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a b s t r a c t 

Attribute-based encryption (ABE) provides a promising solution for enabling scalable ac- 

cess control over encrypted data stored in the untrusted servers (e.g., cloud) due to its 

ability to perform data encryption and decryption defined over descriptive attributes. In 

order to bind different com ponents which correspond to different attributes in a user’s 

attribute-based decryption key together, key randomization technique has been applied in 

most existing ABE schemes. This randomization method, however, also empowers a user 

the capability of regenerating a newly randomized decryption key over a subset of the at- 

tributes associated with the original decryption key. Because key randomization breaks the 

linkage between this newly generated key and the original key, a malicious user could leak 

the new decryption key to others without taking any responsibility for the key abuse. To 

solve this problem, we think of key regeneration-free ABE to disallow a user from random- 

izing his/her decryption key in any manner, i.e., a user can only delegate his/her decryption 

key in exactly the same form without any modification so that any abused or pirated key 

can be traced back to its original owner. Motivated by strongly unforgeable signature, we 

first define a security notion called strong key unforgeability, and show that ABE schemes 

equipped with the strong key unforgeability are immune to key regeneration. We then 

provide a generic transformation to convert ciphertext-policy ABE (CP-ABE) schemes of 

certain type to key regeneration-free CP-ABE schemes, and show how the transformation 

works by presenting two concrete constructions. 

© 2019 Published by Elsevier Inc. 

1. Introduction 

Cloud computing allows data owners with limited resources to outsource data storage and processing to the cloud where 

massive storage and computational capacities are available. Since cloud service providers are usually commercial enterprises 

which are in different trust domains from data owners, data security and privacy in the cloud has received growing atten- 

tion in both the academic and the public. A promising solution for data protection in the untrusted cloud server is using 

encryption, i.e., data owners encrypt the data and upload the ciphertexts to the cloud. 
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Fig. 1. A system architecture for accessing EMRs using CP-ABE. 

In a traditional public-key encryption scheme, encrypted data is targeted for decryption by a single user, so they lack 

the expressiveness needed for the advanced data sharing. Attribute-based encryption (ABE) [1] is a one-to-many public-key 

encryption technique with the ability to perform data encryption and decryption defined over some descriptive attributes. 

It has two complementary forms [2] : Ciphertext-policy ABE (CP-ABE) where attributes (or credentials) are associated with 

user’s decryption keys and access policies (or access structures) over these attributes are attached to ciphertexts, and key- 

policy ABE (KP-ABE) where attributes are used to annotate ciphertexts and access policies over these attributes are ascribed 

to users’ decryption keys. In both CP-ABE and KP-ABE, decryption is possible if and only if the attributes satisfy the cor- 

responding access structure. While it is possible to transform one type into the other, CP-ABE appears more aligned with 

the setting of access control to the encrypted data in the cloud where data owners directly specify access policies under 

which the encrypted data can be decrypted. In reality, users’ access privileges are often granted based on their functional 

roles in an organization, where a role can be specified by a set of attributes. Concerning this fact, CP-ABE enables access 

control over the encrypted data with respect to the functional roles, rather than the usual concept of individuals inherent in 

the normal public-key encryption. An illustrative system architecture for accessing the encrypted electronic medical records 

(EMRs) using CP-ABE is shown in Fig. 1 , in which a data owner encrypts an EMR using the encryption algorithm of a CP-ABE 

scheme, and then uploads the ciphertext together with the access policy to the cloud. The access policy requires that only 

“Scientist” at “Life Institute” or “Cardiologist” at “General Hospital” can decrypt the ciphertext and get access to the EMR. 

During the rest of the paper, we will focus on CP-ABE systems unless otherwise stated explicitly. 

In a CP-ABE scheme, the decryption keys are defined over a set of attributes shared by multiple users to implement effi- 

cient one-to-many encryption, i.e., a data owner can decide who are privileged recipients by encrypting a piece of data with 

an access policy over attributes rather than exactly specifying each individual receiver. The key challenge in constructing 

an ABE scheme is to make the decryption keys collusion resistant such that if multiple users collude with each other, they 

are not able to decrypt a ciphertext if none of them could decrypt this ciphertext using their own decryption keys. In prior 

ABE schemes, this problem has been addressed by the key randomization technique which binds various components (each 

corresponding to a different attribute) of a user’s decryption key using the randomness. Key randomization, however, also 

equips a user with the capability of key regeneration such that a user possessing a decryption key over an attribute set A 

is able to create a new decryption key for an attribute set A 
′ ⊆ A . Users with ill intentions might be reluctant to share their 

original decryption keys with others, but they would be fearless to hand out piratical decryption keys different from their 

original keys, since re-randomization during key regeneration breaks the linkage between the new and the original decryp- 

tion keys. Take the system in Fig. 1 as an instance, in which a user Alice has a decryption key corresponding to her attribute 

set A = {General Hospital, Cardiologist, Life Institute, Scientist}. Using the key randomization, Alice could regenerate a new 

decryption key for the attribute subset A 
′ = {Life Institute, Scientist} and sell this key to an insurance company for finan- 

cial benefits without being traced. To overcome this inherent drawback of the key regeneration in ABE schemes, security 

notions such as traceability [3,4] and accountability [5,6] have been introduced, where a user’s identification information 

is bound to the attribute-based decryption key such that the user’s identity will be exposed from an input decryption key. 

This approach efficiently deters malicious users from sharing their decryption privileges, because they will confront the risk 

of being caught when committing adversarial key delegations. However, to the best of our knowledge, there are two lim- 

itations in prior constructions (e.g., [3–9] ). First, they are built on the basis of some specific schemes and second, most 

of them conquer the issue of key abuse or regeneration in ABE at the price of the user privacy, since a user’s identity or 

private information will be revealed in order to make a user accountable. In other words, on behalf of the individual pri- 

vacy, the existing approach of using the identifier de facto deters users from regenerating their decryption keys. With these 

two limitations in mind, we ask the question: is it possible to provide an efficient and generic methodology to construct 



H. Cui, R.H. Deng and B. Qin et al. / Information Sciences 517 (2020) 217–229 219 

ABE schemes in which key regeneration is computationally infeasible? In this paper, we give an affirmative answer to this 

question. 

1.1. Our contributions 

The security requirement of indistinguishability in CP-ABE implies that an adversary, who is given a series of decryption 

keys associated with a range of attribute sets of its choice, is not able to produce a new decryption key for an attribute 

set matching some access structure which cannot be satisfied by those previously queried sets of attributes. We refer to 

this property of CP-ABE as key unforgeability . For any standard CP-ABE scheme that is indistinguishably secure, it is easy 

to conclude that this scheme is endowed with the property of key unforgeability. However, such a scheme enables a user 

possessing a decryption key over an attribute set A to regenerate a newly randomized decryption key over a subset of 

attributes A , which could be abused by users to gain financial profits from selling their keys. 

To solve the problem, in this paper, we come up with key regeneration-free CP-ABE . Different from CP-ABE, key 

regeneration-free CP-ABE disallows a user to randomize or regenerate his/her decryption key in any manner. In key 

regeneration-free CP-ABE, key delegation is immutable and all-or-nothing. That is, a user can only delegate the decryp- 

tion key in exactly the original form without any modification. From a technical point of view, we regard the decryption key 

generation algorithm run by an attribute authority (AA) as a signature scheme without verification, and view a decryption 

key as a signature signed by the AA over a set of attributes. Thus, the key regeneration-freeness in CP-ABE, which we call 

strong key unforgeability , resembles the notion of strong unforgeability for a signature scheme. Based on this observation and 

motivated by the technique of constructing strongly unforgeable signature schemes 1 in [11] , we detail how to build efficient 

key regeneration-free CP-ABE schemes. Specifically, our contributions in this paper are threefold. First, we explore and de- 

fine security properties that a key regeneration-free CP-ABE scheme must satisfy. Then, we introduce a generic construction 

to convert standard CP-ABE schemes into key regeneration-free CP-ABE schemes. Finally, we apply this generic approach to 

construct two concrete key regeneration-free CP-ABE schemes supporting expressive access structures. We also show that 

our construction is very efficient and can be applied to support CP-ABE with white-box traceability [3] without incurring 

much additional computational costs. 

1.2. Related work 

Attribute-based encryption. Sahai and Waters [1] first introduced the notion of attribute-based encryption (ABE), and 

then Goyal et al. formulated KP-ABE and CP-ABE as two complimentary forms of ABE [2] . The first KP-ABE construction given 

in [2] realized the monotonic access structures for key policies, and the first KP-ABE system that supports the expression 

of non-monotone formulas was presented in [12] to enable more viable access policies. Bethencourt, Sahai and Waters 

[13] proposed the first CP-ABE construction secure under the generic group model. Cheung and Newport [14] presented a CP- 

ABE scheme that is proved to be secure under the standard model, but it only supports the AND access structures. A CP-ABE 

system under more advanced access structures was proposed by Goyal et al. [15] based on the number theoretic assumption. 

The problem of key regeneration in ABE is also known as key cloning [7] , malicious key delegation [3,9] or key abuse [5] . To 

deal with this problem, various ABE schemes such as ABE with key cloning protection [7] , accountable ABE [5,6] , traceable 

ABE [3,4,8] and key regeneration free ABE [9] have been put forward with concrete constructions. Specifically, the KP-ABE 

scheme in [4] achieves black-box traceability, the CP-ABE schemes in [5–7,9] only support ciphertext-policies using AND 

gate, the CP-ABE in [3] supports any monotone access structure but it is secure over a composite-order group, and the CP- 

ABE scheme in [8] is over the prime-order group but is built on the basis of [16] rather than a general construction. Notice 

that the CP-ABE scheme given in [9] also solved the key abuse problem by disabling the key regeneration capability, but 

the proposed scheme in [9] is a concrete construction and only supports access policies expressed in AND gates, while the 

construction given in the paper is a generic one. 

Strong unforgeability . Strong unforgeability [17] is a useful notion for building chosen-ciphertext secure encryption sys- 

tems [18] as well as group signatures [19] . In the random oracle model, schemes based on the full domain hash [20–22] and 

several other methods [20,23,24] are strongly unforgeable. Also, there are several constructions [25–28] which are strongly 

unforgeable without random oracles but depend on relatively strong assumptions. Tree-based signatures [29–34] can be 

proven strongly unforgeable without random oracles and based on standard assumptions, but they are less efficient than 

the strongly unforgeable scheme in [11] , which is a generic transformation without random oracles based on the standard 

computational Diffie–Hellman problem in bilinear groups. 

1.3. Organization 

The remainder of this paper is organized as follows. In Section 2 , we briefly review some of the notions and defini- 

tions to be used in the paper. In Section 3 , after presenting the system framework, we define the security model of key 

1 It may be suggested to append a strongly unforgeable signature on the attribute-based decryption key to obtain key regeneration-free ABE, but signa- 
ture schemes in the standard model still have their price [10] in the performance. 
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regeneration-free CP-ABE in terms of ciphertext indistinguishability and strong key unforgeability. In Section 4 , we present 

a generic approach to transform a standard CP-ABE scheme to a key regeneration-free CP-ABE scheme and formally prove 

its security. We give two instantiations of key regeneration-free CP-ABE in Section 5 , and compare them with other existing 

constructions in Section 6 . We conclude the paper in Section 7 . 

2. Preliminaries 

In this section, we review some basic cryptographic notions and definitions that are to be used in this paper. 

2.1. Bilinear pairings and complexity assumptions 

Let G be a group of a prime order p with a generator g . We define ˆ e : G × G → G 1 to be a bilinear map if it has the 

following properties [35] : 

1. Bilinear: for all g ∈ G , and a, b ∈ Z p , we have ˆ e (g a , g b ) = ˆ e (g, g) ab . 

2. Non-degenerate: ˆ e (g, g) � = 1 . 

We say that G is a bilinear group if the group operation in G is efficiently computable and there exists a group G 1 and 

an efficiently computable bilinear map ˆ e : G × G → G 1 as above. 

Computational DL. The computational discrete log (DL) problem is that for any probabilistic polynomial-time (PPT) al- 

gorithm, it is difficult to compute a given ( g, g a ), where g ∈ G, a ∈ Z p are chosen independently and uniformly at random. 

Decisional parallel BDHE. The decisional q -parallel bilinear Diffie–Hellman exponent (BDHE) problem is that for any PPT 

algorithm, given 
−→ 
y = 

g, g s , g a , . . . , g a 
q 
, g a 

q +2 
, . . . , g a 

2 q 
, 

∀ 1 ≤ j ≤ q g s ·b j , g a/b j , . . . , g a q /b j , g a 
q +2 /b j , . . . , g a 

2 q /b j , 

∀ 1 ≤ j, k ≤ q, k � = j g a ·s ·b k /b j , . . . , g a 
q ·s ·b k /b j , 

it is difficult to distinguish ( 
−→ 
y , ˆ e (g, g) a 

q +1 s ) from ( 
−→ 
y , Z ), where g ∈ G, Z ∈ G 1 , a, s, b 1 , . . . , b q ∈ Z p are chosen independently 

and uniformly at random. 

There is also a variant of the decisional q -parallel BDHE assumption, which is called the (q − 1) assumption. The (q − 1) 

problem is that for any PPT algorithm, given 
−→ 
y = 

g, g s , 

g a 
i 
, g b j , g s ·b j , g a 

i b j , g a 
i /b 2 

j ∀ (i, j) ∈ [ q, q ] , 

g a 
i /b j ∀ (i, j) ∈ [2 q, q ] with i � = q + 1 , 

g 
a i b j /b 2 

j ′ ∀ (i, j, j ′ ) ∈ [2 q, q, q ] with j � = j ′ , 
g sa i b j /b j ′ , g 

sa i b j /b 2 
j ′ ∀ (i, j, j ′ ) ∈ [ q, q, q ] with j � = j ′ , 

it is difficult to distinguish ( 
−→ 
y , ˆ e (g, g) a 

q +1 s ) from ( 
−→ 
y , Z ), where g ∈ G, Z ∈ G 1 , a, s, b 1 , . . . , b q ∈ Z p are chosen independently 

and uniformly at random. 

2.2. Collision-resistant hash functions 

Let { H k } be a family of keyed hash functions H k : {0, 1} ∗ → {0, 1} n indexed by k ∈ K (where K is the key space) that 

can map data of arbitrary length to data of a fixed length n . A family of collision resistant hash functions is a set of hash 

functions with the following properties [36] : 

1. There is a PPT algorithm, which on input a security parameter, uniformly and randomly selects a member of the 

family with the given value attached. 

2. All functions in the family are computable in polynomial time. 

3. The problem of finding x � = y such that H k (x ) = H k (y ) for a randomly chosen H k in the family is computationally 

impossible to solve. 

2.3. Access structures and linear secret sharing 

We review the notions of access structures and linear secret sharing schemes in [37,38] as follows. 

Definition 1 (Access structure). Let { P 1 , . . . , P n } be a set of parties. A collection A ⊆ 2 { P 1 , ... ,P n } is monotone if ∀ B, C : if B ∈ A 

and B ⊆C , then C ⊆ A . An access structure (respectively, monotone access structure) A is a collection (respectively, monotone 

collection) of non-empty subsets of { P 1 , . . . , P n }, i.e., A ⊆ 2 { P 1 , ... ,P n } \ {∅} . The sets in A are called the authorized sets, and 

the sets not in A are called the unauthorized sets. 
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Definition 2 (Linear secret sharing schemes). Let P be a set of parties. Let M be a matrix of size l × n . Let ρ: { 1 , . . . , l} 
→ P be a function that maps a row to a party for labeling. A secret sharing scheme � over a set of parties P is a linear 

secret-sharing scheme (LSSS) over Z p if 

1. The shares for each party form a vector over Z p . 

2. There exists a matrix M which has l rows and n columns called the share-generating matrix for �. For x = 1 , . . . , l, 

the x -th row of the matrix M is labeled by a party ρ( x ), where ρ: { 1 , . . . , l} → P is a function that maps a row to 

a party for labeling. Considering that the column vector v = ( μ, r 2 , . . . , r n ), where μ ∈ Z p is the secret to be shared 

and r 2 , . . . , r n ∈ Z p are randomly chosen, then M v is the vector of l shares of the secret μ according to �. The share 

(M v ) x belongs to party ρ( x ). 

It has been noted in [37] that every LSSS also enjoys the linear reconstruction property. Suppose that � is an LSSS for 

an access structure A . Let A be an authorized set, and define I ⊆ {1, . . . , l } as I = { i | ρ(i ) ∈ A } . Then the vector (1, 0, . . . , 0) 

is in the span of rows of matrix M indexed by I , and there exist constants { w i ∈ Z p } i ∈ I such that, for any valid shares { v i } of 

a secret μ according to �, we have �i ∈ I w i v i = μ. These constants { w i } can be found in the polynomial time with respect 

to the size of the share-generating matrix M [39] . 

Boolean formulas [37] . Access policies can also be described in terms of monotonic boolean formulas. LSSS access struc- 

tures are more general, and can be derived from representations as boolean formulas. There are standard techniques to 

convert any monotonic boolean formula into a corresponding LSSS matrix. A boolean formula can be represented as an ac- 

cess tree, where the interior nodes are AND and OR gates, and the leaf nodes correspond to attributes. The number of rows 

in the corresponding LSSS matrix is the same as the number of leaf nodes in the access tree. 

3. Framework and security model 

In this section, we first present a framework for key regeneration-free CP-ABE and then formally define its security. 

3.1. Framework 

At a high level, a key regeneration-free CP-ABE scheme works the same as a standard CP-ABE scheme, and consists of 

a setup algorithm Setup, a decryption key generation algorithm KeyGen, an encryption algorithm Encrypt and a decryption 

algorithm Decrypt. 

• Setup(1 λ) → ( pars, msk ). Taking a security parameter λ as the input, this setup algorithm outputs a public parameter 

pars and a master private key msk for the system. 

• KeyGen( pars, msk , A ) → sk A . Taking the public parameter pars , the master private key msk and an attribute set A as 

the input, this decryption key generation algorithm generates the attribute-based decryption key sk A . 

• Encrypt( pars, M , A ) → C . Taking the public parameter pars , a message M and an access structure A over the universe 

of attributes as the input, this encryption algorithm outputs a ciphertext C . 

• Decrypt( pars, C , A , sk A ) → M / ⊥ . Taking the public parameter pars , a ciphertext C with an access structure A and 

a decryption key sk A corresponding to an attribute set A as the input, this decryption algorithm outputs either the 

message M when the attribute set A satisfies the access structure A of the ciphertext C , or a symbol ⊥ indicating the 

failure of the decryption. 

We require that a key regeneration-free CP-ABE scheme is correct, meaning that the decryption algorithm correctly de- 

crypts a ciphertext having an access structure A with a decryption key over A , only if A is an authorized set of A . For- 

mally, for all messages M , and all attribute sets A and access structures A with authorized A satisfying A , if ( pars, msk ) 

← Setup(1 λ), sk A ← KeyGen( pars, msk , A ) , C ← Encrypt( pars, M , A ) , then Decrypt( pars, C , A , sk A ) = M . 

Notice that with respect to a concrete construction, the last input of the encryption algorithm Encrypt will be set to be 

(M , ρ) rather than A . 

3.2. Security definitions 

Below we present the security definition for a key regeneration-free CP-ABE scheme in terms of two security games: the 

traditional security game for ciphertext indistinguishability and an additional security game for strong key unforgeability. 

The ciphertext indistinguishability requires the adversary to be unable to distinguish a ciphertext intended for one message 

from a ciphertext intended for another message, while the strong key unforgeability prevents the adversary from producing 

a new decryption key for any previously queried set of attributes. 

The ciphertext indistinguishability is described by a security game between a challenger algorithm C and an adversary 

algorithm A under chosen-plaintext attacks, where algorithm A will be challenged on an encryption to an access structure 

A ∗, and can issue decryption key queries on any set of attributes A such that A does not satisfy A ∗. 

• Setup. Algorithm C runs the Setup algorithm, and gives the public parameter pars to algorithm A . 

• Phase 1. Algorithm A issues decryption key queries for the sets of attributes A 1 , . . . , A q 1 . For each attribute set A i , 

algorithm C runs the KeyGen algorithm, and sends sk A i to algorithm A . 
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• Challenge. Algorithm A sends an access structure A ∗ and two messages M 0 , M 1 of equal length to algorithm C, with 

the restriction that none of the sets A 1 , . . . , A q 1 from Phase 1 satisfy the access structure A ∗. Algorithm C chooses a 

random bit b ∈ {0, 1}, and encrypts M b under A ∗. The challenge ciphertext C ∗ is given to algorithm A . 

• Phase 2. Algorithm A continues issuing decryption key queries as in Phase 1 with the restriction that none of the sets 

of attributes A q 1 +1 , . . . , A q satisfy the access structure A ∗ in the challenge phase. 

• Guess. Algorithm A outputs a guess b ′ of b . 

A key regeneration-free CP-ABE scheme is ciphertext indistinguishable if all PPT adversaries have at most a negligible 

advantage in the security parameter λ in the above game, where the advantage of algorithm A is defined as Pr [ b ′ = b] − 1 / 2 . 

This model can be easily extended to deal with chosen-ciphertext attacks by allowing decryption queries in Phase 1 and 

Phase 2. Also, a key regeneration-free CP-ABE system is said to be selectively indistinguishable if an Initialization phase is 

added before the Setup phase where algorithm A commits a challenge access structure A ∗ which it aims to attack. 

The ciphertext indistinguishability defined above implies that an adversary, who is given decryption keys corresponding 

to a series of attribute sets { A 1 , . . . , A q } of its choice, is not able to produce a decryption key for a new set of attributes A 
′ 

satisfying an access structure which is not satisfied by any one of the previous keys. We call this property as key unforge- 

ability. 

Next we define strong key unforgeability, which is described as a game between a challenger algorithm C and an ad- 

versary algorithm A under chosen attribute set attacks, where algorithm A is allowed to issue decryption key queries on 

any set of attributes A , and is challenged to output a new decryption key for a set of attributes A 
′ which is a subset of 

A . Suppose that algorithm A obtains a pair ( A , sk A ) along with other attribute set and decryption key pairs of its choice. 

Algorithm A wins the game if it is able to create a new decryption key for a subset of attributes A such that sk ′ 
A � sk A . In 

other words, assuming that algorithm A obtains a pair ( A , sk A ) along with other attribute set and decryption key pairs of 

its choice, then the system is strongly unforgeable if the adversary cannot create a new decryption key sk ′ 
A for a subset of 

A . 

• Setup. Algorithm C runs the Setup algorithm, and gives the public parameter pars to algorithm A . 

• Key queries. Algorithm A issues decryption key queries for sets of attributes A 1 , . . . , A q . For each attribute set A i , 

algorithm C runs the KeyGen algorithm, and sends sk A i to algorithm A . These queries could be asked adaptively so 

that each query on A i may depend on the responds to A 1 , . . . , A i −1 . 

• Output. Algorithm A outputs a pair ( A , sk A ) . Algorithm A wins if sk A is a valid decryption key over A according to 

the decryption algorithm, i.e., Decrypt( pars, C , A , sk A ) → M for C being any encryption of M with A satisfying the 

access structure attached to C , and ( A , sk A ) is not among the pairs ( A i , sk A i ) generated during the query phase or A 

is a subset of A i for i ∈ [1, q ]. 

We define the advantage of algorithm A in attacking the strong key unforgeability of a key regeneration-free CP-ABE 

scheme as the probability that algorithm A wins the above game, taken over the random bits of algorithm C and algorithm 

A . A key regeneration-free CP-ABE scheme is strongly key unforgeable under adaptive chosen attribute set attacks if all PPT 

adversaries have at most a negligible advantage in the security parameter λ in the above game. 

4. From CP-ABE to key regeneration-free CP-ABE 

In this section, we present a general transformation that converts a standard CP-ABE scheme into a key regeneration-free 

CP-ABE scheme. 

4.1. Generic construction 

In a standard CP-ABE scheme, a user’s decryption key sk A over an attribute set A consists of multiple components (each 

corresponding to an attribute in A ). In order to prevent multiple users from combining their key components to form a 

decryption key beyond their respective decryption capabilities, the key randomization is employed to securely bind the 

components of a user’s decryption key together; however, given a key sk A , the user can regenerate a new key sk ′ 
A over an 

attribute set A 
′ which is a subset of A by re-randomizing sk A . As alluded to in Section 1 , since the new key sk ′ 

A and the 

original key sk A are statistically uncorrelated, the user could misuse the new key, e.g., sell it in a black market without being 

held accountable. 

In key regeneration-free CP-ABE, we aim to avoid the above key regeneration problem by averting the gadget of key 

randomization in the key generation algorithm of CP-ABE. Our solution is to twist the key generation algorithm such 

that the decryption key is extracted over the attribute set, as well as the chosen randomness. Thus, when performing re- 

randomization, the user has to generate the decryption key over an attribute set which has an element relating to the new 

randomness (this new element does not belong to the original attribute set). According to the security of the original key 

generation algorithm, such a kind of key re-randomization will fail. 

Let R be a random space and L be the label associated with an attribute set A . In order to convert a standard CP-ABE 

scheme into a key regeneration-free CP-ABE, we require the key generation algorithm and the decryption algorithm in the 

standard CP-ABE scheme to have the following properties. 
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• Property 1. The key generation algorithm can be partitioned into two algorithms F 1 and F 2 so that a decryption key 

over a set of attributes A and a label L under a master private key msk is computed as follows. 

1. Randomly select r ← R . 

2. Set sk 1 ← F 1 ( A , r , msk ◦ L ) and sk 2 ← F 2 ( r, msk ). 

3. Output the decryption key sk A ◦L ← ( sk 1 , sk 2 ). 

• Property 2. Given A , L and sk 2 , there is at most one sk 1 such that ( sk 1 , sk 2 ) is a valid decryption key corresponding 

to A and the public parameter pars . 

• Property 3. The decryption algorithm can successfully decrypt a ciphertext under a decryption key sk A ◦L as long as 

the set of attributes A of the decryption key sk A ◦L satisfies the access structure of the ciphertext. 2 

Notice that sk 2 does not depend on the set of attributes A and the label L . Moreover, given A , L and sk 2 , the decryption 

key is fully determined. 

Now we are ready to describe the transformation from a standard CP-ABE scheme into a key regeneration-free CP-ABE 

scheme in terms of ABE systems under the prime-order groups, since there exist techniques [41] to convert pairing based 

schemes from composite-order groups to prime-order groups. Let G be a group of a prime order p . Let H = { H k } be a family 

of collision-resistant hash functions where H k : {0, 1} ∗ → {0, 1} n indexed by k ∈ K with K being the key space. Assume 

that p ≥ 2 n so that hash outputs can be viewed as elements of Z p , and each element of Z p has a unique encoding. Denote 

x || y as the concatenation of two strings x and y . For brevity, we use A to denote the concatenation of all elements in A . 

Let ABE = (Setup, KeyGen, Encrypt, Decrypt) be a CP-ABE scheme over a prime-order group, where KeyGen is partitioned 

using functions F 1 and F 2 . We build a new CP-ABE scheme ABE new = (Setup new , KeyGen new , Encrypt new , Decrypt new ) via the 

following transformation. Notice that this transformation is simple and efficient. In particular, a user’s decryption key in the 

new scheme has the same size as the key in the original scheme plus a short string. 

• Setup new (1 
λ) → ( par ′ , msk ′ ). Randomly choose generators g, h ∈ G , a hash key k ∈ K. Run Setup to obtain the public 

parameter pars and the master private key msk . Output the public parameter pars ′ = ( pars, g, h, k ), and the master 

private key msk ′ = msk for the new scheme. 

• KeyGen new ( pars ′ , msk ′ , A ) → sk A . A user’s decryption key over a set of attributes A = { a 1 , . . . , a l } is generated as 

follows. 

1. Randomly choose r ∈ R , and set sk 2 ← F 2 ( r, msk ). 

2. Compute t ← H k ( A || sk 2 ) and view t as an element of Z p . 

3. Randomly choose s ∈ Z p , and compute L ← g t h s . 

4. Compute sk 1 ← F 1 ( A , r , msk ◦ L ) , and output the decryption key sk A ← ( sk 1 , sk 2 , s ), where “◦” is an operation 

depending on the specific key generation algorithm in the original CP-ABE scheme. 

• Encrypt new ( pars ′ , M , A ) → C . Run Encrypt to produce a ciphertext C . 

• Decrypt new ( pars ′ , C , A , sk A ) → M / ⊥ . Compute L from sk A , and run Decrypt with the additional L to output a message 

M or a failure symbol ⊥ . 

To conclude, our approach to achieve strong key unforgeability in CP-ABE is as follows. Firstly, an intermediate value 

L is derived in Step 3, and then the key component on the attribute set A is extracted by the underlying key generation 

algorithm in Step 4. Since L is derived from the attribute set A and sk 2 with sk 2 being derived from the randomness r , 

the decryption key is essentially generated over the attribute set A and the chosen randomness r . Thus, the user cannot 

directly “re-randomize” the decryption key. This may suggest that the resulting system is strongly key unforgeable. However, 

creating this circularity [11] makes the key extraction on L and A dependent on the randomness r , breaking the proof of 

security for the underlying key generation algorithm of ABE. To overcome this challenge, an additional hashing step, Step 3, 

is introduced where a chameleon hash [42] is used to hash again. The extra randomness s of the chameleon hash breaks the 

circularity in the proof of security [11] , and makes it possible to prove the security based on the key unforgeability of the 

underlying algorithm in ABE. It is worthy noting that the randomness of the chameleon hash is indispensable to respond 

the key generation queries from a Type 3 adversary in the proof of the security, which is presented in the section below. 

4.2. Proof of strong key unforgeability 

Theorem 1. The ABE new constructed above is a secure key regeneration-free CP-ABE scheme in the sense that it is strongly key 

unforgeable assuming that the underlying ABE scheme ABE is key unforgeable, the discrete log assumption holds in G, and H k is 

collision resistant. 

Proof. Suppose that algorithm A is an adversary that is given the public parameter pars ′ = ( pars, g, h, k ) and breaks the 

strong key unforgeability of ABE new . 

Algorithm A issues decryption key queries on attribute sets A 1 , . . . , A q and is given the corresponding keys sk A i = ( sk i ,1 , 

sk i ,2 , s i ) for i = 1 , . . . , q . Let t i = H k ( A i || sk i, 2 ) , L i = g t i h s i for i = 1 , . . . , q . Let ( A 
′ 
, sk 

A ′ = (sk ′ 
1 , sk ′ 

2 , s ′ ) be the forged key 

produced by algorithm A , with t ′ = H k ( A 
′ || sk ′ 

2 ) and L ′ = g t 
′ 
h s 

′ 
. We consider the following three types of key forgeries. 

2 Please refer to the Instantiations for more details about this property. In [40] , the similar property is applied the design of the scheme. 
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• Type 1. A key forgery where L ′ = L i and t ′ = t i for some i ∈ { 1 , . . . , q } . 
• Type 2. A key forgery where L ′ = L i and t ′ � = t i for some i ∈ { 1 , . . . , q } . 
• Type 3. Any other key forgery L ′ � = L i for all i ∈ { 1 , . . . , q } . 

If algorithm A is successful, it must output a key forgery of Type 1, Type 2, or Type 3. We show that a Type 1 forgery 

can be used to break the collision-resistance of H k , a Type 2 forgery can be used to solve the discrete log problem in G , 

and a Type 3 forgery can be used to break the key unforgeability of the underlying CP-ABE scheme ABE . Assume that a 

simulator algorithm can flip a coin at the beginning of the simulation to guess which type of forgery algorithm A will yield 

and set up the simulation environment appropriately. 

• Type 1 adversary. Suppose that algorithm A is an adversary of Type 1 that breaks the strong key unforgeability of 

ABE new . We construct an algorithm B that breaks the collision-resistance of H k . Algorithm B is given a random key 

k ′ ∈ K, and its goal is to output a pair of values ( x 1 , x 2 ) such that x 1 � = x 2 and H k ′ (x 1 ) = H k ′ (x 2 ) . Algorithm B runs 

algorithm A as follows. 

- Setup. Algorithm B sets k ← k ′ , and generates the public parameter and the master private key according to 

the Setup new algorithm. Algorithm B gives algorithm A the public parameter pars ′ = ( pars, g, h, k ) and keeps 

the master private key msk ′ . 
- Key generation queries. Algorithm A issues up to q key generation queries. Algorithm B responds to a query 

on a set of attributes A i by running the KeyGen new algorithm and returning the corresponding attribute-based 

decryption key sk A i to algorithm A . 

- Output. Algorithm A outputs a key forgery ( A 
′ 
, sk 

A ′ ) = (sk ′ 
1 , sk ′ 

2 , s ′ ) such that ( A 
′ 
, sk 

A ′ ) �∈ { ( A 1 , sk A 1 ) , . . . , 

( A q , sk A q ) } and A 
′ is a subset of any A i ∈ { A 1 , . . . , A q } , L ′ = L i and t ′ = t i for some i ∈ { 1 , . . . , q } . Specifically, 

t ′ = t i means that H k ( A 
′ || sk ′ 2 ) = H k ( A i || sk i, 2 ) , L ′ = L i means that g t 

′ 
h s 

′ = g t i h s i . Then algorithm B outputs the 

pair ( A 
′ || sk ′ 

2 , A i || sk i, 2 ) as a collision on H k . 

It is easy to see that when algorithm A produces a key forgery of Type 1, algorithm B succeeds in finding a collision 

in H k . Since H k ( A 
′ || sk ′ 

2 ) = H k ( A i || sk i ,2 ), it remains to show that A 
′ || sk ′ 

2 � = A i || sk i, 2 . 

Consider a contradiction that A 
′ = A i and sk ′ 

2 = sk i ,2 . Since t ′ = t i and L ′ = L i , we have s ′ = s i (recall that any expo- 

nent s ∈ Z p has a unique encoding). Since sk ′ 2 = sk i ,2 and L ′ = L i , the second property of partitioned key generation 

implies that sk ′ 
1 = sk i ,1 . Hence, we have A 

′ = A i and sk 
A ′ = sk A i , which contradicts the fact that ( A 

′ 
, sk 

A ′ ) is a strong 

key forgery. Therefore, A 
′ || sk ′ 

2 � = A i || sk i, 2 , implying that whenever algorithm A produces a key forgery of Type 1, 

algorithm B finds a collision in H k . 

• Type 2 adversary. Suppose that algorithm A is an adversary of Type 2 that breaks the strong key unforgeability of 

ABE new . We construct an algorithm B that solves the discrete log problem in G . Algorithm B is given a pair ( g ′ , h ′ ), 
and its goal is to output a such that h ′ = ( g ′ ) a . Algorithm B runs algorithm A as follows. 

- Setup. Algorithm B sets g ← g ′ , h ← h ′ , and generates the public parameter and the master private key 

according to the Setup new algorithm. Algorithm B gives algorithm A the public parameter pars ′ = ( pars, g, h, k ) 

and keeps the master private key msk ′ . 
- Key generation queries. Algorithm A issues up to q key generation queries. Algorithm B responds to a query on 

a set of attributes A i by running KeyGen new algorithm and returning the corresponding decryption key sk A i to 

algorithm A . 

- Output. Algorithm A outputs a key forgery ( A 
′ 
, sk 

A ′ ) = (sk ′ 1 , sk ′ 2 , s ′ ) such that ( A 
′ 
, sk 

A ′ ) �∈ { ( A 1 , sk A 1 ) , . . . , 

( A q , sk A q ) } and A 
′ is a subset of any A i ∈ { A 1 , . . . , A q } , L ′ = L i and t ′ � = t i for some i ∈ {1, . . . , q }. Since 

L ′ = L i , we have 

g t 
′ 
h s 

′ = g t i h s i ⇒ g t 
′ 
(g a ) s 

′ = g t i (g a ) s i ⇒ a = 
t ′ − t i 
s i − s ′ . 

Since s ′ = s i and g t 
′ 
h s 

′ = g t i h s i , implying t ′ = t i , we have s ′ − s i � = 0. Therefore, algorithm B outputs a , solving 

the computational DL problem. 

• Type 3 adversary. Suppose that algorithm A is an adversary of Type 3 that breaks the strong key unforgeability of 

ABE new . We construct an algorithm B that breaks the key unforgeability of ABE . Algorithm B is given the public 

parameter pars , and its goal is to output a pair ( A , sk A ) such that sk A is a valid key for A , and A is not among A i for 

i ∈ [1, q ] which are attribute sets queried by algorithm A before and A is not a subset of A i for i ∈ [1, q ]. Algorithm B
runs algorithm A as follows. 

- Setup. Algorithm B generates the public parameter pars ′ . 
1. Chooses a random generator g ∈ G . 

2. Chooses a random exponent a ∈ Z p , and sets h ← g a . 

3. Chooses a random hash key k ∈ K. 

4. Sends the public pars ′ ← ( pars, g, h, k ) to algorithm A . 

- Key generation queries. Algorithm A issues up to q key generation queries. Algorithm B responds to a query on 

a set of attributes A as follows. 
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1. Chooses a random exponent w ∈ Z p , and sets L ← g w . 

2. Sends a key generation query on A and L to its own challenger algorithm, and gets a decryption key ( sk 1 , 

sk 2 ) on A and L . 

3. Computes t ← H k ( A || sk 2 ) , and sets s ← (w − t) /a . 

4. Sends sk A ← ( sk 1 , sk 2 , s ) to algorithm A . 

Observe that L = g w = g as + t = g t h s , and s is uniform in Z p , as required. As a result, sk A is a valid decryption key on 

A . 

- Output. Finally, algorithm A outputs ( A 
′ 
, (sk ′ 1 , sk ′ 2 , s ′ )) as a key forgery. Algorithm B produces a key forgery on 

the underlying scheme ABE as follows. 

1. Computes t ′ ← H k ( A 
′ || sk ′ 

2 ) , and L ′ ← g t 
′ 
h s 

′ 
. 

2. Outputs (( A 
′ 
, L ′ ), (sk ′ 1 , sk ′ 2 )) . 

It is not difficult to see that L ′ �∈ {L 1 , . . . , L q } , because if L ′ = L i for some i ∈ {1, . . . , q }, then either t ′ = t i 
(a key forgery of Type 1) or t ′ � = t i (a key forgery of Type 2). Therefore, when algorithm A produces a key 

forgery of Type 3, algorithm B outputs a key forgery on a new attribute set A 
′ (which is not a subset of any 

queried attribute set) for the underlying scheme ABE . 

In summary, we show that three types of key forgeries can be used to break collision-resistance of H k , discrete log 

assumption in G and key unforgeability of the underlying ABE scheme ABE , respectively. This completes the proof of 

Theorem 1 . �

5. Concrete constructions 

In this section, we present two concrete key regeneration-free CP-ABE schemes based on the generic transformation 

introduced in the previous section. 

5.1. Instantiation 1 

Below we apply our generic transformation technique to the most efficient CP-ABE system in [38] to obtain a key 

regeneration-free CP-ABE scheme. It is easy to see that the key generation algorithm in [38] can be partitioned into functions 

F 1 and F 2 such as 

F 1 ( A , r, msk ◦ L ) = 
{

msk L · (g a ) r , ∀ i ∈ A h i 
r }

, F 2 (r, msk ) = g r , 

where g a , h 1 , . . . , h | A | are elements of the public parameter. Given A , L and sk 2 = F 2 ( r, msk ), there exists only one sk 1 = F 1 ( A , 

r , msk ◦ L ) which leads the success in the decryption, reflecting the second property of the partitioned key generation. In 

addition, the decryption algorithm can decrypt the ciphetext using the given decryption key ( sk 1 , sk 2 ) with a label L by 

sending L to the exponent (which will be shown in the concrete scheme). Notice that every element in G is assumed to 

have a unique encoding; otherwise an adversary can invalidate property 2 by changing the encoding of a group element 

[11] . 

Let G be a group of a prime order p with a generator g , ˆ e : G × G → G 1 denote the bilinear map, and { H k } be a family of 

collision-resistant hash functions H k : {0, 1} ∗ → {0, 1} n indexed by k ∈ K with the hash outputs being viewed as elements of 

Z p . We transform Waters CP-ABE scheme [38] as follows, in which some algorithms are the same as the original ones. 

• Setup. This algorithm takes the security parameter λ as the input. It firstly chooses U random group elements h 1 , . . . , 

h U ∈ G that are associated with the U attributes in the system. Then, it chooses random exponents α, a ∈ Z p . The 

public parameter is pars = { g , ˆ e (g, g) α, g a , h 1 , . . . , h U }, and the master private key is msk = g α . Finally, it randomly 

chooses a generator h ∈ G , a hash key k ∈ K, and outputs the system parameter pars ′ = ( pars, h, k ). 

• KeyGen. This algorithm takes the system parameter pars ′ , the master private key msk and an attribute set A as the 

input. It randomly chooses r, s ∈ Z p , and computes 

sk 2 = g r , t = H k ( A || sk 2 ) , L = H k 

(
g t h s 

)
, 

sk 1 = 
(
sk ′ 1 = (g α) L (g a ) r , sk (i ) 

1 = h i 
r ∀ i ∈ A 

)
. 

It outputs the attribute-based decryption key sk A = ( sk 1 , sk 2 , s ). 

• Encrypt. The encryption algorithm takes the system parameter pars ′ , a message M and an LSSS access structure (M , 

ρ) where M is an l × n matrix and the function ρ maps the rows of M to attributes as the input. It randomly chooses 

a vector 
−→ v = ( μ, y 2 , . . . , y n ) ∈ Z n p . These values will be used to share the encryption exponent μ. For i = 1 to l , it 

calculates v i = 
−→ v · M i , where M i is the vector corresponding to the i -th row of M . In addition, the algorithm chooses 

random z 1 , . . . , z l ∈ Z p , and computes 

C = M · ˆ e (g, g) αμ, C ′ = g μ, ∀ i ∈ A C i = g a v i h 
−z i 
ρ(i ) , D i = g z i . 

It outputs the ciphertext CT = ((M , ρ), C, C ′ , { C i , D i } i ∈ [1, l ] ). 
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• Decrypt. This algorithm takes the system parameter pars ′ , a ciphertext CT with an access structure (M , ρ) and a 

decryption key sk A corresponding to an attribute set A as the input. Suppose that the attribute set A satisfies the 

access structure (M , ρ). Let I be defined as I = { i : ρ(i ) ∈ A } . Denote by { w i ∈ Z p } i ∈ I a set of constants such that if 

{ v i } are valid shares of any secret μ according to M , then �i ∈ I w i v i = μ. The algorithm computes 

ˆ e 
(
C ′ , sk ′ 1 

)
∏ 

i ∈ I 

(
ˆ e (C i , sk 2 ) ̂  e 

(
D i , sk 

ρ(i ) 
1 

))w i 
= 

ˆ e (g, g) αμL ̂  e (g, g) aμr 
∏ 

i ∈ I ˆ e (g, g) ra v i w i 
= ˆ e (g, g) αμL , 

and L = H k (g t h s ) , t = H k ( A || sk 2 ) . Finally, it cancels out the value ( ̂  e (g, g) αμL ) 1 / L from C and obtains the message M . 

Lemma 1. The CP-ABE system above is selectively indistinguishable and strongly key unforgeable assuming that the decisional 

q-parallel BDHE assumption holds in G and that H k is collision resistant. 

Proof. The Waters scheme [38] is known to be selectively indistinguishable assuming that the decisional q -parallel BDHE 

assumption holds in G . The proof for the selective indistinguishability is the same as that in [38] and is omitted here. When 

the q -parallel BDHE assumption holds in G , the discrete log assumption holds in G . Besides, the key generation algorithm 

and the decryption algorithm in [38] satisfy the required properties. Hence, all requirements of Theorem 1 are met which 

implies that the new CP-ABE system above is strongly key unforgeable. �

5.2. Instantiation 2 

Below we apply our generic transformation to convert the first large universe CP-ABE scheme in [16] to a large universe 

CP-ABE scheme with strong key unforgeability. It is straightforward that the key generation algorithm in this construction 

is partitioned, and the functions F 1 and F 2 are 

F 1 
(
A , { r, r 1 , . . . r | A | } , msk ◦ L 

)
= 

{
msk L · w r , ∀ i ∈ A (u A i h ) r i v −r 

}
, 

F 2 
({ r, r 1 , . . . r | A | } , msk 

)
= { g r , ∀ i ∈ A g r i } , 

where w, h, u, v are elements belonging to the public parameter. Given A , L and sk 2 = F 2 ( r, msk ), there exists only one sk 1 
making the decryption successful, reflecting the second property of ABE scheme. Also, the third property is achieved (and to 

be shown in the concrete scheme) in that the decryption algorithm is able to recover the plaintext if the attributes A satisfy 

the access structure of the ciphertext by assigning L to the exponent. 

Let G be a bilinear group of a prime order p with a generator g , and ˆ e : G × G → G 1 denote the bilinear map. Let { H k } be 

a family of collision-resistant hash functions H k : {0, 1} ∗ → {0, 1} n indexed by k ∈ K with the hash outputs being viewed as 

elements of Z p . We transform the Rouselakis–Waters CP-ABE scheme as follows, in which some algorithms are exactly the 

same as the original ones. 

• Setup. This algorithm takes the security parameter λ as the input. It firstly chooses random group elements u, h, v, 

w ∈ G . Then, it chooses a random exponent α ∈ Z p . The public parameter is pars = { g, u, h, w, v , ˆ e (g, g) α} , and the 

master private key is msk = α. Finally, it randomly chooses a generator h ∈ G , a hash key k ∈ K, and outputs the 

system parameter pars ′ = ( pars, k ). 

• KeyGen. This algorithm takes the system parameter pars ′ , the master private key msk and an attribute set 

A = { A 1 , . . . , A k } as the input. It randomly chooses r, r 1 , . . . , r k , s ∈ Z p , and computes 

sk ′ 2 = g r , t = H k 

(
A || sk ′ 2 ||{ sk (i ) 

2 } 
)
, L = H k (g t h s ) , sk ′ 1 = (g α) L w r , 

∀ i ∈ [1 , k ] sk (i ) 
2 = g r i , sk (i ) 

1 = (u A i h ) r i v −r . 

It outputs the attribute-based decryption key sk A = ( sk 1 , sk 2 , s ) for sk 1 = (sk ′ 
1 , { sk (i ) 

1 } i ∈ [1 ,k ] ) , sk 2 = (sk ′ 
2 , { sk (i ) 

2 } i ∈ [1 ,k ] ) . 
• Encrypt. This algorithm takes the system parameter pars ′ , a message M and an LSSS access structure (M , ρ) where 

the function ρ associates the rows of M to attributes as the input. Let M be an l × n matrix. It randomly chooses a 

vector 
−→ v = ( μ, y 2 , . . . , y n ) ∈ Z n p . These values will be used to share the encryption exponent μ. For i = 1 to l , it 

calculates v i = 
−→ v · M i , where M i is the vector corresponding to the i -th row of M . In addition, it randomly chooses 

z 1 , . . . , z l ∈ Z p , and computes 

C = M · ˆ e (g, g) αμ, C ′ = g μ, 

∀ i ∈ [1 , l] C i = w v i v z i , D i = g z i , E i = (u ρ(i ) h ) −z i . 

It outputs the ciphertext CT = ((M , ρ), C, C ′ , {( C i , D i , E i )} i ∈ [1, l ] ). 

• Decrypt. This algorithm takes the system parameter pars ′ , a ciphertext CT for an access structure (M , ρ) and a de- 

cryption key key sk A for an attribute set A as the input. Suppose that the attribute set A satisfies the access structure 

(M , ρ). Let I be defined as I = { i : ρ(i ) ∈ A } . Denote by { w i ∈ Z p } i ∈ I a set of constants such that if { v i } are valid shares 
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Table 1 
Comparison of efficiency among several ABE systems. Note that to make the comparison clearer, 
the scheme in [3] is transformed from composite-order groups to prime-order groups. 

[3] Modified [3] Construction 1 [8] Construction 2 

| par ′ | m + 5 m + 5 m + 5 7 6 
| sk | k + 4 k + 4 k + 3 2 k + 4 2 k + 3 
|CT| 2 l + 3 2 l + 3 2 l + 2 3 l + 3 3 l + 2 
Decrypt (2 l + 1) P (2 l + 1) P (2 l + 1) P (3 l + 1) P (3 l + 1) P

+(l + 2) E +(l + 2) E +(l + 3) E +(l + 2) E +(l + 3) E
Access AND, AND, AND, AND, AND, 
Structure OR OR OR OR OR 
Group compo- prime prime prime prime 
order site 
Security full selective selective selective selective 

of any secret μ according to M , then �i ∈ I w i v i = μ. The algorithm computes 

ˆ e 
(
C ′ , sk ′ 1 

)
∏ 

i ∈ I 

(
ˆ e 
(
C i , sk ′ 

2 

)
ˆ e 

(
D i , sk 

ρ(i ) 
1 

)
ˆ e 

(
E i , sk 

ρ(i ) 
2 

))w i 

= 
ˆ e (g, g) αμL ̂  e (g, w ) μr 

∏ 
i ∈ I ˆ e (g, w ) rv i w i 

= ˆ e (g, g) αμL , 

and L = H k (g t h s ) , t = H k ( A || sk ′ 2 ||{ sk (i ) 
2 } ) . It then cancels out the value ( ̂  e (g, g) αμL ) 1 / L from C and obtains the message 

M . 

Lemma 2. The key regeneration-free CP-ABE scheme above is selectively indistinguishable and strongly key unforgeable assuming 

that the (q − 1) assumption holds in G and that H k is collision resistant. 

Proof. The Rouselakis–Waters scheme [16] is known to be selectively indistinguishable assuming that the decisional q - 

parallel BDHE assumption holds in G . The proof for the selective indistinguishability of the new scheme is the same as that 

in [16] and hence is omitted. When the (q − 1) assumption holds in G , the discrete log assumption holds in G . Besides, the 

key generation algorithm in the Rouselakis–Waters scheme is partitioned, and the decryption algorithm is able to success- 

fully decrypt a ciphertext with an additional label L . Thus, all requirements of Theorem 1 are satisfied. Therefore, the new 

CP-ABE scheme above is strongly key unforgeable. �

6. Discussion 

In this section, we first compare our key regeneration-free CP-ABE with several previous CP-ABE schemes aiming to solve 

the key abuse problem. We then discuss how to extend our scheme to traceable CP-ABE. 

6.1. Comparison 

To the best of our knowledge, most of the existing techniques [3–8] addressing the key misuse problem in ABE are pro- 

posed on the basis of some concrete constructions such that users will be meticulous to share decryption privileges since 

users’ identities can be traced from the shared decryption keys. Though the scheme given in [9] solves the key regenera- 

tion issue by making the CP-ABE scheme key regeneration free, it does not support expressive access structures (expressed 

in AND and OR gates). Our technique presented in this paper is a generic mechanism, which can transform any CP-ABE 

system with partitioned key generation into key regeneration-free CP-ABE which prevents any modification to the original 

decryption key. 

In Table 1 , we compare the two instantiations derived from our generic construction (applying the underlying CP-ABE 

schemes used in [3] and [8] , respectively, to the generic framework) with two practical CP-ABE schemes presented in [3] and 

[8] , respectively. The scheme in [3] is the first traceable CP-ABE scheme supporting policies in the monotone access struc- 

tures and is fully secure over a composite order-group, while the scheme in [8] is a practical large universe CP-ABE system 

supporting white-box traceability in which the number of the attributes allowed in the system is unbounded. Let “prime”

and “composite” denote prime-order group and composite-order group, respectively, “full” and “selective” denote fully secure 

and selectively secure, respectively, “P” and “E” denote the paring calculation and exponentiation calculation, respectively. 

Let | sk |, |CT| and | par ′ | denote the sizes of user’s decryption key, ciphertext overhead and system parameter, respectively. Let 

l be the number of attributes in an access structure, k be the size of an attribute set, and m be the maximum size allowed 

for k . From Table 1 , we can see that our instantiations have more or less the same efficiency as the two schemes in [3] and 

[8] , i.e., the proposed approach of making CP-ABE schemes key regeneration free to overcome the key regeneration abuse 

challenge is almost as efficient as those applying tracing mechanisms. 
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6.2. Application to White–Box traceable attribute-based encryption 

In a white-box traceable CP-ABE scheme (e.g, [3] ), a user’s identity is embedded in the decryption key in such a way 

that the user cannot modify the decryption key to another one embedded with a different identity. In the case that the 

user maliciously shares the decryption privilege with others, the user can be traced back based on the identity in a pirated 

decryption key. Our key regeneration-free CP-ABE schemes can be easily applied to achieve white-box traceability by em- 

bedding a user’s identity in his/her decryption key. A straightforward method is to set the component s in the decryption 

key as a value related to a user identity (similar to the role of c in the decryption key defined in [3] ), and thus for any de- 

cryption key with an element s , the user’s identity can be traced by searching among all the users’ identities to see which 

one’s identifying value matches the given s (we assume that there exists a table storing all users’ identities and their corre- 

sponding identifying values ( id, s )). We omit the details here, please refer to [3] for the full description about the white-box 

tracing function. 

7. Conclusions 

The key randomization is an important technique in the standard attribute-based encryption (ABE) schemes to prevent 

collusion attacks among multiple users such that malicious users are not able to combine their decryption keys to decrypt 

ciphertexts that none of them could decrypt on their own. This randomization method, however, also endows a user with 

the capability of regenerating a newly randomized decryption key over a subset of the attributes associated with the original 

decryption key. Because key randomization breaks the linkage between the newly generated key and the original key, an 

adversarial user could leak the new decryption key to others without being held responsible for any abuse of the leaked key. 

This paper focused on removing this key regeneration property from ABE while preserving all advantages of ABE, so-called 

Key Regeneration-Free ABE . Motivated by the observation that generating a decryption key in ABE can be regarded as issuing 

a “signature” by the attribute authority (AA), we introduced a security notion called strong key unforgeability, and showed 

that the key regeneration property inherent in the standard ABE schemes can be avoided by equipping an ABE scheme 

with the strong key unforgeability. In a key regeneration-free ABE scheme, a user possessing a decryption key is disallowed 

to randomize the original key in any manner, i.e., a user can only delegate the decryption key in exactly the same form 

without any modification so that an abused or pirated key can be traced back to its original owner. We gave a generic 

transformation for converting a standard CP-ABE scheme to a key regeneration-free CP-ABE scheme. We also presented two 

concrete constructions of key regeneration-free CP-ABE schemes by applying the transformation to the standard CP-ABE 

schemes in [3] and [8] , respectively. 
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