
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2020

sFuzz: An efficient adaptive fuzzer for solidity smart contracts sFuzz: An efficient adaptive fuzzer for solidity smart contracts

Tai D. NGUYEN
Singapore Management University, dtnguyen.2019@smu.edu.sg

Long H. PHAM
Singapore Management University, hlpham@smu.edu.sg

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yun LIN
National University of Singapore

Minh Quang TRAN
Ho Chi Minh City University of Technology

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
NGUYEN, Tai D.; PHAM, Long H.; SUN, Jun; LIN, Yun; and TRAN, Minh Quang. sFuzz: An efficient adaptive
fuzzer for solidity smart contracts. (2020). ISCE '20: Proceedings of the 42nd International Conference on
Software Engineering, Seoul, South Korea, October 5-11. 778-788.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5065

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

 Tai D. Nguyen Long H. Pham Jun Sun

 Singapore Management University, Singapore Management University, Singapore Management University,

 Singapore Singapore Singapore

 dtnguyen.2019@smu.edu.sg longph1989@gmail.com sunjunhqq@gmail.com

Yun Lin

National University of Singapore,

Singapore

llmhyy@gmail.com

Quang Tran Minh

Ho Chi Minh City University of

Technology, Vietnam

quangtran@hcmut.edu.vn

ABSTRACT
Smart contracts are Turing-complete programs that execute on the

infrastructure of the blockchain, which often manage valuable digital

assets. Solidity is one of the most popular programming languages

for writing smart contracts on the Ethereum platform. Like traditional

programs, smart contracts may contain vulnerabilities. Unlike

traditional programs, smart contracts cannot be easily patched once

they are deployed. It is thus important that smart contracts are tested

thoroughly before deployment. In this work, we present an adaptive

fuzzer for smart contracts on the Ethereum platform called sFuzz.

Compared to existing Solidity fuzzers, sFuzz combines the strategy

in the AFL fuzzer and an efficient lightweight multi-objective

adaptive strategy targeting those hard-to-cover branches. sFuzz has

been applied to more than 4 thousand smart contracts and the

experimental results show that (1) sFuzz is efficient, e.g., two orders

of magnitude faster than state-of-the-art tools; (2) sFuzz is effective

in achieving high code coverage and discovering vulnerabilities; and

(3) the different fuzzing strategies in sFuzz complement each other.

ACM Reference Format:
Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh.

2020. sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts.

In 42nd International Conference on Software Engineering (ICSE ’20), May

23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11

pages. https://doi.org/10.1145/3377811.3380334

1 INTRODUCTION
Nowadays, smart contracts [11, 28] are implemented as

Turingcomplete programs that execute on the infrastructure of the

blockchain [33]. It provides a framework that potentially allows any

program (equivalently, contract) to be executed in an autonomous,

distributed, and trusted way. Smart contracts thus have the potential

to revolutionize many industries. Popular applications of smart

contracts include crowd fundraising, online gambling and so on.

Published in ICSE ’20, May 23–29, 2020, Seoul, Republic
of Korea. https://doi.org/10.1145/3377811.3380334

Ethereum [1, 31] is the first to introduce the functionality of smart

contracts. Based on the Ethereum platform, Solidity is the most

popular programming language for smart contracts [6].

Like traditional C or Java programs, smart contracts may contain

vulnerabilities. Unlike traditional programs, smart contracts cannot

be modified easily once they are deployed on the blockchain [23].

As a result, a vulnerability renders the smart contract forever

vulnerable, which significantly magnifies the problem. In recent

years, there has been an increasing number of news reports on

attacks which exploit security vulnerabilities in Ethereum smart

contracts. One particularly noticeable example is the DAO attack

[12], i.e., an attacker stole more than 3.5 million Ether (which is

equivalent to about $45 million USD at the time) exploiting a

vulnerability in the DAO contract. To fix the vulnerability, a hard

fork was launched which was not only expensive but also caused

much controversy [12].

It is thus desirable to develop tools for validating smart contracts

to identify vulnerabilities, ideally before they are deployed. Among

the range of complementary techniques for validating smart

contracts, we focus on automatic testing of smart contracts in this

work as testing is often the least expensive and thus the most

applicable. To automatically test smart contracts, we must solve the

following three problems:

• the test automation problem (i.e., how to run test cases),

• the test generation problem (i.e., what to test),

• and the oracle problem (i.e., what are vulnerabilities).

In the literature, several approaches have been developed for

automatic testing smart contracts, each of which answers these three

problems in slightly different ways. For instance, ContractFuzzer

[18] builds a network with pre-deployed contracts and generates

transactions to run smart contracts, generates test cases based on a set

of predefined parameter values and targets a set of oracles specific

for smart contracts. Oyente [22] runs smart contracts symbolically

through symbolic execution, generates test cases for covering

different program paths in single functions through constraint

solving, and supports multiple oracles to identify 4 kinds of

vulnerabilities. teEther [21] similarly applies symbolic execution to

generate test cases covering program paths, and focuses on oracles

which are related to financial transactions.

In this work, we propose a fully automatic testing engine for

smart contracts running on Ethereum called sFuzz. sFuzz is inspired

by AFL [7], a well-known fuzzer for C programs, i.e., sFuzz is a

feedback-guided fuzzing engine and is inexpensive to apply. sFuzz

https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380334

2

complements existing testing engines based on symbolic execution

like Oyente and teEther, as it is known that fuzzing and symbolic

execution are complementary [30, 32]. While AFL-based fuzzing is

often effective, it has its limitation as well, i.e., it is often expensive

in covering branches guarded with strict conditions. To tackle the

problem, sFuzz integrates AFL-based fuzzing with an efficient

lightweight adaptive strategy for selecting seeds. Although inspired

by search-based software testing [16, 24], the latter distinguishes

itself by having a lightweight objective function (designed

considering characteristics of Solidity programs) as well as a novel

multi-objective optimization strategy.

sFuzz is built based on Aleth [2] (i.e., an Ethereum VM written in

C++), has a system architecture similar to AFL, and is extensible to

different Ethereum VMs and oracles as well as fuzzing strategies.

sFuzz has been systematically applied to a set of more than 4

thousand smart contracts. The experimental results show that sFuzz

is on average more than two orders of magnitudes faster than

ContractFuzzer, covers more branches and reveals many more

vulnerabilities. A comparison between sFuzz and Oyente shows that

they are complementary. Furthermore, experiments with prolonged

fuzzing time show that the adaptive strategy improves code coverage.

sFuzz is available online and has been adopted by multiple

companies.

The remainder of the paper is organized as follows. Section 2

illustrates how sFuzz works through examples. Section 3 presents the

details of the approach. Section 4 shows implementation details of

sFuzz. Section 5 reports evaluation results. Section 6 reviews related

work and concludes.

2 ILLUSTRATIVE EXAMPLES
In this section, we show how sFuzz works step-by-step through two

illustrative examples. Note that Solidity source codes for both

examples are shown for simplicity. sFuzz requires only the EVM

(i.e., Ethereum Virtual Machine) bytecode [1, 31] to fuzz smart

contracts.

Given a smart contract, sFuzz automatically configures a

blockchain network, deploys the smart contract, and generates

multiple transactions each of which calls a function in the contract.

The transactions are then executed with an EVM enriched with a set

of oracles for identifying vulnerabilities. sFuzz monitors the

execution of the transactions to collect certain feedback, e.g., whether

a certain branch has been covered and how far the branch is covered.

Whenever a vulnerability is revealed, the transactions and the

network configuration (i.e., a test case) are saved and reported to the

user later on. Otherwise, some of the test cases are selected as seeds

based on feedback collected during the transaction execution

according to certain seed selection criteria. Afterwards, the seeds are

mutated to generate the next generation of test cases. This process

repeats until a time out occurs.

In the following, we describe how sFuzz works using the contract

shown in Figure 1. The contract implements a simple quiz game. The

contract is based on contract opposite_дame 1 with minor

modification for simplicity. A quiz can be created by calling function

start_quiz_дame. The response is hashed and then saved in the

responseHash variable. The user then calls the try function with their

answer as the argument and pays a fee of 100 f inney (which

1 address: 0x467532e79222670a2044c9b168bcbaa33b390ef5

Figure 1: An example with single objective function

is a unit of the token) for each try. If the answer is correct, a reward

is sent to the user.

This contract suffers from a vulnerability known as Gasless

Send when line 11 is executed and a costly fallback function is

called. That is, when function send() at line 11 is executed, if the

receiver is a contract, its fallback function is executed

automatically. Because function send() only forwards 2300 units

of gas (i.e., price to pay for executing the function), an out-of-gas

exception is thrown if the fallback function is costly (e.g., costs

more than 2300 units of gas). In this case, the send() function

simply returns f alse and because the returned value is not checked

and handled accordingly, the owners of the contract can keep the

reward for themselves.

To expose this vulnerability, first a network is configured with

several addresses and associated balances. This contract is then

deployed at one of the addresses. In addition, an attacker contract

with a costly fallback function is deployed automatically. To

expose the vulnerability, a test case (i.e., a sequence of

transactions) with such a network configuration must first call

function start_quiz_дame and then function Try with parameters

such that all 2 conditions in function Try at line 9 and 10 are

satisfied. The condition at line 9 is satisfied with a test case that

sets all the parameters and contract variables to the default value

of 0. Note that responseHash is set to keccak256(_answer) at line

16 and is compared to keccak256(_response) at line 9. However,

generating a test case which satisfies the second condition by

randomly generated test values is highly unlikely. The variable

msд.value has a size of 32 bytes and thus we have only

probability to generate the value 100 (if we generate random

values with a uniform distribution among all possible values).

Existing fuzzing strategy in AFL is ineffective in this case as well,

i.e., AFL selects test cases that cover new branches as seeds. Since

all test cases generated through mutation are unlikely to cover the

then-branch at line 10, they are equally ‘bad’ according to the AFL

seed selection strategy. sFuzz complements AFL’s seed selection

strategy with an adaptive strategy that prioritizes the seeds

according to a quantitative measure (i.e., a distance) on how far a

seed is from covering

3

1 pragma solidity ^0.4.20;
2 contract multiple_objective_function {
3 function foo(int x) {
4 int y = x*x + 10;
5 if(y == 110) { ... }
6 if(y == 10010) { ... } } }

Figure 2: An example with multiple objective functions

any just-missed branch. For this example, the distance for covering

the just-missed branch (i.e., the then-branch) is computed as:

|msд.value − 100| + 1, based on the value of msд.value when the

branch at line 10 is reached in the test case. Intuitively, the smaller

the distance is, the closer the test case is to cover the branch (i.e.,

with a msд.value closer to 100). In particular, when msд.value is

exactly 100, the distance value reaches the minimum value of 1.

Based on this measurement, sFuzz iteratively selects seeds which

gradually gets closer and closer to satisfying the condition at line

10. In our experiment, after 140 generations, sFuzz generates a test

case which covers the branch, and reveals the vulnerability.

The above example shows a simplistic situation where there is

only one just-missed branch. In general, there may be multiple just-

missed branches and thus sFuzz measures a distance for each pair of

test case and just-missed branch, i.e., how far is the branch from

being covered by the test case. Then for each just-missed branch,

sFuzz selects the test case with the minimum distance as the seed.

For instance, the contract in Figure 2 shows a function which

performs some basic arithmetic operations. There are two different

branches, i.e., the condition at line 5 for comparing y with 110 and

the one at line 6 for comparing y with 10010. Assume that both then-

branches are yet to be covered. Given any test case, sFuzz computes

two distances, one for covering the first then-branch; and the other

for covering the second then-branch. Given a set of test cases, sFuzz

selects, for each of these two branches, a test case which has

minimum distance as seed, to generate further test cases. After

repeating the process multiple times, sFuzz generates two test cases

that cover the two then-branches. We remark that for this example,

due to the non-linear computation at line 4, approaches based on

symbolic execution like Oyente [22] and teEther [21] are ineffective

due to the limitation of underlying constraint solvers.

3 FUZZING SMART CONTRACTS
In this section, we define our problem and then present our approach

in detail step-by-step.

3.1 Problem Definition
A smart contract S typically has a number of instance variables, a

constructor and multiple functions, some of which are public. It can

be equivalently viewed in the form of a control flow graph

(CFG) S = (N,i,E) where N is a finite set of control locations in the

program; i ∈ N is the initial control location, i.e., the start of the

contract; and E ⊆ N × C × N is a set of labeled edges, each of which

is of the form (n,c,n′) where c is either a condition (for conditional

branches like if-then-else or while-loops) or a command (i.e., an

assignment). Note that for simplicity, we define the smart contract as

one single graph rather than defining one graph for each function and

then connecting them through a call graph. A node in the graph is

branching if and only if it has multiple child nodes and its outgoing

edges are labeled with conditions. We refer to an outgoing edge of a

branching node as a branch.

Test cases. A test case for S is a pair (σ0, Σ) where σ0 is a

configuration of the blockchain network and Σ is a sequence of

transactions (i.e., function calls). The configuration σ0 contains all

information on the setup of the network which is relevant to the

execution of the smart contract. Formally, σ0 is a tuple

(b,ts,SA,SB,v) where b is the current block number, ts is the current

block timestamp, SA is a set of the addresses of the smart contracts

(including the smart contract under test as well as other invoked

contracts), SB is a function which assigns an initial balance to each

address and v is the initial valuation of the persistent state.

 is a sequence of public function calls of

the smart contract under test, each of which has an optional

sequence of concrete input parameters pi . Note that m0 must be

a call of the constructor.

The task of fuzzing a smart contract is thus to generate a set of

test cases (a.k.a. test suite) according to certain testing criteria. The

execution of a test case t traverses through a path in the CFG S,

which visits a set of nodes and edges. For simplicity, we assume that

one test execution covers one unique path (i.e., there is no

nondeterminism). Furthermore, a trace generated by t is a sequence

of pairs of the form ⟨(σ0,n0), (σ1,n1), · · · ⟩ where (n0,n1, · · ·) is the

sequence of nodes visited by t and σi is the configuration at the time

of visiting node ni for all i.

Code Coverage. Ideally, we aim to generate a test suite which

reveals all vulnerabilities in the contract. However, as we do not

know where the vulnerabilities are, we must instead aim to achieve

something more measurable. In this work, our answer is to focus on

code coverage, in particular, branch coverage. We remark that our

approach can be extended to support different coverage at the cost

of additional code instrumentation. A branch in S is covered by a

test suite if and only if there is a test case t in the suite that visits the

edge at least once. The branch coverage of a test suite is calculated

as the percentage of the covered branches over the total number of

branches. Note that identifying the total number of (feasible)

branches statically in a smart contract is often infeasible for two

reasons. First, some branches might be infeasible (i.e., there does

not exist any test case that visits the branch) and knowing whether

a branch is feasible or not is a hard problem. Second, EVM has a

stack-based implementation which makes identifying all potentially

feasible branches hard (as we will explain in more detail in Section

4). Our problem is thus reduced to generate a test suite which

maximizes the number of covered branches.

To achieve maximum code coverage, one way is to generate a

large test suite (e.g., through random test generation). However, in

practice, we often have limited resources (in terms of time or the

number of computer processes) and thus our problem is refined as

‘to generate a test suite which maximizes the number of covered

branches as efficiently as possible’. Our solution to the problem is

feedback-guided adaptive fuzzing.

Fuzzing is one of the most popular methods to create test cases

[20]. A feedback-guided fuzzing system (a.k.a. fuzzer) takes a

program

4

under test and an initial test suite as input, monitors the execution of

the test cases to obtain certain feedback, generates new test cases

based on the existing ones in certain ways and then repeats the

process until a stopping criteria is satisfied. We present details of our

feedback-guided adaptive fuzzing process in Section 3.2.

Oracles The remaining problem is then how to tell whether a test case

reveals a vulnerability. In this work, we adopt a set of oracles from

previous approaches [18, 22] including Gasless Send, Exception

Disorder, Timestamp Dependency, Block Number Dependency,

Dangerous DelegateCall, Reentrancy, Integer Overflow/Underflow,

and Freezing Ether. We refer the readers to Section 4 for details.

3.2 Feedback-Guided Adaptive Fuzzing
The general idea of feedback-guided fuzzing is to transform the test

generation problem into an optimization problem and use some form

of feedback as an objective function in solving the optimization

problem. Our fuzzing strategy is adaptive as we change the objective

function adaptively based on the feedback. At the top level, sFuzz

employs a genetic algorithm [5] which is inspired by the well-known

AFL fuzzer to evolve the test suite in order to iteratively improve its

branch coverage.

The overall workflow is shown in Algorithm 1. Variable suite is

the test suite to be generated. It is initially empty. Whenever a test

case covers a new branch, it is added into suite. Variable seeds is a

set of seed test cases, based on which new test cases are generated.

First, we generate an initial test suite using function initPopulation().

The loop from line 3 to 6 then iteratively evolves the test suite. In

particular, we add those test cases in seeds which cover new branches

(i.e., any branch which is not covered by test cases in suite) into suite

at line 4. At line 5, we filter the test cases in seeds through function f

itToSurvive() so as to focus on those seeds which are more likely to

lead to test cases covering new branches later. At line 6, function

crossoverMuatation() generates more test cases based on the test

cases in seeds. The loop continues until a pre-set time out is triggered.

While Algorithm 1 resembles the one in AFL, the differences are in

the details of each function. In the following, we present each

function in detail.

Generating Initial Population Function initPopulation() generates an

initial population containing multiple test cases. As mentioned

above, to generate a test case, we need to generate an initial

configuration σ0 as well as a sequence of (public) function calls with

concrete parameters. The initial configuration by default is as follows

(in hexadecimal): b = 0, ts = 0, SA = {0xf0}, SB = {0xff00...} and v

is set using the declared initial value for each variable representing

the persistent state. sFuzz additionally allows a user to customize the

initial configuration, i.e., the user is allowed to provide an initial set

of test cases.

Next, we generate multiple sequences of transactions, each of

which is a function call with concrete parameters. For a contract

with n functions, we generate n sequences. In each sequence, a

different function is called once after the constructor is called. This

makes sure that each function is tested at least once (i.e., function

coverage is 100%).

For each function call, we generate a random value for each

parameter based on its type. Note that if the parameter type has a

fixed-length, e.g., of type uint256, this is straightforward. If the type

does not have a fixed length (e.g., an array or a string), we first

randomly generate a number (with a range from 0 to bound where

bound is a bound on maximum length with a default value of 255)

representing the number of elements in the parameter (e.g., number

of characters) and then generate a corresponding number of element

values.

Each test case is encoded in form of a bit vector. In the

terminology of genetic algorithms, such bit vectors can be naturally

regarded as chromosomes. The size of the bit vector equals to the

number of bits for encoding the configuration plus the number of

bits encoding the function calls. Note that for each test case, we keep

a list of function calls (which always includes the constructor in the

contract) and then encode each parameter value. If the parameter

value is of variable-length, we use ⌈logbound⌉ (where bound is a

bound on the maximum length with a default value of 255) to

encode the length of the parameter value. For example, given the

contract shown in Figure 1, (part of) the encoding of a test case is

shown in Figure 3 where each part of encoding is labeled in the

figure. It contains 192 bytes, of which the first 96 bytes are initial

configuration and the last 96 bytes are a sequence of two function

calls and the corresponding input parameters. As there are three

string parameters, the first 3 bytes including 0x05, 0x05 and 0x05

encode the length of _response, _question and _answer respectively.

The remaining 0x05 values are used when there are more than 3

dynamic variables.

Before executing the test case, the bit vector is decoded to a test

case according to our internally defined protocol. Note that the bits

in the bit vector may be correlated with each other in multiple ways.

For instance, the bits presenting the length of a variablelength value

must be equal to the ‘length’ of the value.

Fitness After executing the seeds at line 4 in Algorithm 1, function

f itToSurvive() is called to evaluate the fitness of the seeds accord-

ing to a fitness function. Note that the fitness function plays an

extremely important role.

In sFuzz, we combine two complementary strategies. One is

adopted from AFL, which works as follows. While seeds are

executed, sFuzz monitors the execution and records the branches

that each test case cover. A test case is deemed ‘fit to survive’ if it

covers a new branch in the contract, e.g., a branch which is not

covered by any test case in suite. This strategy has been shown to

be effective in many settings [7] and indeed our experimental results

show that it is effective in covering most of the branches (see

Section 5).

5

Although the AFL strategy allows us to quickly cover most of the

branches, it often makes very slow progress in covering the

remaining ones afterwards, i.e., often those branches which are with

strict conditions. The reason is that most likely the randomly

generated test cases would fail to satisfy the strict condition. In such

a case, the above fitness function offers little feedback and guideline

on how to generate new test cases. For instance, the probability of

satisfying the second condition at line 10 of Figure 1 is as low as

(if we assume that every value is equally likely to be generated).

Intuitively, however, it is clear that a test input with msд.value = 200

is ‘closer’ to satisfy the condition than a test input withmsд.value =

10000000. sFuzz thus integrates an adaptive strategy which selects

seeds based on a quantitative measure on how far a test case is from

covering any just-missed branch.

Let brn be a just-missed branch in S, i.e., an uncovered outgoing

edge from a branching node n in S and n has been covered. The idea

is to define a function distance(t,brn) where t is a test case to return a

quantitative measure on how far the branch brn is from being covered

by t.

Assume that brn is labeled with a condition c. Note that c can be

either true, f alse, a == b, a != b, a >= b, a > b, a <= b, or a < b at the

byte-code level where a and b are variables or constants. In our

setting, since brn is assumed to be a just-missed branch, c

must not be true (otherwise brn must be covered already).

Function distance(t,brn) is then defined as follows.

where K is a constant which represents the minimum distance. It is

set to be 1 in sFuzz. Intuitively, distance(t,brn) is defined such that

the closer the branch is from being covered, the smaller the

resultant value is.

With the above, function f itToSurvive(seeds) then selects the

seeds as shown in Algorithm 2. The loop from line 2 to 4 goes

through every test case to select those which cover a new branch.

Afterwards, for each just-missed branch brn in the smart contract, the

loop from line 5 to line 11 selects a test case from seeds which is the

closest to cover the branch according to distance(t,brn). Note that one

seed is selected for each just-missed branch, which makes this

algorithm a lightweight multi-objective optimization approach. All

selected seeds are then used for crossover and mutation to

generate more test cases in the next step. We refer the readers to

Section 2 for an example.

Remark The above-described strategy is inspired by search-based

software testing (SBST) [16, 24] and yet it differs from SBST in

several ways. The high-level reason for the difference is that having

an AFL-based approach for fuzzing requires us to run test cases

efficiently whereas existing SBST’s seed selection strategy is time-

consuming. Furthermore, due to the stack-based implementation of

EVM, implementing existing the SBST strategy is infeasible. In the

following, we present the differences in detail.

First, existing state-of-the-art SBST techniques (i.e., the one in

EvoSuite [16]) measures how far a test case t is from covering any

uncovered branch (not only those just-missed ones) in a more

complicated way. That is, given CFG S = (N,i,E), let the distance

from a node n1 to node n2 to be the minimum number of edges along

any path from n1 to n2. Let brn be any uncovered branch and m be

a node covered by t which is the nearest node to n, i.e., m has a

minimum distance to n compared to any other node covered by t.

SBST uses the following function to measure how far t is from

covering brn.

dist(t,brn) = appr_dist(t,brn) +norm(distance(t,brm))

where brm is an outgoing edge of m which is along the shortest path

fromm ton. Note that ifm isn (i.e., in case brn is just-missed),brm is

simply brn. Function appr_dist(t,brn) is a measurement of how far

branch brn is from being covered by test caset, i.e., the distance

from m to n plus 1. For instance, given a control flow graph as in

Figure 4, if t covers only the edge A → B → E, appr_dist(t,C) = 1

since there is one branch from B to reach C and there are two

Figure 3: A generated test case

6

branches from A to reach C via D. Similarly, appr_dist(t,F) = 2.

Lastly, function norm(x) is a normalization function which

normalizes the results of distance(t,brm) to a value between 0 and

1. One such function is norm(x) = 1 − 1.001−|x | [16].

Applying the above strategy in fuzzing Solidity smart contracts is

inefficient, if not infeasible, for multiple reasons. First, calculating

appr_dist(t,brn) would require us to construct the complete CFG.

However, constructing the CFG based on bytecode only is highly

nontrivial. In EVM, branches are realized with the opcode jumpi,

with a value representing the target program counter dynamically at

runtime. The only way to know the target is to fully simulate the

stack, which is expensive. Second, even if we have the CFG,

computing appr_dist(t,brn) is still expensive. Given a CFG with K

uncovered nodes. To maintain a list of ‘best’ test cases for each

uncovered node, we have to calculate appr_dist(t,brn) for all K

uncovered nodes, i.e., by building a table of the shortest paths from

all nodes to these K nodes. Furthermore, whenever a new node is

covered, appr_dist(t,brn) must be updated. The overhead is

unreasonable given that efficiency is key for AFL-based fuzzing. By

focusing on just-missed branches, sFuzz avoids both problems. That

is, appr_dist(t,brn) is always 1 for any just-missed branchbrn since

node n must have been covered. Furthermore, because it is constant

for any uncovered branch, we can simply skip it in dist(t,brn) and so

that dist(t,brn) is reduced to distance(t,brn), without even the need to

normalize. This further reduces the overhead.

Another key difference between sFuzz’s strategy and existing

SBST’s is the multi-objective searching strategy. The multi-objective

search strategies in existing SBST consider each uncovered branch

as an objective and select Pareto-optimal seeds to evolve in next

generation. Given a set of uncovered branch {b1,b2, ...,bm}, a set of

seeds {t1,t2, ...,tn}, we say ti is more Pareto-optimal than tj if ∀k ∈

0..m, distance(ti,bk) < distance(tj,bk). Otherwise, we say that ti and tj

are Pareto-equivalent. All Pareto-equivalent seeds form a Pareto

frontier and the seeds can fall into several Pareto frontiers. Existing

SBST selects the most Pareto-optimal seeds to evolve. A known

problem for such a strategy [27] is that the number of seeds in the

same Pareto frontier soars with the increase of the number of

objectives (i.e., uncovered branches). For example, there could be

hundreds of seeds in the most Pareto-optimal frontier with only 3-5

objectives, which makes it hard to select the most promising seeds

and increases the runtime overhead. In contrast, sFuzz keeps one best

seed for each just-missed branch (line 6–11 in Algorithm 2) and as a

result, the number of seeds remains small (i.e., equivalent to the

number of just-missed branches). Our experimental results show that

such a strategy balances effectiveness in identifying good seeds and

efficiency well.

3.3 Crossover and Mutation
Function crossoverMutation() generates new test cases based on

those in seeds through crossover and mutation. sFuzz adopts all of

the crossover strategies from AFL and introduces news ones

specific for smart contracts. Furthermore, due to correlation

between parameters of a test case, sFuzz additionally makes sure

the generated test cases are valid. For instance, sFuzz (1) randomly

chooses

two test cases from seeds; (2) breaks the two test cases into two

pieces at a selected position; and (3) swaps the second pieces to

form two new test cases. Note that due to correlations between the

bits representing a test case, there is no guarantee that the resultant

test cases are valid and thus sFuzz always checks for validity and

discard those invalid ones.

Mutation is another way of generating new test cases. Given a

seed encoded in the form of a bit vector, sFuzz supports a set of

mutation operators to generate new test cases. All mutation

operators are shown in Table 1.

Recall that a test case is in the form of an initial configuration

and a sequence of function calls with concrete parameters. The first

three mutation operators aim to alter the sequence of function calls,

by pruning a function call, adding a function call or swapping two

function calls. When a function call is pruned (or added or

swapped), the corresponding concrete parameters are pruned (or

added or swapped) accordingly.

For those values in a test case other than those representing the

called functions, sFuzz categorizes them into two groups. The first

group contains those values which have fixed-length (e.g., a

parameter of type uint256). sFuzz systematically applies the

remaining mutation operators shown in Table 1 to generate new

values, which are inspired by the mutation operators in AFL. Note

that account addresses (and balances) are handled slightly

differently (refer to the last row in the table) as there are special

format requirements. Each address has 32 bytes, in which the last

20 bytes contain the address value and the first 12 bytes contain the

balance of the address. For instance, the value 0xff00...00...00f0

represent an address 0xf0 with balance

0xff0000000000000000000000.

The second group contains those values which have variable-

length (e.g., a parameter of type array). For such values, their

lengths are encoded as part of the test case as well. We thus first

mutate the value representing the length in such a way that the result

is a random value between 0 and 255 where 255 is an upper bound.

If the new length is less than the current one, the corresponding

value is shortened accordingly by pruning the additional bits. If the

7

length is more than the current one, random type-compatible values

are padded accordingly.

Note that we discard identical test cases generated through either

crossover or mutation. Furthermore, although we do not set a limit

on the number of mutations generated from a test case, we apply

multiple heuristics adopted from AFL to reduce the number of

mutations. For instance, if applying the WalkingByte mutation to a

block of 32 bytes does not result in any test case which covers a new

branch, in the next stages sFuzz will not mutate that block. We refer

the readers to AFL for details on these heuristics [7].

4 IMPLEMENTATION
sFuzz is implemented in C++ with an estimated 4347 lines of code.

It is publically available (https://sfuzz.github.io). It has 3 main

components: runner, libfuzzer and liboracles.

Component runner manages the execution of the test cases. sFuzz

takes as input the bytecode of a smart contract along with the ABI

(i.e., application binary interface, which can be generated

automatically using existing tools) of the contract. The runner then

generates a bash script file which contains a list of commands to

analyze the ABI, and set options for the other two components.

The runner sets up a test network based on which smart contracts

are deployed and transactions are executed. To generate test cases for

functions with address-type parameters, sFuzz deploys a pool of

externally owned accounts in the test network with random balances.

The pool size is less than or equal to the number of address-type

parameters because it is possible to set the same address to multiple

address-type parameters. The values for address-type parameters are

then chosen randomly from this pool. In addition, sFuzz deploys two

special smart contracts as attackers, i.e., a normal attacker and a

reentrancy attacker. Each attacker is set as the owner of the contract

under test in turn. The normal attacker throws an exception whenever

other contracts call its payable fallback function. The reentrancy

attacker calls back the function which makes a call to its payable

fallback function. If the attacker fails to call back, it acts as a normal

attacker. Note that the reentrancy attacker is only loaded to detect

Reentrancy vulnerability. Otherwise, the normal attacker is loaded

to avoid call loops of Reentrancy Attacker which significantly

reduces the speed of sFuzz.

Component libfuzzer solves the test generation problem, i.e., how to

selectively generate test cases, by implementing the fuzzing strategy

presented in the previous sections. It is responsible for multiple tasks.

First, it constructs the CFG of the given smart contract on-the-fly.

Ideally, we would like to construct the CFG statically before fuzzing.

However, constructing the CFG based on bytecode only is highly

nontrivial. In EVM, branches are realized with the opcode jumpi,

with a value representing the target program counter dynamically at

runtime. The only way to know the target is to fully simulate the

stack, which is expensive. Therefore, sFuzz constructs the CFG on-

the-fly while fuzzing. That is, whenever the opcode jumpi is

executed, the two destinations are recorded. If these two destinations

are not part of the CFG yet, two new nodes are created accordingly

representing the two destinations in the CFG.

Second, component libfuzzer implements the fuzzing algorithm

discussed in Section 3. One optimization is that we identify view

functions (i.e., those which do not change any variables) and

exclude them from test case generation. The justification is that

these view functions do not change the states and having them does

not additionaly expose those vulnerabilities sFuzz targets at (see

below). Note that view functions are marked by view, pure or

constant keywords, sFuzz reads ABI file to recognize them.

Component liboracles solves the oracle problem, i.e., it monitors

the execution of a test case and checks whether there is a

vulnerability according to an extensible library of oracles used in

sFuzz. sFuzz monitors the execution of test cases through the

hooking mechanism supported by EVM. Whenever EVM executes

an opcode, it creates an event containing read-only execution

information, such as the values of the stack, memory, program

counter, and the current executed opcode. sFuzz monitors these

events for constructing the CFG and computing distance(t,brn), as

well as logs the events for vulnerability detection. To reduce the

execution overhead, vulnerability detection is conducted offline in

batches (i.e., once for every 500 test cases). This design allows

sFuzz to easily support different versions of Solidity, i.e., by simply

replacing the EVM packed in sFuzz.

sFuzz has an extensible architecture which allows it to easily

support different oracles as well. Currently, sFuzz supports 8

oracles inspired by the previous work [18, 22]. Since these oracles

are not our main contribution, we refer the readers to [18, 22] for

details.

These oracles are checked based on the logs of test cases. For

instance, to check if a test case expose the Gasless Send

vulnerability, we check that whether test case executes a CALL

instruction with some data greater than 0 when the gas is equal to

2300. The test cases that expose vulnerabilities in the contract are

kept in a separate test suite and reported to the user together with

the vulnerabilities that they expose. Note that by design, sFuzz

always reports true positives according to our definition of

vulnerability except in the case of Freezing Ether. However, in

practice, a reported vulnerability might be a false positive as it may

be what the user intended (i.e., our definition of vulnerability is too

strict). In the case of Freezing Ether, the identified ‘warning’ might

be a false positive if there exist some test cases which call send() or

transf er() but such test cases are never generated. Technically, the

problem of checking whether there is Freezing Ether vulnerability

can only be solved if we cover all feasible opcode (which is often

infeasible).

5 EXPERIMENTS AND EVALUATION
In this section, we evaluate sFuzz through multiple experiments.

The experiments are designed to answer the following research

questions (RQ).

• RQ1: How efficient is sFuzz?

• RQ2: Is sFuzz effective in finding smart contract

vulnerabilities and obtaining high code coverage?

• RQ3: Is the adaptive strategy useful?

Our test subjects include 4112 smart contracts which we collect

from EtherScan [4]. These contracts are implemented using Solidity

4.2.24, which is the most popular version of Solidity. Moreover, the

source code for these contracts are available, which makes the

evaluation more accurate. We note that sFuzz can run with bytecode

only. For a baseline comparison, we compare sFuzz with a fuzzer

named ContractFuzzer reported in [15] and a symbolic execution

tool named Oyente reported in [22]. Other fuzzers for smart

contracts have been mentioned in [21]. However, we fail to find the

8

reported tools online or through the authors. We run the experiments

3 times and report the average as the result. All experimental results

reported below are obtained on an Ubuntu 18.04.1 LTS machine

with Intel Core i7 and 16GB of memory. We use the default initial

configuration as presented in Section 3.2.

5.1 Efficiency
To answer RQ1, we systematically apply sFuzz, ContractFuzzer and

Oyente on all 4112 smart contracts. To save time, each contract is

run for 2 minute in this experiment. Note that in general the adaptive

fuzzing strategy takes time to show its effectiveness (as we will show

later) and thus this setting gives an edge to other tools.

We measure the efficiency of sFuzz by counting how many test

cases are generated and executed per second. Naturally, a test case

for a more complicated contract (e.g., with many loop iterations)

takes more time to execute. Thus, we show how efficiency varies for

different contracts. Figure 5 summarizes the result, where each bar

represents 10% (about 400) of the fuzzed contracts and the y-axis

shows the number of test cases generated and executed per second.

The contracts are sorted according to how efficiently it can be fuzzed.

From the figure, we observe that the efficiency varies significantly

over different contracts, i.e., sFuzz generates and executes more than

989 test cases per second on average for the top 10% of the contracts,

and less than 14 test cases for the bottom 20%. On average, sFuzz

generates and executes more than 208 test cases per second.

Figure 5 also compares the efficiency of sFuzz with Oyente and

ContractFuzzer. From the results, we observe that sFuzz is

significantly more efficient than other tools. On average,

ContractFuzzer and Oyente generate and execute 0.1 and 16 test

cases per second respectively. There are multiple reasons why sFuzz

is much faster. First, ContractFuzzer simulates the whole network

and manages the blockchain (e.g., commit state changes to storage

and append new mined blocks to blockchain after function calls),

whereas sFuzz simulates only details of network or blockchain which

are relevant to vulnerabilities in smart contracts. Second, sFuzz has a

highly optimized implementation in C++, whereas ContractFuzzer is

based on Node.js and Go language. In the case of Oyente, because it

is a symbolic execution tool, Oyente is expected to run slower than a

fuzzer like sFuzz.

We further conduct an experiment to measure the overhead of

monitoring the execution of a test case (using the hooking

mechanism) and the overall overhead of the fuzzing process

(including the overall of monitoring the execution, constructing the

CFG, mutating the test cases and comparing them, etc.). We apply

sFuzz to a set of 60 randomly selected contracts and measure the time

spent on executing the test cases, monitoring the execution and other

steps of the fuzzing process. The results show that on average the

monitoring consumes about 10% of the total execution time and the

overhead of the fuzzing process (including monitoring) is about 14%.

This is very efficient compared to the reported overhead in other

fuzzers [32].

Figure 5: Efficiency comparison between sFuzz, Oyente, and

ContractFuzzer

Figure 6: Coverage comparison between sFuzz and ContractFuzzer

Figure 7: Coverage comparison between sFuzz and Oyente

5.2 Effectiveness
To answer RQ2, we aim to measure the branch coverage achieved

by the test suite generated for each smart contract, as well as count

the number of vulnerabilities identified. However, measuring

branch coverage precisely is highly non-trivial due to, for instance,

the problem of infeasible branches. Thus, we instead measure the

number of distinct branches covered by the generated test suite.

Figure 6 summarizes a comparison between sFuzz and

ContractFuzzer in terms of the number of distinct branches covered.

The y-axis is the number of branches covered by sFuzz minus that

of ContractFuzzer and each point on the x-axis represents a smart

contract. The contracts are sorted by their y-axis value. Similarly,

Figure 7 shows the comparison between sFuzz and Oyente.

For most of the smart contracts (i.e., 4077 of 4112 contracts)

sFuzz covers more branches than ContractFuzzer. To our surprise,

ContractFuzzer managed to cover more branches for 35 contracts.

9

A closer investigation shows that the number of branches covered by

ContractFuzzer is inflated for the following reasons. First, as sFuzz

does not execute view functions (for efficiency reasons), all branches

in these functions are not counted. Because view functions do not

modify the state of a smart contract, they are considered irrelevant to

vulnerabilities. Second, ContractFuzzer sometimes generates invalid

test cases which fail mandatory constraints and cover additional

branches. Mandatory constraints are generated by the compiler (i.e.,

the Solidity compiler) and are embedded in the bytecode to assert the

correctness logic of function calls or data types. For example,

ContractFuzzer invokes a fallback function of a non-fallback contract

or sends Ethereum to functions which are not marked with the

payable keyword. As a result, the mandatory constraints are failed

which lead to branches which signal an error in the test case being

covered.

In the case of Oyente, in 3402 contracts, Oyente covers more

branches than sFuzz. An investigation shows that Oyente analyzes

every function separately and thus has to assume that state variables

can take arbitrary values (without considering their initial values or

constraints on how the values are updated). As a result, Oyente can

easily satisfy almost all conditions in smart contracts. Given the

sample contract A in Figure 8, Oyente covers 99.1% EVM code and

discovers an integer overflow vulnerability. It means that these

conditions: id == 9 and balances[msд.sender] > 10 are satisfied.

However, it is impossible as there is no way to change values of id

and balances[msд.sender]. Often, a condition in smart contract is the

comparison between local/parameter variables and state variables,

e.g., balances[msд.sender] > value (whether sender has enough

Ethereum to deduce). In such cases, sFuzz must call the function

which sets certain values to the state variables before satisfying them

whereas Oyente assigns arbitrary values directly to state variables. It

is apparent to us that Oyente’s approach is flawed and would ‘cover’

many infeasible paths.

In the following, we summarize the number of vulnerable

contracts discovered by sFuzz in each category. The results are

shown in Table 2. The first column shows the type of vulnerability.

The next three columns show the number of vulnerable contracts

found by sFuzz, ContractFuzzer and Oyente respectively. The sub-

column # show the number of contracts that have the vulnerability

according to each vulnerability type and the second sub-column is

the percentage of true positives of the identified vulnerabilities. For

all categories, sFuzz finds more vulnerable contracts than

ContractFuzzer. Note that ContractFuzzer removes Freezing Ether

from their source code and does not check Integer

Overflow/Underflow. In total, sFuzz finds vulnerabilities in 1113

contracts, i.e., 24 times more than that of ContractFuzzer.

Table 2: Vulnerabilities

To evaluate the soundness of sFuzz, we manually examine the

identified vulnerable contracts to check whether they are true

positives or not. However, we are unable to manually check all the

identified vulnerability for two reasons. First, there is an

overwhelming number of vulnerabilities. Instead, we randomly

sample 50 vulnerable contracts with source code in each category

and manually check whether the identified vulnerability is a true

positive or not. If there are fewer than 50 vulnerable contracts with

source code in the category, we check all of them.

For Gasless Send, Exception Disorder and Reentrancy

vulnerability, all 50 sampled vulnerable contracts are true positives.

For Timestamp Dependency, out of the 50 sampled vulnerable

contracts, 43 of them are true positives. In the remaining 7 contracts,

although block.timestamp and/or now is used in a condition, they are

irrelevant to the Ether sending part (i.e., no control/data

dependency). Rather their values are saved in global variables to

record the creation time of specific events. sFuzz mistakenly claims

that such cases are vulnerable. For Block Number Dependency, 40

out of the 50 sampled vulnerable contracts are true positives.

Similarly, the reason for the 10 false positives is the value of

block.number is assigned to global variables but they are irrelevant

to Ether sending process. For Dangerous DelegateCall, all 17

sampled contracts are indeed vulnerable. Similarly so for Integer

Overflow. For Integer Underflow, 40 of the 50 identified contracts

are indeed vulnerable. The reason for the 10 false positives is

because it is non-trivial to identify the correct type of a variable

based on bytecode only (e.g., whether it is uint256 or uint128),

sFuzz conservatively assumes that all arithmetic operations

returning a negative value may be vulnerable. This can be improved

by adopting the approach in [29] to infer types based on EVM

bytecode. Lastly, for Freezing Ether, 9 of the 15 identified contracts

are true positives. The reason for the 6 false positives is that

although there is a program path which allows the contract to send

Ether, the program path is not covered and sFuzz falsely assumes

that there is no such program path. This percentage of such false

positives is expected to be reduced if sFuzz is applied for a longer

time (with more branches covered).

The last column in Table 2 shows the results of Oyente. The

results should be taken with a grain of salt since Oyente requires the

source code. For instance, it is trivial to know the type of variables

with the source code, and thus Oyente identifies many more

problems with Integer Overflow/Underflow. For the remaining

vulnerabilities, Oyente does not support 5 of them; identifies a

higher number of vulnerable contracts for Reentrancy but with a

higher false positive rate; and identifies much fewer vulnerable

contracts for Timestamp Dependency.

10

Figure 9: Percentage of test cases due to adaptive strategy

Figure 10: Effective of adaptive strategy over time

5.3 Adaptiveness
To answer RQ3, we systematically analyze the test suite generated

by sFuzz for each smart contract. Note that each test case covers at

least one branch which is not covered by any other test cases. To

measure how the two fuzzing strategies implemented in sFuzz

complement each other, we count how many test cases in the

resultant test suites are generated due to the AFL strategy and how

many are due to the adaptive strategy. Note that a test case is judged

to be due to the adaptive strategy if and only if it is generated based

on a seed selected by line 11 at Algorithm 2.

The results are shown in Figure 9, where the y-axis is the

percentage of test cases generated by the strategy. Each bar

represents 10% of the contracts. We remark that the two strategies

have different targets and thus whether they are effective largely

depends on what branching conditions are in the smart contracts. We

thus sort the contracts according to the speed of sFuzz. The bar on

the rightmost thus represents the top 10% contracts. We observe that,

as expected, the AFL strategy easily covers most of the branches

(since the conditions for executing most branches are not strict). For

about 80% of the smart contracts, the adaptive strategy makes a

noticeable contribution, i.e., contributing an average of 31% of the

generated test cases. Given that sFuzz is applied for each contract

only for 2 minutes, the result is encouraging as we hypothesize that

the effect of the adaptive strategy would be more apparent if sFuzz is

applied for a longer period of time.

To test our hypothesis, we record the percentage of test cases

generated by the adaptive strategy every 12 seconds. The results are

shown in Figure 10, where the x-axis is the fuzzing time and each bar

shows the percentage after certain number of seconds. We can

observe that the percentage of generated test cases by adaptive

strategy increases with more fuzzing time. On average, the

percentage rises from 18% after 12 seconds fuzzing to 33% after 2

minutes fuzzing. From the results, we conclude the adaptive strategy

is useful in increasing the coverage of the generated test suites.

Threat to validity There are both internal threats and external threats

to our work. For external threats, it is probable that sFuzz’s

performance will vary with the choice of the initial population, as

other researchers have noted [20]. For internal threats, the

percentage of true positives in Table 2 may not be accurate as they

are approximated by a sample of 50 contracts for each type of

vulnerability. In addition, the exact intention of the author of the

contract is not always clear, even if we try our best to read the source

code.

6 RELATED WORK AND CONCLUSION
sFuzz is closely related to existing fuzzers for smart contracts.

ContractFuzzer [18] is a fuzzer which can check 7 different types of

vulnerabilities. Its approach, however, does not use any feedback to

improve the test suite. Echidna [3] is another fuzzer that is

reportedly capable of checking if the contract violates some user-

defined properties. However, we fail to find any publication about

it. sFuzz is complementary to existing symbolic execution engines

for smart contracts. In [22], Luu et al. presented an engine to find

potential security bugs in smart contracts. The tool, however, is

neither sound nor complete. In [21], Krupp and Rossow presented

teEther, which is focused on financial transactions and related

vulnerabilities. In [25], Nikolic et al. presented a tool named

MAIAN, which can find 3 types of trace vulnerabilities. In [29],

Torres et al. presented Osiris, a tool which combines symbolic

execution and taint analysis to discover 3 types of integer bugs in

smart contracts. Different from the above works, sFuzz is a fuzzer

and it can be combined with the above engines to form a hybrid

fuzzing engine. sFuzz is related to work on formal verification of

smart contracts. Zeus [19] is a framework which verifies the

correctness and fairness of smart contracts based on LLVM.

Bhargavan et al. proposed a framework to verify smart contracts

formally by transforming the source code and the bytecode to F*, a

language designed for verification [9]. In [17], the author presented

an attempt to verify the Deed contract using Isabelle/HOL [26].

sFuzz is broadly related to work on analyzing smart contracts. In

[13], Delmolino et al. showed that writing a safe smart contract is

not a trivial task. In [8], Atzei et al. provided a taxonomy for

common vulnerabilities in smart contracts with real-world attacks.

In [14], the authors performed a call graph analysis and showed that

only 40% of smart contracts are truthless as their control flows are

immutable. In [10], Chen et al. presented 7 gas-cost programming

patterns and showed that most of the contracts suffer from these gas-

cost patterns.

To conclude, in this work, we present sFuzz, an adaptive fuzzing

engine for EVM smart contracts. Experimental results show that

sFuzz is significantly more reliable, faster, and more effective than

existing fuzzers. sFuzz is currently under rapid development and

has already gained interest from multiple companies and research

organizations.

ACKNOWLEDGMENTS
This research was supported by the Singapore Ministry of Education

(MOE) Acemedic Research Fund (AcRF) Tier 1 grant.

11

REFERENCES
[1] [n. d.]. A Next-Generation Smart Contract and Decentralized Application

Platform. ([n. d.]). Retrieved Feb 2020 from

https://github.com/ethereum/wiki/wiki/ White-Paper
[2] [n. d.]. Aleth - Ethereum C++ client, tools and libraries. ([n. d.]). Retrieved Feb

2020 from https://github.com/ethereum/aleth/
[3] [n. d.]. Echidna. https://github.com/crytic/echidna/. ([n. d.]).
[4] [n. d.]. Etherscan. ([n. d.]). Retrieved Feb 2020 from https://etherscan.io/
[5] [n. d.]. Genetic algorithm. https://en.wikipedia.org/wiki/Genetic_algorithm. ([n.

d.]).
[6] [n. d.]. Solidity. ([n. d.]). Retrieved Feb 2020 from https://solidity.readthedocs.io/
[7] [n. d.]. Technical “whitepaper” for afl-fuzz. ([n. d.]). Retrieved Feb 2020 from

http://lcamtuf.coredump.cx/afl/technical_details.txt
[8] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2016. A survey of attacks

on Ethereum smart contracts. IACR Cryptology ePrint Archive 2016 (2016), 1007.
[9] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha

Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,

Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verification of smart

contracts: Short paper. In Proceedings of the 2016 ACM Workshop on

Programming Languages and Analysis for Security. ACM, 91–96.
[10] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized

smart contracts devour your money. In 2017 IEEE 24th International Conference

on Software Analysis, Evolution and Reengineering (SANER). IEEE, 442–446.
[11] Christopher D Clack, Vikram A Bakshi, and Lee Braine. 2016. Smart contract

templates: foundations, design landscape and research directions. arXiv preprint

arXiv:1608.00771 (2016).
[12] Phil Daian. [n. d.]. Analysis of the DAO exploit. ([n. d.]). Retrieved Feb 2020

from https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
[13] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.

2016. Step by step towards creating a safe smart contract: Lessons and insights

from a cryptocurrency lab. In International Conference on Financial

Cryptography and Data Security. Springer, 79–94.
[14] Michael Fröwis and Rainer Böhme. 2017. In Code We Trust? In Data Privacy

Management, Cryptocurrencies and Blockchain Technology. Springer, 357–372.
[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed

automated random testing. In Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation. 213–223.
[16] Mark Harman and Phil McMinn. 2010. A theoretical and empirical study of

search-based testing: Local, global, and hybrid search. IEEE Transactions on

Software Engineering 36, 2 (2010), 226–247.
[17] Yoichi Hirai. 2016. Formal verification of Deed contract in Ethereum name

service. November-2016.[Online]. Available: https://yoichihirai. com/deed. pdf

(2016).
[18] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart

Contracts for Vulnerability Detection. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering (ASE 2018). ACM,

New York, NY, USA, 259–269. https://doi.org/10.1145/3238147.3238177
[19] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:

Analyzing safety of smart contracts. In 25th Annual Network and Distributed

System Security Symposium (NDSS’18).
[20] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2123–2138.
[21] Johannes Krupp and Christian Rossow. 2018. teether: Gnawing at ethereum to

automatically exploit smart contracts. In 27th {USENIX} Security Symposium

({USENIX} Security 18). 1317–1333.
[22] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 254–269.
[23] Bill Marino and Ari Juels. 2016. Setting standards for altering and undoing smart

contracts. In International Symposium on Rules and Rule Markup Languages for

the Semantic Web. Springer, 151–166.
[24] Phil McMinn. 2004. Search-based software test data generation: a survey.

Software testing, Verification and reliability 14, 2 (2004), 105–156.
[25] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings

of the 34th Annual Computer Security Applications Conference. ACM, 653–663.
[26] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL:

a proof assistant for higher-order logic. Vol. 2283. Springer Science & Business

Media.
[27] A. Panichella, F. M. Kifetew, and P. Tonella. 2018. Automated Test Case

Generation as a Many-Objective Optimisation Problem with Dynamic Selection

of the Targets. IEEE Transactions on Software Engineering 44, 2 (2018), 122–

158.
[28] Nick Szabo. 1997. Formalizing and securing relationships on public networks.

First Monday 2, 9 (1997).

[29] Christof Ferreira Torres, Julian Schütte, et al. 2018. Osiris: Hunting for Integer

Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual Computer

Security Applications Conference. ACM, 664–676.
[30] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.

2018. Towards optimal concolic testing. In Proceedings of the 40th International

Conference on Software Engineering. ACM, 291–302.
[31] Gavin Wood. [n. d.]. Ethereum: A Secure Decentralised Generalised Transaction

Ledger. ([n. d.]). Retrieved Feb 2020 from

https://ethereum.github.io/yellowpaper/ paper.pdf
[32] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:

A practical concolic execution engine tailored for hybrid fuzzing. In 27th USENIX

Security Symposium (USENIX Security 18). 745–761.
[33] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, and Huaimin Wang. 2016. Blockchain

challenges and opportunities: A survey. Work Pap.–2016 (2016).

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/aleth/
https://github.com/crytic/echidna/
https://etherscan.io/
https://en.wikipedia.org/wiki/Genetic_algorithm
https://solidity.readthedocs.io/
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1145/3238147.3238177
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	sFuzz: An efficient adaptive fuzzer for solidity smart contracts
	Citation

	sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts

