
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2005

Synthesis of distributed processes from scenario-based Synthesis of distributed processes from scenario-based

specifications specifications

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
SUN, Jun and DONG, Jin Song. Synthesis of distributed processes from scenario-based specifications.
(2005). Proceedings of 2005 International Symposium of Formal Methods Europe, Newcastle, UK, July
18-22. 415-431.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5056

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5056&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5056&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5056&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5056&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Synthesis of Distributed Processes from Scenario-Based
Specifications

Jun Sun and Jin Song Dong

School of Computing, National University of Singapore
{sunj, dongjs}@comp.nus.eud.sg

Abstract. Given a set of sequence diagrams, the problem of synthesis is of de-
ciding whether there exists a satisfying object system and if so, synthesize one au-
tomatically. It is crucial in the development of complex systems, since sequence
diagrams serve as the manifestation of use cases and if synthesizable they could
lead directly to implementation. It is even more interesting (and harder) if the
synthesized object system is distributed. In this paper, we propose a systematic
way of synthesizing distributed processes from Live Sequence Charts. The ba-
sic idea is to first construct a CSP specification from the LSC specification, and
then use CSP algebraic laws to group the behaviors of each object effectively.
The key point is that the behaviors of each object can be decided locally without
constructing the global state machine.

Keywords: LSC, CSP, Synthesis.

1 Introduction

Sequence diagrams have been a popular means of specifying scenarios of reactive sys-
tems for decades. They have found their ways into many methodologies, e.g. Sequence
Diagrams in Unified Modelling Languages (UML [12]), Messages Sequence Charts
(MSCs) in Specification and Description Language (SDL) [18]. They are used in the
early stage of system development to describe possible communication scenarios. Given
a set of sequence diagrams, the problem of synthesis is of deciding whether there ex-
ists a satisfying object system and if so, synthesize one automatically. The problem is
crucial in the development of complex systems, as sequence diagrams serve as the man-
ifestation of use cases and if synthesizable they could lead directly to implementation.
The problem has been long recognized as a hard problem and tackled by many re-
searchers [2, 1, 21]. The conclusion is that for reactive distributed systems, synthesizing
a distributed object system with precisely the set of behaviors is in general impossi-
ble. Detailed discussions on why distributed systems are hard to synthesize and why
unspecified behaviors are unavoidable can be found in [24] and [1] respectively.

Live Sequence Charts (LSCs) are proposed by Damm and Harel [8]. They are
rapidly recognized as a rather rich and useful extension of MSCs. A rich set of con-
structs are provided for specifying not only possible behaviors, but also mandatory be-
haviors. For instance, a universal chart, possibly preceded with a pre-chart, specifies
mandatory behaviors globally, i.e. once the system behavior matches its pre-chart, the

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 415–431, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

416 J. Sun and J.S. Dong

subsequence behavior must follow the chart. On the level of a chart, events and con-
ditions and locations are also labelled with modalities. LSCs also provides structuring
constructs, like sub-charts, branching and iterations, to build scenarios hierarchically.
In a nutshell, LSCs provide a far more powerful means for setting requirements for
complex system than classic sequence diagrams. Therefore, they serve as the basis of
tool supporting analysis of scenarios, for example, the study of the synthesis problem.

The synthesis problem of LSCs is discussed by Harel and Kugler in [14], in which
they tackled the problem by defining the notion of consistency between LSCs. Their
approach starts with constructing a global system automata and decompose it by dif-
ferent means (refer to [14] for details). Their approach suffers from the state explosion
problem due to the construction of the global system automata, which is often of huge
size because of the distributed nature of LSCs and the underlying weak partial order-
ing semantics. In this paper, we present a systematic way of synthesizing distributed
processes directly from LSCs. The basic idea is to first construct a Communicating
Sequential Process (CSP [17]) specification from the LSC specification, and then use
CSP algebraic laws to group the behaviors of each object effectively. The key point is
that the behaviors of each object can be decided locally without constructing the global
state machine. In our previous work [27], we explored the semantic-based equivalence
relations between CSP and LSCs. We prove that we may capture the semantics of LSC
specifications using CSP. The practical implication is that CSP supporting tools like
FDR [10] can be reused to validate LSC specifications. The construction of CSP speci-
fications in this work, however, is different because our aim is to synthesize refinements
of consistent LSC specifications. Only distributed processes that are not only consistent
with the LSC specification but also regular (so that they lead to finite state machine im-
plementations) and minimally restrictive (if possible) are interested. Our work in [27]
can be viewed as a necessary precedence of this work. Our approach is experimented
with an automated tool developed using JAVA and XML.

We remark that the same result can be derived using Büchi Automata [6] with a
painfully complicated procedure. In [3], Bontemps and Heymans use Büchi automata
to define the language expressed by a set of LSCs. They claim that standard algorithm
for automata can be used to check consistency and refinement and etc. As one of the
future works, they mentioned the synthesis of state-based implementations from LSCs.
However, as Büchi automata are low-level and not structured, flattening high-level LSCs
into automata suffers from the state explosion problem. Whereas CSP provides a rich
set of compositional constructs. Therefore, our work preserves the structure of the LSC
specification and avoids constructing the global state machine both at the chart level or
globally. In [4], Bontemps and Schobbens and Löding discussed the synthesis problem
for a small subset of LSCs (LSCs without conditions, structuring constructs, modalities
on locations and messages). They proposed a game-based semantics for LSCs, which
leads to the notion of consistency between their LSCs. However, their discussion on the
problem of synthesis is limited to a single universal chart. In our approach, almost all
LSC constructs are supported except timing constructs, which we leave to the future
works. In addition, there is the work described in [19], which synthesizes a timed Büchi
Automata from a single chart only. What makes our goal both harder and more inter-
esting is in the treatment of a set of charts, not just a single one. As far as the limited

Synthesis of Distributed Processes from Scenario-Based Specifications 417

case of classical MSC goes, there have been quite some works on formalizing and then
synthesizing from them. This includes the works by Alur mentioned earlier and others,
evidenced in [20, 21, 22, 16].

The rest of the paper is organized as follows. Section 2 introduces LSCs and CSP.
Section 3 presents our approach to synthesize distributed processes from a set of LSC
universal charts. Section 4 discusses relevant issues of the synthesis, i.e. how to handle
modalities on locations. Section 5 concludes the paper with possible future works.

2 Background

2.1 Live Sequence Charts

MSCs are widely used to describe scenarios of interaction between processes or objects.
However, MSCs suffer from the rather weak partial-order semantics that makes it inca-
pable of capturing many kinds of behavioral requirements. LSCs are introduced in [8] to
overcome the shortcomings of MSCs by adding liveness or universality, i.e. something
desired must be observed.

There are two kinds of charts in LSCs. Existential charts are mainly used to de-
scribe possible scenarios of a system in the early stage of system development, i.e. the
same role played by classic MSCs. In later stage, knowledge becomes available about
when a system run has progressed far enough for a specific usage of the system to be-
come relevant. Universal charts are then used to specify behaviors that should always
be exhibited. In this work, we assume that an LSC specification consists of a set of uni-
versal charts, and existential charts are used to specify test cases. A universal chart may
be preceded by a pre-chart, which serves as the activation condition for executing the
main chart. Whenever a communication sequence matches a pre-chart, the system must
proceed as specified by the main chart. Due to pre-charts, a system run may activate a
universal chart more than once and some of the activation might overlap [23].

Each chart is associated with a set of visible events. Only the set of visible events
are constrained by the chart. A chart typically consists of multiple instances, which
are represented as vertical lines graphically. Along with each line, there are a finite
number of locations. A location carries the temperature annotation for progress within
an instance. A location may be labelled as either cold or hot. A hot location means that
the system has to move beyond. Whereas the system may stay at a cold location forever.
Similarly, messages and conditions are also labelled. A hot message must be received,
whereas a cold one may get lost. A hot condition must be met, whereas a cold condition
terminates the chart if it is evaluated to false.

Example 1. We introduce a mobile phone system as a running example to explain and
illustrate the main ideas and results. This example is partially inspired by the phone
system specification presented in [7]. The system consists of six participating objects,
a user , the cover , the display , the speaker , the chip and the environment where the
incoming calls are from. Due to the page limit, we only introduce a self-containing
set of scenarios. Scenario OpenCover illustrates the interaction between the objects
when the user opens the cover , i.e. the chip is notified that the cover is opened, it then
requests the display to display the menu. The display then carries out a local action

418 J. Sun and J.S. Dong

displayMenu

coverOpened

open

OpenCover

DisplayChipCoverUser

setDisplayMenu

displayTime

coverClosed

close

CloseCover

DisplayChipCoverUser

setDisplayTime

Fig. 1. Mobile Phone System Scenario: OpenCover, CloseCover

setDisplayMenu to initialize the menu screen. The upper chart in Figure 1 illustrates
the scenario. Figure 1, 2 illustrates the scenarios where the user closes the cover, an
incoming call arrives and the user picks up the phone and talk. These scenarios are self-
explanatory. Note that all vertical lines in the charts are dotted, which means that all
locations along the lines are cold and, therefore, the system may pause at any point of
execution forever. This is possible because unexpected events like the battery runs out or
the system breaks down may occur at any time. The set of visible events for each chart
are exactly those appeared in the diagram except the scenario Talk, which includes a
forbidden event close. We remark that the message from the user to the cover close is
forbidden in the scenario Talk, i.e. in order to carry out the scenario successfully, the
user should not close the cover before the scenario completes. Figure 3 illustrates the
typical usage of the phone. Note that implicit assumptions are captured by hot locations,
for example an incoming call will eventually trigger the ring, the user will eventually
pick up the call and hand up the call and etc.

LSCs also support advanced MSC features like co-region, hierarchy and etc. Sym-
bolic instances and messages are adopted to group scenarios effectively. For a detailed
introduction on a complete list of features of LSCs, refer to [15]. LSCs are far more
expressive than MSCs, which makes them capable of expressing complicated scenario-
based requirements. However, we remark that the ability to specify hot and cold mes-
sages, i.e. whether a message is required to be received or may get lost, is redundant

Synthesis of Distributed Processes from Scenario-Based Specifications 419

displayCallerID

startRing

incomingCall

SpeakerChipEnv

Receive

Display

setDisplayCaller

User Cover Chip SpeakerEnv Display

open

coverOpened

startRing

speakerOff

displayTimer

Talk

talk

closeLSC

Forbidden Elements

setDisplayTimer

Fig. 2. Mobile Phone System Scenario: Receive, Talk

close

open

coverClosed

coverOpened
talk

incomingCall

Phone

Env ChipCoverUser

Fig. 3. Mobile Phone System Scenario: Phone

420 J. Sun and J.S. Dong

because of the facility for describing hot and cold locations. Essentially, the tempera-
ture of the locations takes precedence over the temperature of messages, so whether or
not the message is received is determined entirely by the temperature of the message
input. This questionable feature of LSCs is recognized by Harel and Marelly who list
the possible cases and conclude that the temperature of the message has no semanti-
cal meaning [15]. Thus, in the following discussion, the temperature of all messages is
discarded.

2.2 Communicating Sequential Process

Hoare’s CSP [17, 25] is a formal specification language where processes proceed from
one state to another by engaging in events. Processes may be composed by operators
which require synchronization on events, i.e. each component must be willing to partic-
ipate in a given event before the whole system makes the transition. A CSP process is
defined by process expressions. Let P denote all possible CSP processes. The relevant
syntactic class of process expression is defined as:

P ::= RUNΣ | STOP | SKIP | P1 � P2 | P1 � P2 | P1; P2 | P1 ||| P2 |
P1 X||Y P2 | P1 X||Y P2 | P1 �e P2 | · · ·

CSP defines a rich set of operators to create processes. RUNΣ is a process always
willing to engage any event in Σ. STOP denotes a process that deadlocks and does noth-
ing. A process that terminates is written as SKIP. A process e → P is initially willing
to engage in event e and behaves as P afterward. CSP allows a hierarchical description
of a system by offering various operators to compose processes. The sequential com-
position, P1; P2, behaves as P1 until its termination and then behaves as P2. A choice
between two processes is denoted as P1 | P2. The choice is made either internally
(P1 � P2) or externally (P1 � P2). Often, choices are guarded by prefixing or condi-
tionals. A choice that depends on the truth value of a boolean expression b is written as
P1 <| b>| P2. If b is true, this process proceeds as P1, otherwise P2. Parallel composi-
tion of two processes is denoted as P1 ‖ P2, where common events are synchronized. If
X is an empty set, the two processes interleaves, denoted as P1 ||| P2. The generalized
form of synchronization is denoted as P1 X ||Y P2, the alphabetized parallel composi-
tion where common events in X and Y are synchronized. ‖n

k=1
(Pk , Σk) is a replicated

alphabetized parallel denoting parallel composition of n processes, where each process
Pk synchronizes with the rest of the system on events in Σk . P1 �e P2 behaves as P1

until event e is engaged and then P2 takes control.
Three mathematical models for CSP are defined. In the traces model, a process is

represented by the set of finite sequences of communications it can perform, denoted as
traces(P). In the stable failures model, a process is represented by its traces and also by
its failures. A failure is a pair (t , Σ), where t is a finite trace of the process and Σ is a set
of events it can refuse after t (refusal). The set of P ’s failures is denoted as failures(P).
In the failures/divergences model [5], a process is represented by its failures, together
with its divergences. A divergence is a finite trace during or after which the process can
perform an infinite sequence of consecutive internal actions. Failure/divergence model
and stable failure model make no difference for divergence-free systems. A detailed
discussion on the three semantics models can be found in [25]. The well-established

Synthesis of Distributed Processes from Scenario-Based Specifications 421

failure semantics is used to establish equivalence relations between processes by appeal
to algebraic laws of CSP. We quote the relevant laws below. The proof of each law can
be found in either [17] or [25].

P |[Σ]|RUNΣ = P [L1]
P ‖ STOP = STOP [L2]
P ‖ P = P [L3]
P1 X||Y P2 = P2 Y ||X P1 [L4]
(P1 X||Y P2) X∪Y ||Z P3 = P1 X||Y∪Z (P2 Y ||Z P3) [L5]

The following laws are derived. Law [L6] is a directly consequence of law [L4] and
[L5]. Law [L7] is the generalized form of law [L6].

(P1 X||Y P2) X∪Y ||Z∪W (P3 Z||W P4) = (P1 X||Z P3) X∪Z||Y∪W (P2 Y ||W P4) [L6]

‖m

i=1
(‖n

j=1
(P j

i , Σ
j
i),

⋃
j
Σj

i) = ‖n

j=1
(‖m

i=1
(P j

i , Σ
j
i),

⋃
i
Σj

i) [L7]

3 Synthesizing Distributed Processes

Our discussion in this section assumes that the LSC specification is well-formed and
consistent, i.e. the weak event relation is acyclic, existential charts trace-refine the uni-
versal charts and etc. Additional assumptions are discussed in the following. We assume
that all locations are cold and all conditions are distributed. The former is due to the lack
of “liveness” in the original CSP semantics. This problem is addressed in Section 4. The
latter gets rid of shared condition, which we think is a problematic feature of LSCs. In
LSCs, a condition is a boolean expression over the visible variables of the chart. There-
fore, some form of global variables is presupposed. This doesn’t match the reality of dis-
tributed system. Indeed, objects in distributed systems have their own state space (local
variables) and all communication between objects would be via messages. Therefore,
we are only interested in local conditions in this work. However, shared condition can
be (partially) supported by rewriting it to a set of distributed condition with additional
proper synchronization. Without loss of generality, we also assume that no co-region
is allowed and all messages are synchronized. There is nothing interesting about co-
region except it complicates the presentation of the synthesis. Asynchronous message
passing is supported by explicitly modelling the behavior of the buffers, e.g. FIFO. A
consequence of this assumption is that a message loss is captured by an infinitely long
delay of the forwarding by the buffer instead of a traditional lost message symbol.

The principles of the synthesis are that, the synthesized processes should be min-
imally restrictive (if possible) so that further refinement is possible, the global state
machine should never be constructed so that state explosion is avoided, and above all,
the synthesized processes should be consistent with the LSC specification. The basic
idea of our approach is to first construct a CSP specification from the LSC specification
(a refinement), and then use CSP algebraic laws to group the behaviors of each object
effectively. The key point of our synthesis is that the behaviors of each object can be
determined locally and, therefore, the global state machine is never constructed. In the
following, we present the synthesis in a bottom-up fashion using synthesis rules (SR).

422 J. Sun and J.S. Dong

The most primitive building blocks of LSCs are locations. Along an instance in a
chart, there are a finite number of locations. A location contains exactly one event and an
optional condition. Let S be an LSC specification. Let c, i be a chart and a participating
object (instance) in S respectively. Let Location,Condition,Event be all locations,
condition and events respectively. Let cond : Location → Condition be the condition
observer. Let event : Location → Event be the event observer. We denote the process
synthesized for the location l on instance i in the main chart of chart c as MainLocai

c(l).
Let MainLocai

c(l + 1) be the process synthesized for the next location.

– SR1: The condition labelled with location l is cold and location l is not the last.
If the condition labelled with l evaluates to true, the system engages the event and
proceeds to the next location, otherwise, its engages a special event αc to signal all
other instances in the chart before termination. Processes for all other instances in
the chart are interrupted by αc and terminate so that the chart terminates.

MainLoca i
c(l) =̂ (event(l) → MainLoca i

c(l + 1)) <| cond(l)>| (αc → SKIP)

– SR2: The condition is cold and the location is the last. After engaging the event,
a special event γc is synchronized by all instances in the chart before any of them
terminates.

MainLoca i
c(l) =̂ (event(l) → γc → SKIP) <| cond(l)>| (αc → SKIP)

– SR3: The condition is hot and the location is not the last. A special event βc is
engaged if the hot condition is violated so that all other instances in the chart are
signaled and deadlock.

MainLoca i
c(l) =̂ (event(l) → MainLoca i

c(l + 1)) <| cond(l)>| (βc → STOP)

– SR4: The condition is hot and the location is the last.

MainLoca i
c(l) =̂ (event(l) → γc → SKIP) <| cond(l)>| (βc → STOP)

Each chart is associated with a set of visible events. Let Σc be the set of visible events
of chart c. Let Σi

c be the set of events associated with Instance i in chart c, including
forbidden events. Special events are added to Σi

c to carry out the synthesis systemati-
cally. The number of special events is bounded by the number of charts if we are only
interested in regular implementations (discussed later). In particular, we associate each
chart with three special events, αc , βc , γc . Event αc is engaged only when a cold condi-
tion is violated, either in the pre-chart or the main chart. Event γc is used to synchronize
the entering or exiting of a chart or a sub-chart among all participating instances. For
example, in the above construction, a γc event is engaged when the last location has
been traversed. Event βc is engaged only when a hot condition is violated so as to force
the system to fail. This reflects the semantics of hot conditions. However, this is slightly
problematic as the intention of hot conditions is to make sure they are never violated in
the scenario. A hot condition is violated either because there is inconsistency in the LSC
specification, i.e. wrong implementation of the local action and etc., or the system is in-
sufficiently specified. A model checker, e.g. FDR, would help refine LSC specifications
step by step so that all hot condition holds all the time [27].

Synthesis of Distributed Processes from Scenario-Based Specifications 423

A location could be a structuring construct, e.g. a sub-chart or a branching. We
remark that all LSC structuring constructs have their exact images in CSP, e.g. choice
in CSP for branching, process reference for sub-charts and etc. This is a clear advantage
why CSP is better than unstructured automata for our discussion.

Similarly, we may synthesize the process for a location l in the pre-chart. We denote
the process synthesized for the location l on instance i in the pre-chart of chart c as
PreLoca i

c(l). An instance not in the pre-chart is treated as if it is in the pre-chart with
one empty location.

– SR5: Location l is neither the first location nor the last. If the condition evaluates to
false, then the process signals all other instances in the chart and terminates. Oth-
erwise, if the expected event is engaged, the process proceeds to the next location,
else, the process engages the unexpected event and puts no further constraints on the
system ([L1]). Note that we do not distinguish hot or cold condition in pre-charts
as hot conditions have no semantical meaning in pre-charts.

PreLoca i
c(l) =̂ ((event(l) → PreLoca i

c(l + 1))

� (� e : Σi
c \ {event(l), αc , βc , γc} → RUN))

<| cond(l)>| (αc → SKIP)

– SR6: The location is not the first location but is the last. After engaging the event,
the instance waits for the synchronization for termination and proceeds to the first
location of the main chart.

PreLoca i
c(l) =̂ ((event(l) → γc → MainLoca i

c(0))

� (� e : Σi
c \ {event(l), αc , βc , γc} → RUN))

<| cond(l)>| (αc → SKIP)

– SR7: The location is the first but not the last. A new process is forked whenever
an expected event is engaged. This way, we allow system runs that may trigger
multiple overlapping activation of the same chart. Note that the special events are
not synchronized between different activation.

PreLoca i
c(0) =̂ ((event(0) → PreLoca i

c(1) |[Σi
c \ {αc , βc , γc}]|PreLoca i

c(0))

� (� e : Σi
c \ {event(0), αc , βc , γc} → RUN))

<| cond(0)>| (αc → PreLoca i
c(0))

– SR8: The location is the only location of the instance in the pre-chart.

PreLoca i
c(0) =̂ ((event(0) →

(γc → MainLoca i
c(0)) |[Σi

c \ {αc , βc , γc}]|PreLoca i
c(0))

� (� e : Σi
c \ {event(0), αc , βc , γc} → RUN))

<| cond(l)>| (αc → PreLoca i
c(0))

– SR9: The chart is not preceded with a pre-chart.

PreLoca i
c(0) =̂ MainLoca i

c(0)

424 J. Sun and J.S. Dong

Whenever a chart is activated by a system run, the subsequence behavior of the system
is constrained by both the process and the newly forked process and, therefore, remains
valid. However, the process PreLoca i

c(0) allows, in general, irregular languages that
cannot be realized by finite state machines. A similar problem is recognized by Harel
and Kugler [14]. We may synthesize systems with possible overlapping activation of
the same chart using the above set of rules. Nevertheless, in most cases, only regu-
lar processes which lead to finite state implementations are interested. If we assume
that activation of the same chart never overlaps, i.e. the chart is not re-activated till its
completion, we may augment SR1-2, SR4-8 as the following so that a chart can be re-
activated only after its completion. The same assumption is made by Harel and Kugler
in [14].

SR1’: MainLoca i
c(l) =̂ (event(l) → MainLoca i

c(l + 1)) <| cond(l)>| (αc → PreLoca i
c(0))

SR2’: MainLoca i
c(l) =̂ (event(l) → γc → PreLoca i

c(0)) <| cond(l)>| (αc → PreLoca i
c(0))

SR4’: MainLoca i
c(l) =̂ (event(l) → γc → PreLoca i

c(0)) <| cond(l)>| (βc → STOP)

SR5’: PreLoca i
c(l) =̂ ((event(l) → PreLoca i

c(l + 1)) �

(� e : Σi
c \ {event(l), event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

SR6’: PreLoca i
c(l) =̂ ((event(l) → γc → MainLoca i

c(0)) �

(� e : Σi
c \ {event(l), event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

SR7’: PreLoca i
c(0) =̂ ((event(0) → PreLoca i

c(1)) �

(� e : Σi
c \ {event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

SR8’: PreLoca i
c(0) =̂ ((event(0) → γc → MainLoca i

c(0)) �

(� e : Σi
c \ {event(0), αc , βc , γc} → PreLoca i

c(0)))

<| cond(l)>| (αc → PreLoca i
c(0))

Rule SR1-2,4 are augmented so that the process proceeds to the first location after
completing the last location or whenever a cold condition is violated. Rule SR5-8 are
augmented so that the initial event which may activate a chart (event(0)) is not engaged
before the chart completes. As a result, no new processes need to be forked under our
assumption. For simplicity, the subsequent discussion assumes that there is no overlap-
ping activation of the same chart. The process synthesized for instance i in chart c is
denoted as Instancei

c .

– SR10: The process terminates whenever a cold condition is violated in the chart,
and deadlocks whenever a hot condition is violated. Both are captured using inter-
rupt operators.

Instance i
c =̂ (PreLoca i

c(0) �αc Instance i
c) �βc STOP

Each chart consists of a finite number of interacting instances. Let Chartc be the process
for chart c.

– SR11: The process is an alphabetized parallel of the processes of all instances in the
chart. Note that in case a hot condition is violated, the process deadlocks and, there-
fore, the system deadlocks (L2). In case a cold condition is violated, the process
restores to its initial state.

Synthesis of Distributed Processes from Scenario-Based Specifications 425

Chartc =̂ ‖
i
(Instance i

c , Σ
i
c)

An LSC specification consists of a finite number of universal charts, each constraining
a set of visible events. Let I be the process synthesized from the LSC specification.

– SR12: I =̂ ‖
c
(Chartc , Σc)

We claim that I is an implementation of S. From the construction of Chartc , it is clear
that only behaviors satisfying the chart are allowed. Therefore, I only allows behaviors
that satisfies all the charts (because of the parallel composition). Moreover, Chartc only
constraints its visible events (as it is alphabetized) and, therefore, other events are free
to occur. We skip the case-by-case proof in this paper. The main result of our work is
that we may group the behaviors of an object in the system effectively by transforming
I using CSP algebraic laws, in particular, the distributivity law of alphabetized parallel
composition.

I =̂ ‖
c
(Chartc , Σc) =̂ ‖

c
(‖

i
(Instance i

c , Σ
i
c), Σc) [SR11,12]

=̂ ‖
i
(‖

c
(Instance i

c , Σ
i
c),

⋃
i
Σi

c) [L7]

We remark that the underlying portion of the process is the behavior of an object in
isolation, and

⋃
i Σi

c is its alphabet with a number of special events. Thus, the behaviors
of each objects can be determined locally without ever constructing the global state
machine. Each object is composed with the rest of the system by alphabetized parallel
composition. There is a subtle difference between alphabetized parallel composition
and traditional common event synchronization between state machines. For the former,
an event in the alphabet but not in the process indicates a forbidden event. Whereas
the alphabet of a state machine always contains exactly the set of events in the state
machine. Other than that, the process of each object is realized by traditional finite state
machines straightforwardly.

Example 2. We show the synthesized processes for the lower chart in Figure 2 (as it is
the most complicated one) in detail. For the talk scenario,

InstanceEnv
Talk =̂ (γTalk → talk → γTalk → InstanceEnv

Talk) � (talk → InstanceEnv
Talk)

InstanceUser
Talk =̂ (open → γTalk → talk → γTalk → InstanceUser

Talk)
� (talk → InstanceUser

Talk) � (close → InstanceUser
Talk)

InstanceCover
Talk =̂ (open → coverOpened → γTalk → γTalk → InstanceCover

Talk)
� (coverOpened → InstanceCover

Talk) � (close → InstanceCover
Talk)

InstanceChip
Talk =̂ (startRing → coverOpened → γTalk → speakerOff →

displayTimer → γtalk → InstanceChip
Talk)

� (coverOpened → InstanceChip
Talk) � (speakerOff → InstanceChip

Talk)

� (displayTimer → InstanceChip
Talk)

InstanceSpeaker
Talk =̂ (startRing → γTalk → speakerOff → γTalk → InstanceSpeaker

Talk)

� (speakerOff → InstanceSpeaker
Talk)

InstanceDisplay
Talk =̂ (γTalk → displayTimer → setDisplayTimer →

γTalk → InstanceDisplay
Talk)

� (displayTimer → InstanceDisplay
Talk)

� (setDisplayTimer → InstanceDisplay
Talk)

426 J. Sun and J.S. Dong

Phone

incomingCall

talk

talk

incomingCall

talk

β

βReceive

βReceive

βTalk

βTalk

Fig. 4. Finite State Machine Implementation of Env

Before the main chart is activated, all visible events are free to occur (captured by
the external choices). Once the instances synchronize the entering of the main chart,
only event sequences specified by the main chart are allowed. This example also illus-
trates how forbidden events are handled. For instance, event close is in the alphabet of
InstanceUser

Talk and InstanceCover
Talk . It can occur before the main chart is activated but not

after. Similarly, we may synthesize the processes for the instances in the other charts.
The behavior of the same instance is then composed using an alphabetized parallel op-
erator as discussed. The following example shows the behaviors of the Env instance in
the system.

InstanceEnv
Receive =̂ incomingCall → γReceive → γReceive → InstanceEnv

Receive

InstanceEnv
Talk =̂ (γTalk → talk → γtalk → InstanceEnv

Talk) � (talk → InstanceEnv
Talk)

InstanceEnv
Phone =̂ incomingCall → talk → γphone → InstanceEnv

Phone

InstanceEnv =̂ InstanceEnv
Receive ‖ InstanceEnv

Talk ‖ InstanceEnv
Phone

The behaviors of Env in Receive, Talk, Phone are captured by the three processes
above. The finite state machine implementation of the Env instance is illustrated in
Figure 4. The three state machines are running concurrently, where common events are
synchronized. We remark that all the synthesized processes are regular and, therefore,
can be implemented by finite state machines.

4 Discussion

In Section 3, we ignore the modalities on locations because CSP lacks the expressive-
ness to capture liveness, i.e. certain events must be observed in the future. Globally, a
system run satisfies an LSC specification only if no instance is stuck at a hot location. In
this section, we amend the traditional CSP failure semantics with “signals” to capture
liveness. We show that modalities on locations can be captured naturally using signals
and the result in Section 3 remains. That is, we show that global behaviors satisfying
liveness condition associated with locations can be determined locally.

The name, “signal”, is suggested by Davies [9], where signal are used to express
broadcast effectively in CSP and they must be observed in the future. In this work,
signals are simply events that must be observed in the future. Naturally, events on hot

Synthesis of Distributed Processes from Scenario-Based Specifications 427

locations are mapped to signals. In the following discussion, we focus on failure seman-
tics only because there could be nondeterminism in LSCs (therefore trace semantics is
insufficient) and there is no hiding operator in LSCs (therefore the synthesized pro-
cesses are divergence-free). If we use Σ̂ to denote the set of all signals, then the set of
all events is given by Σ̃ =̂ Σ ∪ Σ̂. For each event a in Σ, we add a signal â . We remark
that except they must be engaged eventually, signals play the same role as ordinary
events, e.g. synchonizing with signals or events obeying the CSP rules. The set of ex-
tended processes is denoted as P̃ . To ease the discussion (i.e. ensure type consistency),
we assume that a process in P̃ is uniquely identified by a set of failures.

P̃ == P P(Σ̃∗ × P Σ̃)

To ensure the additional constraint caused by signals, we define a filter function to
eliminate behaviors from the original CSP failure definitions so that the mature semantic
models of CSP are maintained. The filter function F : P̃ → P P̃ satisfies the following
condition:

∀ p : P̃; s : Σ̃∗; E : P Σ̃ •
(s,E) ∈ F(p) ⇔ (s,E) ∈ p ∧ ∃(s,E ′) : p • Σ̂ ⊆ E ′

This axiom insists that any observation that can be extended by engaging a signal
must be extended into the future. This way, we augment CSP semantics with a simple
fairness condition. Intuitively, it captures the idea that events labelled with a hot loca-
tion must be engaged. The failures calculation for the compositional CSP constructs
remain unchanged and, therefore, the relevant algebraic laws remain valid, including
the associativity and symmetry laws for alphabetized parallel ([L4,L5]) and, therefore,
law [L6,L7]. The goal of our discussion is to show that the modalities associated with
locations can be captured using signals by the processes in a distributed fashion, so that
a local process can be implemented by a finite state machine with a set of accepting
states. Equivalently, we want to show that in our context the following laws hold.

F(P̃1 X||Y P̃2) = F(P̃1) X||Y F(P̃2) [L8]

F(‖m

i=1
(‖n

j=1
(P̃ j

i , Σ̃
j
i),

⋃
j
Σ̃j

i)) = ‖n

j=1
(F(‖m

i=1
(P̃ j

i , Σ̃
j
i)),

⋃
i
Σ̃j

i) [L9]

Intuitively, if two traces, one for each component, both cannot be extended by en-
gaging a signal, then the composed trace cannot be extended with the signal either. The
reserve is not true in general (counter example in Appendix A). However, if a shared
signal is always ready to be engaged or refused by both components, then the reverse
is also true and, therefore, law [L8, L9] are true. The proof is left to Appendix A. We
remark that for consistent LSC specifications, the assumption is safe because graphi-
cally a message output event is always connected to a message input events and vice
versa due to the absence of lost message symbol. The above result is crucial to our
work because it guarantees that equipping the global process with liveness conditions
is equivalent to equip the liveness conditions locally. Behaviors of each component,
therefore, can be decided locally.

Example 3. For example, the CSP process synthesized from Env instance in the chart
presented in Figure 3 is the following:

428 J. Sun and J.S. Dong

InstanceEnv
Phone =̂ ̂incomingCall → t̂alk → γphone → InstanceEnv

Phone

Processes with signals can be implemented as finite state machines equipped with
simple fairness conditions, namely, accepting states. A state is accepting if there is no
outgoing transition labelled with a signal. For example, in the right-most state machine
in Figure 4, only the state after the talk event is accepting, indicated by a double-lined
circle. A global accepting state is a state where all its components’ states are accepting.

5 Conclusion and Future Works

The main contribution of our work is that we present a systematic way of synthesizing
distributed processes from LSC specifications. The key point of our method is that the
global state machine is never constructed. Therefore, our method can handle system
with complicated interactive behaviors. By constructing a CSP specification first and
then rewriting it using CSP algebraic laws, we address some of the challenges of such
synthesis discussed in [24, 1, 14]. For instance, we prove that the behaviors of each
object can be determined without ever constructing the global state machines [14]. We
guarantee that no unspecified behaviors are allowed by using only CSP equivalence
laws [1]. Moreover, we developed a JAVA application to automatically synthesize CSP
expression from LSCs. The tool extends the one reported in [27] with the new way of
constructing CSP processes.

There are a couple of possible extensions to our work. First, we may investigate
whether our result holds for LSCs with qualitative timing behaviors. Timed CSP [26]
seems to be a promising media to carry out the discussion. We may as well transform
the synthesized CSP processes to executable models, e.g. SystemC [11], Statechart in
Rhapsody [13], so that users may execute the distributed implementations.

Acknowledgements

We thank Steffen Andersen and Dines Bjørner and Steffen Holmslykke for their in-
sightful comments and discussion on early versions of this paper.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts. In Proc.
of the 22nd International Conference on Software Engineering, pages 304–313. ACM Press,
2000.

2. R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In Proc. of
the 10th International Conference on Concurrency Theory, pages 114–129. Springer-Verlag,
1999.

3. Y. Bontemps and P. Heymans. Turning High-Level Live Sequence Charts into Automata. In
ICSE’02 Workshop: Scenarios and State Machines: Models, Algorithms and Tools, 2002.

4. Y. Bontemps, P. Schobbens, and C. Löding. Synthesis of Open Reactive Systems from
Scenario-Based Specifications. Fundamenta Informaticae, 62(2):139–169, July 2004.

Synthesis of Distributed Processes from Scenario-Based Specifications 429

5. S. D. Brookes and A. W. Roscoe. An Improved Failures Model for Communicating Pro-
cesses. In Proc. of the Pittsburgh seminar on concurrency LNCS 197, pages 281–305, 1985.

6. J. R. Buchi and L. H. Landweber. Solving Sequential Conditions by Finite State Strategies.
Trans. on American Math. Soc., 138:295–311, 1969.

7. D. Harel and R. Marelly. Play-Engine User’s Guide, 2003.
8. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Formal

Methods in System Design, 19(1):45–80, 2001.
9. J. Davies. Specification and Proof in Real-Time CSP. Cambridge University Press, 1993.

10. Formal System Europe. Failure Divergence Refinement. http://www.fsel.com/, 2003.
11. T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer Academic

Publishers, 2002.
12. UML Group. OMG UML v1.5. http://www.uml.org/, June 2002.
13. D. Harel and E. Gery. Executable Object Modeling with Statecharts. Computer, 30(7):31–42,

1997.
14. D. Harel and H. Kugler. Synthesizing State-Based Object Systems from LSC Specifications.

In Proc. of CIAA, volume 2088 of LNCS, pages 1–26, 2001.
15. D. Harel and R. Marelly. Come, Let’s Play - Scenario-Based Programming Using LSCs and

Play-Engine. Springer-Verlag, 2003.
16. O/ . Haugen and K. Stølen. STAIRS C Steps to Analyze Interactions with Refinement Seman-

tics. In Proc. Sixth International Conference on UML (UML’2003), volume 2863 of LNCS,
pages 388–402, 2003.

17. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

18. ITU. Message Sequence Chart(MSC), Nov 1999. Series Z: Languages and general software
aspects for telecommunication systems.

19. J. Klose and H. Wittke. An Automata Based Interpretation of Live Sequence Charts. In
TACAS, pages 512–527, 2001.

20. P. Kosiuczenko and M. Wirsing. Formalizing and Executing Message Sequence Charts via
Timed Rewriting. Electr. Notes Theor. Comput. Sci., 25:1–25, 1999.

21. K. Koskimies and E. Mäkinen. Automatic Synthesis of State Machines from Trace Diagrams.
Softw. Pract. Exper., 24(7):643–658, 1994.

22. X. S. Li, Z. M. Liu, and J. F. He. A Formal Semantics of UML Sequence Diagram. In Aus-
tralian Software Engineering Conference, pages 168–177. IEEE Computer Society, 2004.

23. R. Marelly and H. Kugler. Multiple Instances and Symbolic Variables in Executable Se-
quence Charts. In Proceedings of OOPSLA’02, pages 83–100, 2002.

24. A. Pnueli and R. Rosner. Distributed Reactive Systems are Hard to Synthesis. In Proc. of
31st IEEE Sypm. on Foudation of Computer Science, 1990.

25. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
26. S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe. Timed

CSP: Theory and practice. In Real-Time: Theory in Practice, volume 600, pages 640–675.
Springer-Verlag, 1992.

27. J. Sun and J. S. Dong. Model Checking Live Sequence Charts. In ICECCS’05, to appear,
2005.

Appendix A: Proof of L8

Given two processes P̃1 and P̃2 and their alphabets X ,Y respectively, the alphabetized
parallel composition is denoted as P̃1 X ||Y P̃2.

430 J. Sun and J.S. Dong

P̃1 X ||Y P̃2 = {(u,M ∪ N) : (X ∪ Y)∗ × P(X ∪ Y) |
u ∈ traces(P̃1 X ||Y P̃2) ∧ M \ (X ∩ Y) = N \ (X ∩ Y)
∧ (u � X ,M) ∈ P̃1 ∧ (u � Y ,N) ∈ P̃2} [Def1]

An event sequence u is a trace of P̃1 X ||Y P̃2 if and only if there exists a trace s :
traces(P̃1) and t : traces(P̃2) such that u ∈ s X ||Y t . The definition of s X ||Y t can
be referred in [25].

Lemma 1. ∀(s,E) • (s,E) ∈ F(P̃1) X ||Y F(P̃2) ⇒ (s,E) ∈ F(P̃1 X ||Y P̃2)

Proof. (s,M ∪ N) ∈ F(P̃1) X ||Y F(P̃2)
⇒ s ∈ trace(F(P̃1) X ||Y F(P̃2)) ∧ M \ (X ∩ Y) = N \ (X ∩ Y)

∧ (s � X ,M) ∈ F(P̃1) ∧ (s � Y ,N) ∈ F(P̃2) [Def1]
⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩ Y) = N \ (X ∩ Y)

∧ (s � X ,M) ∈ P̃1 ∧ ∃(s � X ,M ′) : P̃1 • Σ̂ ⊆ M ′

∧ (s � Y ,N) ∈ P̃2 ∧ ∃(s � Y ,N ′) : P̃2 • Σ̂ ⊆ N ′ [Def. of F]
⇒ (s,M ∪ N) ∈ P̃1 X ||Y P̃2

∧ ∃(s,M ′ ∪ N ′) : P̃1 X ||Y P̃2 • Σ̂ ⊆ M ′ ∪ N ′

⇒ (s,M ∪ N) ∈ F(P̃1 X ||Y P̃2) [Def. of F]

Intuitively, this lemma states that if both components cannot engage a signal (all signals
are refused) at certain point of execution, then the composition cannot engage a signal
either. Unfortunately, the reverse is not true. The following illustrates a counter example
where P̃1 can be extended by engaging a shared signal and P̃2 cannot.

P1 =̂ (â → STOP � b → STOP) X =̂ {â, b}
P2 =̂ c → STOP Y =̂ {â, c}

It is easy to verify that (〈〉, {â}) is in F(P̃1 X ||Y P̃2) but not F(P̃1) X ||Y F(P̃2).
However, if we assume that whenever the two components agree on the set of refused
local events, they also agree on the set of shared events, i.e. if one component is ready
to engage a shared event, the other is ready too and vice versa, then the reverse is true.
Formally, we assume

∀(s,M) ∈ P̃1 ∧ (t ,N) ∈ P̃2 • M \ (X ∩ Y) = N \ (X ∩ Y) ⇒ M = N

Lemma 2. ∀(s,E) • (s,E) ∈ F(P̃1 X ||Y P̃2) ⇒ (s,E) ∈ F(P̃1) X ||Y F(P̃2)

Proof. (s,M ∪ N) ∈ F(P̃1 X ||Y P̃2)
⇒ (s,M ∪ N) ∈ (P̃1 X ||Y P̃2) ∧ ∃(s,E ′) : (P̃1 X ||Y P̃2) • Σ̂ ⊆ E ′ [Def. of F]
⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩ Y) = N \ (X ∩ Y)

∧ (s � X ,M) ∈ P̃1 ∧ (s � Y ,N) ∈ P̃2

∧ ∃(s,E ′) : (P̃1 X ||Y P̃2) • Σ̂ ⊆ E ′ [Def1]

From the healthiness conditions of CSP, there exists (s�X ,M ′) in P̃1, and (s�Y ,N ′) in
P̃2 with maximal refusal set. By the definition of the alphabetized parallel composition,
M ′ \ (X ∩ Y) = N ′ \ (X ∩ Y) and, therefore, by our assumption M ′ = N ′ = E ′.

Synthesis of Distributed Processes from Scenario-Based Specifications 431

⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩ Y) = N \ (X ∩ Y)
∧ (s � X ,M) ∈ P̃1 ∧ (s � Y ,N) ∈ P̃2

∧ (s � X ,E ′) ∈ P̃1 ∧ Σ̂ ⊆ E ′ ∧ (s � Y ,E ′) ∈ P̃2 ∧ Σ̂ ⊆ E ′ [By assump.]
⇒ s ∈ trace(P̃1 X ||Y P̃2) ∧ M \ (X ∩ Y) = N \ (X ∩ Y)

∧ (s � X ,M) ∈ F(P̃1) ∧ (s � Y ,N) ∈ F(P̃2) [Def. of F]
⇒ (s,E) ∈ F(P̃1) X ||Y F(P̃2) [Def1]

Thus, by Lemma 1 and 2 we conclude L8. Law L9 is a direct consequence of law L8
and the symmetry and associativity laws of alphabetized parallel.

	Synthesis of distributed processes from scenario-based specifications
	Citation

	Introduction
	Background
	Live Sequence Charts
	Communicating Sequential Process

	Synthesizing Distributed Processes
	Discussion
	Conclusion and FutureWorks
	Acknowledgements
	References

