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ABSTRACT 
Smart contracts are Turing-complete programs that execute on the 

infrastructure of the blockchain, which often manage valuable digital 

assets. Solidity is one of the most popular programming languages 

for writing smart contracts on the Ethereum platform. Like traditional 

programs, smart contracts may contain vulnerabilities. Unlike 

traditional programs, smart contracts cannot be easily patched once 

they are deployed. It is thus important that smart contracts are tested 

thoroughly before deployment. In this work, we present an adaptive 

fuzzer for smart contracts on the Ethereum platform called sFuzz. 

Compared to existing Solidity fuzzers, sFuzz combines the strategy 

in the AFL fuzzer and an efficient lightweight multi-objective 

adaptive strategy targeting those hard-to-cover branches. sFuzz has 

been applied to more than 4 thousand smart contracts and the 

experimental results show that (1) sFuzz is efficient, e.g., two orders 

of magnitude faster than state-of-the-art tools; (2) sFuzz is effective 

in achieving high code coverage and discovering vulnerabilities; and 

(3) the different fuzzing strategies in sFuzz complement each other. 
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1 INTRODUCTION 
Nowadays, smart contracts [11, 28] are implemented as 

Turingcomplete programs that execute on the infrastructure of the 

blockchain [33]. It provides a framework that potentially allows any 

program (equivalently, contract) to be executed in an autonomous, 

distributed, and trusted way. Smart contracts thus have the potential 

to revolutionize many industries. Popular applications of smart 

contracts include crowd fundraising, online gambling and so on. 
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Ethereum [1, 31] is the first to introduce the functionality of smart 

contracts. Based on the Ethereum platform, Solidity is the most 

popular programming language for smart contracts [6]. 

Like traditional C or Java programs, smart contracts may contain 

vulnerabilities. Unlike traditional programs, smart contracts cannot 

be modified easily once they are deployed on the blockchain [23]. 

As a result, a vulnerability renders the smart contract forever 

vulnerable, which significantly magnifies the problem. In recent 

years, there has been an increasing number of news reports on 

attacks which exploit security vulnerabilities in Ethereum smart 

contracts. One particularly noticeable example is the DAO attack 

[12], i.e., an attacker stole more than 3.5 million Ether (which is 

equivalent to about $45 million USD at the time) exploiting a 

vulnerability in the DAO contract. To fix the vulnerability, a hard 

fork was launched which was not only expensive but also caused 

much controversy [12]. 

It is thus desirable to develop tools for validating smart contracts 

to identify vulnerabilities, ideally before they are deployed. Among 

the range of complementary techniques for validating smart 

contracts, we focus on automatic testing of smart contracts in this 

work as testing is often the least expensive and thus the most 

applicable. To automatically test smart contracts, we must solve the 

following three problems: 

• the test automation problem (i.e., how to run test cases), 

• the test generation problem (i.e., what to test),  

• and the oracle problem (i.e., what are vulnerabilities). 

In the literature, several approaches have been developed for 

automatic testing smart contracts, each of which answers these three 

problems in slightly different ways. For instance, ContractFuzzer 

[18] builds a network with pre-deployed contracts and generates 

transactions to run smart contracts, generates test cases based on a set 

of predefined parameter values and targets a set of oracles specific 

for smart contracts. Oyente [22] runs smart contracts symbolically 

through symbolic execution, generates test cases for covering 

different program paths in single functions through constraint 

solving, and supports multiple oracles to identify 4 kinds of 

vulnerabilities. teEther [21] similarly applies symbolic execution to 

generate test cases covering program paths, and focuses on oracles 

which are related to financial transactions. 

In this work, we propose a fully automatic testing engine for 

smart contracts running on Ethereum called sFuzz. sFuzz is inspired 

by AFL [7], a well-known fuzzer for C programs, i.e., sFuzz is a 

feedback-guided fuzzing engine and is inexpensive to apply. sFuzz 

https://doi.org/10.1145/3377811.3380334
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complements existing testing engines based on symbolic execution 

like Oyente and teEther, as it is known that fuzzing and symbolic 

execution are complementary [30, 32]. While AFL-based fuzzing is 

often effective, it has its limitation as well, i.e., it is often expensive 

in covering branches guarded with strict conditions. To tackle the 

problem, sFuzz integrates AFL-based fuzzing with an efficient 

lightweight adaptive strategy for selecting seeds. Although inspired 

by search-based software testing [16, 24], the latter distinguishes 

itself by having a lightweight objective function (designed 

considering characteristics of Solidity programs) as well as a novel 

multi-objective optimization strategy. 

sFuzz is built based on Aleth [2] (i.e., an Ethereum VM written in 

C++), has a system architecture similar to AFL, and is extensible to 

different Ethereum VMs and oracles as well as fuzzing strategies. 

sFuzz has been systematically applied to a set of more than 4 

thousand smart contracts. The experimental results show that sFuzz 

is on average more than two orders of magnitudes faster than 

ContractFuzzer, covers more branches and reveals many more 

vulnerabilities. A comparison between sFuzz and Oyente shows that 

they are complementary. Furthermore, experiments with prolonged 

fuzzing time show that the adaptive strategy improves code coverage. 

sFuzz is available online and has been adopted by multiple 

companies. 

The remainder of the paper is organized as follows. Section 2 

illustrates how sFuzz works through examples. Section 3 presents the 

details of the approach. Section 4 shows implementation details of 

sFuzz. Section 5 reports evaluation results. Section 6 reviews related 

work and concludes. 

2 ILLUSTRATIVE EXAMPLES 
In this section, we show how sFuzz works step-by-step through two 

illustrative examples. Note that Solidity source codes for both 

examples are shown for simplicity. sFuzz requires only the EVM 

(i.e., Ethereum Virtual Machine) bytecode [1, 31] to fuzz smart 

contracts. 

Given a smart contract, sFuzz automatically configures a 

blockchain network, deploys the smart contract, and generates 

multiple transactions each of which calls a function in the contract. 

The transactions are then executed with an EVM enriched with a set 

of oracles for identifying vulnerabilities. sFuzz monitors the 

execution of the transactions to collect certain feedback, e.g., whether 

a certain branch has been covered and how far the branch is covered. 

Whenever a vulnerability is revealed, the transactions and the 

network configuration (i.e., a test case) are saved and reported to the 

user later on. Otherwise, some of the test cases are selected as seeds 

based on feedback collected during the transaction execution 

according to certain seed selection criteria. Afterwards, the seeds are 

mutated to generate the next generation of test cases. This process 

repeats until a time out occurs. 

In the following, we describe how sFuzz works using the contract 

shown in Figure 1. The contract implements a simple quiz game. The 

contract is based on contract opposite_дame 1  with minor 

modification for simplicity. A quiz can be created by calling function 

start_quiz_дame. The response is hashed and then saved in the 

responseHash variable. The user then calls the try function with their 

answer as the argument and pays a fee of 100 f inney (which 

 
1 address: 0x467532e79222670a2044c9b168bcbaa33b390ef5 

 
Figure 1: An example with single objective function 

is a unit of the token) for each try. If the answer is correct, a reward 

is sent to the user. 

This contract suffers from a vulnerability known as Gasless 

Send when line 11 is executed and a costly fallback function is 

called. That is, when function send() at line 11 is executed, if the 

receiver is a contract, its fallback function is executed 

automatically. Because function send() only forwards 2300 units 

of gas (i.e., price to pay for executing the function), an out-of-gas 

exception is thrown if the fallback function is costly (e.g., costs 

more than 2300 units of gas). In this case, the send() function 

simply returns f alse and because the returned value is not checked 

and handled accordingly, the owners of the contract can keep the 

reward for themselves. 

To expose this vulnerability, first a network is configured with 

several addresses and associated balances. This contract is then 

deployed at one of the addresses. In addition, an attacker contract 

with a costly fallback function is deployed automatically. To 

expose the vulnerability, a test case (i.e., a sequence of 

transactions) with such a network configuration must first call 

function start_quiz_дame and then function Try with parameters 

such that all 2 conditions in function Try at line 9 and 10 are 

satisfied. The condition at line 9 is satisfied with a test case that 

sets all the parameters and contract variables to the default value 

of 0. Note that responseHash is set to keccak256(_answer) at line 

16 and is compared to keccak256(_response) at line 9. However, 

generating a test case which satisfies the second condition by 

randomly generated test values is highly unlikely. The variable 

msд.value has a size of 32 bytes and thus we have only  

probability to generate the value 100 (if we generate random 

values with a uniform distribution among all possible values). 

Existing fuzzing strategy in AFL is ineffective in this case as well, 

i.e., AFL selects test cases that cover new branches as seeds. Since 

all test cases generated through mutation are unlikely to cover the 

then-branch at line 10, they are equally ‘bad’ according to the AFL 

seed selection strategy. sFuzz complements AFL’s seed selection 

strategy with an adaptive strategy that prioritizes the seeds 

according to a quantitative measure (i.e., a distance) on how far a 

seed is from covering 
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1 pragma solidity ^0.4.20; 
2 contract multiple_objective_function { 
3 function foo(int x) { 
4 int y = x*x + 10; 
5 if(y == 110) { ... } 
6 if(y == 10010) { ... } } } 

Figure 2: An example with multiple objective functions 

any just-missed branch. For this example, the distance for covering 

the just-missed branch (i.e., the then-branch) is computed as: 

|msд.value − 100| + 1, based on the value of msд.value when the 

branch at line 10 is reached in the test case. Intuitively, the smaller 

the distance is, the closer the test case is to cover the branch (i.e., 

with a msд.value closer to 100). In particular, when msд.value is 

exactly 100, the distance value reaches the minimum value of 1. 

Based on this measurement, sFuzz iteratively selects seeds which 

gradually gets closer and closer to satisfying the condition at line 

10. In our experiment, after 140 generations, sFuzz generates a test 

case which covers the branch, and reveals the vulnerability. 

The above example shows a simplistic situation where there is 

only one just-missed branch. In general, there may be multiple just-

missed branches and thus sFuzz measures a distance for each pair of 

test case and just-missed branch, i.e., how far is the branch from 

being covered by the test case. Then for each just-missed branch, 

sFuzz selects the test case with the minimum distance as the seed. 

For instance, the contract in Figure 2 shows a function which 

performs some basic arithmetic operations. There are two different 

branches, i.e., the condition at line 5 for comparing y with 110 and 

the one at line 6 for comparing y with 10010. Assume that both then-

branches are yet to be covered. Given any test case, sFuzz computes 

two distances, one for covering the first then-branch; and the other 

for covering the second then-branch. Given a set of test cases, sFuzz 

selects, for each of these two branches, a test case which has 

minimum distance as seed, to generate further test cases. After 

repeating the process multiple times, sFuzz generates two test cases 

that cover the two then-branches. We remark that for this example, 

due to the non-linear computation at line 4, approaches based on 

symbolic execution like Oyente [22] and teEther [21] are ineffective 

due to the limitation of underlying constraint solvers. 

3 FUZZING SMART CONTRACTS 
In this section, we define our problem and then present our approach 

in detail step-by-step. 

3.1 Problem Definition 
A smart contract S typically has a number of instance variables, a 

constructor and multiple functions, some of which are public. It can 

be equivalently viewed in the form of a control flow graph 

(CFG) S = (N,i,E) where N is a finite set of control locations in the 

program; i ∈ N is the initial control location, i.e., the start of the 

contract; and E ⊆ N × C × N is a set of labeled edges, each of which 

is of the form (n,c,n′) where c is either a condition (for conditional 

branches like if-then-else or while-loops) or a command (i.e., an 

assignment). Note that for simplicity, we define the smart contract as 

one single graph rather than defining one graph for each function and 

then connecting them through a call graph. A node in the graph is 

branching if and only if it has multiple child nodes and its outgoing 

edges are labeled with conditions. We refer to an outgoing edge of a 

branching node as a branch. 

Test cases. A test case for S is a pair (σ0, Σ) where σ0 is a 

configuration of the blockchain network and Σ is a sequence of 

transactions (i.e., function calls). The configuration σ0 contains all 

information on the setup of the network which is relevant to the 

execution of the smart contract. Formally, σ0 is a tuple 

(b,ts,SA,SB,v) where b is the current block number, ts is the current 

block timestamp, SA is a set of the addresses of the smart contracts 

(including the smart contract under test as well as other invoked 

contracts), SB is a function which assigns an initial balance to each 

address and v is the initial valuation of the persistent state. 

 is a sequence of public function calls of 

the smart contract under test, each of which has an optional 

sequence of concrete input parameters pi . Note that m0 must be 

a call of the constructor. 

The task of fuzzing a smart contract is thus to generate a set of 

test cases (a.k.a. test suite) according to certain testing criteria. The 

execution of a test case t traverses through a path in the CFG S, 

which visits a set of nodes and edges. For simplicity, we assume that 

one test execution covers one unique path (i.e., there is no 

nondeterminism). Furthermore, a trace generated by t is a sequence 

of pairs of the form ⟨(σ0,n0), (σ1,n1), · · · ⟩ where (n0,n1, · · · ) is the 

sequence of nodes visited by t and σi is the configuration at the time 

of visiting node ni for all i. 

Code Coverage. Ideally, we aim to generate a test suite which 

reveals all vulnerabilities in the contract. However, as we do not 

know where the vulnerabilities are, we must instead aim to achieve 

something more measurable. In this work, our answer is to focus on 

code coverage, in particular, branch coverage. We remark that our 

approach can be extended to support different coverage at the cost 

of additional code instrumentation. A branch in S is covered by a 

test suite if and only if there is a test case t in the suite that visits the 

edge at least once. The branch coverage of a test suite is calculated 

as the percentage of the covered branches over the total number of 

branches. Note that identifying the total number of (feasible) 

branches statically in a smart contract is often infeasible for two 

reasons. First, some branches might be infeasible (i.e., there does 

not exist any test case that visits the branch) and knowing whether 

a branch is feasible or not is a hard problem. Second, EVM has a 

stack-based implementation which makes identifying all potentially 

feasible branches hard (as we will explain in more detail in Section 

4). Our problem is thus reduced to generate a test suite which 

maximizes the number of covered branches. 

To achieve maximum code coverage, one way is to generate a 

large test suite (e.g., through random test generation). However, in 

practice, we often have limited resources (in terms of time or the 

number of computer processes) and thus our problem is refined as 

‘to generate a test suite which maximizes the number of covered 

branches as efficiently as possible’. Our solution to the problem is 

feedback-guided adaptive fuzzing. 

Fuzzing is one of the most popular methods to create test cases 

[20]. A feedback-guided fuzzing system (a.k.a. fuzzer) takes a 

program  
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under test and an initial test suite as input, monitors the execution of 

the test cases to obtain certain feedback, generates new test cases 

based on the existing ones in certain ways and then repeats the 

process until a stopping criteria is satisfied. We present details of our 

feedback-guided adaptive fuzzing process in Section 3.2. 

Oracles The remaining problem is then how to tell whether a test case 

reveals a vulnerability. In this work, we adopt a set of oracles from 

previous approaches [18, 22] including Gasless Send, Exception 

Disorder, Timestamp Dependency, Block Number Dependency, 

Dangerous DelegateCall, Reentrancy, Integer Overflow/Underflow, 

and Freezing Ether. We refer the readers to Section 4 for details. 

3.2 Feedback-Guided Adaptive Fuzzing 
The general idea of feedback-guided fuzzing is to transform the test 

generation problem into an optimization problem and use some form 

of feedback as an objective function in solving the optimization 

problem. Our fuzzing strategy is adaptive as we change the objective 

function adaptively based on the feedback. At the top level, sFuzz 

employs a genetic algorithm [5] which is inspired by the well-known 

AFL fuzzer to evolve the test suite in order to iteratively improve its 

branch coverage. 

The overall workflow is shown in Algorithm 1. Variable suite is 

the test suite to be generated. It is initially empty. Whenever a test 

case covers a new branch, it is added into suite. Variable seeds is a 

set of seed test cases, based on which new test cases are generated. 

First, we generate an initial test suite using function initPopulation(). 

The loop from line 3 to 6 then iteratively evolves the test suite. In 

particular, we add those test cases in seeds which cover new branches 

(i.e., any branch which is not covered by test cases in suite) into suite 

at line 4. At line 5, we filter the test cases in seeds through function f 

itToSurvive() so as to focus on those seeds which are more likely to 

lead to test cases covering new branches later. At line 6, function 

crossoverMuatation() generates more test cases based on the test 

cases in seeds. The loop continues until a pre-set time out is triggered. 

While Algorithm 1 resembles the one in AFL, the differences are in 

the details of each function. In the following, we present each 

function in detail. 

Generating Initial Population Function initPopulation() generates an 

initial population containing multiple test cases. As mentioned 

above, to generate a test case, we need to generate an initial 

configuration σ0 as well as a sequence of (public) function calls with 

concrete parameters. The initial configuration by default is as follows 

(in hexadecimal): b = 0, ts = 0, SA = {0xf0}, SB = {0xff00...} and v 

is set using the declared initial value for each variable representing 

the persistent state. sFuzz additionally allows a user to customize the 

initial configuration, i.e., the user is allowed to provide an initial set 

of test cases. 

Next, we generate multiple sequences of transactions, each of 

which is a function call with concrete parameters. For a contract 

with n functions, we generate n sequences. In each sequence, a 

different function is called once after the constructor is called. This 

makes sure that each function is tested at least once (i.e., function 

coverage is 100%). 

For each function call, we generate a random value for each 

parameter based on its type. Note that if the parameter type has a 

fixed-length, e.g., of type uint256, this is straightforward. If the type 

does not have a fixed length (e.g., an array or a string), we first 

randomly generate a number (with a range from 0 to bound where 

bound is a bound on maximum length with a default value of 255) 

representing the number of elements in the parameter (e.g., number 

of characters) and then generate a corresponding number of element 

values. 

Each test case is encoded in form of a bit vector. In the 

terminology of genetic algorithms, such bit vectors can be naturally 

regarded as chromosomes. The size of the bit vector equals to the 

number of bits for encoding the configuration plus the number of 

bits encoding the function calls. Note that for each test case, we keep 

a list of function calls (which always includes the constructor in the 

contract) and then encode each parameter value. If the parameter 

value is of variable-length, we use ⌈logbound⌉ (where bound is a 

bound on the maximum length with a default value of 255) to 

encode the length of the parameter value. For example, given the 

contract shown in Figure 1, (part of) the encoding of a test case is 

shown in Figure 3 where each part of encoding is labeled in the 

figure. It contains 192 bytes, of which the first 96 bytes are initial 

configuration and the last 96 bytes are a sequence of two function 

calls and the corresponding input parameters. As there are three 

string parameters, the first 3 bytes including 0x05, 0x05 and 0x05 

encode the length of _response, _question and _answer respectively. 

The remaining 0x05 values are used when there are more than 3 

dynamic variables. 

Before executing the test case, the bit vector is decoded to a test 

case according to our internally defined protocol. Note that the bits 

in the bit vector may be correlated with each other in multiple ways. 

For instance, the bits presenting the length of a variablelength value 

must be equal to the ‘length’ of the value. 

Fitness After executing the seeds at line 4 in Algorithm 1, function 

f itToSurvive() is called to evaluate the fitness of the seeds accord- 

ing to a fitness function. Note that the fitness function plays an 

extremely important role. 

In sFuzz, we combine two complementary strategies. One is 

adopted from AFL, which works as follows. While seeds are 

executed, sFuzz monitors the execution and records the branches 

that each test case cover. A test case is deemed ‘fit to survive’ if it 

covers a new branch in the contract, e.g., a branch which is not 

covered by any test case in suite. This strategy has been shown to 

be effective in many settings [7] and indeed our experimental results 

show that it is effective in covering most of the branches (see 

Section 5). 
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Although the AFL strategy allows us to quickly cover most of the 

branches, it often makes very slow progress in covering the 

remaining ones afterwards, i.e., often those branches which are with 

strict conditions. The reason is that most likely the randomly 

generated test cases would fail to satisfy the strict condition. In such 

a case, the above fitness function offers little feedback and guideline 

on how to generate new test cases. For instance, the probability of 

satisfying the second condition at line 10 of Figure 1 is as low as  

(if we assume that every value is equally likely to be generated). 

Intuitively, however, it is clear that a test input with msд.value = 200 

is ‘closer’ to satisfy the condition than a test input withmsд.value = 

10000000. sFuzz thus integrates an adaptive strategy which selects 

seeds based on a quantitative measure on how far a test case is from 

covering any just-missed branch. 

Let brn be a just-missed branch in S, i.e., an uncovered outgoing 

edge from a branching node n in S and n has been covered. The idea 

is to define a function distance(t,brn) where t is a test case to return a 

quantitative measure on how far the branch brn is from being covered 

by t. 

Assume that brn is labeled with a condition c. Note that c can be 

either true, f alse, a == b, a != b, a >= b, a > b, a <= b, or a < b at the 

byte-code level where a and b are variables or constants. In our 

setting, since brn is assumed to be a just-missed branch, c 

must not be true (otherwise brn must be covered already). 

Function distance(t,brn) is then defined as follows. 

 
  

where K is a constant which represents the minimum distance. It is 

set to be 1 in sFuzz. Intuitively, distance(t,brn) is defined such that 

the closer the branch is from being covered, the smaller the 

resultant value is. 

With the above, function f itToSurvive(seeds) then selects the 

seeds as shown in Algorithm 2. The loop from line 2 to 4 goes 

through every test case to select those which cover a new branch. 

Afterwards, for each just-missed branch brn in the smart contract, the 

loop from line 5 to line 11 selects a test case from seeds which is the 

closest to cover the branch according to distance(t,brn). Note that one 

seed is selected for each just-missed branch, which makes this 

algorithm a lightweight multi-objective optimization approach. All 

selected seeds are then used for crossover and mutation to 

 

 

generate more test cases in the next step. We refer the readers to 

Section 2 for an example. 

Remark The above-described strategy is inspired by search-based 

software testing (SBST) [16, 24] and yet it differs from SBST in 

several ways. The high-level reason for the difference is that having 

an AFL-based approach for fuzzing requires us to run test cases 

efficiently whereas existing SBST’s seed selection strategy is time-

consuming. Furthermore, due to the stack-based implementation of 

EVM, implementing existing the SBST strategy is infeasible. In the 

following, we present the differences in detail. 

First, existing state-of-the-art SBST techniques (i.e., the one in 

EvoSuite [16]) measures how far a test case t is from covering any 

uncovered branch (not only those just-missed ones) in a more 

complicated way. That is, given CFG S = (N,i,E), let the distance 

from a node n1 to node n2 to be the minimum number of edges along 

any path from n1 to n2. Let brn be any uncovered branch and m be 

a node covered by t which is the nearest node to n, i.e., m has a 

minimum distance to n compared to any other node covered by t. 

SBST uses the following function to measure how far t is from 

covering brn. 

dist(t,brn) = appr_dist(t,brn) +norm(distance(t,brm)) 

where brm is an outgoing edge of m which is along the shortest path 

fromm ton. Note that ifm isn (i.e., in case brn is just-missed),brm is 

simply brn. Function appr_dist(t,brn) is a measurement of how far 

branch brn is from being covered by test caset, i.e., the distance 

from m to n plus 1. For instance, given a control flow graph as in 

Figure 4, if t covers only the edge A → B → E, appr_dist(t,C) = 1 

since there is one branch from B to reach C and there are two 

 

Figure 3: A generated test case 
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branches from A to reach C via D. Similarly, appr_dist(t,F) = 2. 

Lastly, function norm(x) is a normalization function which 

normalizes the results of distance(t,brm) to a value between 0 and 

1. One such function is norm(x) = 1 − 1.001−|x | [16]. 

Applying the above strategy in fuzzing Solidity smart contracts is 

inefficient, if not infeasible, for multiple reasons. First, calculating 

appr_dist(t,brn) would require us to construct the complete CFG. 

However, constructing the CFG based on bytecode only is highly 

nontrivial. In EVM, branches are realized with the opcode jumpi, 

with a value representing the target program counter dynamically at 

runtime. The only way to know the target is to fully simulate the 

stack, which is expensive. Second, even if we have the CFG, 

computing appr_dist(t,brn) is still expensive. Given a CFG with K 

uncovered nodes. To maintain a list of ‘best’ test cases for each 

uncovered node, we have to calculate appr_dist(t,brn) for all K 

uncovered nodes, i.e., by building a table of the shortest paths from 

all nodes to these K nodes. Furthermore, whenever a new node is 

covered, appr_dist(t,brn) must be updated. The overhead is 

unreasonable given that efficiency is key for AFL-based fuzzing. By 

focusing on just-missed branches, sFuzz avoids both problems. That 

is, appr_dist(t,brn) is always 1 for any just-missed branchbrn since 

node n must have been covered. Furthermore, because it is constant 

for any uncovered branch, we can simply skip it in dist(t,brn) and so 

that dist(t,brn) is reduced to distance(t,brn), without even the need to 

normalize. This further reduces the overhead. 

Another key difference between sFuzz’s strategy and existing 

SBST’s is the multi-objective searching strategy. The multi-objective 

search strategies in existing SBST consider each uncovered branch 

as an objective and select Pareto-optimal seeds to evolve in next 

generation. Given a set of uncovered branch {b1,b2, ...,bm}, a set of 

seeds {t1,t2, ...,tn}, we say ti is more Pareto-optimal than tj if ∀k ∈ 

0..m, distance(ti,bk) < distance(tj,bk). Otherwise, we say that ti and tj 

are Pareto-equivalent. All Pareto-equivalent seeds form a Pareto 

frontier and the seeds can fall into several Pareto frontiers. Existing 

SBST selects the most Pareto-optimal seeds to evolve. A known 

problem for such a strategy [27] is that the number of seeds in the 

same Pareto frontier soars with the increase of the number of 

objectives (i.e., uncovered branches). For example, there could be 

hundreds of seeds in the most Pareto-optimal frontier with only 3-5 

objectives, which makes it hard to select the most promising seeds 

and increases the runtime overhead. In contrast, sFuzz keeps one best 

seed for each just-missed branch (line 6–11 in Algorithm 2) and as a 

result, the number of seeds remains small (i.e., equivalent to the 

number of just-missed branches). Our experimental results show that 

such a strategy balances effectiveness in identifying good seeds and 

efficiency well. 

3.3 Crossover and Mutation 
Function crossoverMutation() generates new test cases based on 

those in seeds through crossover and mutation. sFuzz adopts all of 

the crossover strategies from AFL and introduces news ones 

specific for smart contracts. Furthermore, due to correlation 

between parameters of a test case, sFuzz additionally makes sure 

the generated test cases are valid. For instance, sFuzz (1) randomly 

chooses 

 

two test cases from seeds; (2) breaks the two test cases into two 

pieces at a selected position; and (3) swaps the second pieces to 

form two new test cases. Note that due to correlations between the 

bits representing a test case, there is no guarantee that the resultant 

test cases are valid and thus sFuzz always checks for validity and 

discard those invalid ones. 

Mutation is another way of generating new test cases. Given a 

seed encoded in the form of a bit vector, sFuzz supports a set of 

mutation operators to generate new test cases. All mutation 

operators are shown in Table 1. 

Recall that a test case is in the form of an initial configuration 

and a sequence of function calls with concrete parameters. The first 

three mutation operators aim to alter the sequence of function calls, 

by pruning a function call, adding a function call or swapping two 

function calls. When a function call is pruned (or added or 

swapped), the corresponding concrete parameters are pruned (or 

added or swapped) accordingly. 

For those values in a test case other than those representing the 

called functions, sFuzz categorizes them into two groups. The first 

group contains those values which have fixed-length (e.g., a 

parameter of type uint256). sFuzz systematically applies the 

remaining mutation operators shown in Table 1 to generate new 

values, which are inspired by the mutation operators in AFL. Note 

that account addresses (and balances) are handled slightly 

differently (refer to the last row in the table) as there are special 

format requirements. Each address has 32 bytes, in which the last 

20 bytes contain the address value and the first 12 bytes contain the 

balance of the address. For instance, the value 0xff00...00...00f0 

represent an address 0xf0 with balance 

0xff0000000000000000000000. 

The second group contains those values which have variable-

length (e.g., a parameter of type array). For such values, their 

lengths are encoded as part of the test case as well. We thus first 

mutate the value representing the length in such a way that the result 

is a random value between 0 and 255 where 255 is an upper bound. 

If the new length is less than the current one, the corresponding 

value is shortened accordingly by pruning the additional bits. If the 
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length is more than the current one, random type-compatible values 

are padded accordingly. 

Note that we discard identical test cases generated through either 

crossover or mutation. Furthermore, although we do not set a limit 

on the number of mutations generated from a test case, we apply 

multiple heuristics adopted from AFL to reduce the number of 

mutations. For instance, if applying the WalkingByte mutation to a 

block of 32 bytes does not result in any test case which covers a new 

branch, in the next stages sFuzz will not mutate that block. We refer 

the readers to AFL for details on these heuristics [7]. 

4 IMPLEMENTATION 
sFuzz is implemented in C++ with an estimated 4347 lines of code. 

It is publically available (https://sfuzz.github.io). It has 3 main 

components: runner, libfuzzer and liboracles. 

Component runner manages the execution of the test cases. sFuzz 

takes as input the bytecode of a smart contract along with the ABI 

(i.e., application binary interface, which can be generated 

automatically using existing tools) of the contract. The runner then 

generates a bash script file which contains a list of commands to 

analyze the ABI, and set options for the other two components. 

The runner sets up a test network based on which smart contracts 

are deployed and transactions are executed. To generate test cases for 

functions with address-type parameters, sFuzz deploys a pool of 

externally owned accounts in the test network with random balances. 

The pool size is less than or equal to the number of address-type 

parameters because it is possible to set the same address to multiple 

address-type parameters. The values for address-type parameters are 

then chosen randomly from this pool. In addition, sFuzz deploys two 

special smart contracts as attackers, i.e., a normal attacker and a 

reentrancy attacker. Each attacker is set as the owner of the contract 

under test in turn. The normal attacker throws an exception whenever 

other contracts call its payable fallback function. The reentrancy 

attacker calls back the function which makes a call to its payable 

fallback function. If the attacker fails to call back, it acts as a normal 

attacker. Note that the reentrancy attacker is only loaded to detect 

Reentrancy vulnerability. Otherwise, the normal attacker is loaded 

to avoid call loops of Reentrancy Attacker which significantly 

reduces the speed of sFuzz. 

Component libfuzzer solves the test generation problem, i.e., how to 

selectively generate test cases, by implementing the fuzzing strategy 

presented in the previous sections. It is responsible for multiple tasks. 

First, it constructs the CFG of the given smart contract on-the-fly. 

Ideally, we would like to construct the CFG statically before fuzzing. 

However, constructing the CFG based on bytecode only is highly 

nontrivial. In EVM, branches are realized with the opcode jumpi, 

with a value representing the target program counter dynamically at 

runtime. The only way to know the target is to fully simulate the 

stack, which is expensive. Therefore, sFuzz constructs the CFG on-

the-fly while fuzzing. That is, whenever the opcode jumpi is 

executed, the two destinations are recorded. If these two destinations 

are not part of the CFG yet, two new nodes are created accordingly 

representing the two destinations in the CFG. 

Second, component libfuzzer implements the fuzzing algorithm 

discussed in Section 3. One optimization is that we identify view 

functions (i.e., those which do not change any variables) and 

exclude them from test case generation. The justification is that 

these view functions do not change the states and having them does 

not additionaly expose those vulnerabilities sFuzz targets at (see 

below). Note that view functions are marked by view, pure or 

constant keywords, sFuzz reads ABI file to recognize them. 

Component liboracles solves the oracle problem, i.e., it monitors 

the execution of a test case and checks whether there is a 

vulnerability according to an extensible library of oracles used in 

sFuzz. sFuzz monitors the execution of test cases through the 

hooking mechanism supported by EVM. Whenever EVM executes 

an opcode, it creates an event containing read-only execution 

information, such as the values of the stack, memory, program 

counter, and the current executed opcode. sFuzz monitors these 

events for constructing the CFG and computing distance(t,brn), as 

well as logs the events for vulnerability detection. To reduce the 

execution overhead, vulnerability detection is conducted offline in 

batches (i.e., once for every 500 test cases). This design allows 

sFuzz to easily support different versions of Solidity, i.e., by simply 

replacing the EVM packed in sFuzz. 

sFuzz has an extensible architecture which allows it to easily 

support different oracles as well. Currently, sFuzz supports 8 

oracles inspired by the previous work [18, 22]. Since these oracles 

are not our main contribution, we refer the readers to [18, 22] for 

details. 

These oracles are checked based on the logs of test cases. For 

instance, to check if a test case expose the Gasless Send 

vulnerability, we check that whether test case executes a CALL 

instruction with some data greater than 0 when the gas is equal to 

2300. The test cases that expose vulnerabilities in the contract are 

kept in a separate test suite and reported to the user together with 

the vulnerabilities that they expose. Note that by design, sFuzz 

always reports true positives according to our definition of 

vulnerability except in the case of Freezing Ether. However, in 

practice, a reported vulnerability might be a false positive as it may 

be what the user intended (i.e., our definition of vulnerability is too 

strict). In the case of Freezing Ether, the identified ‘warning’ might 

be a false positive if there exist some test cases which call send() or 

transf er() but such test cases are never generated. Technically, the 

problem of checking whether there is Freezing Ether vulnerability 

can only be solved if we cover all feasible opcode (which is often 

infeasible). 

5 EXPERIMENTS AND EVALUATION 
In this section, we evaluate sFuzz through multiple experiments. 

The experiments are designed to answer the following research 

questions (RQ). 

• RQ1: How efficient is sFuzz? 

• RQ2: Is sFuzz effective in finding smart contract 

vulnerabilities and obtaining high code coverage? 

• RQ3: Is the adaptive strategy useful? 

Our test subjects include 4112 smart contracts which we collect 

from EtherScan [4]. These contracts are implemented using Solidity 

4.2.24, which is the most popular version of Solidity. Moreover, the 

source code for these contracts are available, which makes the 

evaluation more accurate. We note that sFuzz can run with bytecode 

only. For a baseline comparison, we compare sFuzz with a fuzzer 

named ContractFuzzer reported in [15] and a symbolic execution 

tool named Oyente reported in [22]. Other fuzzers for smart 

contracts have been mentioned in [21]. However, we fail to find the 
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reported tools online or through the authors. We run the experiments 

3 times and report the average as the result. All experimental results 

reported below are obtained on an Ubuntu 18.04.1 LTS machine 

with Intel Core i7 and 16GB of memory. We use the default initial 

configuration as presented in Section 3.2. 

5.1 Efficiency 
To answer RQ1, we systematically apply sFuzz, ContractFuzzer and 

Oyente on all 4112 smart contracts. To save time, each contract is 

run for 2 minute in this experiment. Note that in general the adaptive 

fuzzing strategy takes time to show its effectiveness (as we will show 

later) and thus this setting gives an edge to other tools. 

We measure the efficiency of sFuzz by counting how many test 

cases are generated and executed per second. Naturally, a test case 

for a more complicated contract (e.g., with many loop iterations) 

takes more time to execute. Thus, we show how efficiency varies for 

different contracts. Figure 5 summarizes the result, where each bar 

represents 10% (about 400) of the fuzzed contracts and the y-axis 

shows the number of test cases generated and executed per second. 

The contracts are sorted according to how efficiently it can be fuzzed. 

From the figure, we observe that the efficiency varies significantly 

over different contracts, i.e., sFuzz generates and executes more than 

989 test cases per second on average for the top 10% of the contracts, 

and less than 14 test cases for the bottom 20%. On average, sFuzz 

generates and executes more than 208 test cases per second. 

Figure 5 also compares the efficiency of sFuzz with Oyente and 

ContractFuzzer. From the results, we observe that sFuzz is 

significantly more efficient than other tools. On average, 

ContractFuzzer and Oyente generate and execute 0.1 and 16 test 

cases per second respectively. There are multiple reasons why sFuzz 

is much faster. First, ContractFuzzer simulates the whole network 

and manages the blockchain (e.g., commit state changes to storage 

and append new mined blocks to blockchain after function calls), 

whereas sFuzz simulates only details of network or blockchain which 

are relevant to vulnerabilities in smart contracts. Second, sFuzz has a 

highly optimized implementation in C++, whereas ContractFuzzer is 

based on Node.js and Go language. In the case of Oyente, because it 

is a symbolic execution tool, Oyente is expected to run slower than a 

fuzzer like sFuzz. 

We further conduct an experiment to measure the overhead of 

monitoring the execution of a test case (using the hooking 

mechanism) and the overall overhead of the fuzzing process 

(including the overall of monitoring the execution, constructing the 

CFG, mutating the test cases and comparing them, etc.). We apply 

sFuzz to a set of 60 randomly selected contracts and measure the time 

spent on executing the test cases, monitoring the execution and other 

steps of the fuzzing process. The results show that on average the 

monitoring consumes about 10% of the total execution time and the 

overhead of the fuzzing process (including monitoring) is about 14%. 

This is very efficient compared to the reported overhead in other 

fuzzers [32]. 

 

 

 

 

 

Figure 5: Efficiency comparison between sFuzz, Oyente, and 

ContractFuzzer 

 

Figure 6: Coverage comparison between sFuzz and ContractFuzzer 

 

Figure 7: Coverage comparison between sFuzz and Oyente 

5.2 Effectiveness 
To answer RQ2, we aim to measure the branch coverage achieved 

by the test suite generated for each smart contract, as well as count 

the number of vulnerabilities identified. However, measuring 

branch coverage precisely is highly non-trivial due to, for instance, 

the problem of infeasible branches. Thus, we instead measure the 

number of distinct branches covered by the generated test suite. 

Figure 6 summarizes a comparison between sFuzz and 

ContractFuzzer in terms of the number of distinct branches covered. 

The y-axis is the number of branches covered by sFuzz minus that 

of ContractFuzzer and each point on the x-axis represents a smart 

contract. The contracts are sorted by their y-axis value. Similarly, 

Figure 7 shows the comparison between sFuzz and Oyente. 

For most of the smart contracts (i.e., 4077 of 4112 contracts) 

sFuzz covers more branches than ContractFuzzer. To our surprise, 

ContractFuzzer managed to cover more branches for 35 contracts. 
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A closer investigation shows that the number of branches covered by 

ContractFuzzer is inflated for the following reasons. First, as sFuzz 

does not execute view functions (for efficiency reasons), all branches 

in these functions are not counted. Because view functions do not 

modify the state of a smart contract, they are considered irrelevant to 

vulnerabilities. Second, ContractFuzzer sometimes generates invalid 

test cases which fail mandatory constraints and cover additional 

branches. Mandatory constraints are generated by the compiler (i.e., 

the Solidity compiler) and are embedded in the bytecode to assert the 

correctness logic of function calls or data types. For example, 

ContractFuzzer invokes a fallback function of a non-fallback contract 

or sends Ethereum to functions which are not marked with the 

payable keyword. As a result, the mandatory constraints are failed 

which lead to branches which signal an error in the test case being 

covered. 

In the case of Oyente, in 3402 contracts, Oyente covers more 

branches than sFuzz. An investigation shows that Oyente analyzes 

every function separately and thus has to assume that state variables 

can take arbitrary values (without considering their initial values or 

constraints on how the values are updated). As a result, Oyente can 

easily satisfy almost all conditions in smart contracts. Given the 

sample contract A in Figure 8, Oyente covers 99.1% EVM code and 

discovers an integer overflow vulnerability. It means that these 

conditions: id == 9 and balances[msд.sender] > 10 are satisfied. 

However, it is impossible as there is no way to change values of id 

and balances[msд.sender]. Often, a condition in smart contract is the 

comparison between local/parameter variables and state variables, 

e.g., balances[msд.sender] > value (whether sender has enough 

Ethereum to deduce). In such cases, sFuzz must call the function 

which sets certain values to the state variables before satisfying them 

whereas Oyente assigns arbitrary values directly to state variables. It 

is apparent to us that Oyente’s approach is flawed and would ‘cover’ 

many infeasible paths. 

In the following, we summarize the number of vulnerable 

contracts discovered by sFuzz in each category. The results are 

shown in Table 2. The first column shows the type of vulnerability. 

The next three columns show the number of vulnerable contracts 

found by sFuzz, ContractFuzzer and Oyente respectively. The sub-

column # show the number of contracts that have the vulnerability 

according to each vulnerability type and the second sub-column is 

the percentage of true positives of the identified vulnerabilities. For 

all categories, sFuzz finds more vulnerable contracts than 

ContractFuzzer. Note that ContractFuzzer removes Freezing Ether 

from their source code and does not check Integer 

Overflow/Underflow. In total, sFuzz finds vulnerabilities in 1113 

contracts, i.e., 24 times more than that of ContractFuzzer. 

 

 

 

Table 2: Vulnerabilities 

 

To evaluate the soundness of sFuzz, we manually examine the 

identified vulnerable contracts to check whether they are true 

positives or not. However, we are unable to manually check all the 

identified vulnerability for two reasons. First, there is an 

overwhelming number of vulnerabilities. Instead, we randomly 

sample 50 vulnerable contracts with source code in each category 

and manually check whether the identified vulnerability is a true 

positive or not. If there are fewer than 50 vulnerable contracts with 

source code in the category, we check all of them. 

For Gasless Send, Exception Disorder and Reentrancy 

vulnerability, all 50 sampled vulnerable contracts are true positives. 

For Timestamp Dependency, out of the 50 sampled vulnerable 

contracts, 43 of them are true positives. In the remaining 7 contracts, 

although block.timestamp and/or now is used in a condition, they are 

irrelevant to the Ether sending part (i.e., no control/data 

dependency). Rather their values are saved in global variables to 

record the creation time of specific events. sFuzz mistakenly claims 

that such cases are vulnerable. For Block Number Dependency, 40 

out of the 50 sampled vulnerable contracts are true positives. 

Similarly, the reason for the 10 false positives is the value of 

block.number is assigned to global variables but they are irrelevant 

to Ether sending process. For Dangerous DelegateCall, all 17 

sampled contracts are indeed vulnerable. Similarly so for Integer 

Overflow. For Integer Underflow, 40 of the 50 identified contracts 

are indeed vulnerable. The reason for the 10 false positives is 

because it is non-trivial to identify the correct type of a variable 

based on bytecode only (e.g., whether it is uint256 or uint128), 

sFuzz conservatively assumes that all arithmetic operations 

returning a negative value may be vulnerable. This can be improved 

by adopting the approach in [29] to infer types based on EVM 

bytecode. Lastly, for Freezing Ether, 9 of the 15 identified contracts 

are true positives. The reason for the 6 false positives is that 

although there is a program path which allows the contract to send 

Ether, the program path is not covered and sFuzz falsely assumes 

that there is no such program path. This percentage of such false 

positives is expected to be reduced if sFuzz is applied for a longer 

time (with more branches covered). 

The last column in Table 2 shows the results of Oyente. The 

results should be taken with a grain of salt since Oyente requires the 

source code. For instance, it is trivial to know the type of variables 

with the source code, and thus Oyente identifies many more 

problems with Integer Overflow/Underflow. For the remaining 

vulnerabilities, Oyente does not support 5 of them; identifies a 

higher number of vulnerable contracts for Reentrancy but with a 

higher false positive rate; and identifies much fewer vulnerable 

contracts for Timestamp Dependency. 
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Figure 9: Percentage of test cases due to adaptive strategy 

 

Figure 10: Effective of adaptive strategy over time 

5.3 Adaptiveness 
To answer RQ3, we systematically analyze the test suite generated 

by sFuzz for each smart contract. Note that each test case covers at 

least one branch which is not covered by any other test cases. To 

measure how the two fuzzing strategies implemented in sFuzz 

complement each other, we count how many test cases in the 

resultant test suites are generated due to the AFL strategy and how 

many are due to the adaptive strategy. Note that a test case is judged 

to be due to the adaptive strategy if and only if it is generated based 

on a seed selected by line 11 at Algorithm 2. 

The results are shown in Figure 9, where the y-axis is the 

percentage of test cases generated by the strategy. Each bar 

represents 10% of the contracts. We remark that the two strategies 

have different targets and thus whether they are effective largely 

depends on what branching conditions are in the smart contracts. We 

thus sort the contracts according to the speed of sFuzz. The bar on 

the rightmost thus represents the top 10% contracts. We observe that, 

as expected, the AFL strategy easily covers most of the branches 

(since the conditions for executing most branches are not strict). For 

about 80% of the smart contracts, the adaptive strategy makes a 

noticeable contribution, i.e., contributing an average of 31% of the 

generated test cases. Given that sFuzz is applied for each contract 

only for 2 minutes, the result is encouraging as we hypothesize that 

the effect of the adaptive strategy would be more apparent if sFuzz is 

applied for a longer period of time. 

To test our hypothesis, we record the percentage of test cases 

generated by the adaptive strategy every 12 seconds. The results are 

shown in Figure 10, where the x-axis is the fuzzing time and each bar 

shows the percentage after certain number of seconds. We can 

observe that the percentage of generated test cases by adaptive 

strategy increases with more fuzzing time. On average, the 

percentage rises from 18% after 12 seconds fuzzing to 33% after 2 

minutes fuzzing. From the results, we conclude the adaptive strategy 

is useful in increasing the coverage of the generated test suites. 

Threat to validity There are both internal threats and external threats 

to our work. For external threats, it is probable that sFuzz’s 

performance will vary with the choice of the initial population, as 

other researchers have noted [20]. For internal threats, the 

percentage of true positives in Table 2 may not be accurate as they 

are approximated by a sample of 50 contracts for each type of 

vulnerability. In addition, the exact intention of the author of the 

contract is not always clear, even if we try our best to read the source 

code. 

6 RELATED WORK AND CONCLUSION 
sFuzz is closely related to existing fuzzers for smart contracts. 

ContractFuzzer [18] is a fuzzer which can check 7 different types of 

vulnerabilities. Its approach, however, does not use any feedback to 

improve the test suite. Echidna [3] is another fuzzer that is 

reportedly capable of checking if the contract violates some user-

defined properties. However, we fail to find any publication about 

it. sFuzz is complementary to existing symbolic execution engines 

for smart contracts. In [22], Luu et al. presented an engine to find 

potential security bugs in smart contracts. The tool, however, is 

neither sound nor complete. In [21], Krupp and Rossow presented 

teEther, which is focused on financial transactions and related 

vulnerabilities. In [25], Nikolic et al. presented a tool named 

MAIAN, which can find 3 types of trace vulnerabilities. In [29], 

Torres et al. presented Osiris, a tool which combines symbolic 

execution and taint analysis to discover 3 types of integer bugs in 

smart contracts. Different from the above works, sFuzz is a fuzzer 

and it can be combined with the above engines to form a hybrid 

fuzzing engine. sFuzz is related to work on formal verification of 

smart contracts. Zeus [19] is a framework which verifies the 

correctness and fairness of smart contracts based on LLVM. 

Bhargavan et al. proposed a framework to verify smart contracts 

formally by transforming the source code and the bytecode to F*, a 

language designed for verification [9]. In [17], the author presented 

an attempt to verify the Deed contract using Isabelle/HOL [26]. 

sFuzz is broadly related to work on analyzing smart contracts. In 

[13], Delmolino et al. showed that writing a safe smart contract is 

not a trivial task. In [8], Atzei et al. provided a taxonomy for 

common vulnerabilities in smart contracts with real-world attacks. 

In [14], the authors performed a call graph analysis and showed that 

only 40% of smart contracts are truthless as their control flows are 

immutable. In [10], Chen et al. presented 7 gas-cost programming 

patterns and showed that most of the contracts suffer from these gas-

cost patterns. 

To conclude, in this work, we present sFuzz, an adaptive fuzzing 

engine for EVM smart contracts. Experimental results show that 

sFuzz is significantly more reliable, faster, and more effective than 

existing fuzzers. sFuzz is currently under rapid development and 

has already gained interest from multiple companies and research 

organizations. 
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