
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2020

Scalable, adaptable and fast estimation of transient downtime in Scalable, adaptable and fast estimation of transient downtime in

virtual infrastructures using convex decomposition and sample virtual infrastructures using convex decomposition and sample

path randomization path randomization

Zhiling GUO
Singapore Management University, ZHILINGGUO@smu.edu.sg

Jin LI

Ram RAMESH

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
GUO, Zhiling; LI, Jin; and RAMESH, Ram. Scalable, adaptable and fast estimation of transient downtime in
virtual infrastructures using convex decomposition and sample path randomization. (2020). INFORMS
Journal on Computing. 32, (2), 321-345.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5064

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5064&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5064&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Scalable, Adaptable and Fast Estimation of Transient
Downtime in Virtual Infrastructures using Convex
Decomposition and Sample Path Randomization

Zhiling Guo
School of Information Systems, Singapore Management University, Singapore 178902,

zhilingguo@smu.edu.sg

Jin Li
School of Economics and Management, Xidian University, Xi’an, China 710071,

jinli@xidian.edu.cn

Ram Ramesh
Department of Management Science and Systems, State University of New York, Buffalo, NY 14260,

rramesh@buffalo.edu

Network function virtualization (NFV) enables efficient cloud resource planning by virtualizing network

services and applications into software running on commodity servers. A cloud service provider needs to

manage and ensure service availability of a network of concurrent virtualized network functions (VNFs).

The downtime distribution of a network of VNFs can be estimated using sample path randomization on

the underlying birth-death process. An integrated modeling approach for this purpose is limited by its scal-

ability and computational load due to the high dimensionality of the integrated birth-death process. We

propose a generalized convex decomposition of the integrated birth-death process, which transforms the

high-dimensional multi-VNF process into a series of interlinked low-dimensional single-VNF processes. We

theoretically show the statistical equivalence between the transition probabilities of the integrated birth-

death process and those resulting from interlinking the decomposed system of processes. We further develop

a decomposition algorithm that yields scalable and fast estimation of the system downtime distribution. Our

algorithmic framework can be easily adapted to any logical definition of overall system availability. It can

also be easily extended to various realistic VNF network configurations and characteristics including hetero-

geneous VNF failure distributions, effects of both node and link failures on the overall system downtime of

fully or partially connected networks, and resource sharing across multiple VNFs. Our extensive computa-

tional results demonstrate the computational efficiency of the proposed algorithms while ensuring statistical

consistency with the integrated network model, and the superior performance of the decomposition strategy

over the integrated modeling approach.

Key words : cloud computing; convex decomposition; Markov chains; network virtualization; sample path

randomization

1

ppyeo
Typewritten Text
Published in INFORMS Journal on Computing, 2099, Advance online.https://doi.org/10.1287/ijoc.2019.0888Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 LicenseAccepted version

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
2 Article submitted to INFORMS Journal on Computing

1. Introduction

Different from traditional networks that consist of a large variety of dedicated elements

such as routers, firewalls and gateways, virtual infrastructure (VI) is a software-defined

IT infrastructure running on top of a physical substrate to provide both computing and

communication as a service. Within the framework of VI, Network Function Virtualization

(NFV) is a fast emerging concept, where network functions traditionally carried out by

proprietary and dedicated hardware are virtualized as software-defined functions hosted on

virtual machines on standard server platforms. With the exponential growth in connected

devices, NFV has gained broad industry traction. A recent Infonetics report forecasts the

global NFV market to grow more than 5-fold and reach $11.6 billion by 2019 (IHS 2015). If

successfully developed and implemented, NFV will completely revolutionize how networks

are built, managed and used to create services.

1.1. NFV Architecture and Deployment

NFV aims at decoupling network functions from specialized hardware through virtualiza-

tion technology. The virtualized software implementation of a network function is called

virtualized network function (VNF). When a router is virtualized, it is called router VNF.

When a base station is virtualized, it is called base station VNF. Other examples of

VNFs include session border controllers, load balancers, firewalls, etc (ETSI 2014). Figure

1 illustrates the NFV architecture comprising of NFV infrastructure (NFVI) and VNF

deployment (ETSI 2013a, Martini and Paganelli 2016, Mijumbi et al. 2016).

The NFVI includes both physical resources and virtual resources. The physical resources

include computing hardware, storage and network that provide processing, storage and

connectivity to VNFs. The virtual resources are abstractions of the computing, storage and

network resources, which are managed using a virtualization layer based on a hypervisor.

NFVI provides the hardware and software environment in which VNFs are deployed.

The VNF is the basic building block in the NFV architecture. The abstraction of network

functions away from dedicated hardware allows VNFs to be hosted on standard server

platforms in the cloud data center. In the data center environment, the virtual computing

and storage resources may be represented in terms of one or more virtual machines (VMs),

while virtual networks are made up of virtual links and nodes. A VNF can be deployed

over multiple VMs. A VNF link can be used to connect between two or more VNFs.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 3

Virtualization Layer

M
an

ag
em

en
t a

n
d

 O
rc

h
es

tr
at

io
n

Storage Computing Network

Virtual Storage Virtual Computing Virtual Network

Network Function Virtualization Infrastructure (NFVI)

VNF

VM

VM
VM

VNF

VM

VM
VM

VNF

VM

VM
VM

VNF

VM

VM
VM

Virtualized Network Functions (VNFs)

Figure 1 Network Function Virtualization Architecture

Similar to Software as a Service (SaaS) model in cloud computing, a network service

can be provided by VNFs as an end-to-end service chain through virtualized infrastructure

management and NFV orchestration. For example, multiple VNFs such as firewalls, load

balancers and session border controllers need to be connected using virtual links to create

an end-to-end service. The session border controller can be further split into different VNFs

that are operated at different network locations: session terminations executed at the edge

of the network, admission control executed in the core network, and statistics and billing

data collection executed at a data center. A stream of network packets flow through the

VNFs in sequence to complete an end-to-end service (Martini and Paganelli 2016). The

ESTI Industry Specification Group for NFV provide a few other use cases (ETSI 2013b).

NFV has the promise to bring flexibility and significant cost savings to networking,

which is essential to build future dynamic and service-aware networks (Sun et al. 2016).

However, in the cloud environment, servers experience random and transient failures such

as disk failures or software faults (Siewiorek and Swarz 2017). Such failures normally occur

for short periods of time and the failures can be quickly recovered. Deployment of NFV in

large-scale networks require the service providers to continuously monitor the VM failures

in order to fulfill the uptime guarantee specified in the service level agreement (SLA)

(Buyya et al. 2011). Transient analysis of the system downtime of a network of VNFs is

thus critical in SLA-based resource provisioning for cloud computing. We are among the

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
4 Article submitted to INFORMS Journal on Computing

first to propose efficient, flexible, scalable and extensible estimation algorithms to evaluate

the availability and performance of VNFs within the NFV environment.

1.2. Research Scope

In this study, we focus on scalable, adaptable and fast estimation of the transient down-

time distribution for a set of interconnected VNFs in a data center or a network of data

centers. We assume the network consists of M VNF nodes and L communication links that

constitute an end-to-end service chain. We are interested in estimating the overall avail-

ability of the service chain under transient conditions. Service availability is specified as an

uptime guarantee in an SLA between a cloud service provider and its client as follows: In

the basic form, the client requires nm VMs for each VNF, m= 1, . . . ,M , during a service

window of length T to be concurrently available at a guaranteed percentage of uptime. In

the general form, this requirement could be specified over any logical combination of the

M VNFs to be available at the guaranteed level. To ensure VNF availability, the service

provider usually assigns km, m= 1, . . . ,M , additional VMs as backup. We refer to the nm

VMs as primary and the km VMs as backup VMs. To ensure availability of the network

connectivity required by the client, the service provider can also provide backups for com-

munication links. The need for the backups arises due to the random failure and repair

processes experienced in the cloud environment. In this research, we focus on small-scale,

transient failures such as isolated server/switch failures rather than large-scale failures

such as rack/pod or even an entire data center outage (Gill et al. 2011). The backup VMs

enable checkpointing by periodic capture of primary VM images to maintain continuity

of the client’s business when primaries fail and restarting the failed primaries when they

return to service. Du et al. (2015) define and analyze three checkpointing strategies for this

purpose: Powered-on without delay, Powered-on with delay and Powered-off. The proposed

downtime estimation methodology can be used in any checkpointing strategy. Without loss

of generality, we assume the most commonly used powered-on without delay checkpointing

strategy in this research.

An SLA typically entails a penalty to the service provider if the guaranteed uptime

is not met in the service period. The provisioning of the backups reduces the likelihood

of downtime occurrence but entails extra resource costs. Thus, knowledge of the down-

time probability distribution for any given network configuration is essential in the service

provider’s resource allocation. The service downtime distribution depends on (i) the notion

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 5

of VNF availability specified in the SLA, (ii) the underlying random failure and repair

processes involved, and (iii) the checkpointing strategies used in resource management. We

model the server failure and repair processes in any configuration of the overall system as

a birth-death Markov process. The steady-state availability of the VNFs under any notion

of availability can easily be obtained from such a process characterization. However, as

Du et al. (2015) point out, the attainment of steady-state can be a strong assumption

under realistic service windows commonly seen in practice. Further, the demonstration of

a configuration reaching steady-state and remaining there throughout a contract period

in practice could be very difficult. Hence, we assume transient conditions in deriving the

downtime distribution of a VNF configuration.

We consider three types of VM failures that are commonly encountered in practice:

Exponential, Weibull and Erlang failure distributions. The Exponential failure processes

typically represent normal data center operations in commercial practice. The Weibull

distribution captures aging and infant mortality systems, and the Erlang captures the

partially failing systems. Compared to failure, the repair processes are more controllable

and hence, were modeled using the Exponential distribution. Using server log data from

the Center for Computational Research (CCR) at SUNY at Buffalo, we fitted the three

failure distributions as well as the Exponential distribution for repairs to estimate their

parameters after validating their distributional assumptions (see Du et al. 2015). The

computational results presented in this paper are based on these parametric estimates.

Although each VM failure event is independent, the VNF failures may be correlated

because some VM nodes can be shared across multiple VNFs. In addition to VNF failures,

network availability is also affected by link failures. The service provider may provide both

link-level and path-level backups to guarantee the VNF network connectivity. The link-

level backup refers to redundant links between any pair of VNFs that require connectivity.

The path-level backup is achieved by alternative network paths that indirectly connect

a pair of VNFs when their existing direct connectivity fails. In summary, we consider in

this study the following realistic system configurations and characteristics: heterogeneous

VM failure distributions, VM sharing across multiple VNFs, both VNF node and link

failures that affect network availability, and different node and link backup strategies for

fully-connected as well as partially-connected VNF networks.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
6 Article submitted to INFORMS Journal on Computing

1.3. Research Approach

The proposed estimation methodology is based on our earlier work on the sample path

randomization (SPR) approach to estimating transient downtime in a single VNF con-

figuration presented in Du et al. (2015). While a direct extension of this methodology to

the multiple VNFs case is theoretically possible, such an approach suffers from the fol-

lowing major drawbacks. First, the sample path approach requires a full definition of the

underlying birth-death process; as M and (nm, km), m = 1, . . . ,M , vary, the structure of

the underlying Markov process that collectively integrates the birth-death events in the

full VNF configuration would also vary. Second, as the notion of availability specified in

an SLA varies, the distinction between the down and up states of a configuration would

also vary. Third, as the checkpointing strategies vary, the direct extension would require

a complete redefinition of the underlying birth-death process states and transitions. All of

these together lead to major problems of scalability and adaptability of a direct algorithm

when extending single VNF model to any general VNF configuration by this integrated

approach.

Motivated by these drawbacks, we develop an efficient strategy that yields fast, mod-

ular, reusable, scalable and adaptable algorithms to estimate the downtime distribution

of multiple VNFs with statistical consistency. The proposed algorithmic strategy is sum-

marized as follows. First, we decompose the integrated birth-death process into M inde-

pendent birth-death processes, each pertaining to its corresponding VNF. We develop the

concept of convex decomposition of birth-death processes for this purpose. Second, a ran-

domized sample path for the integrated process configuration is obtained as an integration

of independently generated sample paths that are randomized across the M processes. We

establish the theoretical support for this strategy, and the statistical consistency between

the downtime distributions obtained through the integrated model and the decomposed

model, respectively. For the sake of simplicity of presentation and without loss of general-

ity, we present the proposed algorithmic strategy using the basic form of availability where

all VNFs are concurrently required to be available for overall system availability, and the

powered-on without delay model of checkpointing. When these parameters change, the

structure of the proposed algorithms will still remain the same.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 7

1.4. Research Contributions

Our main contribution in this research is that we propose a generalized convex decom-

position strategy that transforms the estimation of high-dimensional multi-VNF transient

downtime distribution into the estimation of a series of interlinked low-dimensional single-

VNF processes. We theoretically show the statistical equivalence between the transition

probabilities of the integrated birth-death process and those resulting from the decom-

posed system. Our extensive computational results show that the proposed algorithms are

computationally efficient while ensuring statistical consistency between the integrated and

decomposed network model.

The convex decomposition approach yields fast and efficient estimation algorithms that

are easily adapted to any logical definition of overall system availability. There are several

other important advantages. First, due to the decomposable structure and low dimension-

ality, our algorithm is highly scalable to solve large network problems. Second, because

each VNF independently generates its own sample path, the sample paths generated by

the decomposed approach are reusable for other logical definitions of network availability.

The modular structure enables the existing network model to be reused as building blocks

for more complex services. Third, our algorithm can easily be extended to accommodate

practical system requirements such as heterogeneous failure distributions, VM sharing

across VNFs, and networks with various degrees of connectivity. In addition, the proposed

decomposition framework is generalizable to the hierarchical network structure consisting

of power nodes, switch nodes and virtual server nodes. Because the network dependence

and independence can be modeled as AND/OR logical relationships, logical definition of

network availability can be adapted based on different network topologies.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature.

Section 3 describes the sample path randomization strategy for the multiple VNF config-

urations. Section 4 develops the convex decomposition concept and its underlying theory.

Section 5 presents the algorithmic implementation framework of the decomposition strat-

egy. Section 6 summarizes our main experimental designs and computational analyses.

Section 7 further discusses several algorithmic extensions and results. Finally, Section 8

presents the conclusions and directions for future research. A description of the notations

is presented in the Appendix and the online supplement provides more detailed computa-

tional results of the analysis.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
8 Article submitted to INFORMS Journal on Computing

2. Related Literature

Virtual infrastructures comprising of high-speed optical networks spanning several dis-

tributed data centers have become predominant over the last several years (Mu et al. 2015,

Chowdhury and Boutaba 2010). In particular, management of computing requests in such

distributed environments has been the focus of several streams of research studies. The

specific problems addressed in this domain include computing and communication resource

allocation in the virtualized distributed environment (Sharkh et al. 2013), design of sur-

vivable VI components such as facility nodal servers and network links (Yu et al. 2012),

mapping of VI requests to a substrate in a resource-efficient manner (Yu et al. 2010) and

survivable mapping to ensure fault-tolerant service protection at the facility nodes and

substrate nodes and links (Xiao et al. 2013, Yu et al. 2011).

In the context of VI, an infrastructure provider owns and maintains substrate networks,

while a service provider assembles virtual networks from one or multiple infrastructure

providers and provide end-to-end services to the users. Network function virtualization is a

new emerging paradigm where network functions can be virtualized and chained together to

provide the required functionality (Han et al. 2015). By decoupling network functions from

the underlying proprietary hardware, the network functions can be executed on standard

IT platforms like servers, switches and storage, and instantiated in various locations such

as data centers, network nodes, and end-user premises. It opens the door for infrastructure

sharing and automation on the cloud in a cost-effective way (Chowdhury and Boutaba

2010). When the VNFs are deployed on VI, managing the network infrastructure requires

mapping of resources that guarantees VNFs are executed on the allocated VMs managed

by their hypervisors.

In addition to resource mapping, infrastructure in the cloud environment is subject to

a wide range of failures from small-scale, frequent failures to large-scale, less frequent fail-

ures. The types of failures can be hardware, software, human errors, hacks, and natural

disasters (Gill et al. 2011). The failures result in service unavailability which affects the

client applications running on the cloud infrastructure. In order to provide resilience to

failure, service continuity and service assurance, the service provider typically adopts sev-

eral checkpointing techniques to add fault tolerance into the computing systems (Lu et al.

2012). The checkpointing strategies ensure that the substrate can offer sufficient primary

and backup resources to prevent VNF failures.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 9

The literature on availability modeling in cloud data centers is still in its early stage

of development. One of the earliest works that directly address the issue of quantify-

ing availability in an Infrastructure-as-a-Service (IaaS) Cloud is Du et al. (2015). Their

work emphasizes the efficient derivation of transient probabilities of service downtime. The

advantage of transient probabilities lies in its applicability to finite and short-term service

windows where steady-state is not guaranteed to be reached. Transient analysis of Markov

chains is vital in availability modeling of service businesses, especially communication and

queueing systems (Kaczynski et al. 2012).

While some studies use the terms reliability, survivability and availability interchange-

ably, there are significant distinctions between them. Reliability emphasizes exclusively on

failures, as discussed in Fu (2010) where reliability is expressed as the time to failure and

utilizing this metric, failure-aware node selection strategies are proposed. Studies on sur-

vivability, on the other hand, evaluate the ability of a VM to continue to provide services

in an environment facing intrusion attacks and similar vulnerabilities, using methods such

as continuous time Markov chains (Yang et al. 2013). In contrast, availability, as defined in

Du et al. (2015) and as followed in this paper, incorporates both the failure and the repair

processes and hence, the emphasis is on transient service downtime, which is a combined

result of these two arrival processes over a period of time.

Existing research in service downtime focuses on defining various mechanisms to control

this system metric. Some of these mechanisms study the VM migration process by changing

the checkpointing protocols to ensure that downtime does not exceed a specified amount

(Raad et al. 2014) and also by predicting failures caused by the checkpointing process itself

(Lu et al. 2012). Configuring the minimum number of backup VMs is yet another tool to

manage downtime, either by surviving a given number of host server failures (Machida

et al. 2010) or by aiming to fulfill an SLA-specified availability guarantee with penalties

for non-availability (Yuan et al. 2014). Our study derives an efficient algorithm to estimate

the downtime distribution across multiple VNFs; this distribution may be used in many

of the above-mentioned methods to manage service downtime in cloud data centers.

Sampling and simulation have been widely used to solve complex network problems.

Parpas et al. (2015) employ importance sampling and Monte Carlo simulation to accu-

rately estimate a high-dimensional function in solving multi-stage stochastic programming

problems. This study builds upon the sample path randomization method proposed by

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
10 Article submitted to INFORMS Journal on Computing

Silva and Gail (1986, 1989) and the successful application of the method in virtual server

systems (Du et al. 2015). We propose a convex decomposition framework to efficiently

estimate the transient downtime of a network of VNFs.

Our method has important implications in cloud computing, which aims to streamline

the on-demand provisioning of resources as services through SLA management. Flexibility

and scalability are the key design characteristics in an increasingly open cloud ecosystem.

Passacantando et al. (2016) propose a scalable algorithm for multi-cloud resource provi-

sioning in a distributed environment to ensure high quality of service. Research on the

impact of VNF failures on the determination of SLA parameters such as uptime guaran-

tee and price-penalty structures is still in its infancy. To the best of our knowledge, this

research is the first approach to efficiently deriving the transient downtime distribution of

a network of VNFs that would significantly impact the choice of these SLA parameters.

3. Sample Path Randomization

In the following discussion, we first summarize the sample path randomization strategy

for the single VNF case developed in Du et al. (2015). Next, we present a direct extension

of this approach to the multiple VNFs case. For notational simplicity, we denote these

general configurations as M -VNF.

Consider a 1-VNF configuration comprising of n primary and k backup VM servers.

Without loss of generality and for presentation simplicity, we assume one-to-one mapping

between the virtual machines and physical machines as carried out in Du et al. (2015). We

model the birth-death process for this configuration as follows: Each state of this process

denotes the number of failed VM servers, and this ranges from 0 to (n + k). Since the

VNF is available if at least n VM nodes are concurrently available, the VNF is up in the

states 0, . . . , k, and down in the states (k + 1), . . . , (n + k). Next, we divide the service

window of length T into dT/∆te intervals of length ∆t. In a 1-VNF system, we denote

the system state iρ1 as the number of failed servers at any given time interval indexed

by ρ = 1,2, . . . , ρmax, where ρmax = dT/∆te. If ∆t is sufficiently small, then within each

time interval, either a server fails, a failed server is repaired, or the system remains in

the same state. So the number of possible state transition within each time interval ∆t is

3. It is important to note that the out-of-state transition probabilities are non-decreasing

functions of ∆t. The larger the time interval ∆t, the more likely that we would observe a

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 11

server failure or repair event. A sample path of this discrete-time Markov chain comprises

of a countably finite number of state transitions denoted as: {i11, . . . , i
ρmax
1 }. The transitions

from each state of the sample path occur according to the transition probabilities in the

next time interval ∆t, and these probabilities are determined by the underlying VM failure

and repair processes. Note that each sample path is a single realization of the evolution of

the 1-VNF birth-death process during the service window T .

The total downtime, i.e. the total time the system experiences more than k VM failures

during the service window T , is denoted by the random variable τ . The SPR algorithm

in Du et al. (2015) derives the transient downtime distribution v(τ) using a sampling of

sample paths approach and is shown in Algorithm 3.1. The strategy of this approach is

summarized as follows. Starting from any initial state as the root, the set of all sample

paths can be represented as a tree. The set of possible states to which a transition can

occur from a given state are recursively denoted as the children of the given state. Clearly,

the depth of the tree is ρmax, and the breadth is of the order o(3ρmax) since the order of

the number of children of each state is 3. Because the number of possible sample paths

could grow exponentially as ∆t is reduced, a sampling of this population of sample paths

is used to estimate the downtime distribution of the population. Accordingly, the two crit-

ical parameters in this estimation are the time interval ∆t and the estimation convergence

bound ε, where ∆t controls the length of a sample path and ε determines the size of the

sample needed for the estimation. We denote them as the depth and breadth parameters,

respectively. Du et al. (2015) show that the estimator function v̂(τ = τ ′) derived using the

SPR algorithm exhibits the statistical properties of unbiasedness, consistency, sufficiency,

and is asymptotically normally distributed and asymptotically efficient. As the asymptotic

normal distribution property of both v̂S(τ = τ ′) and σ̂2
S(τ = τ ′) is contingent on the sample

size S, the size adequate for convergence was also determined. Note that the underly-

ing birth-death process depends on the checkpointing strategy used. The SPR algorithm

provides a general framework for sample path randomization for any birth-death process;

accordingly, it can be adapted to any checkpointing strategy by using the transition prob-

abilities of the corresponding birth-death process.

Algorithm 3.1 (The SPR Algorithm)

Input: parameters ∆t, ε

Output: v̂(τ = τ ′)

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
12 Article submitted to INFORMS Journal on Computing

1. Select a minimum sample size S and compute downtime estimator v̂S(τ = τ ′) and

variance σ̂2
S(τ = τ ′).

1.1 Generate S random sample paths:

For each s= 1, . . . , S, randomly generate a sample path ds.

1.2 Derive v̂S(τ = τ ′) and σ̂2
S(τ = τ ′) for {d1, d2, . . . , dS} using equations v̂S(τ = τ ′) =∑S

s=1 Is(τ
′)/S, and σ̂2

S =
∑S

s=1(Is(τ
′)− v̂S(τ = τ ′))2/(S− 1), where Is(τ

′) is an index func-

tion for each path ds: if the total downtime corresponding to a sample path τ(ds) = τ ′,

Is(τ
′) = 1; otherwise, Is(τ

′) = 0.

2. Generate an additional sample path, setting S→ S + 1 and derive v̂S+1(τ = τ ′) and

σ̂2
S+1(τ = τ ′).

3. Evaluate stopping criterion: If max
τ ′
{ |v̂S+1(τ=τ ′)−v̂S(τ=τ ′)|

v̂S(τ=τ ′)
,
|σ̂2
S+1(τ=τ ′)−σ̂2

S(τ=τ ′)|
σ̂2
S(τ=τ ′)

}> ε, go to

Step 2; otherwise, stop.

Now, consider the general M -VNF configuration. In this case, the system state is defined

as a vector of the M single-VNF states: IC ρ = [iρ1, . . . , i
ρ
M], where ρ = 0, . . . , ρmax. The

discrete-time Markov chain state transitions in a sample path of the M -VNF configuration

is {IC 0, . . . ,IC ρmax}. In each sufficiently small time interval ∆t, either a server from a

VNF fails, a failed server in a VNF is repaired, or the system remains in the same state. So,

the number of possible state transitions within each time interval is 2M + 1. We use this

extended Markov chain within the SPR algorithm to generate sample paths and estimate

v(τ) from them as the integrated model of the M -VNF configuration.

In the integrated model, while the depth of the tree of sample paths is still ρmax, its

breadth is of the order o((2M + 1)ρmax). Clearly, the size of the population of sample

paths grows tremendously with M , and consequently would require significantly much

larger sample sizes in obtaining statistically consistent estimates of v(τ). While imposing a

significant computational burden as a result, the approach of directly using the integrated

birth-death process of the M VNFs also suffers from problems of scalability, adaptability

and algorithmic modularity as explained in the earlier section. Therefore, we develop a

Markov chain decomposition strategy in the next section that yields fast and efficient

estimation algorithms.

4. Convex Decomposition of Markov Chains

Our approach decomposes the Markov chain of the integrated model into M independent

Markov chains, each pertaining to a single VNF. We first illustrate the decomposition idea

using a 2-VNF case and subsequently generalize it to the M -VNF case.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 13

4.1. Convex Decomposition of the 2-VNF Model

Consider a configuration consisting of two VNFs that are connected with one communi-

cation link. Let nm, km, m= 1,2, denote their respective primary and backup servers. For

convenience, denote the current states of the two VNFs at the ρth time interval as iρ1 = i

and iρ2 = j, representing the number of failed VMs in the two VNFs, respectively. Since the

communication link can only have two states, we denote the current state of the link as c,

where c= {on} or {off}. Let c denote the other state to which the link can transition to

if it is currently in state c. Hence, if c= {on}, then c= {off}, and vice versa. Accordingly,

we denote the current state of the 2-VNF and 1-link configuration as a three-dimensional

vector IC ρ = [i, j, c]. We assume that the system is available only when both the VNFs and

the communication link are available concurrently. The transitions from any state [i, j, c] in

the underlying integrated Markov model are shown in Figure 2. For notational simplicity,

we denote the transition probabilities as follows: the superscript 1, 2, and 3 on P index

the two VNFs and the link, respectively, where the transition occurs; the two subscripts

denote the state transition of the concerned VNF or link involved in the transition. Figure

3 presents a decomposition of this integrated chain into three independent chains, denoted

as the i-chain, j-chain and c-chain, respectively. Note that the transition probabilities in

this figure are accented with “∼” to indicate the decomposed Markov chain for each inde-

pendent VNF or link. The transition probabilities in the decomposed chains are derived

from the original probabilities in the integrated model using the theory developed in the

next section.

 , ,

 , ,

 +1 -1

 -1

 +1

Figure 2 General State Transition in a 2-VNF and 1-link System

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
14 Article submitted to INFORMS Journal on Computing

 , ,

 -1 +1 , ,

 -1

 +1

 , ,

 , ,

 -chain -chain -chain

Figure 3 Decomposition of the 2-VNF and 1-link System

The idea behind this decomposition and the associated sample path randomization can

be intuitively described as follows. Note that a transition in a time interval ∆t can occur

only in either one of the two VNFs or the single link. So, as a first step, we separate the

transitions into the three chains as shown in Figure 3. Second, we select a set of convex non-

negative multipliers δ1, δ2 and δ3 such that δ1 + δ2 + δ3 = 1. Third, in any time interval ∆t,

we choose the i-chain, j-chain or the c-chain with probabilities δ1, δ2 and δ3, respectively.

Fourth, the transition in the time interval ∆t is obtained from the chosen Markov chain,

holding the states of the remaining chains unchanged. This process is repeated over the

time slots ρ= 1,2, . . . , ρmax. This process also yields a separate complete sample path for

each chain over the entire time period. When we overlap these sample paths over all the

time slots, each time slot maps to a specific chain chosen for transition in its corresponding

∆t interval. Retrieving only the chosen chains and their transitions over all time slots and

concatenating them yields a sample path of the integrated model.

The idea of decomposition into multiple independent Markov chains incorporates three

distinct steps: selecting a chain for each time interval, generating a transition from the

chosen chain in each interval, and finally, overlapping and concatenating the transitions

over all the time intervals. This has three significant advantages. First, each VNF or link is

treated independently, leading to modular and reusable sample path generation algorithms.

Second, this approach does not depend on the number of VNFs or links involved; hence the

algorithms are highly scalable. Third, the independence of the chains leads to any general

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 15

logical definition of availability of the overall system configuration; hence the algorithms

are highly adaptable.

However, the decomposition strategy raises the following critical questions: (a) Does

there exist a set of convex multipliers for any configuration such that the expected prob-

abilities of transitions in the decomposed model are the same as the actual transition

probabilities in the integrated model? (b) Given that the probabilities of transitioning out

of a state are non-decreasing functions of ∆t, is there an optimal set of multipliers and their

corresponding optimal ∆t’s such that the computational time of the decomposition strat-

egy is minimized? (c) Does the decomposition strategy yield downtime distributions that

are statistically consistent with those of the integrated model? We address these questions

in the following discussion.

4.2. Convex Decomposition of the M-VNF Model

Consider a system consisting of M VNFs and L links. The system state at step ρ transition

is a path-dependent (M +L)-dimensional vector IC ρ = [iρ1, . . . , i
ρ
M , c

ρ
1, . . . , c

ρ
L]. To simplify

notations, we omit the time interval index ρ. Denote im = 0, . . . , nm + km,m= 1, . . . ,M , as

the current state associated with VNF m, and cl = {on, off}, l= 1, . . . ,L, the current state

associated with link l. Because at most one event can occur in a sufficiently small time

interval, in the case that VNF m fails one server, we denote the transition probability as

Pm
im,im+1. Similarly, in the case that a server is repaired in VNF m, we denote the transition

probability as Pm
im,im−1. In the event of a link failure or repair, we denote the transition

probability as P l
cl,cl

, where cl is the state that a link transits out of state cl. Further denote

PIC as the probability that the system remains in the current state.

Note that as ∆t increases, there is increasing probability that a failure or repair event

would occur. Therefore, Pm
im,im+1, P

m
im,im−1 and P l

cl,cl
are non-decreasing functions of ∆t,

and PIC is a non-increasing function of ∆t. To simplify our notations and without causing

confusion, we suppress ∆t in the general state probability expressions except in the balance

equations (1)-(3) and in the boundary conditions (4)-(5) where we would like to emphasize

its dependence on ∆t. The following balance equation holds at any time interval ρ =

1, . . . , ρmax:

PIC(∆t) +
M∑
m=1

{Pm
im,im−1(∆t) +Pm

im,im+1(∆t)}+
L∑
l=1

P l
cl,cl

(∆t) = 1 (1)

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
16 Article submitted to INFORMS Journal on Computing

Now, consider M +L decomposed Markov chains. With probabilities δm,m= 1, . . . ,M ,

a node transition occurs; similarly, with probabilities δl, l = 1, . . . ,L, a link transition

occurs. Moreover,
∑M

m=1 δm +
∑L

l=1 δl = 1. Let P̃m
im,im−1, P̃

m
im,im and P̃m

im,im+1, m= 1, . . . ,M ,

denote the transition probabilities in the decomposed Markov chain of VNF m, and P̃ l
cl,cl

,

where cl = {on, off} and l = 1, . . . ,L, denote the transition probabilities in the decom-

posed Markov chain of communication link l. Again, the following balance equations in

the decomposed system holds: P̃m
im,im−1(∆t) + P̃m

im,im(∆t) + P̃m
im,im+1(∆t) = 1

P̃ l
cl,cl

(∆t) + P̃ l
cl,cl

(∆t) = 1
(2)

4.2.1. Multiplier Existence Theorem. The following theorem establishes the existence

of a feasible set of convex multipliers for decomposing the integrated model of any config-

uration that consists of M VNFs and L links.

Theorem 1 (Existence of Convex Decomposition Multipliers). At each step of

the state transition, there exists a set of convex multipliers δm’s and δl’s such that 0≤ δm ≤

1,0≤ δl ≤ 1,
∑M

m=1 δm+
∑L

l=1 δl = 1, to decompose the Markov chain of the integrated system

into M + L independent Markov chains of single VNFs and links, where the transition

probabilities in the integrated model equal their expected probabilities in the decomposed

model:
PIC(∆t) =

∑M
m=1 δmP̃

m
im,im(∆t) +

∑L
l=1 δlP̃

l
cl,cl

(∆t)

Pm
im,im+1(∆t) = δmP̃

m
im,im+1(∆t)

Pm
im,im−1(∆t) = δmP̃

m
im,im−1(∆t)

P l
cl,cl

(∆t) = δlP̃
l
cl,cl

(∆t),where cl = {on, off}.

(3)

Proof. Given the correspondence in (3), we first show the balance equation (1) in

the integrated model’s Markov system holds. We then show such feasible set of mul-

tipliers exist. First, we have PIC +
∑M

m=1{Pm
im,im−1 + Pm

im,im+1} +
∑L

l=1P
l
cl,cl

= PIC +∑M
m=1 δm{P̃m

im,im−1 + P̃m
im,im+1} +

∑L
l=1 δlP̃

l
cl,cl

= PIC +
∑M

m=1 δm{1 − P̃m
im,im} +

∑L
l=1 δl{1 −

P̃ l
cl,cl
}= PIC +

∑M
m=1 δm +

∑L
l=1 δl− [

∑M
m=1 δmP̃

m
im,im +

∑L
l=1 δlP̃

l
cl,cl

] = 1. So (1) holds. Next,

we show that feasible δm’s and δl’s exist. Because P̃m
im,im−1 = Pm

im,im−1/δm, P̃m
im,im+1 =

Pm
im,im+1/δm, feasibility conditions require that: Pm

im,im−1 + Pm
im,im+1 ≤ δm, m = 1, . . . ,M .

Similarly, because P̃ l
cl,cl

= P l
cl,cl

/δl, feasibility condition requires that: P l
cl,cl
≤ δl, l= 1, . . . ,L.

Therefore, PM
iM ,iM−1 + PM

iM ,iM+1 ≤ δM = 1 −
∑M−1

m=1 δm −
∑L

l=1 δl. So δ1 ≤ 1 −
∑M−1

m=2 δm −

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 17∑L

l=1 δl−{PM
iM ,iM−1 +PM

iM ,iM+1}. We next show δ1 exists. Other δm’s and δl’s can be shown

in a similar way. Because −δm ≤ −{Pm
im,im−1 + Pm

im,im+1}, m = 2, . . . ,M − 1, and −δl ≤

−P l
cl,cl

, l = 1, . . . ,L, we have δ1 ≤ 1 −
∑M−1

m=2 δm −
∑L

l=1 δl − {PM
iM ,iM−1 + PM

iM ,iM+1} ≤ 1 −∑M
m=2{Pm

im,im−1 +Pm
im,im+1}−

∑L
l=1P

l
cl,cl

= PIC +P 1
i1,i1−1 +P 1

i1,i1+1. Therefore, this equation

together with P 1
i1,i1−1 + P 1

i1,i1+1 ≤ δ1 define the feasible range of δ1. By similar reasoning,

there exists individual feasible δm and δl such that:

Pm
im,im−1(∆t) +Pm

im,im+1(∆t)≤ δm ≤ PIC(∆t) +Pm
im,im−1(∆t) +Pm

im,im+1(∆t),m= 1, . . . ,M,

(4)

and

P l
cl,cl

(∆t)≤ δl ≤ PIC(∆t) +P l
cl,cl

(∆t), l= 1, . . . ,L. (5)

Summing over all δm’s and δl’s, we have 1 − PIC =
∑M

m=1{Pm
im,im−1 + Pm

im,im+1} +∑L
l=1P

l
cl,cl
≤

∑M
m=1 δm +

∑L
l=1 δl ≤ (M + L)PIC +

∑M
m=1{Pm

im,im−1 + Pm
im,im+1} +∑L

l=1P
l
cl,cl

= (M + L)PIC + 1 − PIC = (M + L − 1)PIC + 1. The aggregated

lower bound 1 − PIC ≤ 1 and the aggregated upper bound (M + L − 1)PIC +

1 ≥ 1. So there are feasible δm’s and δl’s such that
∑M

m=1 δm +
∑L

l=1 δl = 1.

�

Theorem 1 shows equivalence between the transition probabilities in the integrated model

and their expectations in the decomposed model. Inequalities (4) and (5) suggest that

there exist a continuous range of feasible values of the convex multipliers to decompose

the integrated model. Therefore, a natural question is whether there exists an optimal set

of convex multipliers to achieve computational efficiency in the decomposition algorithm.

We answer this question in the next subsection.

4.2.2. Optimal Convex Decomposition. As discussed, the computational performance

of the algorithm depends on both the breadth (ε) and depth (ρmax) parameters. The

breadth parameter ε affects the total number of sample paths needed so that the distri-

butional properties of the sample reasonably represent the population. The smaller the ε,

the larger the required sample size S. Because the depth parameter ρmax = dT/∆te, larger

∆t is computationally desirable. By choosing the maximum allowable time interval in each

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
18 Article submitted to INFORMS Journal on Computing

step of the state transition, we can reduce the total number of intervals for a sample path.

This decision problem can be formally stated as:

∆tmax = max
δm,δl,∆t

∆t

s.t. PIC(∆t)≥ 0

M∑
m=1

δm +
L∑
l=1

δl = 1

Pm
im,im−1(∆t) +Pm

im,im+1(∆t)≤ δm ≤ PIC(∆t) +Pm
im,im−1(∆t) +Pm

im,im+1(∆t),m= 1, . . . ,M

P l
cl,cl

(∆t)≤ δl ≤ PIC(∆t) +P l
cl,cl

(∆t), l= 1, . . . ,L

Eq.(3)

(DP)

Our objective is to find the maximum allowable ∆t in each step of the state transitions

for the decomposition approach to work. The first constraint is simply the non-negativity

constraint for probability. The second constraint is the convex combination condition for

the decomposition multipliers. The third and fourth sets of constraints (from Equations

4 and 5) characterize the feasible ranges of (δm, δl), for m = 1, . . . ,M and l = 1, . . . ,L.

The last constraint ensures the state transition probability correspondences between the

decomposed and integrated model as established in Equation (3).

The value of ∆t would affect the feasible ranges of the multipliers. Since the larger the

∆t, the smaller the chance a VNF or a link component will stay in its current state, P̃m
im,im

and P̃ l
cl,cl

are non-increasing functions of ∆t. As a result, PIC is a non-increasing function

of ∆t. In any step of transition, the feasibility condition PIC ≥ 0 should hold and PIC = 0

defines an upper bound of ∆t to ensure a well-defined Markov chain transition.

Because the overall optimization involves (M +L+1) decision variables and several sets

of conditions, it may be computationally costly to find an optimal decomposition. However,

we can first solve the relaxed optimization problem based on the integrated model:

∆tmax = max
∆t

∆t

s.t. PIC(∆t)≥ 0

PIC(∆t) +

M∑
m=1

{Pm
im,im−1(∆t) +Pm

im,im+1(∆t)}+

L∑
l=1

P l
cl,cl

(∆t) = 1

(IP)

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 19

Different from (DP) in which the decomposition constraints should be satisfied and the

probability relationship between the integrated and decomposed models is maintained,

the problem (IP) only considers the integrated model. The second constraint (from Equa-

tion 1) ensures that PIC satisfies the integrated system balance equation. Because the

transition-out probabilities Pm
im,im−1, P

m
im,im+1, and P l

cl,cl
are non-decreasing functions of ∆t,

the maximum ∆t is obtained when PIC = 0. The following Theorem shows that the solution

∆tmax from the relaxed optimization problem (IP) uniquely determines the set of optimal

convex decomposition multipliers δm’s and δl’s, which constitute the optimal solution to

(DP).

Theorem 2 (Optimal Decomposition). The optimal solution ∆tmax is obtained

from the integrated model (IP) by solving PIC(∆t) = 0, which uniquely defines the set of

optimal convex decomposition multipliers in (DP):

δ∗m = Pm
im,im−1(∆tmax) +Pm

im,im+1(∆tmax),m= 1, . . . ,M, (6)

δ∗l = P l
cl,cl

(∆tmax), l= 1, . . . ,L. (7)

In addition, (∆tmax, δ∗m,δ∗l) constitutes the optimal solution to the decomposed model (DP).

Proof. Consider the relaxed optimization problem (IP). By the balance Equa-

tion (1), PIC = 1 −
∑M

m=1{Pm
im,im−1 + Pm

im,im+1} −
∑L

l=1{Pcl,cl}. Because the VNFs

and links’ transition-out probabilities are non-decreasing in ∆t, PIC is non-increasing

in ∆t. The maximum ∆t is determined by solving PIC = 0. From (4) and (5)

we see that, when PIC = 0, each decomposition multiplier’s upper bound equals

the lower bound. This is exactly the maximum allowable ∆t beyond which no

feasible decomposition strategy exists. So the optimal set of decomposition mul-

tipliers are set at these boundary values, as shown in Equations (6) and (7).

�

Theorem 1 suggests that, corresponding to every ∆t for a well-defined Markov system,

there exists a feasible set of decomposition multipliers to decompose the integrated system.

Theorem 2 further suggests that the optimal set of decomposition multipliers is uniquely

defined by the maximum allowable ∆t of the integrated Markov chain. It implies that the

same ∆tmax optimizes both the integrated model and the decomposed model’s computa-

tional performance by minimizing the total number of steps required to complete sampling

a sample path.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
20 Article submitted to INFORMS Journal on Computing

So far, we have expressed the transition probabilities in general terms. Our decomposition

strategy works for any general VM server failure and repair distribution. In the following,

we give the explicit expressions for these transition probabilities. Specifically, let λm and

µm, where m= 1, . . . ,M , be the failure and repair rates of VNF m in the integrated model.

We have:

Pm
im,im−1 = imµm∆t, (8)

Pm
im,im+1 = (nm + km− im)λm∆t. (9)

Assume link l’s failure and repair rates are λl and µl, for l = 1, . . . ,L. Then the link

transition probability is:

P l
cl,cl

= rcl∆t=

λl∆t if cl = on

µl∆t if cl = off
(10)

Based on Theorem 2 and the specifications in Equations (8)-(10), the following Corollary

determines the maximum allowable ∆t for the system-wide convex decomposition.

Corollary 1 (Computationally Efficient Decomposition Strategy). The most

computationally efficient decomposition strategy is to choose ∆tmax and the decomposition

multipliers at each step of transition as follows:

∆tmax =
1∑M

m=1[(nm + km)λm + im(µm−λm)] +
∑L

l=1 rcl
(11)

δ∗m = [(nm + km)λm + im(µm−λm)]∆tmax,m= 1, . . . ,M, (12)

δ∗l = rcl∆tmax, l= 1, . . . ,L. (13)

Proof. PIC = 1−
∑M

m=1{Pm
im,im−1 +Pm

im,im+1}−
∑L

l=1P
l
cl,cl

= 1−
∑M

m=1 ∆t[(nm +km)λm +

im(µm − λm)]−
∑L

l=1 rcl∆t. As ∆t increases, PIC decreases. The largest ∆t that ensures

the non-negative probability is determined by solving PIC = 0, which yields (11). Because

PIC = 0, the feasible ranges defined by (4) and (5) shrink to point solutions at the bound-

ary values. Substituting (11) into the lower bound expression we have (12) and (13).

�

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 21

4.2.3. Statistical Equivalence Property. Denote λ̃m, µ̃m and r̃cl as the failure/repair

rates in the decomposed model. Equations (8)-(10) state the transition-out probabilities

in the integrated model. Similarly, we have P̃m
im,im−1 = imµ̃m∆t, P̃m

im,im+1 = (nm + km −

im)λ̃m∆t, P̃ l
cl,cl

= r̃cl∆t in the decomposed model. The following Theorem establishes the

statistical equivalence between the integrated and decomposed approaches.

Theorem 3 (Statistical Equivalence Property). The decomposed model produces

statistically equivalent downtime distribution as the integrated model if the failure and repair

rates in the two models have the following relationships for m= 1, . . . ,M and l= 1, . . . ,L:
λ̃m = λm/δm

µ̃m = µm/δm

r̃cl = rcl/δl where cl = {on, off}.

(14)

Proof. First, Pm
im,im−1 = imµm∆t = δmim(µm/δm)∆t = δmimµ̃m∆t = δmP̃

m
im,im−1. Sec-

ond, Pm
im,im+1 = (nm + km − im)λm∆t = δm(nm + km − im)(λm/δm)∆t = δm(nm +

km − im)λ̃m∆t = δmP̃
m
im,im+1. Third, P l

cl,cl
= rcl∆t = δl(rcl/δl)∆t = δlr̃cl∆t = δlP̃

l
cl,cl

.

Finally,
∑M

m=1 δmP̃
m
im,im +

∑L
l=1 δlP̃

l
cl,cl

=
∑M

m=1 δm[1 − P̃m
im,im−1 − P̃m

im,im+1] +
∑L

l=1 δl[1 −

P̃ l
cl,cl

] =
∑M

m=1 δm[1 − Pm
im,im−1/δm − Pm

im,im+1/δm] +
∑L

l=1 δl[1 − P l
cl,cl

/δl] = 1 −∑M
m=1[P

m
im,im−1 + Pm

im,im+1] −
∑L

l=1 δlP
l
cl,cl

= PIC. Therefore, on expectation the

decomposed Markov chain produces the same transition probability as the inte-

grated Markov chain, as Equation (3) shows. The downtime distribution produced

by the integrated model and the decomposed model is statistically equivalent.

�

5. Algorithmic Implementation Framework

Using the integrated model as a benchmark, we develop several variations of the SPR

algorithm under convex decomposition for estimating the transient downtime distributions

of system configurations with M VNFs and L communication links. The key difference

in the different implementation strategies is in the use of the ∆t parameter in the SPR

algorithm. The first implementation uses a fixed ∆t model at each transition step of the

sample path generation, while the second uses a variable ∆t model. In the fixed ∆t model,

a fixed step size ∆tfix is used to define the time interval, so the total number of intervals is

ρmax = d T
∆tfix
e. In the variable ∆t model, the step size of each state transition is determined

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
22 Article submitted to INFORMS Journal on Computing

by the optimal solution to the problem (IP), given as ∆tmax. Thus ρmax is state dependent

and the total number of time intervals would be different for each random sample path.

In the decomposed model, we need to compute the decomposition multipliers δm’s and

δl’s. If we implement a variable ∆t decomposition, δ∗m’s, δ∗l ’s and ∆tmax are determined

as in Corollary 1. If we implement a fixed ∆t decomposition, then substituting ∆t into

Equations (12) and (13) we have feasible decomposition multipliers δm’s and δl’s determined

by their respective lower bounds in inequalities (4) and (5). Because the computation of

the decomposition multipliers takes some CPU time, we further propose a simple heuristic

that does not require such computations. Different from other model implementations

in which at most one event can occur in each step of the state transition, the heuristic

algorithm allows each network component (a VNF or link) to operate simultaneously and

independently. So multiple events can occur in some time intervals in the heuristic model.

We must carefully calibrate ∆t in this case to ensure the occurrence of multiple events is

controlled in an acceptable range, so that the heuristic would still yield consistent downtime

distribution as in the integrated and decomposed models.

The transition probabilities in each model are determined by the underlying VM fail-

ure/repair distributions and the time interval (either variable or fixed) in each transi-

tion step. Let t ∈ [0, T] denote time elapsed in the service window. The Exponential fail-

ure assumes a constant hazard rate function λm(t) = λm,m = 1, . . . ,M + L. We denote

the (M +L)-dimensional vector as λE = [λ1, . . . , λM+L]′. Weibull distribution has a time-

varying hazard rate function λW(t) = [λ1(t), . . . , λM+L(t)]′ with λm(t) = αmβ(αmt)
β−1,m=

1, . . . ,M + L, where αm > 0 is a scale parameter and β > 0 is a shape parameter. For

β = 1, the Weibull distribution yields constant failure rate αm, which gives the Exponential

distribution. For β > 1, the Weibull distribution models an increasing failure rate such as

servers “aging” over time. For β < 1, the Weibull distribution models decreasing failure

rate, which represents “infant mortality” where defective components are rectified over

time. The Erlang distribution is also defined by two parameters: the scale parameter em > 0

and the integer shape parameter γ. Its hazard rate function λR(t) = [λ1(t), . . . , λM+L(t)]′,

where λm(t) = em(emt)γ−1

(γ−1)!Sγ−1(t)
,m= 1, . . . ,M +L, and Sγ−1(t) = 1 + emt+ (emt)2

2!
+ . . .+ (emt)r−1

(γ−1)!

is the partial sum to γ terms of the Exponential series expansion of eemt. When γ=1, the

Erlang distribution yields constant failure rate em, which is the Exponential distribution.

When γ > 1, it represents the increasing failure rate.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 23

Assume the real starting time for interval ρ is tρ. Since the interval is small enough, we

assume both the failure rate and repair rate remain constant in this interval. We thus can

compute the failure rate λm(tρ),m= 1, . . . ,M +L, for the VNFs and links in time interval

ρ based on the distributional assumption. By adapting Equations (8), (9) and (10) we can

construct the transition probability in the ρth time interval.

In the integrated model implementation, the transition probability matrix P (ρ) is a single

matrix with VNF and link probabilities defined as: Pm
im,im−1(ρ) = iρmµm∆t, Pm

im,im+1(ρ) =

(nm + km− iρm)λm(tρ)∆t, for m= 1, . . . ,M ; P l
cl,cl

(ρ) = λl(tρ)∆t, if cl = {on} and P l
cl,cl

(ρ) =

µl∆t, if cl = {off}, for l = 1, . . . ,L; and PIC(ρ) = 1−
∑M

m=1{Pm
im,im−1(ρ) + Pm

im,im+1(ρ)} −∑L
l=1P

l
cl,cl

(ρ). The integrated model with M VNFs and L links has (2M +L+ 1) states.

In the decomposed model implementation, define P̃(ρ) = [P̃
1
(ρ), . . . , P̃

M+L
(ρ)]. The tran-

sition probability matrix P̃(ρ) consists of M + L independent state transition matrices.

The component probabilities P̃
m

(ρ) are defined as: P̃m
im,im−1(ρ) = iρmµ̃m∆t, P̃m

im,im+1(ρ) =

(nm + km − iρm)λ̃m(tρ)∆t and P̃m
im,im(ρ) = 1 − P̃m

im,im−1(ρ) − P̃m
im,im+1(ρ) for m = 1, . . . ,M .

The component probabilities P̃
l
(ρ) are defined as: P̃ l

cl,cl
(ρ) = λl(tρ)∆t, if cl = {on} and

P̃ l
cl,cl

(ρ) = µl∆t, if cl = {off}, for l = 1, . . . ,L. Because only one state transition vector

P̃
m

(ρ) or P̃
l
(ρ) is randomly chosen in each step, dimensionality is dramatically reduced in

the decomposed model (3 for a VNF and 2 for a link).

In the time interval ρ, define binary variables Amρ = 1,m= 1, . . . ,M , if VNF m is avail-

able, and Blρ = 1, l= 1, . . . ,L, if link l is available. Any logical combination of VNF avail-

ability on Amρ,m = 1, . . . ,M , and link availability on Blρ, l = 1, . . . ,L, can be defined as

overall system availability. We denote this as the system availability logic L. Without loss

of generality, we have assumed that all VNFs and links should be concurrently available

for the overall system to be available in our experiments, and VNF m is available in a time

interval ρ only when no more than kmVMs fail simultaneously in that time interval. Note

that any definition of availability can be used in our proposed algorithm. The network

availability logic does not affect the performance of the decomposition algorithm.

In the following, we present an integrated framework for estimating the overall tran-

sient downtime of a M -VNF, L-link system. This framework incorporates three specific

user implementation choices: Distribution type (Exponential, Weibull, Erlang), Model type

(Integrated, Decomposed, Heuristic), Step type (Fixed ∆t, Variable ∆t). Algorithm 5.1

shows the different algorithmic implementations collectively presented as a framework

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
24 Article submitted to INFORMS Journal on Computing

based on the system input parameters and user choices. Besides these, the user would also

specify the system availability logic, the initial minimum number of sample paths to be

generated and the convergence bound.

Algorithm 5.1 (Framework for estimating transient downtime of M -VNF, L-link sys-

tems)

Input:

1. System parameters: M,L,nm, km, for m= 1, . . . ,M

Repair process rates: µm, for m= 1, . . . ,M +L

For Exponential failures: λm, for m= 1, . . . ,M +L

For Weibull failures: scale parameters αm, for m= 1, . . . ,M +L; shape parameter β

For Erlang failures: scale parameters em, for m= 1, . . . ,M +L; shape parameter γ

2. User choices: System availability logic L; Step type, Model type, Distribution type,

∆tfix, initial number of sample paths S, convergence bound ε

Output: downtime distribution v̂(τ = τ ′)

Module : MAIN

Begin

For s= 1, . . . , S Do

SamplePath(s);

// will return Is

Calculate the mean of the overall system downtime v̂S(τ = τ ′) =
∑S

s=1 Is(τ
′)/S for all

τ ′;

Calculate the variance of the overall system downtime σ̂2
S(τ = τ ′) =

∑S
s=1(Is(τ

′) −

v̂S(τ = τ ′))2/(S− 1) for all τ ′;

ϕ = 0;

Repeat

SamplePath(S+1);

Calculate v̂S+1 and σ̂2
S+1;

If max
τ ′
{ |v̂S+1(τ=τ ′)−v̂S(τ=τ ′)|

v̂S(τ=τ ′)
,
|σ̂2
S+1(τ=τ ′)−σ̂2

S(τ=τ ′)|
σ̂2
S(τ=τ ′)

} ≤ ε

ϕ = 1;

Else

S→ S+ 1;

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 25

Until ϕ=1;

End

Module : SamplePath(s)

Begin

ρ = 0;

t = 0;

Initialize i0m, for m= 1, . . . ,M and c0
l for l= 1, . . . ,L;

Initialize λE, λW(0), or λR(0) based on the Distribution type;

While t < T //generate one random sample path

If Model type = integrated //select model type

If Step type = variable //select state transition type

Calculate ∆t= ∆tmax;

Else

∆t= ∆tfix;

Obtain the transition probability matrix P(ρ) based on Distribution type;

Starting from IC ρ, randomly generate a transition using P(ρ);

Let IC ρ+1 denote the resulting state vector;

ρ→ ρ+ 1;

t→ t+ ∆t;

Determine VNF and link availability related to a state transition: Amρ and Blρ;

Determine system availability using L: Iρ =L(Amρ,Blρ) = 1 if the overall system

is available; otherwise, Iρ = 0;

Calculate the system uptime in the current time interval: Iρ∆t;

If Model type = decomposed

If Step type = variable

Calculate ∆t= ∆tmax;

Else

∆t= ∆tfix;

Obtain the transition probability matrix P̃(ρ) based on Distribution type;

Derive the decomposition multipliers δm, m= 1, . . . ,M , and δl, l= 1, . . . ,L;

Using the decomposition multiplier, randomly select a VNF or link;

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
26 Article submitted to INFORMS Journal on Computing

Let m or l denote the selected VNF or link, respectively;

Starting from iρm or cρl , randomly generate a transition using P̃
m

(ρ);

Let iρ+1
m or cρ+1

l denote the resulting state;

ρ→ ρ+ 1;

t→ t+ ∆t;

Determine VNF and link availability related to a state transition: Amρ and Blρ;

Determine system availability using L: Iρ =L(Amρ,Blρ) = 1 if the overall system

is available; otherwise, Iρ = 0;

Calculate the system uptime in the current time interval: Iρ∆t;

Else // heuristic

If Step type = variable

Calculate ∆t= ∆tmax;

Else

∆t= ∆tfix;

Obtain the transition probability matrix P̃(ρ) based on Distribution type;

Starting from iρm and cρl , independently and randomly generate a transition

using P̃
m

(ρ) for m= 1, . . . ,M and l= 1, . . . ,L;

Let iρ+1
m , m= 1, . . . ,M ,and cρ+1

l , l= 1, . . . ,L denote the resulting state;

ρ→ ρ+ 1;

t→ t+ ∆t;

Determine VNF and link availability related to a state transition: Amρ and Blρ;

Determine system availability using L: Iρ =L(Amρ,Blρ) = 1 if the overall system

is available; otherwise, Iρ = 0 ;

Calculate the system uptime in the current time interval: Iρ∆t;

End While

Calculate the percentage of system downtime for a sample path τs = 1−
∑

t<T Iρ∆t/T ;

// map the actual downtime of each system sample path to discretized τ ’s as follows:

Let τ ′ denote the smallest value for which τs ≤ τ ′ to hold;

Is(τ
′) = 1;

Is(ω) = 0 for all ω 6= τ ′;

End

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 27

Our algorithmic implementation framework has several important advantages. First, it

is flexible to allow both system inputs and user-specified inputs. Second, it generalizes the

SPR algorithm for 1-VNF systems to M -VNF, L-link systems. Even though the decom-

position multipliers need to be computed in the decomposed model, once a decomposition

node is selected, the original SPR algorithm is directly applied to generate the sample path.

In the heuristic model, multiple SPR algorithms run in parallel to simultaneously generate

sample paths independent of each other. All models embed the original SPR algorithm to

solve the large-scale network problem under any general user-specified logical definition of

overall system availability. This renders this framework highly scalable and adaptable to a

wide range of availability criteria.

6. Computational Results

We conducted a comprehensive computational study of the proposed algorithmic frame-

work. We assessed two key performance metrics in this study: statistical consistency in

the downtime distributions estimated by the different algorithms and that of the bench-

mark integrated model, and the computational times involved in the estimation. We first

present our experimental design, followed by a summary of key computational results. The

online supplement provides more detailed experimental results that support the findings

presented in this section. The comprehensive numerical experiments also yield ways to

calibrate model parameters in the estimation process and perform a variety of sensitivity

analyses with them.

6.1. Experimental Design

Since communication links can be treated as a special type of VNF (a link has only two

states while a VNF can have (nm+km+1) states), for simplicity and without loss of gener-

ality, we assume links are robust and only focus on VNF failures in this main experimental

design. We further assume all VNF configurations are the same (nm = n and km = k for

m= 1, . . . ,M). We will relax this assumption and consider link failures in our algorithmic

extension in Section 7.

We experimented with three values of the number of VNFs, M = {2,5,10}, and the

number of primary VMs n = {100,500,1000} in each VNF, representing small, medium

and large sizes in the system configuration. We varied the number of backup VMs k =

{3,4, . . .19} in different configurations of M and n to cover a wide range of service avail-

ability up to 5’9s. We chose the mean time to failure MTTF = 3000 and mean time to

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
28 Article submitted to INFORMS Journal on Computing

repair MTTR = 20 based on our earlier extensive empirical studies (Du et al. 2015). So

the VM failure and repair rates are λm = 1/3000 and µm = 1/20. We normalized the service

window T = 1000 and varied the value of ∆t in our experiment, which affects the depth

parameter ρmax. In addition, the breadth parameter ε affects the number of sample paths

required for the convergence of the estimated downtime distribution. We fixed ε= 0.05 in

our experiments in order to focus on ∆t and other key model parameters on computational

performance.

We implemented our algorithms in R 3.3 (64-bit edition). An Intel(R) Core(TM) i7-4790

3.60 GHz processor equipped with 8GB of RAM was used for all experiments. We applied

the Kolmogorov-Smirnov (KS) test to the downtime distributions obtained from different

models for validation of statistical consistency.

6.2. Results

In the following discussion, starting from Exponential failure distribution, we first demon-

strate the statistical consistency between the integrated and decomposed methods. Next,

we show the superior performance of the decomposed model and the heuristic over the inte-

grated approach under different failure distributional assumptions. Finally, we summarize

our findings and discuss major insights.

6.2.1. Statistical Consistency. In this subsection, we demonstrate the statistical con-

sistency among different model implementations assuming Exponential failure distribution.

Figure 4 presents several examples to illustrate the statistical consistency among the down-

time distributions produced by the integrated model, the decomposed model, and the

heuristic based on the fixed ∆t implementation. The integrated and decomposed variable

∆t models also yield the same level of consistent distributions.

The ∆t values shown in Figure 4 were the largest ∆t under which the different methods

yield consistent distributions, which we term as the maximum allowable ∆t corresponding

to a system configuration. For example, in the case of 5 VNFs, 1000 primary VMs, and 15

backup VMs, if we run different models using ∆t≤ 0.1, the resulting distributions under

different methods can simultaneously pass the pairwise KS tests, and thereby showing

that they are statistically consistent with each other. The parameter value ∆t=0.1 gained

computational advantage than other smaller ∆t’s because the required number of steps to

generate a random sample is smaller. However, if we further increase ∆t beyond 0.1, then

not all obtained distributions could pass the pairwise KS tests.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 29

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(a) M=5,n=1000

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=10,Δt=0.2

Integrated
Decomposed
Heuristic

k=13,Δt=0.1

Integrated
Decomposed
Heuristick=15,Δt=0.1

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(b) M=10,n=1000

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=10,Δt=0.1

Integrated
Decomposed
Heuristic

k=13,Δt=0.08

Integrated
Decomposed
Heuristic

k=15,Δt=0.06

Figure 4 Statistical Consistency of Downtime Distribution under the Integrated, Decomposed and Heuristic

Models

Under the same configuration of the number of VNFs (M) and VMs (n), as the number

of backups (k) increases, both the mean and variance of the downtime distributions tend

to decrease. Other things being equal, comparing plots (a) and (b) in Figure 4, we see

that when the number of VNFs increases from 5 to 10, both the mean and variance of

the downtime distribution increase. This is intuitive as the expected downtime would be

more when the network is more complex. As a result, the maximum allowable ∆t that

guarantees statistical consistency decreases when the network becomes more complex (i.e.,

as the number of VNFs and the number of primary and backup VMs increase). Since both

∆t and the required sample size for convergence would affect computational time, we next

examine the algorithmic performance.

6.2.2. Computational Performance. In this subsection, we demonstrate the computa-

tional performance of different model implementations under different parametric settings.

The online supplement provides the complete set of experiments and detailed computa-

tional results.

Figure 5 presents a performance comparison under representative system configurations:

(n= 100, k= 5), (n= 500, k= 10), and (n= 1000, k= 15) based on the Exponential failure

distribution. Graphs for Weibull and Erlang distributions yield similar insights. They are

presented in the online supplement. We compare five model implementations: the variable

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
30 Article submitted to INFORMS Journal on Computing

∆t integrated model and decomposed model, the fixed ∆t integrated model and decom-

posed model, and the fixed ∆t heuristic. In the fixed ∆t model implementation, the CPU

time in the figure corresponds to the maximum ∆t at which statistical consistency among

all model implementations can be established based on KS tests.

0
10

0
20

0
30

0
40

0
50

0

(a) n=100,k=5

Number of VNFs

C
P

U
 T

im
e

(S
ec

on
ds

)

2 5 10

Integrated Fixed Δt
Decomposed Fixed Δt
Integrated Variable Δt
Decomposed Variable Δt
Heuristic

0
50

0
10

00
15

00
20

00
25

00

(b) n=500,k=10

Number of VNFs

C
P

U
 T

im
e

(S
ec

on
ds

)

2 5 10

Integrated Fixed Δt
Decomposed Fixed Δt
Integrated Variable Δt
Decomposed Variable Δt
Heuristic

0
20

00
40

00
60

00
80

00

(c) n=1000,k=15

Number of VNFs

C
P

U
 T

im
e

(S
ec

on
ds

)

2 5 10

Integrated Fixed Δt
Decomposed Fixed Δt
Integrated Variable Δt
Decomposed Variable Δt
Heuristic

Figure 5 Illustration of Computational Performance under Exponential Distribution

We see that the CPU time (in seconds) increases as the number of VNFs increases. In

terms of variable ∆t model and fixed ∆t model implementation, we find that the variable

∆t model implementation performs better than the fixed ∆t model when the number of

primary VMs is small or when the number of VNFs is not large. As both the number of

VNFs and VMs increase, fixed ∆t model outperforms the variable ∆t model. We believe the

main reason is that the involved computation of ∆tmax at each step of the state transition

takes some CPU time. Overall, our results suggest that the variable ∆t model outperforms

the fixed ∆t model in simple networks, but the fixed ∆t model shows superior performance

over variable ∆t model in complex networks.

In terms of integrated model and decomposed model implementation, we find that the

decomposed model consistently outperforms the integrated model. The variable ∆t decom-

posed model is preferred in small and simple networks, while the fixed ∆t decomposed

model is preferred in large and complex networks. In general, the larger the number of

VNFs, the larger the number of VMs, the higher the performance improvement. The same

insights hold for Weibull and Erlang distributions as well (see Figure 3 in the online sup-

plement).

In all cases, with careful calibration of ∆t, fixed ∆t heuristic approach achieves the

best performance among all the model implementations. As shown in the figure, the time

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 31

saving is remarkable. As the number of VNFs increases, the required computational time

under the heuristic implementation is only a fraction of the other model implementations.

Overall, we see that both the decomposition model and the heuristic implementation are

scalable to larger size systems.

6.2.3. Discussion. We have demonstrated that the proposed convex decomposition

methodology can easily be applied to commonly used failure distributions, and can be used

to quickly and accurately estimate system downtime. Regardless of the user choice of model

implementation, the computational performance is affected by key system parameters as

follows: First, under a specific configuration of (M,n,k), the computational time increases

as ∆t decreases. Second, as the number of backup VMs (k) increases, the mean downtime

decreases, and both the required number of sample paths and computational time reduce.

Finally, as the number of VNFs (M) and the number of primary VMs (n) in each VNF

increases, both the required number of sample paths and computational time increase.

In terms of model selection, when the system has small number of VNFs and small

number of primary VMs, we recommend the variable ∆t model because of its optimal

step size advantage when the feasible range of ∆t is large. In contrast, when the system

has large number of VNFs and large number of primary VMs, we recommend fixed ∆t

model because the feasible range of ∆t’s significantly reduces and the advantage of the

variable ∆t model diminishes. In the latter case, carefully calibrated heuristic outperforms

the decomposition model, which in turn outperforms the integrated model. This shows

scalability of our decomposition approach to achieve fast estimation of system downtime

in larger and complex networks.

7. Adaptations and Extensions of the Algorithmic Framework

In the previous section, we have shown that our proposed decomposition algorithm is com-

putationally efficient and can produce statistically consistent downtime distribution for a

network of VNFs where: the VNFs have the same type of failure distribution, the network

link connections are robust, and each VM is dedicated to a single VNF. In this section, we

adapt and extend our algorithmic framework to various more complex scenarios that may

arise in real world implementations. We consider three such extensions: (1) the VM failure

distributions could vary across the VNFs, (2) network link connections may not be robust,

and (3) VM sharing across different VNFs could occur in the implementation. Incorporat-

ing the specific requirements of each of these scenarios in the algorithmic framework, we

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
32 Article submitted to INFORMS Journal on Computing

carried out extensive additional computational experiments. In all these experiments, we

employed the fixed ∆t model implementation. In the following, we discuss these algorith-

mic extensions, experimental designs and key conclusions. The online supplement provides

more detailed experimental results.

7.1. Heterogeneous Failure Distributions

Incorporating different failure distributions for VNFs in the algorithmic framework is

straightforward. This only requires initializing the algorithm with the appropriate failure

distributions and their parameters for different VNFs at the input stage. The experimen-

tal design employed in this study is as follows. We experimented with 10 VNFs (M=10)

characterized by different failure distributions: Exponential (4 VNFs), Weibull (3 VNFs),

and Erlang (3 VNFs). We used the same shape parameters for the different failure distri-

butions as in the main experiment described in Section 6. For the Weibull distribution, we

considered both the decreasing failure rate (β=0.8) and increasing failure rate (β=1.2).

Similar to the main experimental design, we considered three levels of the number of pri-

mary VMs, n={100,500,1000}. Under each n specification, we varied the number of backups

k to cover a wide range of network availability up to 5’9s. In total, we experimented with 21

combinations of the (n,k) parameters. Under each of these configurations, we searched for

the range of ∆t values to ensure statistical consistency based on the Kolmogorov-Smirnov

test across the integrated model, the decomposed model and the heuristic approach. We

observe that the thresholds under different failure distributions remain in the same range

as in the model with a single failure distribution. The required CPU time is also in the

same range as in the main experiments (please refer to the online supplement for details).

Figure 6 illustrates representative cases of the downtime distribution under different model

implementations. Analogous behavior has been observed in all the experimental cases that

were investigated. This shows that our algorithm is robust and it can achieve statisti-

cal consistency and computational efficiency under both homogeneous and heterogeneous

failure distributions of VNFs.

7.2. Incorporation of Link Failures

In the main experiments described earlier, we have explicitly focused on VM failures with-

out considering link failures. In this subsection, we extend our algorithm to address the

impact of link failures on system downtime. Since VNFs may or may not need to commu-

nicate with each other, the topological structure of the network is defined by the specific

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 33

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(a) M=10,n=100 with weibull β=1.2

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=3

Integrated
Decomposed
Heuristic

k=4

Integrated
Decomposed
Heuristic

k=5

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(b) M=10,n=500 with weibull β=1.2

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=6

Integrated
Decomposed
Heuristic

k=9

Integrated
Decomposed
Heuristic

k=12

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(c) M=10,n=1000 with weibull β=1.2

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=11

Integrated
Decomposed
Heuristic

k=15

Integrated
Decomposed
Heuristic

k=19

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(d) M=10,n=100 with weibull β=0.8

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=3

Integrated
Decomposed
Heuristic

k=4

Integrated
Decomposed
Heuristic

k=5

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(e) M=10,n=500 with weibull β=0.8

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=6

Integrated
Decomposed
Heuristic

k=9

Integrated
Decomposed
Heuristic

k=12

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

(f) M=10,n=1000 with weibull β=0.8

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed
Heuristic

k=11

Integrated
Decomposed
Heuristic

k=15

Integrated
Decomposed
Heuristic

k=19

Figure 6 Illustration of Statistical Consistency of the Integrated, Decomposed and Heuristic Models

service requirement, which can be represented as a graph consisting of VNF nodes and

the required communication links connecting different VNFs. Without loss of generality,

we employed the following definition of availability in this study: the full network service

is said to be available when (1) all the VNFs are concurrently available, AND (2) the

required network connectivity is maintained. Accordingly, the system downtime at any

time interval consists of either VNF-related downtime or connectivity-related downtime, or

both. As mentioned earlier, this service definition can be generalized to any logical defini-

tion of availability as specified by a data center. To measure network connectivity, we first

construct the required reachability matrix based on the original topological structure of the

network service. Reachability is defined as the ability to reach from one VNF to another

within a graph as per the connectivity requirement. At any time, if the actual reachability

matrix and the required one are not the same, then it indicates a structural change of the

original network connectivity, which will generate connectivity-related system downtime.

To maintain network connectivity, the service provider may consider: (1) to provide

redundant links between any pair of VNFs that need to be connected (i.e., link-level

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
34 Article submitted to INFORMS Journal on Computing

backup); (2) to utilize alternative, indirect network paths for connectivity when a direct

link between two VNFs fail (i.e., path-level backup). There are two ways to extend our

original algorithm to incorporate link-level backups. One way is to explicitly treat each link

(including both the primary and backup links) as a two-state (on and off), special VNF

(n=1,k=0). In this case, link connectivity is defined by the OR relationship among the

primary and backup links connecting two communicating VNFs at the network level. The

other way is to implicitly treat the link the same as a VNF. Since there is one primary link

connecting two communicating VNFs, this link is equivalent to a (1,k) VNF design when k

backup links are provided. Similar to the node-VNF, this link-VNF incurs downtime when

more than k links fail simultaneously. These two approaches are equivalent and will yield

the same estimated downtime distribution. The path-level backups are implemented in the

algorithmic framework by using a comparison of the required reachability matrix and the

actual matrix evaluated at any time. In this case, the availability of each link is modeled

as in the link-level backup case.

For brevity and ease of presentation, we considered network configurations of

M={2,3,4,5} VNFs, respectively. Using Exponential failures, we conducted three sets of

experiments to systematically evaluate link failures in the presence of link-level and path-

level backups, respectively. We first focus on fully connected networks to demonstrate the

computational efficiency of the extended algorithm under various parameter values. We

next study partially connected networks to investigate the differential effects of link failures

and link-level/path-level backups on system downtime as the network density varies.

7.2.1. Fully Connected Networks. First, consider the 2-VNF network where no path-

level backup is available. Similar to the main experiments, we evaluated the number of

primary VMs at three levels: n={100,500,1000}. For each n specification, we varied the

number of backups k to cover a wide range of network availability up to 5’9s. In total, we

experimented with 21 distinct combinations of (n,k) values. Since the 2-VNF network does

not have any path-level backup, we considered the number of links L={1,2,3}, representing

no backup, one and two link-level backups, respectively. The link repair rate is kept at

the same level as in our main experiments (i.e., µl=µE). The link failure rate parameter

is tested at three levels: λl={λE/5, λE,5λE}, which represent fault-tolerant, moderately

fault-tolerant, and fault-prone links.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 35

As expected, the insights regarding statistical consistency and computational efficiency

continue to hold with the consideration of link failure and backups. For illustration purpose,

Figure 7 shows the downtime distributions for the (n=100, k=3) configuration with one-

link, two-links and three-links in the 2-VNF network under the different failure rates,

respectively. The downtime distribution in the main experiment without considering link

failures is used as a baseline comparison.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

(c) Two-Link Backup (L=3)

Downtime Percentage(%)

D
en

si
ty

without link
with three links and λl=λE
with three links and λl=5λE
with three links and λl=1/5λE

without link
with three links and λl=λE
with three links and λl=5λE
with three links and λl=1/5λE

without link
with three links and λl=λE
with three links and λl=5λE
with three links and λl=1/5λE

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

(b) One-Link Backup (L=2)

Downtime Percentage(%)

D
en

si
ty

without link
with two links and λl=λE
with two links and λl=5λE
with two links and λl=1/5λE

without link
with two links and λl=λE
with two links and λl=5λE
with two links and λl=1/5λE

without link
with two links and λl=λE
with two links and λl=5λE
with two links and λl=1/5λE

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

(a) No Link Backup (L=1)

Downtime Percentage(%)

D
en

si
ty

without link
with one link and λl=λE
with one link and λl=5λE
with one link and λl=1/5λE

without link
with one link and λl=λE
with one link and λl=5λE
with one link and λl=1/5λE

without link
with one link and λl=λE
with one link and λl=5λE
with one link and λl=1/5λE

Figure 7 Impact of Link-Level Backup on Downtime Distribution under Different Failure Rates

Figure 7(a) shows that a relatively fault-tolerant link (λl=λE/5) behaves close to a fully

robust link when no backup link is provided. However, as link failure rates increase (λl = λE

and λl = 5λE), the downtime increases, necessitating perhaps more than one backup link.

Figures 7(b) and 7(c) indicate that the link connection becomes increasingly robust with

more link-level backups, and perhaps a two-link backup would almost ensure full link

robustness even with fault-prone connections.

Next, consider fully connected 3-, 4-, and 5-VNF networks (i.e., M={3,4,5}). The corre-

sponding number of links is L={3,6,10}. We fixed the failure and repair rates at the same

respective levels as in the main experiments. Since these networks naturally have more

than one alternative path to connect a VNF to another VNF in the network, we did not

consider link-level backups and just focused on path-level backups in this experiment to

avoid the confounding effect. In the fully connected network, system downtime due to link

failure happens only when there is at least one VNF that has no path connection with

any of the other VNFs in the network. We observe that the maximum ∆t that guarantees

the statistical consistency across the different models is in the same range as in the main

experiments and the required CPU time for convergence is slightly higher if we incorporate

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
36 Article submitted to INFORMS Journal on Computing

link failures. Figure 8 illustrates the downtime distribution of a few typical examples when

n=1000 and k={10,12,14} with ∆t=0.1 where statistical consistency for all these exper-

imental cases was obtained. Similar results have been obtained in all other experimental

configurations.

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

(c) M=5,n=1000

Downtime Percentage(%)

D
en

si
ty

Integrated L=10
Decomposed L=10
Integrated L=0
Decomposed L=0

k=10

Integrated L=10
Decomposed L=10
Integrated L=0
Decomposed L=0

k=12

Integrated L=10
Decomposed L=10
Integrated L=0
Decomposed L=0

k=14

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

(b) M=4,n=1000

Downtime Percentage(%)

D
en

si
ty

Integrated L=6
Decomposed L=6
Integrated L=0
Decomposed L=0

k=10

Integrated L=6
Decomposed L=6
Integrated L=0
Decomposed L=0

k=12

Integrated L=6
Decomposed L=6
Integrated L=0
Decomposed L=0

k=14

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

(a) M=3,n=1000

Downtime Percentage(%)

D
en

si
ty

Integrated L=3
Decomposed L=3
Integrated L=0
Decomposed L=0

k=10

Integrated L=3
Decomposed L=3
Integrated L=0
Decomposed L=0

k=12

Integrated L=3
Decomposed L=3
Integrated L=0
Decomposed L=0k=14

Figure 8 Impact of Path-Level Backup on Downtime Distribution in Multi-VNF Networks

Figure 8 shows that there is no significant difference in the downtime distribution

between the multi-VNF network with path-level backup (i.e., L={3,6,10} for M={3,4,5}

respectively) and the network without considering link failures (i.e., L=0 as in the main

experiments). In all our experimental cases, even though individual links could be fault-

prone, the natural path-level backup in multi-VNF networks is sufficient to guarantee the

high level of path availability in most practical cases. The reason is that, the more nodes

are in the network, more alternative paths exist to yield connectivity when a link fails.

Therefore, the impact of link failures on the overall system availability is insignificant in

fully connected networks.

7.2.2. Partially Connected Networks. In the previous subsection, we demonstrate

that in fully connected networks, link failures hardly impact network availability. When

networks are partially connected, link failures and backups may affect the network avail-

ability differently as the network connectivity levels vary. For example, link-level backups

might be important in a less connected (i.e., low-density) network where not many natu-

ral path-level backups are available, and path-level backups might be sufficient in a more

connected (i.e., high-density) network without the need to provide link-level backups. We

next investigate their relationships in this experiment.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 37

Formally, network connectivity is measured by the network edge density, which is defined

as the ratio of the total number of edges in the network to the total number of possible

edges in the corresponding fully connected network (Bollobás 1998). Therefore, as network

edge density increases, the network becomes more connected. Expressing the density as a

percentage, a fully connected network has edge density of 100%. In this experiment, we

considered five levels of network edge density {20%, 40%, 60%, 80%, 100%}, two levels

of link failure rate λl={λE,5λE}, and four levels of backups {0 link-level backup, 1 link-

level backup, 2 link-level backup, and path-level backup}. In total, we had 5× 2× 4 = 40

treatments.

Under each treatment condition, we randomly generated 30 network graphs. Since the

size of the network does not affect the major qualitative insights in our pilot runs of the

experiment, we fixed M=5, n=100 and k=5 for illustration purposes. We also fixed ∆t=0.1.

We ran the algorithm to get the overall system downtime distribution of each network in

the experiment. Table 1 reports the mean and standard deviation of the mean downtime

from the estimated downtime distribution based on the 30 randomly generated networks

at different density levels.

Table 1 Mean and Standard Deviation (in brackets) of the Mean Downtime under Different Network and

Backup Configurations

λl = λE λl = 5λE
Network (Moderately Fault-Tolerant Links) (Fault-Prone Links)
Density Link-Level Backups Path-Level Link-Level Backups Path-Level

0 1 2 Backups 0 1 2 Backups
20% 0.0140

(0.0049)
0.0004
(0.0001)

0.0004
(0.0001)

0.0136
(0.0045)

0.0654
(0.0224)

0.0024
(0.0001)

0.0004
(0.0001)

0.0650
(0.0221)

40% 0.0272
(0.0055)

0.0006
(0.0001)

0.0004
(0.0001)

0.0157
(0.0091)

0.1263
(0.0223)

0.0047
(0.0007)

0.0005
(0.0000)

0.0755
(0.0410)

60% 0.0390
(0.0043)

0.0006
(0.0001)

0.0004
(0.0001)

0.0049
(0.0043)

0.1783
(0.0197)

0.0066
(0.0001)

0.0006
(0.0001)

0.0245
(0.0211)

80% 0.0525
(0.0046)

0.0007
(0.0001)

0.0003
(0.0001)

0.0011
(0.0022)

0.2316
(0.0194)

0.0085
(0.0010)

0.0007
(0.0001)

0.0042
(0.0103)

100% 0.0629
(0.0010)

0.0008
(0.0001)

0.0004
(0.0001)

0.0004
(0.0001)

0.2749
(0.0005)

0.0104
(0.0003)

0.0007
(0.0001)

0.0004
(0.0001)

Table 1 yields several interesting observations. First, consider the link-level backup strat-

egy. The mean downtime is the highest when no backups are provided and significantly

decreases when link-level backups are provided. This can be observed in both the case of

fault-tolerant and fault-prone links, and this effect of additional backups is more marked

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
38 Article submitted to INFORMS Journal on Computing

when the links are fault-prone. Similarly, the mean downtime increases with network den-

sity in all link-level backup cases studied (0, 1 and 2 backups) for both fault-tolerant

and fault-prone links. This shows that as the network connectivity increases, more links

are prone to failure, thus the effects of link failure on increasing downtime become more

significant, and consequently, the remedial effects of link-level backups also become more

significant.

Second, consider the path-level backup strategy. We observe that the mean downtime

is relatively higher in low-density than high-density networks. In particular, there is a

slight increase in the mean downtime when density is increased from 20% to 40%, and

then the downtime decreases significantly with further increase in the density. This can be

interpreted as follows. As the density increases from 20% to 40%, more links are subject

to failure and there are not enough alternative paths to compensate this by yielding the

required connectivity; as the density increases beyond 40%, more alternate paths come

into play, overriding the increased effects of link failures on overall system downtime. This

effect of path-level backup on mean downtime with increasing network density is also

corroborated by similar trends in CPU times involved. This is discussed in section 7.4.

Third, comparing the effects of link-level and path-level backups we see that, when the

network density is low (20%), the effect of path-level backup is as weak as no-backup. When

the network density is very high (100%), path-level backup is as good as providing two

or more link-level backups. Therefore, we conclude that link-level backup dominates path-

level backup when the network density is low, whereas path-level backup could dominate

link-level backup when the network density is high.

Increasing downtime not only leads to potential violation of SLA but also causes larger

sample sizes for the sample path randomization algorithm to converge; consequently, it

leads to higher CPU time to obtain statistically consistent distribution of the downtime.

The details of this observation are given in Table 11 and its following discussion in the

online supplement. Providing backups are thus very important under these situations. To

achieve high network availability (e.g., 99.9% or above), one link-level backup is sufficient

for fault-tolerant links, and two or more link-level backups are needed when links are fault-

prone. Path-level backups can only achieve high network availability when the network is

almost fully connected.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 39

Our experiments demonstrated the tradeoffs among availability, performance and cost

of backup provisioning in real data center operations. In terms of availability, link-level

backups and path-level backups are somewhat substitutable in practice. In terms of per-

formance, link-level backup may have higher quality and speed in data transfer than path-

level backups due to direct communication. However, link-level backups incur additional

resource provisioning cost while path-level backups do not. Therefore, the service provider

should tradeoff these three factors in its backup provisioning strategy, especially recog-

nizing cost savings versus potential performance degradation under path-level backup. In

general, the service provider will be able to take advantage of the naturally existing path-

level backups available in a network to guarantee high service availability under highly

connected network configurations. So, in general, there is no need to provide additional

link-level backups unless the following unlikely conditions occur: (1) the links are extremely

unreliable and the network is relatively less connected, or (2) link capacities in alternative

paths may be too limited to provide the same level of data transfer rates as available in the

direct links between VNFs. In this latter case, performance could be degraded although

downtime may not be incurred. Modeling these behaviors as part of downtime estimation is

an important area of research that is beyond our current scope. Large-scale implementation

and comprehensive investigation of the relationship between node and link failures is also

beyond the current scope of this research. We recommend these for future investigations.

In summary, network availability is affected by three broad layers of failures. The first

layer is the VM-level failures, the second layer is VNF-level failures, and the third layer

is the network-level failures which consist of either VNF-related or connectivity-related

failures. Link failures can be easily factored into the network availability logic. The overall

reachability among network components can be defined according to any network topology,

and the availability logic can be modeled based on their AND/OR relationships that define

the whole network availability. In this study, we have demonstrated link failures between

VNFs in a network of VNFs (inter-VNF links). Furthermore, it is possible to envision

connectivity among the VMs hosting a VNF and link failures among these VMs leading

to VNF-level downtime. The logic of the proposed framework can be extended to these

intra-VNF downtime characterizations and is recommended for future studies. Finally,

hierarchies of VNFs in network design comprising of VNFs such as application nodes,

communication nodes and power nodes are possible. Specializing the proposed downtime

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
40 Article submitted to INFORMS Journal on Computing

estimation framework to these architectures are important and viable avenues for future

research.

7.3. Adaptation to VM Sharing across VNFs

In this extension to the framework, we relax our original assumption that each VM inde-

pendently supports only one VNF. Accordingly, we consider the situation where a VM

can either be dedicated to a VNF or be shared by multiple VNFs. Although the impact

of shared VMs on network service availability is a complex issue that highly depends on

the network structure and design, the proposed framework can be extended to any design

configuration of VM sharing among the VNFs. For simplicity of presentation and without

loss of generality, we illustrate this framework extension by assuming that any shared VM

is fully shared by all the VNFs. Further extensions to other more complex sharing struc-

tures where a shared VM is shared by only a subset of VNFs (i.e., partial sharing) can

easily be obtained from this strategy, and we discuss this subsequently.

Consider a VNF in an M -VNF network. Denote its number of shared VMs as ns and

the number of dedicated VMs as nd. So the number of primary VMs that support the VNF

is n= ns +nd. Without loss of generality, we assume all backup VMs are dedicated VMs,

and each VNF is supported by n primary VMs and k backups. Recall that all the VMs

supporting a VNF are dedicated in the original framework described earlier. Therefore, in

the original framework, the state space of the Markov chain in the integrated model is given

by iI = 0,1, . . . ,M(n+ k), and we maintain a separate Markov chain im = 0,1, . . . , (n+ k)

for each VNF m in the decomposed model. In the extended framework, since a proportion

of VMs are fully shared by all VNFs while the rest are dedicated to specific VNFs, the

state space of the integrated Markov chain is smaller than that of the original model:

iI = 0,1, . . . , ns +M(nd + k). In the decomposed model, we still main a separate Markov

chain for each VNF with its dedicated VMs. The state space of the dedicated chain is

therefore idm = 0,1, . . . , (nd + k), where the superscript on idm is used to indicate that the

VMs are all dedicated. Compared with the original decomposed chain, this chain becomes

shorter because nd <n. In addition, we add a new Markov chain for the shared VMs. The

state space of the shared chain is is = 0,1, . . . , ns. The current state for VNF m is thus

determined by the shared and dedicated VM nodes as im = is + idm. Similar to the original

framework, im determines if VNF m is up or down at any given time, and the overall

system is considered to be down if at least one VNF is down at that time.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 41

The implementation of this extension to incorporate VM sharing in the decomposition

algorithm is straightforward. We simply treat the Markov chain associated with the shared

VMs as an additional VNF chain. Hence, there are (M + 1) decomposed Markov chains in

this extension. The decomposition multipliers can be computed in exactly the same way

as in the original model.

The design of the computational experiments with this extension is as follows. We per-

formed experiments based on the 2-, 5-, and 10-VNF structures (i.e., M={2,5,10}). Similar

to the original experiments and without loss of generality, we assumed Exponential failures

for the VMs. The number of primary VMs was evaluated at three levels: n={100,500,1000},

For each n specification, we varied the number of backups k to cover a wide range of

network availability up to 5’9s, resulting in 21 combinations of the (n,k) parameters. In

addition, we varied the proportion of VM sharing in a VNF at three levels of the number

of primary VMs, ns = {20%n,50%n,80%n}, representing low, medium, and high levels of

sharing. In total, we evaluated (3× 21× 3) = 189 experimental configurations. All experi-

ments show that the extended algorithm produces statistically consistent downtime distri-

butions between the integrated and decomposed models, and is computationally efficient.

Figure 9 presents three examples using M=10 to illustrate the effects of changing level of

VM sharing on the system downtime distributions. Similar behaviors have been observed

across all experiments.

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

(a) M=10,n=100,k=3

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed

Percentage of Shared VMs

0%
20%

50%

80%

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

(b) M=10,n=500,k=7

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed

Percentage of Shared VMs

0%20%50%
80%

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

(c) M=10,n=1000,k=12

Downtime Percentage(%)

D
en

si
ty

Integrated
Decomposed

Percentage of Shared VMs

0%20%50%
80%

Figure 9 Effects of VM Sharing on Downtime Distribution

We see that both the mean downtime and the variance decrease as the percentage of

VM sharing increases. Intuitively, this is because we define the network availability as the

concurrent availability of all the VNFs. Accordingly, since the overall network is down if

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
42 Article submitted to INFORMS Journal on Computing

any VNF is down, and a VM failure of a critical VNF (i.e., a VNF that has exactly n

VMs working just before the failure event) would cause the overall network to be down, a

shared VM failure has the same effect as a dedicated VM failure on the availability of the

critical VNF. However, a shared VM repair contributes to availability of all VNFs, which

advances the number of available VMs by 1 to all the VNFs. As a result, the repair of

a shared VM is more beneficial to the overall network availability than a dedicated VM

repair. Therefore, the collective benefit of a shared VM repair is higher than the cost of

shared VM failure. Consequently, the network availability increases when the percentage

of VM sharing increases.

As noted earlier, the case of fully shared VMs is easily implemented by simply adding

one additional Markov chain for the shared VMs in which the changes of state would affect

all VNFs. However, in the case of partial sharing, we need to treat each shared VM as

a separate Markov chain in the decomposition process; in this situation, the changes of

state would affect only the associated VNFs that share that VM. Our algorithm is easily

scalable by adding more Markov chains based on the sharing structures.

In summary, we have shown in these extensions that: (1) our algorithm can easily be

adapted to different failure distributions, (2) can easily incorporate link failures and net-

work structures, and (3) can consider different levels of VM sharing across VNFs. Impor-

tantly, we demonstrate that statistical consistency can be obtained in all these cases and

the computational load for both the integrated model and decomposed model under the

extended framework are in similar range as in the main experiments. These additional

experiments further demonstrate that the proposed algorithmic framework is not only

scalable, adaptable and computationally efficient, but also easily extensible to the several

practical system requirements and modifications studied.

7.4. Computational Performance

In this subsection, we demonstrate the computational performance of our extended algo-

rithms. Figure 10 comprising of plots (a)-(f) presents a performance comparison of the

integrated model and the decomposed model under the three model extensions studied.

The online supplement provides the detailed computational results.

Under heterogeneous failure distributions, plot (a) shows that the CPU time (in seconds)

increases as the number of primary and backup VMs increases. The required computational

times incorporating the increasing Weibull failure rate (i.e., β=1.2) are relatively higher

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 43

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

(b) Link-Level Backups (Moderately Fault-Tolerant)

Network Density Percentage(%)

C
P

U
 T

im
e

(S
ec

on
ds

)

Integrated, no link backup
Decomposed, no link backup
Integrated, one-link backup
Decomposed, one-link backup
Integrated, two-link backup
Decomposed, two-link backup

0 20 40 60 80 100

0
50

00
10

00
0

15
00

0

(d) Link-Level Backups (Fault-Prone)

Network Density Percentage(%)

C
P

U
 T

im
e

(S
ec

on
ds

)

Integrated, no link backup
Decomposed, no link backup
Integrated, one-link backup
Decomposed, one-link backup
Integrated, two-link backup
Decomposed, two-link backup

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00
50

00
(e) Path-Level Backups (Fault-Prone)

Network Density Percentage(%)

C
P

U
 T

im
e

(S
ec

on
ds

)

Integrated
Decomposed

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

(c) Path-Level Backups (Moderately Fault-Tolerant)

Network Density Percentage(%)

C
P

U
 T

im
e

(S
ec

on
ds

)

Integrated
Decomposed

0
20

0
40

0
60

0
80

0

(f) VM Sharing for n=1000,k=15

VM Sharing Percentage(%)

C
P

U
 T

im
e

(S
ec

on
ds

)

0 20 50 80

Integrated, 2 VNFs
Decomposed, 2 VNFs
Integrated, 5 VNFs
Decomposed, 5 VNFs
Integrated, 10 VNFs
Decomposed, 10 VNFs

0
50

00
15

00
0

25
00

0
(a) Heterogeneous Failure Distribution

(Number of VMs, Number of Backups)

C
P

U
 T

im
e

(S
ec

on
ds

)

(100,5) (500,10) (1000,15)

Integrated, weibull β=0.8
Decomposed, weibull β=0.8
Integrated, weibull β=1.2
Decomposed, weibull β=1.2

Figure 10 Illustration of Computational Performance for the Extended Algorithms

than the decreasing Weibull failure rate (i.e., β=0.8). Overall, the decomposed model has

achieved an average of 45.4% time saving than the integrated model in all our experimental

configurations under heterogeneous failure distributions. The CPU time savings of the

decomposed model over the integrated model increases with the complexity of the system

configuration.

Plots (b)-(e) illustrate the impacts of link failures on computational performance of

the proposed algorithm. We considered the impact on three dimensions: link reliability

(moderately fault-tolerant, fault-prone), network density (0%-100%), and type of backups

(link, path). For moderately fault-tolerant links, plots (b) and (c) show that the CPU

time generally increases with the number of backup links and the network density. In

contrast, the effects are more significant and non-monotonic for fault-prone links. For link-

level backup, we observe significantly higher CPU time when there is no link-level backups

than otherwise (see plot (d)). For path-level backup, we observe that the CPU time first

increases significantly as the network density increases, but then decreases significantly

after a level (see plot (e)). The main reason for the initial increase in computational load

would be due to the increase in the number of unreliable links that would incur significant

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
44 Article submitted to INFORMS Journal on Computing

system downtime, leading to greater CPU time for estimation; similarly, the decrease in

CPU time beyond reaching a level of network density would be due to the stabilizing effect

of the additional path-level backups available on the overall system downtime. Overall,

the decomposed model has achieved an average of 43.5% time saving than the integrated

model in the extended algorithm incorporating link failures.

Finally, plot (f) shows the effect of VM sharing on computational performance. The

CPU time increases in the number of VNFs but does not seem to be significantly affected

by the percentage of VM sharing. Overall, the decomposed model has achieved an average

of 55.5% time saving than the integrated model under all our experimental configurations

when considering VM sharing. The performance gain of the decomposed model over the

integrated model increases with the complexity of the system configurations.

In summary, our proposed decomposition strategy is robust, both in terms of algorithm

design and computational performance, to handle various types of model extensions. All

our experimental results strongly demonstrate a consistently superior performance of the

decomposition strategy over the integrated modeling approach.

8. Conclusion

In this study, we define and measure network service availability in virtual infrastructures

consisting of a number of VNFs and communication links. We have proposed a convex

decomposition framework to estimate the transient downtime under different system con-

figurations and failure distributions. We first theoretically show the statistical consistency

between the proposed convex decomposition method and the integrated model. We then

empirically demonstrate the computational efficiency of the decomposition approach over

the integrated method. We find the computational time increases in the number of VNFs

and the number of primary VMs, and decreases in the number of backup VMs. As the

system becomes more complex, the heuristic and decomposition models show superior

performance over the integrated approach, especially under the fixed ∆t implementation.

In addition to computational efficiency, the proposed decomposition strategy has several

other important advantages. First, due to the decomposable structure and low dimension-

ality, our algorithm is highly scalable to solve large network problems. Second, because

each system component independently generates its own sample path, the sample paths

generated by the decomposed approach are reusable for other logical definitions of network

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 45

availability. The modular structure enables the existing network model to be reused as

building blocks for more complex services. Finally, the proposed decomposition framework

is adaptable and generalizable to accommodate various practical system requirements such

as heterogeneous failure distributions, VM sharing across VNFs, networks with various

degrees of connectivity, and hierarchical network structures. Although we only demon-

strate our proposed methods at the virtual server nodes level, we can easily add other

types of nodes such as power nodes and switch nodes because the network dependence

and independence can be modeled as AND/OR logical relationships, respectively. Logical

definition of network availability can be adapted based on different network topologies.

Because of the above advantages of the proposed framework, especially the scalability

and computational efficiency of the decomposed approach, we provide practical solutions

to the cloud service providers to quickly estimate downtime distribution, enabling them

to optimize resource utilization on the fly. Cloud resource management requires policies

and decisions that minimize the cost of providing services at guaranteed level of system

performance. Due to the low computational cost, our algorithms can be run frequently to

estimate the network downtime distribution in real time. The service provider may dynam-

ically adjust the allocation of backup resources to minimize the estimated expected backup

resource provisioning cost and the contract violation penalty cost. Given the cloud ser-

vice provider’s dynamic resource management capability, optimizing SLA contract design

would be an interesting future research direction.

Acknowledgments

We sincerely thank the Area Editor, the Associate Editor, and the reviewers for their many helpful suggestions

which greatly contributed to this research. Jin Li is the corresponding author and would like to thank the

support from the National Natural Science Foundation of China [No. 71771184].

Appendix. Notation Table

Notation Definition
M Total number of VNFs
L Total number of communication links
nm The number of primary VMs required by the mth VNF, m= 1, . . . ,M
km The number of backup VMs for the mth VNF, m= 1, . . . ,M

im = {0, . . . , nm + km}
Current state of VNF m (the number of failed VMs in the mth VNF), m=
1, . . . ,M

cl = {on, off} Current state of communication link l (either on or off) , l= 1, . . . ,L

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
46 Article submitted to INFORMS Journal on Computing

Notation Definition
cl Opposite state of cl, l= 1, . . . ,L
IC= [i1, . . . , iM , c1, . . . , cL]′ The current (M +L)-dimensional vector of the system states

µm = 1
MTTRm

Component m’s repair rate under Exponential, Weibull and Erlang distribu-
tion, m= 1, . . . ,M +L

λm = 1
MTTFm

Component m’s failure rate under Exponential distribution, m= 1, . . . ,M+L

λm(t)
Component m’s failure rate at time t under Weibull and Erlang distribution,
m= 1, . . . ,M +L

αm, β Scale and shape parameters in Weibull distribution, m= 1, . . . ,M +L
em, γ Scale and shape parameters in Erlang distribution, m= 1, . . . ,M +L
rcl Link l’s failure (or repair) rate when the state is cl = {on, off}, l= 1, . . . ,L

δm, δl
The VNF and link’s convex decomposition multiplier, m= 1, . . . ,M and l=
1, . . . ,L

PIC
Probability of remaining in the same state in the integrated Markov chain
model

Pm
im,im−1

State transition probability that VNF m repairs one server in the integrated
Markov chain, m= 1, . . . ,M

Pm
im,im+1

State transition probability that VNF m fails one server in the integrated
Markov chain, m= 1, . . . ,M

P l
cl,cl

Probability that link l transits out of state cl in the integrated Markov chain,
l= 1, . . . ,L

P̃m
im,im+1

State transition probability that VNF m fails one server in the decomposed
Markov chain, m= 1, . . . ,M

P̃m
im,im−1

State transition probability that VNF m repairs one server in the decomposed
Markov chain, m= 1, . . . ,M

P̃m
im,im

Probability that VNF m remains in the same state in the decomposed Markov
chain, m= 1, . . . ,M

P̃ l
cl,cl

Probability that link l transits out of state cl in the decomposed Markov
chain, l= 1, . . . ,L

T Service window
t∈ [0, T] Real time of the system within the service window

∆t= {∆tfix,∆tmax}
Step size in the Markov chain state transition when generating a random
sample path

ρ= {1, . . . , ρmax}
Index of time intervals in the service window T , where ρmax is the total
number of steps to complete a sample path (the depth parameter)

ε Convergence threshold for sample path generation (the breadth parameter)
S Total number of sample paths (sample size)
ds A random sample path corresponding to the sth generation, s= 1, . . . , S
Amρ Binary variable indicating VNF availability in the ρth time interval
Blρ Binary variable indicating link availability in the ρth time interval

Iρ =L(Amρ,Blρ)
Binary variable indicating network availability based on system availability
logic L in the ρth time interval.

τs = 1−
∑

(t<T) Iρ∆t/T Percentage of time the network is down for sample path s, s= 1, . . . , S

References

Bollobás B (1998) Modern Graph Theory (Springer).

Buyya R, Garg SK, Calheiros RN (2011) SLA-oriented resource provisioning for cloud computing: Challenges,

architecture, and solutions. IEEE International Conference on Cloud and Service Computing (CSC),

1–10.

Chowdhury NMK, Boutaba R (2010) A survey of network virtualization. Computer Networks 54(5):862–876.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
Article submitted to INFORMS Journal on Computing 47

Du AY, Das S, Yang Z, Qiao C, Ramesh R (2015) Predicting transient downtime in virtual server systems:

An efficient sample path randomization approach. IEEE Transactions on Computers 64(12):3541–3554.

ETSI (2013a) Network functions virtualisation NFV: Architectural framework. Technical report, ETSI Indus-

try Specification Group.

ETSI (2013b) Network functions virtualisation NFV: Use cases. Technical report, ETSI Industry Specification

Group.

ETSI (2014) Network function virtualization NFV: Management and orchestration. Technical report, ETSI

Industry Specification Group.

Fu S (2010) Failure-aware resource management for high-availability computing clusters with distributed

virtual machines. Journal of Parallel and Distributed Computing 70(4):384–393.

Gill P, Jain N, Nagappan N (2011) Understanding network failures in data centers: measurement, analysis,

and implications 41(4):350–361.

Han B, Gopalakrishnan V, Ji L, Lee S (2015) Network function virtualization: Challenges and opportunities

for innovations. IEEE Communications Magazine 53(2):90–97.

IHS (2015) NFV hardware, software and services report. Technical report, Infonetics.

Kaczynski WH, Leemis LM, Drew JH (2012) Transient queueing analysis. INFORMS Journal on Computing

24(1):10–28.

Lu P, Ravindran B, Kim C (2012) VPC: Scalable, low downtime checkpointing for virtual clusters. IEEE 24th

International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD),

203–210.

Machida F, Kawato M, Maeno Y (2010) Redundant virtual machine placement for fault-tolerant consolidated

server clusters. IEEE Network Operations and Management Symposium (NOMS), 32–39.

Martini B, Paganelli F (2016) A service-oriented approach for dynamic chaining of virtual network functions

over multi-provider software-defined networks. Future Internet 8(2):24.

Mijumbi R, Serrat J, Gorricho JL, Bouten N, De Turck F, Boutaba R (2016) Network function virtualization:

State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials 18(1):236–262.

Mu S, Su M, Gao P, Wu Y, Li K, Zomaya AY (2015) Cloud storage over multiple data centers. Handbook

on Data Centers, 691–725 (Springer).

Parpas P, Ustun B, Webster M, Tran Q (2015) Importance sampling in stochastic programming: A Markov

chain Monte Carlo approach. INFORMS Journal on Computing 27(2):358–377.

Passacantando M, Ardagna D, Savi A (2016) Service provisioning problem in cloud and multi-cloud systems.

INFORMS Journal on Computing 28(2):265–277.

Raad P, Secci S, Phung DC, Cianfrani A, Gallard P, Pujolle G (2014) Achieving sub-second downtimes in

large-scale virtual machine migrations with LISP. IEEE Transactions on Network and Service Man-

agement 11(2):133–143.

Guo, Li, and Ramesh: Efficient Estimation of Transient Downtime in Virtual Infrastructures
48 Article submitted to INFORMS Journal on Computing

Sharkh MA, Jammal M, Shami A, Ouda A (2013) Resource allocation in a network-based cloud computing

environment: design challenges. IEEE Communications Magazine 51(11):46–52.

Siewiorek DP, Swarz RS (2017) Reliable computer systems: design and evaluation (Digital Press).

Silva E, Gail H (1986) Calculating cumulative operational time distributions of repairable computer systems.

IEEE Transactions on Computers 35(4):322–332.

Silva E, Gail H (1989) Calculating availability and performability measures of repairable computer systems

using randomization. Journal of the ACM 36(1):171–193.

Sun C, Bi J, Zheng Z, Hu H (2016) SLA-NFV: an SLA-aware high performance framework for network

function virtualization. Proceedings of the 2016 conference on ACM SIGCOMM, 581–582 (ACM).

Xiao A, Wang Y, Meng L, Qiu X, Li W (2013) Topology-aware remapping to survive virtual networks

against substrate node failures. IEEE 15th Asia-Pacific Network Operations and Management Sympo-

sium (APNOMS), 1–6.

Yang Y, Zhang Y, Wang AH, Yu M, Zang W, Liu P, Jajodia S (2013) Quantitative survivability evaluation

of three virtual machine-based server architectures. Journal of Network and Computer Applications

36(2):781–790.

Yu H, Anand V, Qiao C (2012) Virtual infrastructure design for surviving physical link failures. The Computer

Journal 55(8):965–978.

Yu H, Anand V, Qiao C, Sun G (2011) Cost efficient design of survivable virtual infrastructure to recover

from facility node failures. IEEE International Conference on Communications (ICC), 1–6.

Yu H, Qiao C, Anand V, Liu X, Di H, Sun G (2010) Survivable virtual infrastructure mapping in a federated

computing and networking system under single regional failures. IEEE Global Telecommunications

Conference (GLOBECOM), 1–6.

Yuan S, Das S, Ramesh R, Qiao C (2014) Availability-aware resource provisioning, pricing, and allocation

adjustment in the cloud. Conference on Information Systems and Technology, San Francisco, CA.

	Scalable, adaptable and fast estimation of transient downtime in virtual infrastructures using convex decomposition and sample path randomization
	Citation

	tmp.1603686173.pdf.FYiQ9

