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Abstract

We propose an approach to generate realistic and high-
fidelity stock market data based on generative adversarial
networks (GANs). Our Stock-GAN model employs a con-
ditional Wasserstein GAN to capture history dependence of
orders. The generator design includes specially crafted aspects
including components that approximate the market’s auction
mechanism, augmenting the order history with order-book
constructions to improve the generation task. We perform an
ablation study to verify the usefulness of aspects of our net-
work structure. We provide a mathematical characterization of
distribution learned by the generator. We also propose statis-
tics to measure the quality of generated orders. We test our
approach with synthetic and actual market data, compare to
many baseline generative models, and find the generated data
to be close to real data.

1 Introduction
Financial markets are among the most well-studied and
closely watched complex multiagent systems in existence.
Well-functioning financial markets are critical to the oper-
ation of a complex global economy, and small changes in
the efficiency or stability of such markets can have enor-
mous ramifications. Accurate modeling of financial markets
can support improved design and regulation of these criti-
cal institutions. There is a vast literature on financial market
modeling, though still a large gap between the state-of-art
and the ideal. Analytic approaches provide insight through
highly stylized model forms. Agent-based models accom-
modate greater dynamic complexity, and are often able to
reproduce “stylized facts” of real-world markets (LeBaron
2006). Currently lacking, however, is a simulation capable of
producing market data at high fidelity and high realism. Our
aim is to develop such a model, to support a range of market
design and analysis problems. This work provides a first step,
learning a high-fidelity generator from real stock market data
streams.

Our main contribution is Stock-GAN: an approach to pro-
duce realistic stock market order streams from real market
data. We utilize a conditional Wasserstein GAN (WGAN)
(Arjovsky, Chintala, and Bottou 2017; Mirza and Osindero
2014) to capture the time-dependence of order streams, with
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both the generator and critic conditional on history of orders.
The main innovation in the Stock-GAN network architecture
lies in two deliberately crafted features of the generator. The
first is a separate neural network that is used to approximate
the double auction mechanism underlying stock exchanges.
This pre-trained network is embedded in the generator en-
abling it to model order processing and transaction generation.
The second feature is the inclusion of order-book information
in the conditioning history of the network. The order book
captures the key features of market state that are not directly
apparent from order history segments.

Our second contribution is a mathematical characteriza-
tion of the distribution learned by the generator. We show
that our designed generator models the stock market data
stream as arising from a stochastic process with finite mem-
ory dependence. The stochastic process view also makes
precise the conditional distribution that the generator is learn-
ing as well the joint distribution that the critic of the WGAN
distinguishes by estimating the earth mover’s distance. The
stochastic process has no closed form representation, which
necessitates the use of a neural network to learn it.

Finally, we experiment with synthetic and real market data.
The synthetic data is produced using a stock market sim-
ulator that has been used in several agent-based financial
studies (Wellman and Wah 2017), but is far from real market
data. The real market data was obtained from OneMarket-
Data, a financial data provider. We propose five statistics
for evaluating stock market data, such as the distribution of
price and quantity of orders, inter-arrival times of orders, and
the best bid and best ask evolution over time. We compare
against other baseline generative models such as recurrent
conditional variational auto-encoder (VAE) and DCGAN in-
stead of WGAN within Stock-GAN. We perform an ablation
study showing the usefulness of our generator structure de-
sign as elaborated above. Overall, Stock-GAN is able to best
generate realistic data compared to the alternatives. An ap-
pendix in the full version provides all additional results and
code for our work.

2 Related Work and Background
WGAN is a well-known GAN variant (Goodfellow et al.
2014; Arjovsky, Chintala, and Bottou 2017). Most prior work
on generation of sequences using GANs has been in the
domain of text generation (Press et al. 2017; Zhang et al.



Figure 1: Representation and evolution of a limit order book.

2017). However, since the space of word representations
is not continuous, the semantics change with nearby word
representation, and given a lack of agreement on the metrics
for measuring goodness of sentences, producing good quality
text using GANs is still an active area of research. Stock
market data does not suffer from this representation problem
but the history dependence for stock markets can be much
longer than for text generation. There are many advanced
proposals to deal with long term dependence (Neil, Pfeiffer,
and Liu 2016; Chang et al. 2017; Yu et al. 2017), however, we
find that our use of LSTMs with conditional WGAN performs
quite good with little tuning of hyperparameters. Xiao et al.
(2017; 2018) introduced GAN-based methods for generating
point processes; they generate the time for transaction events
in stock markets. Other work aim to generate transaction
prices in a stock market (Da Silva and Shi 2019; Koshiyama,
Firoozye, and Treleaven 2019; Zhang et al. 2019; Wiese et
al. 2019). Our problem is richer and harder as we aim to
generate the actual limit orders including time, order type,
price, and quantity information.

Deep neural networks and machine learning techniques
have been used on financial data mostly for prediction of
transaction price (Hiransha et al. 2018; Bao, Yue, and Rao
2017; Qian 2017; Zhang, Aggarwal, and Qi 2017) and for
prediction of actual returns (Abe and Nakayama 2018). As
stated, our goal is not market prediction per se, but rather mar-
ket modeling. Whereas the problems of learning to predict
and generate may overlap (e.g., both aim to capture regular-
ity in the domain), the evaluation criteria and end product
are quite distinct. GANs have been used for generation of
customer buy orders in e-commerce setting (Shi et al. 2019;
Kumar, Biswas, and Sanyal 2018), however, stock market
orders are much more complex with buys, sells, and cancel-
lations; further we attempt to ensure realism of higher level
dynamics like the best bid and ask evolution over time.

Limit order books The stock market is a venue where eq-

uities or stocks of publicly held companies are traded. Nearly
all stock markets follow the continuous double auction (CDA)
mechanism (Friedman 1993). Traders submit bids, or limit
orders, specifying the maximum price at which they would
be willing to buy a specified quantity of a stock, or the mini-
mum price at which they would be willing to sell a quantity.
1 The order book is a store that maintains the set of active
orders: those submitted but not yet transacted or canceled.
CDAs are continuous in the sense that when a new order
matches an existing (incumbent) order in the order book, the
market clears immediately and the trade is executed at the
price of the incumbent order—which is then removed from
the order book. Orders may be submitted at any time, and
a buy order matches and transacts with a sell order when
their respective limits are mutually satisfied. For example,
as shown in Figure 1, if a buy order with price $10.01 and
quantity 100 arrives and the best sell offer in the order book
has the same price and quantity, then they match exactly and
transact. As shown, the next buy order does not match any
sell, and the following sell order partially matches what is
then the best buy in the order book.

The limit order book maintains the current active orders in
the market (or the state of the market), which can be described
in terms of the quantity offered to buy or sell across the range
of price levels. Each order arrival changes the market state,
recorded as an update to the order book. After processing
any arrived order every buy price level is higher than all
sell price levels, and the best bid refers to the lowest buy
price level and the best ask refers to the highest sell price
level. See Figure 1 for an illustration. The order book is
often approximated by few (e.g., ten) price levels above the
best bid and ten price levels below the best ask; as these
prices are typically the ones that dictate the transactions in

1Hence, the CDA is often referred to as a limit-order market in
the finance literature (Abergel et al. 2016).
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Figure 2: Stock-GAN architecture

the market. There are various kinds of traders in a stock
market, ranging from individual investors to large investing
firms. Thus, there is a wide variation in the nature of orders
submitted. We aim to generate streams of orders that are close
in aggregate (not per trader) to real order streams for a given
stock. We focus on generating orders and not transactions,
as the CDA mechanism is deterministic and transactions can
be determined exactly given a stream of orders. In fact, we
model the CDA as a fixed (and separately learned) neural
network within the generation process. In this work, we limit
ourselves to limit orders as we do not have access to richer
order types such as iceberg or bracket orders.

3 Stock-GAN

We view the stock market orders for a given chunk of time
of day ∆t as a collection of vector valued random variable
{xi}i∈N indexed by the limit order sequence number in
N = {1, . . . , n}. {xi} corresponds to the ith limit order,
but, includes more information than the limit order such as
the current best bid and best ask. The components of the
random vector xi include the time interval di, type of order
ti, limit order price pi, limit order quantity qi, and the best
bid ai and best ask bi. The time interval di specifies the differ-
ence in time between the current order i and previous order
i− 1 (in precision of milliseconds); the range of di is finite.
The type of order can be buy, sell, cancel buy, or cancel sell
(represented in two bits). The price and quantity are restricted
to lie within finite bounds. The price range is discretized in
units of US cents and the quantity range is discretized in units
of the equity (non-negative integers).

The best bid and best ask are limit orders themselves and
are specified by price and quantity. We divide the time in a
day into 24 equal intervals and ∆t refers to the index of the
interval. A visual representation of xi is shown in Figure 2a.

3.1 Architecture

The architecture is shown in Figure 2. We use a conditional
WGAN (Mirza and Osindero 2014) with both the generator
and critic conditioned on a k length history of xi’s and the
time interval ∆t. We choose k = 20. The history is con-
densed to one vector using a single LSTM layer. This vector
and uniform noise of dimension 100 is fed to a fully con-
nected layer followed by 4 convolution layers. The generator
outputs the next xi and the critic outputs a real number. Note
that when training both generator and critic are fed history
from real data, but when the generator executes after training
it is fed its own generated data as history. The generator also
outputs the best bid and ask as part of xi, which is the output
coming out of the CDA network. Recall that the best bid and
ask can be inferred deterministically from the current order
and the previous best bid and ask (for most orders); we use
the CDA network (with frozen weights during GAN training)
to output the best bid and best ask; the CDA network serves as
a differentiable approximation of the true CDA function. The
CDA network has a fully connected layer layer followed by 3
convolutional layers. Its input is a limit order and the current
best bid and best ask and the output is the next best bid and
best ask. The CDA network is trained separately using the
orders and order-book data using a standard mean squared
error loss. Appendix B has the code for generator, critic, and
the CDA network that precisely describes the structure, loss,
and hyperparameters.

We use the standard WGAN loss with a gradient penalty
term (Gulrajani et al. 2017). The critic is trained 100 times in
each iteration. The notable part in constructing the training
data is that for each of 64 data points in a mini-batch the
sequence of orders chosen (including history) is far away
from any other sequence in that mini-batch. This is to break
the dependence among data points for the history dependent
stock market data. We make this mathematically precise next.



(a) Synthetic price distribution (b) Synthetic quantity distribution (c) Synthetic intensity

(d) Synthetic best bid/ask (e) Stock-GAN best bid/ask (f) no CDA network best bid/ask (g) no order book best bid/ask

(h) Synthetic spectral density (i) Stock-GAN spectral density (j) no CDA spectral density (k) no order book spectral density

Figure 3: A comparison of different statistics for generated and real synthetic limit orders. Additional results are in appendix.

3.2 Mathematical Characterization of
Stock-GAN

We show how general stochastic process view of limit or-
der generation provides an interpretation of the distribution
that the generator that Stock-GAN is learning. Recall that a
stochastic process is a collection of random variables indexed
by a set of numbers. We view the stock market orders for
a given chunk of time of day ∆t as a collection of vector
valued random variable {xi}i∈N indexed by the limit order
sequence number in N = {1, . . . , n}, where n is the maxi-
mum number of limit orders that can possibly show up in any
∆t time interval. Following the terminology for stochastic
processes, the above process is discrete time and discrete
space (discrete time here refers to the discreteness of the
index set N ).

The k length history we use implies a finite history
dependence of the current output xi, that is, P (xi |
xi−1, . . . ,∆t) = P (xi | xi−1, . . . ,xi−m,∆t) for some m.
Such dependence is justified by the observation that recent or-
ders mostly determine the transactions and transaction price
in the market as orders that have been in the market for
long either get transacted or canceled. Further, the best bid

and best ask serves as an (approximate) sufficient statistic
for events beyond the history length m. While this process
is not a Markov chain (MC), it forms what is known as a
higher order MC, which implies that the process given by
yi = (xi, . . . ,xi−m+1) is a MC for any given time interval
∆t. We assume that this chain formed by yi has a stationary
distribution (i.e., it is irreducible and positive recurrent). A
MC is a stationary stochastic process if it starts with its sta-
tionary distribution. After some initial mixing time, the MC
does reach its stationary distribution, thus, we assume that
the process is stationary by throwing away some initial data
for the day. Also, for the jumps across two time intervals ∆t,
we assume the change in stationary distribution is small and
hence the mixing happens very quickly. A stationary process
means that P (xi, . . . ,xi−m+1 | ∆t) has the same distribu-
tion for any i. In practice we do not know m. However, we
assume that our choice k satisfies k + 1 > m, and then it is
straightforward to check that yt = (xi, . . . ,xi−k) is a MC
and the claims above hold with m− 1 replaced by k. Note
that unlike simple stochastic processes for transaction prices
(or fundamental value of a stock) used in finance literature,
such as the mean reverting Ornstein-Uhlenbeck process, our
stochastic process of market order has a complex random



variable per time step and cannot be described in a closed
form. Hence, we use a neural network to learn this complex
stochastic process.

Given the above stochastic process view, we show that
the generator aims to learn the real conditional distribution
Pr(xi | xi−1, . . . ,xi−k,∆t). We use the subscript r to refer
to real distributions and the subscript g to refer to gener-
ated distributions. The real data x1,x2, . . . is a realization
of the stochastic process. It is worth noting that even though
P (xi, . . . ,xi−k | ∆t) has the same distribution for any i, the
realized real data sequence xi, . . .xi−k is correlated with any
overlapping sequnce xi+k′ , . . .xi−k+k′ for k ≥ k′ ≥ −k.
Our training data points are sequences xi, . . .xi−k and as
stated earlier we make sure that the sequences in a batch are
sufficiently far apart. In light of the interpretation above, this
ensures independence of data points within a batch.

Critic interpretation: When fed real data, the critic
can be seen as a function cw of the realized data si =
(xi, . . . ,xi−k,∆t), where w are the weights of the critic net-
work. As argued earlier, samples in a batch that are chosen
from real data that are spaced at least k apart are i.i.d. samples
of Pr. Then for m samples fed to the critic, 1

m

∑m
i=1 cw(si)

estimates Es∼Pr (cw(s)). When fed generated data (with the
ten price levels determined from the output order and pre-
vious ten levels), by similar reasoning 1

m

∑m
i=1 cw(si) esti-

mates Es∼Pg
(cw(s)) when the samples are sufficiently apart

(recall that the history is always real data). Thus, the critic
computes the Wasserstein distance between the joint distribu-
tions Pr(xi, . . . ,xi−k,∆t) and Pg(xi, . . . ,xi−k,∆t).

Generator interpretation: The generator learns the condi-
tional distribution Pg(xi | xi−1, . . . ,xi−k,∆t). Along with
the real history that is fed during training, the generator
represents the distribution Pg(xi, . . . ,xi−k,∆t) = Pg(xi |
xi−1, . . . ,xi−k,∆t)Pr(xi−1, . . . ,xi−k,∆t).

4 Experimental Results
Evaluating generative models is an inherently challenging
task, even in the well-established domain of image generation
(Borji 2019). To the best of our knowledge, we are the first to
generate limit order streams in stock market that is calibrated
to real data and as part of our contribution we propose to mea-
sure the quality of generated data using five statistics. These
statistics capture various aspects of order streams observed
in stock markets that are often studied in finance literature.

Our five proposed statistics are
1. Price: Distribution over price for the day’s limit orders, by

order type.
2. Quantity: Distribution over quantity for the day’s limit

orders, by order type.
3. Inter-arrival time: Distribution over inter-arrival duration

for the day’s limit orders, by order type.
4. Intensity evolution: Number of orders for consecutive T -

second chunks of time.
5. Best bid/ask evolution: Changes in the best bid and ask

over time as new orders arrive.
For each of these statistics, we also present various quanti-
tative numbers to measure the quality. Due to lack of space,

Figure 4: Synthetic inter-arrival distribution

in the main paper the results for price, quantity, inter-arrival
distributions are shown only for buy orders. The results for
the other types are similar to buy type results and presented
in the appendix.

4.1 Synthetic Data
We first evaluate Stock-GAN on synthetic orders generated
from an agent-based market simulator. Previously adopted
to study a variety of issues in financial markets (e.g., market
making (Wah, Wright, and Wellman 2017) and manipula-
tion (Wang, Vorobeychik, and Wellman 2018)), the simulator
captures stylized facts of the complex financial market with
specified stochastic processes and distributions (Wellman
and Wah 2017). However, the simulator is still very basic and
quite far from real market data. For example, fundamental
valuation shocks are generated from a fixed Gaussian dis-
tribution (Figure 3a) and quantity is always 1 (Figure 3b),
whereas the real market data distributions can be seen to be
quite non-smooth (Figures 5a- 5c). Thus, we use the output
of this basic simulator as our synthetic data (which we call
as real in results below). We use about 300,000 orders gen-
erated by the simulator as our synthetic data. These orders
are generated over a horizon of 1000 seconds, but the actual
horizon length is not important for synthetic data as it can
be scaled arbitrarily. The price output by the simulator is
normalized to [−1, 1], which is the reason for negative prices
in the synthetic data.

Stock-GAN and baselines: Our first results show the per-
formance of Stock-GAN (S-GAN in graphs) and compares
it to baselines, namely to a recurrent variational autoen-
coder (Chung et al. 2015) (VAE) and the same network as
ours, except using a DCGAN (Radford, Metz, and Chintala
2015) instead of WGAN. We show results for price distri-



(a) GOOG price distribution (b) GOOG quantity distribution (c) GOOG intensity

(d) GOOG best bid/ask (e) Stock-GAN best bid/ask (f) no CDA network best bid/ask (g) no order book best bid/ask

(h) GOOG spectral bid/ask (i) Stock-GAN spectral density (j) no CDA spectral density (k) no order book spectral density

Figure 5: A comparison of different statistics for generated and real GOOG limit orders. Additional results are in appendix.

Real,S-GAN Real,VAE Real,DCGAN

Price 0.108 0.502 0.284
Inter-arrival 0.18 0.756 0.923

Table 1: KS distances against real (synthetic)

bution (Figure 3a), quantity distribution (Figure 3b), and
inter-arrival distribution (Figure 4a, 4b—shown in two larger
graphs for clarity). The results show that VAE and DCGAN
produce distributions far from the real one. We capture these
differences quantitatively using the Kolmogorov-Smirnoff
(KS) distance (Table 1).

The KS distance is always in [0, 1]. We skip the KS dis-
tance between quantity, which is always trivially one in the
synthetic data. The much smaller KS distance between real
and Stock-GAN supports our claim of better performance of
Stock-GAN compared to VAE and DCGAN.

For intensity, we choose T = 100 seconds sized chunks
of time and measure intensity as the number of orders in
each chunk divided by the total number of orders. Figure 3c

shows that VAE completely fails to match the real (synthetic)
data intensity. DCGAN has the same flat intensity throughout
and again failing to match the real data intensity completely.
In contrast, Stock-GAN matches the real data intensity very
closely.

Ablation: The real and Stock-GAN generated best bid/ask
evolutions are in Figure 3d and 3e respectively. We perform
two ablation experiments, one by removing the CDA network
(no cda) and one by removing order-book information (no
ob), shown in Figures 3f and 3g respectively. Differences can
be seen in best bid/ask means for no cda and no ob compared
to the real and Stock-GAN results, but the quantitative dis-
tinction is in the spectral densities for these time series shown
in Figures 3h–3k. The spectral density of a time series is the
magnitude of each frequency component in the Fourier trans-
form of the time series. The spectral density figures shows
the frequency component magnitude for every frequency on
the x-axis, which is a quantitative means of comparing two
time series. It can be seen that no cda and no ob have much
fewer higher frequency components as compared to synthetic
spectral density, which can also be seen by the smoother time
variation in Figures 3f and 3g. Stock-GAN’s and the synthetic



Figure 6: GOOG inter-arrival distribution

spectral density match more closely.

4.2 Real Data
We obtained real limit-order streams from OneMarketData,
who provided access to their OneTick database for selected
time periods and stocks. The provided data streams comprise
order submissions and cancellations at millisecond granular-
ity. In experiments, we evaluate the performance of Stock-
GAN on a large capitalization stock, Alphabet Inc (GOOG).
We also tried a small capitalization stock Patriot National
(PN). After pre-processing, the PN daily order stream has
about 20,000 orders and GOOG has about 230,000. Hence,
naturally PN is not a good fit for learning using data hungry
neural networks and our results for PN (shown in appendix)
validate this claim.

Relative to synthetic data, the real market data is very noisy
including many orders at extreme prices far from the range
where transactions occur. Since our interest is primarily on
behavior that can affect market outcomes, we focus on orders
in the relevant range near the best bid and ask. Specifically,
in a preprocessing step, we eliminate limit orders that never
appear within ten levels of the best bid and ask prices. In
the experiment here, we use historical market data of GOOG
during one trading day in August 2017. Our results for GOOG
follow the same evaluation metrics as for synthetic data.

Stock-GAN and baselines: We show the performance of
Stock-GAN and compare it to VAE and DCGAN variant of
our network. We show these results for price distribution (Fig-
ure 5a), quantity distribution (Figure 5b), and inter-arrival
times (Figure 6a, 6b—shown in two larger graphs for clarity).
As earlier, we capture these differences quantitatively using
the KS distance shown in Table 2. Similar to synthetic data,
the numbers reveal that Stock-GAN is able to model GOOG

Real,S-GAN Real,VAE Real,DCGAN

Price 0.126 0.218 0.181
Quantity 0.182 0.248 0.471
Inter-arrival 0.066 0.835 0.154

Table 2: KS distances against real (GOOG)

data better than the baselines. Intensity is measured in the
same way as synthetic data, except we choose T = 1000
seconds sized chunks of time due to the longer horizon of
GOOG data. Figure 5c shows much smoother intensity pro-
duced by VAE and DCGAN as opposed to Stock-GAN which
is much closer to the real data intensity.

Ablation: The real and Stock-GAN generated best bid/ask
evolution are in Figures 5d and 5e respectively. As for syn-
thetic data, we perform two ablation experiments, one by
removing the CDA network (no cda) and one by removing
order-book information (no ob), shown in Figure 5f and 5g
respectively. The quantitative distinction is seen in the spec-
tral densities for these time series shown in Figures 5h-5k.
However, unlike the synthetic data, here it can be seen that
no cda has more higher frequency components that real data,
which can also be seen by the high variation over time in Fig-
ure 5f. On the other hand, no ob has less higher frequency (or
even lower frequency) components which results in the flat
shape in Figure 5g. The Stock-GAN spectral density, while
closest to real one among all alternatives, also misses out on
some low frequency components. Nonetheless, Stock-GAN
is closest to real data due to our novel structural approach of
the CDA network and use of order-book data.

5 Limitations and Conclusion

We showed the superior performance of Stock-GAN in pro-
ducing realistic market order streams compared to other ap-
proaches. In doing so, we also introduced five statistics to
measure the realism of generated stock market order stream.
We chose our real GOOG data for dates in which there were
no external events, such as financial performance report.
Thus, we did not model the effect of exogenous factors on
stock market, which we believe is technically possible by just
adding another condition for the generator. Notwithstanding
these effects, we demonstrated that stock market data can
be generated with high fidelity which provides a means for
conducting research on sensitive stock market data without
access to the real data. In future work, we intend to test the
effectiveness of the Stock-GAN on more stocks, other than
PN and GOOG that we did in this work.
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