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ABSTRACT

We address the problem of solving math programs defined over a
graph where nodes represent agents and edges represent interac-
tion among agents. The objective and constraint functions of this
program model the task agent team must perform and the domain
constraints. In this multiagent setting, no single agent observes the
complete objective and all the constraints of the program. Thus,
we develop a distributed message-passing approach to solve this
optimization problem. We focus on the class of graph structured lin-
ear and quadratic programs (LPs/QPs) which can model important
multiagent coordination frameworks such as distributed constraint
optimization (DCOP). For DCOPs, our frameworkmodels functional
constraints among agents (e.g. resource, network flow constraints)
in a much more tractable fashion than previous approaches. Our
iterative approach has several desirable properties—it is guaranteed
to find the optimal solution for LPs, converges for general cyclic
graphs, and is memory efficient making it suitable for resource lim-
ited agents, and has anytime property. Empirically, our approach
provides solid empirical results on several standard benchmark
problems when compared against previous approaches.

KEYWORDS

Distributed constraint optimization;multiagent cooperation; math-
ematical optimization
ACM Reference Format:

Arambam James Singh and Akshat Kumar. 2019. Graph Based Optimization
For Multiagent Cooperation. In Proc. of the 18th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,

Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

Several frameworks have been proposed for cooperative multiagent
decisionmaking such as distributed constraint optimization (DCOP)
for single-shot decisions [10, 44], and dynamic DCOPs [13] and
decentralized Markov decision processes (Dec-MDPs) for sequen-
tial multiagent decision making [2]. Finding optimal decisions can
often be formulated as solving a mathematical program that mod-
els the team’s goal as the objective function to optimize and agent
interactions using constraints. E.g., DCOPs can be modeled as a qua-
dratic or a linear program [16, 34, 37], and Dec-MDP policies can be
computed using quadratic/mixed-integer programs [15, 33]. There-
fore, developing efficient approaches for solving such programs
is crucial. We focus on solving a class of graph structured mathe-
matical programs where nodes represent agents and edges encode
interaction among agents. We show that such a graph structured
program subsumes several DCOP variants, and crucially, allows to
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model succinctly several complex interdependencies among agents,
such as those based on flow conservation, in a much more tractable
manner than a standard DCOP formulation.

Similar to DCOPs, we assume that agents can only communicate
with their immediate neighbors, where neighborhood is defined
based on agents participating in common constraints and different
sub-components of the objective function. Thus, a key goal of our
work is to develop message-passing approaches that can solve such
programs in a distributed fashion. Such distributed optimization
is popular in the systems and control community [7, 8]. However,
their focus is on solving convex programs, whereas the formulations
and techniques we present can address non-convex programs also,
and thus are highly general to model real world settings.
Related work in DCOPs: Distributed constraint optimization
(DCOP) has emerged in recent years as an important framework
for multiagent coordination [25, 28, 32, 44]. DCOPs have been used
to model several multiagent coordination problems such as target
tracking in sensor networks andmeeting scheduling [24], managing
smart grids and smart homes [12, 14, 36], multiagent logistics [21]
and mobile sensing [42]. In DCOPs, agents control a set of variables
with constraint or utility functions defined over subsets of variables.
The task for agents is to assign values to variables to maximize the
global utility using only local coordination among them.

Several complete and approximate algorithms have been pro-
posed such as local search algorithms DSA and MGM [23, 45, 46],
distributed search based ADOPT and its extensions [29, 43], dy-
namic programming based DPOP [32], and belief propagation based
max-sum algorithm [9, 39]. In several settings, it is often desirable
to optimize agents’ decisions subject to functional constraints such
as resource constraints [4, 11, 26]. Logical language based specifica-
tions combine answer set programming with DCOPs [20]. However,
this approach also has complexity exponential in the tree-width of
the agent interaction graph.
Related work in distributed math program optimization: In
the graphical models community, several approaches exist to solve
graph-structured linear and quadratic programs [18, 34, 35, 38],
and they are also applicable to solve DCOPs which are closely
related to the problem of maximum a posteriori (MAP) estima-
tion in graphical models [16, 30]. However, the scope of LPs and
QPs that can be solved over graphs is highly restricted in such
previous work. A major limitation is that they highly restrict con-
straint types addressable within their respective QP/LP solvers. E.g.,
the distributed QP solver of [18, 35] can only handle probability
normalization constraints. The LP solver of [38] can only handle
probability normalization/marginalization constraints. This limita-
tion is because their solvers works on the Lagrangian dual of the
problem. Having different constraints change the dual, making their
current solver inapplicable. Therefore, addressing different kind of
functional constraints is not straightforward as constraints change
the dual, making their current technique inapplicable. In [11], a
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distributed approach is developed to solve QPs for resource con-
strained DCOPs. However, this approach cannot solve linear pro-
grams or address general linear constraints other than the resource
constraints.
Our contributions: Our main contribution is the development
of a graph-based math optimization framework called GraphOpt,
and an associated message-passing based solver to solve optimiza-
tion problems specified in GraphOpt framework. Our iterative
approach has several desirable properties. It is guaranteed to con-
verge to the optimal solution for LPs and has anytime nature. It is
memory efficient (each message is at most quadratic in the maxi-
mum domain size of any variable) , making it suitable for resource
limited agents, such as embedded sensors in internet of things.

Our framework considerably expands the applicability and scal-
ability of DCOPs by providing support for a wide range of func-
tional dependencies among agents specified as linear constraints of
the program such as network flow constraints that arise in smart
grids [12] or physical dependency constraints that link sensors in a
smart home to a physical value such as light level [36]. Functional
constraints can be addressed in a tractable fashion without creating
exponentially large utility/cost tables as in standard DCOPs. Unlike
the ASP-DPOP approach, our message-passing approach does not
has exponential complexity in the treewidth; maximum size of any
message is quadratic in the maximum domain size of any variable.

Unlike previous distributed math optimization solvers, our ap-
proach can handle arbitrary linear constraints that fit within our
GraphOpt framework, which brings significant expressive power
to the class of problems solvable over graphs. To concretely illus-
trate this point, we present a new problem based on congestion-
based multiagent routing that requires modeling network flow
constraints and a mixed objective function having both quadratic
and linear terms. Such programs are not readily solvable using
previous LP/QP solvers.

2 DISTRIBUTED OPTIMIZATION

ADCOP is defined using the tuple ⟨X,D,Θ⟩. The setX= {x1, ..,xn }
is a set of n variables; D = {D1, . . . ,Dn } is the (finite) domain of
possible values a variable can take. We assume that there is an agent
associated with each variables xi which controls its assignment.
The set Θ= {. . . ,θi j , . . .} is the set of pairwise utility or constraint
functions. A constraint function between variables xi and x j is
defined as θi j : Di × D j → ℜ. We also have unary constraints
associated with each variable xi as θi : Di → ℜ. The DCOP
framework can be represented using a constraint network G= (V ,E)
as follows. There is a node i for each variables xi . For each constraint
θi j , we create an edge between the nodes i and j in the graph. The
objective is to find the joint assignment to solve:

max
x1, . . .,xn

[ ∑
i∈V

θi (xi ) +
∑

(i, j )∈E

θi j (xi , x j )
]

(1)

In DCOPs, an agent for a node i is only aware of its shared con-
straints with neighbor agents. Thus, there is no centralized view of
the whole problem, requiring local message-passing based coordi-
nation.

Quadratic program:

max
µ

∑
i∈V

∑
xi

µi (xi )θi (xi )+
∑

(i, j )∈E

∑
xi ,xj

µi (xi )µj (xj )θi j (xi , xj ) (2)

s.t.
∑
xi

µi (xi ) = 1 ∀i ∈ V (3)

0 ≤ µ ≤ 1 (4)

Linear program:

max
µ

∑
i∈V

∑
xi

µi (xi )θi (xi )+
∑

(i, j )∈E

∑
xi ,xj

µi j (xi , xj )θi j (xi , xj ) (5)

s.t.
∑
xi

µi (xi ) = 1 ∀i ∈ V (6)∑
xj

µi j (xi , xj ) = µi (xi ) ∀i ∈ V , ∀xi , ∀j ∈ Nbi (7)

0 ≤ µ ≤ 1 (8)

Table 1: Quadratic and linear programs for DCOPs

2.1 LPs and QPs for DCOPs

DCOPs are closely related to the problem of MAP inference in
graphical models [16, 30]. Using this connection, several optimiza-
tion approaches developed in the graphical models community
are applicable to DCOPs. We focus on two popular approaches:
quadratic [35] and linear programs [38] for DCOPs. Table 1 shows
both these programs. In the QP, we have a probability distribution
µi (xi ) associated with each node i of the graph (this distribution is
optimized by the program). The constraints (3) in QP are probability
normalization constraints. The objective function is quadratic due
to bilinear terms (µi · µ j ).

The LP associates distributions µi j with each edge (i, j ) of the
graph in addition to µi parameters. The LP has additional con-
straints (7) which are equivalent to probability marginalization
constraints. Let opt denote the optimal integral solution quality
of the DCOP, and let qp⋆, lp⋆ denote the optimal QP and LP ob-
jectives respectively. We have the following known relationship
among them [35, 38]:

Theorem 1. qp⋆=opt ≤ lp
⋆

That is, the QP formulation is exact (but is non convex) for
DCOPs, and the LP formulation provides an upper bound on the
optimal DCOP quality. Notice also that the solution of QP and
LP can be fractional (some µi can assign nonzero probability to
multiple domain values of a variable). However, several approaches
exist to round off such fractional values to an integral solution for
both QP [35] and LP [34].

Although there are existing approaches to solve such programs,
their scope is highly restricted. For example, existing QP solvers [18,
35] can only handle bilinear terms µi · µ j in the objective and not
quadratic terms as µ2i or linear terms as µi j . Similarly, existing QP
solvers are restricted to handling only probability normalization
constraints. Similarly, existing LP solvers [38] require all terms in
the objective as linear, and are only applicable when the constraints
include normalization and marginalization constraints as in (3),(7).
Thus, the scope of problems that can be solved using existing solvers
is restricted when additional functional constraints are necessary.
To provide a concrete example, we next present an application
based on congestion-based multiagent routing.
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Figure 1: 20 AGVs travel from node 2 to 6. Left figure (a) shows

route ignoring congestion cost; figure (b) shows congestion aware

route. Red edges with numbers denote the path taken by AGVs

min
n

∑
(i, j )

ni j · (αi jni j + βi j ) = min
n

∑
(i, j )

αi jn2i j +
∑
(i, j )

βi jni j (9)

∑
j∈Nb(i )

ni j −
∑

j∈Nb(i )
nji =




N if i is source s
−N if i is destination d
0 otherwise

(10)

ni j is integer, ni j ∈ [0, N ] (11)

Table 2: Program for congestion-based routing

2.2 Congestion-based routing

We introduce a new benchmark based on network congestion
games [27]. Recently, there is an increasing interest in autonomous
guided vehicles (AGVs). In settings such as logistics, multiple robots
are deployed in warehouses [41]. Similarly, for automated container
port, AGVs are being used for autonomouslymoving containers [31].
To coordinate multiple AGVs, intelligent traffic management is re-
quired. We model this problem using symmetric network conges-
tion games where N AGVs must move from a single source to a
single destination in a given graph. In addition to the path cost,
there is congestion cost depending on the number of AGVs cross-
ing an edge in the graph at the same time. The goal is to find the
minimum cost path for the AGV population. We treat this problem
from a system optimal perspective for finding the overall minimum

cost solution [27]. Meyers and Schulz [20] show that solving such
congestion games (and its several variants) are NP-Hard for the
general congestion cost function.

Fig. 1 shows an example of congestion based routing. We assume
that each node in the graph is a traffic agent. Each traffic agent pro-
vides guidance regarding the next destination to all the incoming
AGVs. E.g., node 8 in fig. 1(b) has total 13 incoming AGVs, 10 of
them get routed to link (8, 1) and 3 to link (8, 3). We also assume
that an agent can only communicate with its immediate neighbors
to plan such ‘congestion-aware’ paths. We assume a linear con-
gestion cost—the cost each AGV experiences include the standard
edge cost βi j and the congestion cost αi jni j if ni j AGVs cross the
edge (i, j ) at the same time. Therefore, the total system cost for the
complete route is ∑

(i, j ) βi jni j +
∑
i j (αi jni j ) · ni j . Table 2 shows the

optimization formulation for this problem. The parameters to opti-
mize are variables ni j for each directed edge (i, j ). These variables
should also be integer, which makes the problem challenging. We
can model this problem using DCOPs by creating a variable ni j for
each edge (i, j ). The domain of ni j includes all integers from 0 to
N , the AGV population size. We then create n-ary hard constraints

min
f

∑
(i, j )

αi j f 2i j +
∑
(i, j )

βi j
N

fi j (12)

∑
j∈Nb(i )

fi j −
∑

j∈Nb(i )
fji =




1 if i is source s
−1 if i is destination d
0 otherwise

(13)

0 ≤ f ≤ 1 (14)

Table 3: Reformulated QP for congestion-based routing

between an agent i and all its neighbors to model flow conserva-
tion (10). We also create a unary soft constraint for each variable
ni j that encodes the objective term αi jn

2
i j + βi jni j . We empirically

test this modeling approach with standard DCOP solvers such as
max-sum and DSA. Our results confirm that this approach is highly
inefficient and intractable because of several reasons. First, model-
ing flow constraints in dense graphs leads to exponentially large
constraint tables in the degree of nodes in the graph. Second, be-
cause of flow constraints, which are hard constraints, approximate
algorithms such as DSA fail to provide any reasonable solution as
they violate this constraint for most test instances.

To avoid such tractability issues, we first relax the problem by
assuming a continuous range [0,N ] for variables ni j . We then
divide the objective function in (9) by a constant N 2 or the AGV
population size to get a QP in table 3. We used the substitution
fi j =

ni j
N to denote the fraction of the AGV population traversing

the edge (i, j ) at the same time.
The QP in table 3 is not solvable using existing QP/LP solvers [35]

as they can not handle quadratic terms as f 2i j . Similarly, existing
solvers also cannot handle the flow constraint. Existing continuous
variants of the max-sum approach [39] does not seem readily ap-
plicable as even though fi j variables are continuous, the max-sum
approach requires piecewise linear utility functions whereas our ob-
jective function (12) is quadratic. Furthermore, flow constraints (13)
are hard constraints for which support is not provided in the con-
tinuous max-sum. To solve such programs with both quadratic and
linear terms, we next describe our main contribution—a graph based
optimization framework and a message passing solution approach.

3 GRAPH-BASED OPTIMIZATION

We now describe our graph-based optimization framework. We are
given a pairwise graph G = (V ,E). The semantics of this graph is
same as for DCOPs. Each node i ∈ V can be considered an agent
with an associated random variable xi . With each edge, there is
a potential function θi j associated, and with each node a unary
function θi is associated. The key difference in our approach lies in
providing explicit support for linear constraints defined over nodes
and edges of the graphs. Specifically, a set of linear constraintsM is
also provided. Our goal is to solve the program with the structure
in table 4.

We next explain the structure of this program.
• Associated with each random variable xi is a probability dis-
tribution µi (xi ). Its contribution to the objective function is∑
xi ∈Di

[
µi (xi )θi (xi ) + αi (xi )µi (xi )2

]
, where αi (xi ) ≥ 0 is a

given parameter. Existing QP/LP solvers do not encode qua-
dratic terms α (x )µ2 (x ) in a straightforward manner.
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max
µ

∑
i∈V

∑
xi

µi (xi )θi (xi )+
∑

(i, j )∈Q

∑
xi xj

µi (xi )µj (xj )θi j (xi , xj )

+
∑

(i, j )∈L

∑
xi xj

µi j (xi , xj )θi j (xi , xj ) +
∑
i∈V

∑
xi

αi (xi )µi (xi )2 (15)

s.t.
∑
i∈Vm

∑
xi

cmi (xi )µi (xi )+

∑
(i, j )∈Em

∑
xi ,xj

cmij (xi , xj )µi j (xi , xj ) = km ∀m ∈ M (16)

0 ≤ µ ≤ 1 (17)

Table 4: GraphOpt: Graph-based optimization

• We are given a partition of the edge set as E = L ∪ Q . We as-
sociate probabilities {µi j (xi ,x j )∀xi ,x j } with each edge (i, j ) ∈
L. The contribution of an edge (i, j ) ∈ L to the objective is∑
xi ,x j µi j (xi ,x j )θi j (xi ,x j ). Intuitively, this forms the linear

part of the objective in parameters µi j . The edge set L is known
as the set of LP edges.

• The contribution of an edge (i, j ) ∈ Q to the objective function
is

∑
xi ,x j µi (xi )µ j (x j )θi j (xi ,x j ). This forms the quadratic part

of the objective function; and the edge set Q is known as the
set of QP edges.

The overall objective function defined over the edges E is shown
in program (15). Notice that, we allow edge partitions L or Q to
be empty, implying a linear program at one extreme (Q = ϕ and
all αi =0) or a quadratic program at another extreme (L=ϕ). The
distributions µ= {µi , µi j } are the parameters to optimize by solving
the program (15).

Constraints: In several real world problems, constraints model
important domain characteristics. E.g., for optimizing network flow,
flow conservation at each node must be modeled. In our constraint
template (16), we allow high flexibility for defining a rich class of
constraints. Each linear constraintm ∈ M entails:
• The constraintm can involve a subset Vm ⊆V of nodes. Each

node i ∈Vm contributes the term
∑
xi c

m
i (xi )µi (xi ) to constraint

m. Each coefficient cmi (xi ) can be positive or negative or zero.
We further partition the node set as Vm = V+m ∪V−m , which
intuitively denote the set of nodes with positive or negative
coefficients ci . A node i ∈ Vm belongs either to V+m or V−m , but
not both. For all nodes i ∈ V+m , we have cmi (xi ) ≥ 0 ∀xi , and
cmi (xi ) ≤ 0 ∀xi∀i ∈ V−m .
• The constraintm can involve a subset Em ⊆L of LP edges. Each

such edge contributes
∑
xi ,x j c

m
ij (xi ,x j )µi j (xi ,x j ) to constraint

m. Similar to the node set Vm , we partition the edge set as
Em =E+m ∪E−m depending on coefficients cmij (·, ·) being positive
or negative.

• The constant term is km ∈ ℜ.
For simplicity, we have restricted exposition to equality constraints
only. Our approach can be extended to inequality constraints also.
The probability normalization constraints (

∑
xi µi (xi ) = 1), and

marginalization constraints (
∑
x j µi j (xi ,x j ) = µi (xi ) for each LP

edge) fit the template (16), and thus are not explicitly stated.
Constraint types: It is easy to see that our framework subsumes
existing QP/LP formulations. The major benefit of our framework

(b)(a)

e23e41e14 e32

m4

m1
m2

n2n1

n4

e14 e41

e21

e12

e23e32
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n3
e43

e34

e12

e21

m3

Figure 2: Constraint augmented graph

is that it can model several different types of common constraints in
template (16). For example, our approach can handle standard nor-
malization, marginalization constraints, resource constraints and
network flow constraints. Probability marginalization constraint
for the edge (i, j ) and a particular assignment x j is

∑
xi µi j (xi ,x j )−

µ j (x j )=0. We have Vm = {j},Em = (i, j ),km =0. The term −µ j (x j )
can be simulated by setting cmj (x j ) = −1 and cmj (x ′j ) = 0 for the
rest of domain values x ′j . In a similar manner, we can get the term∑
xi µi j (xi ,x j ) by appropriately setting cmij values. Similarly, other

linear constraints can be modeled.
Constraint Augmented Graph: Based on the given graph G =
(V ,E) and the constraint setM , we define a constraint-augmented

(CAG) undirected graph G ′ = (V ′,E ′). The node set V ′ =V ∪ M
includes one node for each agent i and constraintm. Each (i, j ) ∈ E
in the original edge set E is included in E ′. In addition, if an agent
i participates in the constraintm (i ∈ Vm ), then we add an edge
(i,m) to E ′. If an edge (i, j ) ∈ L participates in a constraintm, then
we add edges (i,m) and (j,m) to E ′. Our approach would be to solve
the program (15) by performing distributed message-passing over
this graph. Notice that in this graph, an agent only knows about its
immediate neighbor agents j and constraintsm.

A small instance of the congestion-based routing problem is
shown in Fig. 2(a). As mentioned in section 2.2, in the model of this
problem each edge in the Fig. 2(a) graph becomes a variable, and
for each flow constraint (one for each of the 4 nodes in Fig. 2(a)), we
create new nodes (m1 tom4) in Fig. 2(b). Edges are created between
differentmi and ei j variables to account for flow constraints. Each
variable ei j is binary with Pr(ei j = 1) = fi j , Pr(ei j = 0) = 1 − fi j ,
where each fi j are as defined in the program of table 3. Detailed
mapping of the congestion based routing to the GraphOpt frame-
work is provided in the extended version of the paper. Our solution
approach performs local message-passing along the edges of CAG.

4 INFERENCE FOR DISTRIBUTED

OPTIMIZATION

We first provide an intuition behind our approach to solve the
GraphOpt program in table 4. Instead of optimizing the objec-
tive (15) directly, we optimize the log of this expression. As log is a
monotonic function, this would not change the optimal solution.
Taking the log of an expression does not by itself makes the problem
easier. E.g., we may have an expression log(x2 + xy + z). However,
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l(θ; x)

θ2θ1 Parameter space

Q(θ1, θ)

Q(θ2, θ)

Figure 3: The coordinate ascent strategy of the EM algorithm

if we are able to apply log to each term as logx2+ logxy+ log z, we
get 2 logx + logx + logy + log z. This last expression is particularly
advantageous w.r.t. maximization as log is a concave function mak-
ing the whole expression concave, and thus the problem becomes
convex optimization problem. We can then use the rich theory of
convex optimization to efficiently solve this problem.

However, we cannot directly move log inside to each term. In-
stead, we use the well known Expectation-Maximization (EM) al-
gorithm [5] which makes optimization with log terms easier. We
first provide a high level overview of the EM algorithm followed
by detailing its adaptation to GraphOpt. The EM algorithm is a
general approach to the problem of maximum likelihood (ML) pa-
rameter estimation in models with latent variables. Let X denote
observed variables and Z denote the hidden variables. Let θ denote
the model parameters to be learned. The ML problem is to solve
the following optimization problem given the observation X =x :

max
θ

l (θ ; x ) = max
θ

log
∑
z
p (x, z ; θ ) (18)

It is hard to optimize the above problem as the summation is
inside the log. Furthermore, maximizing the log-likelihood l (θ ;x ) is
generally a non-convex optimization problem as shown in Figure 3.
Therefore, the EM algorithm iteratively performs coordinate ascent
in the parameter space. First, the EM algorithm computes a lower
bound for the function l (θ ;x ) such that this lower bound touches
l (θ ;x ), say at point θ1. This lower bound is denoted as Q (θ1,θ ),
defined as:

Q (θ 1, θ )=
∑
z
p (z |x ; θ 1) logp (x, z ; θ )−

∑
z
p (z |x ; θ 1) logp (z |x ; θ 1)

(19)
The last term in the above expression is the entropy of the vari-

able Z |x . Figure 3 shows the lower bound Q (θ1,θ ) by a blue curve.
The function Q (θ1,θ ) is also called expected complete log-likelihood.
Importantly, the lower boundQ is concave in parameters θ and thus,
can be optimized globally to provide a better parameter estimate
θ2. This process is also shown in Figure 3. Such coordinate ascent
continues iteratively by defining a new lower boundQ (θ2,θ ) at the
point θ2 as also shown in Figure 3, and then optimizing it to yield
the next better parameter estimate until convergence.

To connect such an iterative maximization strategy to solving
GraphOpt, we first make a graphical model with some hidden
random variables Z and some observed variables X such that max-
imizing the likelihood of observed data in this model is directly
proportional to our objective (15). We show that this graphical
model takes the form of a mixture of simple Bayes nets (BN) (see
fig. 4) with parameters µ, same as in GraphOpt. We then perform
the following steps of the EM algorithm:

∀i ∈ V∀i ∈ V ∀(i, j) ∈ L ∀(i, j) ∈ Q

xix̃i

r r

xi

r

xij xj

r

xi

Figure 4: Mixture of BNs for GraphOpt in table 4

(1) (E-step) Formulate the expected complete log-likelihood
Q (µi , µ) for the BN mixture model for iteration i

(2) (M-step) Maximize Q (µi , µ) w.r.t. µ to yield better parame-
ters µi+1

(3) Repeat steps 1 and 2 until convergence, i.e., until µi ≈ µi+1

Akey benefit of the EM algorithm is that whilemaximizingQ (µi , µ),
we can also impose convex constraints over parameters µ. We can
thus impose arbitrary linear constraint with template (16) while
optimizing µ. We next detail EM approach for GraphOpt problem.

4.1 Mixture model for GraphOpt

The decisionmaking-as-inference strategy has been used previously
for DCOPs [11, 17], and for sequential multiagent problems [19, 40].
However, as highlighted in section 2.1, previous DCOP approaches
solve a limited class of math programs. Our approach handles richer
objective function and constraints than such previous approaches,
and requires corresponding technical advances when deriving up-
dates for the EM algorithm.

We create a mixture of simple Bayesian networks (BNs) cor-
responding to the GraphOpt problem in table 4 (refer to [6] for
mixture models and EM). There are two mixture component for
each node i ∈V , one for each edge (i, j ) ∈ L and each edge (i, j ) ∈Q .
Thus, there are total 2|V | + |E | mixture components. The mixture
random variable is denoted usingW and it has a fixed uniform
distribution 1/(2|V | + |E |).

Fig. 4 shows the structure of each of four types of BNs. Intuitively,
the first type of BNs model the quadratic term αi (xi )µi (xi )

2. The
variable xi corresponds to the standard DCOP variable with the
domainDi . In addition, we create another variable x̃i with the same
domain Di . We further introduce a binary reward variable r whose
conditional probability is directly proportional to αi (xi ) providing
a link between the likelihood in this model and our objective in (15).
The parameters of this model are set as:

P (xi )= µi (xi ) , P (x̃i )= µi (xi ) (20)

P (r =1 |xi , x̃i )=



αi (xi )+1
K if xi = x̃i

1
K otherwise

(21)

whereK is a large enough positive constant such that each αi (xi )+1
K

is less than 1 to make it a probability. We also compute the probabil-
ity P (r =1), which will be used later for computing the likelihood,
as below:

=
∑

xi , x̃i :xi=x̃i

µi (xi )2P (r =1 |xi , x̃i ) +
∑

xi , x̃i :xi,x̃i

µi (xi )µi (x̃i )P (r =1 |xi , x̃i )

=
∑
xi

αi (xi ) + 1
K

µi (xi )2 +
1
K

(
1 −

∑
xi

µi (xi )2
)

(22)

=
∑
xi

αi (xi )
K

µi (xi )2 +
1
K

(23)
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In the above derivation, we used the result ∑
xi , x̃i µi (xi )µi (x̃i )=1.

Using this we have ∑
xi , x̃i :xi,x̃i µi (xi )µi (x̃i ) = 1 −

∑
xi µi (xi )

2.
For the second type of BN components in fig. 4, we set the

parameters and compute the probability P (r =1) as follows:

P (xi )= µi (xi )∀xi ∈ Di , P (r =1 |xi )=
θi (xi ) − θmin

K
= θ̂xi (24)

P (r =1)=
∑
xi

µi (xi )θ̂xi (25)

For the third type of BN components in fig. 4, we set the parameters
and compute the probability P (r =1) as follows:

P (xi j = (xi , x j ))= µi j (xi , x j ) ∀xi ∈ Di , x j ∈ D j (26)

P (r =1 |xi j = (xi , x j )) =
θi j (xi , x j ) − θmin

K
= θ̂xi xj (27)

P (r =1) =
∑
xi ,xj

µi j (xi , x j )θ̂xi xj (28)

For the fourth type of BN components in fig. 4, we set the parame-
ters and compute the probability P (r =1) as follows:

P (xi )= µi (xi )∀xi ∈ Di , P (x j )= µ j (x j ) ∀x j ∈ D j (29)

P (r =1 |xi , x j ) =
θi j (xi , x j ) − θmin

K
= θ̂xi xj (30)

P (r =1) =
∑
xi ,xj

µi (xi )µ j (x j )θ̂xi xj (31)

Notice that we set the constant term K such that all conditional
probabilities in (21),(24),(27),(30) are less than 1. We next have the
result connecting the likelihood of r =1 in this mixture model with
that of GraphOpt objective function.

Theorem 2. Maximizing the likelihood P (r = 1; µ) of observing
the variable r =1 in the mixture model of figure 4 subject to constraints

M in (16) is equivalent to solving the GraphOpt problem.

Proof. The probability of observing r =1 in the mixture model
is given as:

P (r =1; µ )=
1

2 |V | + |E |

[ ∑
i∈V

P1 (r =1) +
∑
i∈V

P2 (r =1)∑
(i, j )∈L

P3 (r =1) +
∑

(i, j )∈Q

P4 (r =1)
]

where 1
2 |V |+ |E | is the fixed distribution of the mixture variable

W . We get the above summation by marginalizing out the mixture
variableW . Probability P1 (·) refer to the probability P (r = 1) in
the first mixture model component given in (23). It encodes the
quadratic term αi (xi )µi (xi )

2 of (15). Similarly, P2 (·) refers to the
expression (25) encoding the unary value µi (xi )θi (xi ), P3 in ex-
pression (28) encodes the linear term µi j (xi ,x j )θi j (xi ,x j ), and P4
in (31) encodes the bilinear term µi (xi )µ j (x j )θi j (xi ,x j ). Therefore,
the likelihood is directly proportional to our objective (15), and
parameters µ subject to linear constraints (16). Thus, maximizing
the likelihood solves the GraphOpt problem. □

Optimality: The EM algorithm converges to a stationary point
of the log-likelihood [5]. If our program is a LP, then the log of
objective is concave. Therefore, EM converges to a stationary point
of this concave function subject to linear constraints, which is also
the optimal solution [3].

4.2 Maximizing expected log-likelihood

As highlighted earlier, the EM algorithm maximizes the expected
log-likelihood given in (19). In our mixture model, only the variable
r = 1 is observed; rest of the variables are hidden. We substitute
different probabilities in (19) using our mixture model and get
the following M-step optimization problem (proof in the extended
version):

min
µ⋆

∑
i∈V ,xi

− log µ⋆i (xi )
[
θ̂xi µi (xi ) +

2αi (xi )µi (xi )2 + 2µi (xi )
K

+

∑
j∈NbiQ

∑
xj

θ̂xi xj µi (xi )µ j (x j )
]
−

∑
(i, j )∈L,xi ,xj

θ̂xi xj µi j (xi , x j ) log µ
⋆
i j (xi , x j ) (32)

s.t.
∑
i∈Vm

∑
xi

cmi (xi )µ⋆i (xi )+
∑

(i, j )∈Em ,xi ,xj

cmij (xi , x j )µ
⋆
i j (xi , x j )=km ∀m

where NbiQ denotes the neighbors j of the node i in the constraint
graph G such that (i, j ) is a QP edge. Notice that we negated the
objective to make it a minimization problem. The M-step problem
does not admit closed form solutions. Therefore, we develop an
iterative approach based on convex optimization techniques to
solve the M-step. Our high level approach is:
• We first write the Lagrangian dual of the problem (32). This
dual has much simpler structure and constraints, making its
optimization easier. As (32) is a convex optimization problem,
optimal dual solution equals the optimal primal solution [3].

• We optimize the dual of M-step problem by using block coordi-
nate ascent (BCA) method wherein we fix all the dual variables
except one, and then optimize the dual over the one variable.

M-step Dual: The dual problem is given as maxλ q(λ), where λ=
{λm ∀m ∈ M } is the set of dual variables to be optimized for each
constraintm. The dual problem is (derivation in extended version):

max
λ

∑
i∈V ,xi

δi (xi ) log
( ∑
m∈M (i )

λmcmi (xi )
)
+

∑
(i, j )∈L,xi ,xj

δi j (xi , x j )×

log
( ∑
m∈M (i, j )

λmcmij (xi , x j )
)
−

∑
m∈M

λmkm+⟨ind terms of λ⟩ (33)

The setM (i ) denotes all the constraintsm in which agent i partici-
pates (i ∈Vm ), analogouslyM (i, j ) denotes constraintsm such that
(i, j ) ∈Em . We also used the below shorthand:

δi (xi ; µ )= θ̂xi µi (xi ) +
2αi (xi )µi (xi )2 + 2µi (xi )

K
+

∑
j∈NbiQ

∑
xj

θ̂xi xj µi (xi )µ j (x j ) (34)

δi j (xi , x j ; µ )= θ̂xi xj µi j (xi , x j ) (35)

Using results from convex optimization [3], for any value of λ,
we have q(λ) ≤ Qopt, whereQopt is the optimal solution of (32). To
optimize the dual, we follow the BCA strategy noted earlier.We start
with an initial assignment to all λ variables. We then cycle through
all the λm variables (for each constraintm) optimizing the dual (33)
w.r.t. the chosen λm variables while keeping other variables fixed.
Optimization w.r.t. a single λm variable can be done by setting the
partial derivative of the dual w.r.t. λm to zero. This iterative process
(called BCA) is guaranteed to converge to the optimal dual solution
as our dual (33) is 1) continuously differentiable over its domain; 2)
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Algorithm 1: solveGraphOpt

1 Initialize: µ⋆i (xi ) ← 1
|Di |

∀xi , ∀i ∈ V

2 µ⋆i j (xi , xj ) ← µ⋆i (xi )µ⋆j (xj ) ∀xi , xj , ∀(i, j ) ∈ L
3 repeat

4 µ ← µ⋆

5 Send βi→j (xj ) ←
∑
xi θ̂xi xj µi (xi )∀j ∈ Nb

i
Q , ∀i ∈ V

6 Send γi→m (xi )← θ̂xi µi (xi ) +
2αi (xi )µi (xi )2+2µi (xi )

K +

µi (xi )
∑
j∈NbiQ

βj→i (xi ), ∀m ∈M (i ), ∀i ∈V

7 Send γi j→m (xi , xj ) ← θ̂xi xj µi j (xi , xj ), ∀m ∈M (i, j ), ∀(i, j ) ∈L
8 {λm ∀m ∈ M } ← solveBCA({γi }, {γi j })

9 µ⋆i (xi ) ←
γi (xi ;µ )∑

m∈M (i ) λmcmi (xi )
∀xi , ∀i ∈ V

10 µ⋆i j (xi , xj ) ←
γi j (xi ,xj ;µ )∑

m∈M (i, j ) λmcmij (xi ,xj )
∀xi , xj , ∀(i, j ) ∈ L

11 until µ⋆ , µ
12 return µ⋆

is strictly concave w.r.t. each dual variable λm due to the presence
of log terms in (33), resulting in a unique solution for BCA [3].
Message passing implementation: During BCA, since we op-
timize the dual w.r.t. a single λm one-by-one, this process is par-
ticularly amenable to a message-passing implementation over the
constraint augmented graph as shown in fig. 2. We omit the deriva-
tion details for BCA due to space, instead present a message-passing
implementation of EM in algorithm 1 and 2. The communication in
this approach takes place among the following entities:
• An agent i in the constraint graph G= (V ,E) can communicate
with its immediate neighbor agents j
• For exposition ease, we assume that there is a pseudo-agent ij for

each LP edge (i, j ) ∈ L. In implementation, any computation or
message exchanges performed by this agent ij can be performed
by either agent i or j.

• Let M (i ) denote the set of constraintsm which involve agent
i or i ∈ Vm . An agent i can directly communicate with all
constraintsm ∈ M (i ).

• LetM (i, j ) denote the set of constraintsm which involve edge
(i, j ) or (i, j ) ∈ Em . An agent ij can communicate with each
m ∈ M (i, j ).
• Any constraintm can communicate with all agents involved in
m or all i ∈ Vm and all (i, j ) ∈ Em .
Algorithm 1 shows the outer loop of the EM. Parameters µ are

initialized uniformly. In each outer loop (from lines 4-10), every
agent i sends the message β to all its QP neighbors NbiQ . After all
agents have received respective β messages from their neighbors,
they send the message γi to all the constraints m ∈ M (i ) (line
6), and γi j to allm ∈ M (i, j ) (line 7). Once all constraintsm have
received γ messages, the message-passing corresponding to the
BCA approach starts in algorithm 2. To start inner loop iterations
in alg. 2, dual variables λm should be initialized to some value (line
2) such that the dual function (33) is not negative infinity. Based on
the exact value of coefficients ci , ci j , it is relatively straightforward
to generate such an initial assignment (setting variables either zero
or one generally works). These dual variables λm are sent to the
involved agents (lines 3,4). Based on the received λ values, each
agent i computes a function fm for each constraintm ∈ M (i ) in
line 6, and sends this function to each constraintm ∈ M (i ) in line

Algorithm 2: solveBCA( {γi }, {γi j })
1 Initialize:

2 {λm ∀m ∈ M } ← FindFeasible({γi }, {γi j })
3 Send λm→i ← λm, ∀i ∈ Vm, ∀m ∈ M
4 Send λm→i j ← λm, ∀(i, j ) ∈Em, ∀m ∈ M
5 for each node i ∈ V do

6 Compute fm (xi ) =
∑
m′∈M (i )\m λm′c

m′
i (xi ), ∀m ∈ M (i )

7 Send fi→m (xi ) ← fm (xi ), ∀m ∈ M (i )
8 for each LP edge (i, j ) ∈ L do

9 Compute дm (xi , xj ) =
∑
m′∈M (i, j )\m λm′c

m′
i j (xi , xj ), ∀m ∈ M (i, j )

10 Send дi j→m (xi , xj ) ← дm (xi , xj ), ∀m ∈ M (i, j )
11 repeat

12 for each constraintm ∈ M do

13 Find unique root λ⋆m of h (λm ) = 0 ; λm ∈ (λmin
m , λmax

m )
14 Send λm→i ← λ⋆m, ∀i ∈ Vm
15 Send λm→i j ← λ⋆m, ∀(i, j ) ∈Em
16 for each node i ∈ Vm do

17 fm (i, xi ) =
∑
m′∈M (i )\m λm′c

m′
i (xi ), ∀m ∈ M (i )

18 Send fi→m (xi ) ← fm (i, xi ), ∀m ∈ M (i )

19 for each edge (i, j ) ∈ Em do

20 дm (xi , xj ) =
∑
m′∈M (i, j )\m λm′c

m′
i j (xi , xj ), ∀m ∈ M (i, j )

21 Send дi j→m (xi , xj ) ← дm (xi , xj ), ∀m ∈ M (i, j )

22 until convergence
23 return {λm ∀m ∈ M }

7. Same process repeats for agents ij in lines 8-10. After that, each
constraintm ∈ M starts updating their dual variables λm in lines
12-21. The function h(λm ) is:

h (λm )=
∑

(i, j )∈Em ,xi ,xj

cmij (xi , x j )
γi j→m (xi , x j )

λmcmij (xi , x j ) + дi j→m (xi , x j )

+
∑

i∈Vm ,xi

cmi (xi )
γi→m (xi )

cmi (xi )λm + fi→m (xi )
− km =0 (36)

This function can have multiple roots. However, by imposing the
condition that for any dual value λm , the dual function must remain
positive, we can narrow down to the unique root in the interval
(derivation omitted):

λmin
m =max

(
max

i∈V+m ,xi

−fi→m (xi )
ci (xi )

, max
(i, j )∈E+m ,xi ,xj

−дi j→m (xi , x j )
cmij (xi , x j )

)
λmax
m =min

(
min

i∈V−m ,xi

−fi→m (xi )
cmi (xi )

, min
(i, j )∈E−m ,xi ,xj

−дi j→m (xi , x j )
cmij (xi , x j )

)
Once the constraintm computes the new estimate λ⋆m , all agents
i ∈ Vm and (i, j ) ∈ Em update their estimates of the fm and дm
functions in lines 16-21. Convergence of inner loop is easily de-
tected by measuring the constraint violations (of constraints (16));
if maximum violation falls below a given threshold, the inner loop
terminates.

5 EXPERIMENTS

We test on congestion-based routing problems described in sec-
tion 2.2 and standard DCOP benchmarks based on random graphs
and sensor networks. Our approach was implemented in Python
and used C-based GNU Scientific library for root finding procedure.
We compare our EM based solver with several standard approxi-
mate DCOP solvers such as Max-Sum (MS), DSA, and an efficient
centralized solver Toulbar2 [1] which provides a strong baseline for
solution quality comparisons. We used Frodo 2.0’s [22] implemen-
tation of MS and DSA (default p=0.5). We set iterations for each
approach (EM, MS, DSA) to 1000. Each data point is an average
over 10 instances. We always show normalized solution quality. For
the Toulbar2, we set 30 min.limit.
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Figure 5: Solution quality, Simulated Runtime and Message size comparisons for congestion-based routing instances
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Figure 6: Solution quality, Simulated Runtime and Message size comparisons on random and sensor network problem

Congestion aware routing:We tested on random and grid shaped
graphs with varying AGV population size. For DCOP solvers, we
first convert the problem instance to a DCOP instance using ni j
variables (as noted in sec. 2.2). We compare DCOP solvers against
EM that solves the QP formulation in table 3. If the degree of a node
in the graph is d , and AGV population is N , then it requires 2d-
ary constraints modeling flow conservation, and variable domain
size is N . Thus, constraints tables are exponentially sized requiring
O (N 2d ) space. Due to this reason, DCOP solvers did not scale up to
solve large networks. Fig. 5(a) shows comparison on small 9 and 16
node graphs with small population size. All the approaches, except
DSA, provided good solution forN =1. EM always achieved optimal
solution, same as Toulbar2. DSA failed for these problems and did
not find any feasible solution satisfying the flow constraints high-
lighting how the presence of functional hard constraints adversely
affects the accuracy of previous approximate solvers.

On larger grid graphs and higher population size, none of the
DCOP solvers scaled up. For larger grid graphs in fig. 5(b), we pro-
vide comparisons against an optimal network flow based solver [27]
that can solve symmetric congestion games with linear congestion
cost. The cost of EM’s solution is only marginally worse than the
network flow solver showing the accuracy of the QP approximation.
For larger population N , results in fig. 5(c,d) show that the opti-
mal solver scales poorly with the increasing N . The runtime of the
network flow solver increases exponentially with the increasing N ,
whereas EM has nearly constant (centralized) runtime (≈180 sec)
with varying N . These set of results confirm that for problems with
functional constraints, it is more tractable to solve a graph-based
math program that handles functional constraints explicitly.

Fig. 5(e) show the simulated runtime for small 9 and 16 node
instances solvable using DCOP solvers. This result shows that EM
is orders of magnitude faster than MS. As EM’s message-passing
structure and MS’s message-passing are not equivalent, for fairness
sake, we show total average network load per iteration of MS and
per outer loop of EM in fig. 5(f). That is, for EM, per iteration
load counts messages exchanged in a single outer loop and all the

inner loops. Fig. 5(f) clearly shows that EM has significantly lower
network overhead leading to speedups provided by EM.
DCOP instances: We tested EM on standard DCOP benchmarks:
random grid graphs and sensor network problems [24]. Fig. 6(a)
shows results for random graphs. Each cost is uniformly sampled
from [1, 100] and domain |Di |=4. We note that solution quality of
EM is at par with the solution of Toulbar2 for 5x5 and 7x7 grids.
However, for a larger 10x10 grid, EM achieves better quality than
other solvers. Fig. 6(b) shows results on sensor network domain.
We used 4 time slots for sensors, and target detection cost was
selected uniformly from range [1, 200]. These results confirm that
EM achieves better solution quality than DSA for all settings and
similar quality as toulbar2. We omit results for MS as it found poor
quality solutions violating hard constraints for several instances.
Figures 6(c,d) show simulated runtime and network load (per itera-
tion) comparisons between EM and MS (both in log-scale). These
results show that EM had lower network load than MS for most
instances, and was faster thanMS. These results confirm that our ap-
proach is competitive with existing DCOP solvers, and significantly
more scalable in the presence of functional constraints.

6 CONCLUSION

We presented a general graph-based optimization framework called
GraphOpt for multiagent coordination. Our framework augments
DCOPs with the ability to address general functional constraints de-
fined using the language of mathematical programs. This approach
provides significant modeling advantages and tractability by allevi-
ating the need for creating high arity utility tables. Our framework
is also more general than previous QP/LP solvers as it can model
a richer class of objective function and constraints than previous
work. We also developed a message-passing approach, based on the
EM algorithm, to solve GraphOpt problems. Empirically, it scaled
much better than the previous DCOP approaches on benchmarks
based on congestion based routing and provided higher quality
solutions.
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