorithms based on SVM have also been pro-
posed. Núñez et al. [41] introduce a new bias that adjusts the
classification decision boundary learned by SVM. However,
this work improves the minority classification by tuning
one parameter of SVM model and may lack generalization
performance in some cases. Datta et.al [42] propose to train
SVMs as the multi-objective optimization and obtain Pareto
optimal as the optimal trade-off between the imbalanced
classes without parameter-tuning. However, the method
requires a lot of training time for large-scale data sets which
limits its usage in real applications. In the meantime, the
cost-sensitive learning completely adjusts SVM model by
modifying the optimization function, such as DEC [6], con-
sidering different margin between categories [43], FSVM [1],
zSVM [44], entropy-based fuzzy SVM (EFSVM) [45], and
cost-sensitive hinge loss (CSHL) [46]. Different from these
SVMs where the weights or the error costs are manually
set or searched by performing grid search, ATEC can obtain

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

a more preferable hyperplane by automatically tuning the
error cost ratio in a very efficient manner.
Hyperparameters Optimization Methods. Though there
are many algorithmic methods to improve the performance
of SVM for imbalanced data, how to optimize the hyper-
parameters is an open problem. Grid search is the most
common method which requires users to first manually
select the search spaces of C and γ for the SVMs with
RBF kernel and then measure each pair of them by some
resampling procedures [47]. However, it is such an ex-
haustive search that many researchers propose other hy-
perparameters optimization methods. Bergstra and Bengio
[49] propose a random search that improves grid search in
high-dimensional spaces, but it doesn’t work well for low-
dimensional spaces (e.g., 1-d, 2-d). Keerthi et al. [48] propose
a method to determine the optimal values of hyperparam-
eters by computing the gradient of the error with respect
to hyperparameters; X. Pan et al. [50] propose a method
that safely accelerates the training process and applies to the
parameter tuning process. There are also heuristic methods,
such as evolutionary algorithms [51] and particle swarm
optimization [52]. However, these methods only optimize
the inherent hyperparameters of SVMs, i.e. C and γ. They
are not capable of searching the best settings of error cost
for between-class samples while our method ATEC can tune
it automatically and efficiently.

7 CONCLUSION

To further improve existing cost-sensitive SVMs for im-
balanced learning, this paper proposes ATEC, a solution
that can efficiently find a more preferable position for the
hyperplane learned by SVMs through automatically tuning
the error cost of between-class samples. The core of ATEC
is its modeling for the preferable hyperplane, where the
maximum entropy within a certain area is used as the
guideline for hyperplane search. Though ATEC requires
two extra parameters to achieve its purpose, i.e., count and
increment, we have presented a theorem to prove that the
accuracy is insensitive to these parameters when they ex-
ceed certain thresholds. Extensive experimental evaluation
shows that ATEC can improve the performance of existing
error-cost based SVMs such as DEC and FSVM-CIL in terms
of the F1 value of the minority class, AUC-PR score and
AUC-ROC score. Moreover, ATEC can achieve comparable
performance with state-of-the-art imbalance methods, e.g.,
LexiBoost. More importantly, to train the SVM model that
can achieve a relatively high F1 score, ATEC can be two
orders of magnitude faster than the parameter tuning strat-
egy based on grid searches. In our future work, we plan
to extend the main idea of ATEC to support more SVMs as
well as other sort of classifying algorithms such as logistic
regression.

ACKNOWLEDGMENTS

This research is supported in part by National Key R&D
Program of China (2018YFB1402800) , and Prime Minister’s
Office, Singapore under its International Research Centres
in Singapore Funding Initiative.

REFERENCES

[1] R. Batuwita and V. Palade, “Fsvm-cil: fuzzy support vector ma-
chines for class imbalance learning,” TFS, vol. 18, no. 3, pp. 558–
571, 2010.

[2] G. Wu and E. Y. Chang, “Class-boundary alignment for imbal-
anced dataset learning,” in ICML workshop on learning from imbal-
anced data sets II, 2003, pp. 49–56.

[3] K. Thomas, C. Grier, D. Song, and V. Paxson, “Suspended accounts
in retrospect: an analysis of twitter spam,” in IMC, 2011, pp. 243–
258.

[4] T. Verbraken, W. Verbeke, and B. Baesens, “A novel profit max-
imizing metric for measuring classification performance of cus-
tomer churn prediction models,” TKDE, vol. 25, no. 5, pp. 961–973,
2013.

[5] H. He and E. A. Garcia, “Learning from imbalanced data,” TKDE,
vol. 21, no. 9, pp. 1263–1284, 2009.

[6] K. Veropoulos, C. Campbell, N. Cristianini et al., “Controlling the
sensitivity of support vector machines,” in IJCAI, 1999, pp. 55–60.

[7] A. Iranmehr, H. Masnadi-Shirazi, and N. Vasconcelos, “Cost-
sensitive support vector machines,” Neurocomputing, vol. 343, pp.
50 – 64, 2019.

[8] X.-Y. Liu and Z.-H. Zhou, “The influence of class imbalance on
cost-sensitive learning: An empirical study,” in ICDM, 2006, pp.
970–974.

[9] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., 2012, pp. 2951–2959.

[10] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 2546–2554.

[11] S. Datta, S. Nag, and S. Das, “Boosting with lexicographic pro-
gramming: Addressing class imbalance without cost tuning,”
TKDE, pp. 1–1, 2019.

[12] B. Gu, V. S. Sheng, K. Y. Tay, W. Romano, and S. Li, “Cross valida-
tion through two-dimensional solution surface for cost-sensitive
svm,” TPAMI, vol. 39, no. 6, pp. 1103–1121, June 2017.

[13] C. E. Shannon, “A mathematical theory of communication,”
MC2R, vol. 5, no. 1, pp. 3–55, 2001.

[14] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A maximum
entropy approach to natural language processing,” Computational
linguistics, vol. 22, no. 1, pp. 39–71, 1996.

[15] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector
machines to imbalanced datasets,” in ECML, 2004, pp. 39–50.

[16] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, 2006.

[17] J. Shawe-Taylor and A. Dolia, “A framework for probability den-
sity estimation,” in Artificial Intelligence and Statistics, 2007, pp.
468–475.

[18] M. Wasikowski and X.-w. Chen, “Combating the small sample
class imbalance problem using feature selection,” TKDE, vol. 22,
no. 10, pp. 1388–1400, 2010.

[19] E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. P. Vlahavas,
“Dealing with concept drift and class imbalance in multi-label
stream classification.” in IJCAI, 2011, pp. 1583–1588.

[20] Y. Tang, Y. Zhang, N. V. Chawla, and S. Krasser, “Svms modeling
for highly imbalanced classification,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 1, pp. 281–
288, Feb 2009.

[21] B. Scholkopf, K.-K. Sung, C. J. Burges, F. Girosi, P. Niyogi,
T. Poggio, and V. Vapnik, “Comparing support vector machines
with gaussian kernels to radial basis function classifiers,” IEEE
transactions on Signal Processing, vol. 45, no. 11, pp. 2758–2765, 1997.

[22] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” TIST, vol. 2, pp. 27:1–27:27, 2011.

[23] D. D. Lewis, “Reuters-21578 text catego- rization test collection,”
1987.

[24] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL System Demonstrations, 2014, pp. 55–60.

[25] Google, “Word2vec,” 2013, accessed: April 7, 2018. [Online].
Available: https://code.google.com/archive/p/word2vec/

[26] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a,
L. Sánchez, and F. Herrera, “Keel data-mining software tool: data
set repository, integration of algorithms and experimental analysis
framework,” MVLSC, vol. 17, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[27] S. Z. L. M. F. W. Qi B., Jiang J., “A novel method for highly
imbalanced classification with weighted support vector machine,”
Knowledge Science, Engineering and Management, 2019.

[28] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling
for class-imbalance learning,” TSMCB, vol. 39, no. 2, pp. 539–550,
2009.

[29] T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,”
SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 40–49, 2004.

[30] L. Breiman, Classification and regression trees. Routledge, 2017.
[31] A. J. Wyner, M. Olson, J. Bleich, and D. Mease, “Explaining the

success of adaboost and random forests as interpolating classi-
fiers.”

[32] J. Davis and M. Goadrich, “The relationship between precision-
recall and roc curves,” in ICML, 2006, pp. 233–240.

[33] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” JMLR, pp. 1–30, 2006.

[34] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
AI Research, vol. 16, pp. 321–357, 2002.

[35] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-smote: a new
over-sampling method in imbalanced data sets learning.”

[36] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in IJCNN, 2008, pp.
1322–1328.

[37] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” TKDE, vol. 27, no. 5,
pp. 1356–1368, 2015.

[38] J.-F. Dı́ez-Pastor, J. J. Rodrı́guez, C. I. Garcı́a-Osorio, and L. I.
Kuncheva, “Diversity techniques improve the performance of the
best imbalance learning ensembles,” Information Sciences, vol. 325,
pp. 98–117, 2015.

[39] W. Lee, C.-H. Jun, and J.-S. Lee, “Instance categorization by sup-
port vector machines to adjust weights in adaboost for imbalanced
data classification,” Information Sciences, vol. 381, pp. 92 – 103,
2017.

[40] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri,
“Cost-sensitive learning of deep feature representations from im-
balanced data,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 8, pp. 3573–3587, 2018.

[41] G.-A. L. . A. C. J. C. Nunez, H., “Improving svm classification
on imbalanced datasets by introducing a new bias,” Journal of
Classification, vol. 34, pp. 427–443, October 2017.

[42] S. Datta and S. Das, “Multiobjective support vector machines:
Handling class imbalance with pareto optimality,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 30, no. 5, pp.
1602–1608, May 2019.

[43] C.-Y. Yang, J.-S. Yang, and J.-J. Wang, “Margin calibration in svm
class-imbalanced learning,” Neurocomputing, vol. 73, no. 1, pp. 397
– 411, 2009.

[44] T. Imam, K. M. Ting, and J. Kamruzzaman, “z-svm: an svm
for improved classification of imbalanced data,” Australian joint
conference on artificial intelligence, pp. 264–273, 2006.

[45] Q. Fan, Z. Wang, D. Li, D. Gao, and H. Zha, “Entropy-based fuzzy
support vector machine for imbalanced datasets,” Knowledge-Based
Systems, vol. 115, pp. 87–99, 2017.

[46] A. Iranmehr, H. Masnadi-Shirazi, and N. Vasconcelos, “Cost-
sensitive support vector machines,” Neurocomputing, vol. 343, pp.
50 – 64, 2019.

[47] J. Wainer and G. C. Cawley, “Empirical evaluation of resampling
procedures for optimising svm hyperparameters,” JMLR, vol. 18,
no. 15, pp. 1–35, 2017.

[48] S. S. Keerthi, V. Sindhwani, and O. Chapelle, “An efficient method
for gradient-based adaptation of hyperparameters in svm mod-
els,” in Advances in neural information processing systems, 2007, pp.
673–680.

[49] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” JMLR, vol. 13, no. 1, pp. 281–305, 2012.

[50] X. Pan, Z. Yang, Y. Xu, and L. Wang, “Safe screening rules for
accelerating twin support vector machine classification,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 5,
pp. 1876–1887, 2018.

[51] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple svm
parameters,” Neurocomputing, vol. 64, no. 1, pp. 107–117, 2005.

[52] S. Li and M. Tan, “Tuning svm parameters by using a hybrid clpso-
bfgs algorithm,” Neurocomputing, vol. 73, pp. 2089–2096, 2010.

Bin Cao received his Ph.D. degree in computer
science from Zhejiang University, China in 2013.
He then worked as a research associate in
Hongkong University of Science and Technology
and Noah’s Ark Lab, Huawei. He joined Zhe-
jiang University of Technology, Hangzhou, China
in 2014, and is now an Associate Professor in
the College of Computer Science. His research
interests include spatio-temporal database and
data mining.

Yuqi liu received his BS in computer science
in Zhejiang University of Technology, Hangzhou,
China, in 2016. He is now a PhD student of the
Zhejiang University of Technology. His research
interests are data mining and machine learning.

Chenyu Hou received his BS in software en-
gineering in Zhejiang University of Technology,
Hangzhou, China, in 2016. He is now a PhD
student of the Zhejiang University of Technology.
His research interests are database and data
mining.

Jing Fan received her B.S., M.S. and Ph.D.
degree in Computer Science from Zhejiang Uni-
versity, China in 1990, 1993 and 2003. She is
now a Professor of School of Computer Sci-
ence and Technology at Zhejiang University of
Technology, China. She is a Director of China
Computer Federation (CCF), and Chairman of
Chapter Hangzhou of CCF. Her current research
interest includes middleware, virtual reality and
visualization.

Baihua Zheng received the PhD degree in com-
puter science from Hong Kong University of
Science & Technology, China, in 2003. She is
currently an associate professor in the School
of Information Systems, Singapore Management
University, Singapore. Her research interests in-
clude mobile/pervasive computing, and spatial
databases.

Jianwei Yin received his PhD degrees in com-
puter science from Zhejiang University in 2001.
He is currently a professor in the College of
Computer Science at Zhejiang University. He is
the visiting scholar of Georgia Institute of Tech-
nology, US, in 2008. His research interests in-
clude service computing and data management.

	Expediting the accuracy-improving process of SVMs for class imbalance learning
	Citation
	Author

	tmp.1586415092.pdf.NHtWO

