
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2006

Design synthesis from interaction and state-based specifications Design synthesis from interaction and state-based specifications

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
SUN, Jun and DONG, Jin Song. Design synthesis from interaction and state-based specifications. (2006).
IEEE Transactions on Software Engineering. 32, (6), 349-364.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5055

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5055&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Design Synthesis from Interaction and
State-Based Specifications

Jun Sun and Jin Song Dong

Abstract—Interaction-based and state-based modeling are two complementary approaches of behavior modeling. The former

focuses on global interactions between system components. The latter concentrates on the internal states of individual components.

Both approaches have been proven useful in practice. One challenging and important research objective is to combine the modeling

power of both effectively and then use the combination as the basis for automatic design synthesis. We present a combination of

interaction-based and state-based modeling, namely, Live Sequence Charts and Z, for system specification. We then propose a way of

generating distributed design from the combinations. Our approach handles systems with intensive interactive behaviors as well as

complex state structures.

Index Terms—Z language, live sequence charts, specification, synthesis.

Ç

1 INTRODUCTION

BEHAVIOR modeling plays an important role in the
engineering of software-based systems. It is the basis

for systematic approaches for specification, design, code
generation, testing, and verification. Two complementary
approaches for modeling behavior have been proven useful
in practice. One is interaction-based, which focuses on
global interactions between system components, e.g.,
Message Sequence Charts (MSC) [46] and Live Sequence
Charts (LSC) [9]. The other is state-based modeling, which
concentrates on the internal states of individual compo-
nents, e.g., Z [49], VDM [23], and Statechart [14]. Large scale
systems often have not only complex data structures but
also intensive interactive behaviors relying on the under-
lying data objects. In this work, we propose a combination
of interaction and state-based modeling, i.e., a complete
system specification consisting of two separate parts: an
LSC part for capturing interactions between system
components and a Z part for modeling the data and
functional aspects. The significant and novel aspect is that
the combination combines the modeling power of both so
that it can be used to specify systems beyond the capability
of either one. Moreover, such combined specifications
contain sufficient information for mechanized synthesis of
distributed system designs, which may lead directly to
implementation.

The first contribution of this work is the integration of
LSC and Z. LSC is a rather rich extension to MSC. It allows
specification of not only possible behaviors, but also
mandatory ones. We choose Z because it is widely known
and accepted and well-developed in terms of specification,
refinement, etc. The second contribution is our approach to

solving the synthesis problem of the combined specifica-
tions. Synthesis from specifications like scenario-based
diagrams or various automata is extremely hard [34], [35],
[15], [4]. To the best of our knowledge, our work is the first
attempt to synthesize low-level implementations from
combined formal system specification of interactive-based
and state-based modeling. Our aim is to discover a practical
way of synthesizing sound implementations. Due to the
complexity of the problem, the synthesized implementation
may not exhibit all the runs allowed by the specification.

We take a step-by-step approach. First, a distributed
object system is synthesized from the LSC part of the
specification by treating local actions as abstract events. The
global state machine is never constructed during the step so
as to avoid state space explosion. Meanwhile, an abstract
finite state machine is constructed from the Z part using
automated predicate abstraction [1], [29], which allows us to
grasp the behaviors of the objects based on a finite set of
data assertions. Second, the distributed object system is
refined on an object basis to guarantee that the precondi-
tions of the local actions (Z operations) and hot conditions
in the LSC model will not be violated. Additional crucial
properties for open systems, like nonblocking and uncon-
trollability of the environment, are also taken into account.
Finally, we may synthesize executable implementation by
generating code from the refined finite state machines (the
design). Our method is implemented as a Java application.

The remainder of the paper is organized as follows:
Section 1.1 discusses the related works. Section 2 briefly
introduces the relevant features of Z and LSC and proposes
an intuitive integration. Section 3 presents a systematic way
of synthesizing a distributed object system from the LSC
model. Section 4 refines the distributed object system based
on abstract views of the Z model. Section 5 discusses our
prototype. Section 6 concludes the paper.

1.1 Related Works

The part of our work on synthesizing distributed object
systems from LSC is related to attempts at synthesizing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006 349

. The authors are with the Department of Computer Science, National
University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of
Singapore. E-mail: {sunj, dongjs}@compu.nus.edu.sg.

Manuscript received 21 Apr. 2005; revised 10 Apr. 2006; accepted 1 June
2006; published online 23 June 2006.
Recommended for acceptance by S. Uchitel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0095-0405.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

state machines from interaction-based modeling. The synth-
esis problem of LSC has been discussed by Harel and Kugler.
In [15], they tackled the problem by defining the notion of
consistency of an LSC model. Their approach starts with
constructing a global system automaton and decomposing it by
different means. Their approach suffers from the state
explosion problem due to the construction of the global system
automaton, which is often of huge size because of the
distributed nature of LSC and the underlying weak partial
ordering semantics. In our work, a distributed object system
is synthesized directly from the LSCs. We avoid constructing
the global state machine by using a bounded set of
synchronization barriers for monitoring the completion of
universal charts locally. In [5], Bontemps et al. discussed the
synthesis problem for a small subset of LSC (LSC without
conditions, structuring constructs, modalities on locations,
and messages). They proposed a game-based semantics for
LSC, which leads to the notion of the consistency of their LSC.
Their work is later extended to handle all LSC constructs but
unbounded loop in [2]. In our approach, almost all LSC
constructs are supported except complex time-related ones,
which deserve a complicated discussion and are thus left to
future work. More importantly, we present a way of
synthesizing distributed implementations from LSCs. In [4],
Bontemps and Schobbens investigated the complexity of
various problems of LSC. The results are fairly negative, i.e.,
they showed the distributed realization problem is un-
decidable. Later, a number of lightweight approaches to the
synthesis problem were proposed. For instance, Harel et al.
reinvestigated the problem in [16]. They generate State-
charts [14] from LSC and then verify them for correctness,
thus avoiding undecidability. In our work, we use a set of
special events (bounded by the maximum number of
overlapping activations of the universal charts and the
number of the universal charts) to avoid undecidability.
Thus, our work can be viewed as a lightweight approach to
the problem as well. Another lightweight approach is
evidenced in [3], where Bontemps et al. proposed a
technique coupling translation and verification to cope
with undecidability. We remark that such an approach
certainly works in our context. Additionally, the work
described in [24] synthesizes a timed Büchi Automaton
from a single universal chart. What makes our goal both
harder and more interesting is the treatment of a set of
charts, not just a single one. There have been a number
works on formalizing and then synthesizing from the
classic MSC [48], [25], [44], [18], [45], [28], [26]. Compared
to synthesis from MSC, synthesis from LSC is considerably
more complicated as LSC offers more features than MSC.
Nevertheless, the fact that LSC can be used to specify
complete system behaviors also makes synthesis from LSC
more useful.

Our approach offers a promising method to apply
synthesis techniques to system specifications containing
scenarios as well as complex data requirements. As far as
the authors know, this work is the first on integrating state-
based formalism with scenario-based formalisms for system
specification and development. The part of our work on
linking LSC and Z is remotely related to works on
integrating interaction-based (or event-based) formalisms

with state-based formalisms [38], [6], [39], [31]. Most of the

works on integrating formalisms focus on specifying and

reasoning about the integrated specifications. Our work

goes beyond to synthesizing finite state designs.

2 BACKGROUND

2.1 The Z Specification Language

Z [49] is a state-based formal specification language based

on the established mathematics of set theory and first-order

logic. The set theory used includes standard set operators,

set comprehension, Cartesian products, and power sets. Z

has been used to specify data and functional models of a

wide range of systems, including transaction processing

systems and communication protocols. It has been standar-

dized by ISO [21]. In Z, mathematical objects and their

properties are collected together in schemas: patterns of

declaration and constraint. The schema language is used to

structure and compose descriptions: collating pieces of

information, encapsulating them, and naming them for

reuse. A schema contains a declaration part and a predicate

part. The declaration part declares variables and the

predicate part expresses requirements about the values of

the variables.

Example. The schema encapsulates the state information of

a light object.

The declaration part contains the declaration of two

variables. The variable dim represents the illumination of

the light object, which is of value from 0 to 100 (in

percent) and on is a Boolean variable indicating whether

the light object is on or not. The predicate part, referred

to as the state invariant, places a constraint on the values

of the two variables, i.e., the dim is nonzero if and only if

the light object is on.

A Z specification typically consists of a number of state

and operation schemas. A state schema groups together

state variables, e.g., the Light schema. An operation schema

defines the relationship between the “before” and “after”

valuations of one or more state schemas. Z is capable of

specifying open system, i.e., systems which constantly

interact with their environment. External inputs to an

operation schema are denoted as variables followed by a

question mark.

Example. The operation schema defines the operation

Adjust by how the state variables of the Light schema

is updated.

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

The schema name after � indicates the state schemas to
be updated by the operation. The variable dim? is an
input from the environment. The state-update is ex-
pressed using a predicate involving both primed and
unprimed state variables. In particular, the operation can
only be applied when the light is on and, after the
operation, the light level is set to be dim?. If dim? is zero,
the state variable on will be set to false because of the
state invariant.

We shall partition a large Z specification into packages.
A Z package contains one state schema, one initial schema
(e.g., LightInit below) which identifies the initial valuation
of the state schema, and a number of operation schemas that
may update the state schema. In other words, a Z package
identifies the state space of a set of objects.

Example.

The schemas in the above and schema Light, Adjust
constitute a Z package of the Light objects. The initial
schema LightInit states that, initially, the light is off.
Operation schemas are defined to turn on or turn off the
light or set the light level to a specific level.

The Light model is a part of the Light Control System
(LCS) [12], which is an intelligent control system. It detects
the occupation of a building, then turns off the light
automatically or tunes the illumination in the building
according to the outside light level. We use the LCS as a
running example to demonstrate our work. The system
contains three active components, a light, a motion detector
which detects movements in the room periodically, and a
room controller that coordinates the light and the motion
detector. The data structure of the motion detector is trivial.

Example. The Z package of the room controller contains the
schemas shown in Fig. 1. The variable dim represents the
light level (in the room controller’s knowledge). Initially, it
is of value 0. The operation Tune computes the desired
light level according to the outside light level.

Operation schemas in a Z package are given a standard
Z semantics, which is used to develop a transition-system
semantics [49]. The Z operation semantics is best viewed as
describing a relation between initial and final states of an
operation. The Z precondition of an operation schema
describes the initial states for which the outcome of the
operation is properly defined, i.e., the domain of the
operation. If an operation is invoked outside its domain,
the system diverges.

If Operation is an operation schema, we write
preðOperationÞ to denote its precondition. If the state
schema is denoted as State, and inputs (outputs) is the list
of inputs (outputs) associated with the operation, then the
precondition is defined as:

preðOperationÞ b¼ 9State0; outputs �Operation n outputs;

where 9 is an existential quantifier, the predicate after � is
quantified by variables defined before �. The schema
Operation n outputs may be obtained by existentially quan-
tifying each component in outputs within Operation. The
precondition hides any component that corresponds to the
state after the operation and any output that happens to be
present. If a state (Statea)

1 satisfies the precondition of
Operation, we write postðOperation; StateaÞ to denote the
final state that can be reached from Statea by engaging
Operation.

postðOperation; StateaÞ b¼ 9State; inputs � Statea
^Operation:

Example. The precondition of the operation Adjust in the
Light package is:

preðAdjustÞ b¼ 9dim0 : 0::100; on0 : IB

jdim0 > 0() on0 ¼ true � on ¼ true ^ dim0 ¼ dim?

Informally, it reads as “there exists a poststate (an instance
of theLight schema) such that the operationAdjust can be
engaged.” Given a state where dim > 0 ^ on ¼ true, the
postcondition of the operation Adjust is:

postðAdjust; dim > 0 ^ on ¼ trueÞ b¼
9dim : 0::100; on : IB; dim? : 0::100jdim > 0() on ¼ true �
ðdim > 0 ^ on ¼ trueÞ ^ ðon ¼ true ^ dim0 ¼ dim?Þ:

The operation schemas of a package thus form a named
collection of relations which determine a (finite or infinite)
transition system in which an operation may fire exactly
when its Z precondition is satisfied. The semantic model for
the system consists of all the sequences of operations/
events which can be performed by the objects.

Z is not intended for description of nonfunctional proper-
ties, such as usability, performance, size, and reliability.

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 351

1. In this paper, states and predicates are used interchangeably.

Neither is it intended for timed or concurrent behaviors.
There are other formal methods that are well suited for
these purposes. We may use these methods in combina-
tion with Z to relate state and state-change information to
complementary aspects of the systems.

2.2 Live Sequence Charts

The notion of MSC [46] is widely used to describe scenarios
of interaction between processes or objects. However, MSC
suffers from the rather weak partial ordering semantics that
make it incapable of capturing many kinds of behavioral
requirements [6], [7], [9]. LSC was introduced in [9] to
overcome the shortcomings of MSC by adding liveness. LSC
extends MSC with various constructs to distinguish
scenarios that must happen from ones that may happen,
conditions that must be fulfilled from ones that may be
fulfilled, etc.

There are two kinds of charts in LSC. Existential charts
are mainly used to describe possible scenarios of a system
in the early stages of system development, i.e., the same role
played by the classic MSC. In later stages, knowledge
becomes available about when a system run has progressed
far enough for a specific usage of the system to become
relevant. Universal charts are then used to specify behaviors
that should always be exhibited. A universal chart is
typically preceded by a prechart, which serves as the
activation condition for executing the main chart. Whenever
a communication sequence matches a prechart, the system
must proceed as specified by the main chart. Due to
precharts, a system run may activate a universal chart more
than once and some of the activations might overlap [32]. In
this work, we assume that an LSC specification consists of a
set of universal charts, whereas existential charts are used to
specify test cases. An implementation of the LSC model
should only exhibit behaviors allowed by the universal
charts and should always be able to exhibit at least one of
the behaviors specified by any of the existential charts.

Each universal chart is associated with a set of visible
events. Only visible events are constrained by the chart. An
optional set of forbidden events is associated with a chart. A
chart typically consists of multiple instances, which are
represented as vertical lines. Along with each line, there are a
finite number of locations. A location carries the temperature

annotation for progress within an instance. Locations may
be either cold or hot. A hot location means that the system
has to move beyond, whereas the system may stay at a
cold location forever. Globally, a system run is accepted
by the chart if no object is stuck at a hot location.
Messages and conditions are also labeled. A hot message
must be received, whereas a cold one may get lost. A hot
condition must be met, whereas a cold condition
terminates the chart or subchart if it is evaluated to false.
However, we remark that the ability to specify hot and
cold messages, i.e., whether a message is required to be
received or may get lost, is redundant because of the
facility for describing hot and cold locations. Essentially,
the temperature of the locations takes precedence over the
temperature of messages, so whether or not the message
is received is determined entirely by the temperature of
the message input. This questionable feature of LSC is
recognized by Harel and Marelly, who list the possible
cases and conclude that the temperature of the message
has no semantic meaning [17]. Thus, in the following
discussion, the temperature of all messages is discarded.

Example. Fig. 2 shows two typical scenarios of the LCS.
When a user enters a room, the motion detector senses
the presence of the person and the room controller reacts
by sensing the current daylight level and tuning the light
with appropriate illumination if the light is already on.
Whenever a user leaves a room (leaving it empty), the
detector senses no movement, the room controller waits
for a safe number of nomotion to make sure the room is
empty, and then turns off the light. There are a number
of important features of LSC presented in the chart, i.e.,
hot location, hot condition, and forbidden events. It
requires that, in order to complete this scenario, no
movement should be detected before the chart ends and
the light is eventually turned off before it is turned on
again. Other scenarios of the LCS include the charts in
Fig. 3, where the occupant may turn the light on/off by
pushing the button or the system regularly adjusts the
illumination of the light. The LCS in this paper is a
simplified version of the one presented in [12].

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

Fig. 1. Z package of the room controller schemas.

LSC also supports advanced features like hierarchy,
symbolic instances and messages, etc. For a detailed
introduction on a complete list of features of LSC, refer to
[17]. Our discussion in the rest of the paper assumes that the
LSC specification is well-formed, i.e., the weak event
ordering relation defined by each chart is acyclic, etc. [17].
We also assume that all conditions are distributed because
we are only interested in local control strategies and we
believe shared conditions are a problematic feature of LSC.
A condition is a Boolean expression over the visible
variables of the chart. Therefore, some form of global
variables is presupposed. This does not match the reality of
distributed systems. Objects in distributed systems have
their own state space (local variables) and all communica-
tion between objects would be via messages. This assump-
tion makes our localized synthesis possible. We do support
distributed conditions that can be rewritten as a set of local
conditions with proper synchronization.

2.3 An Integration of Z and LSC

We remark that interaction-based modeling language like
LSC and state-based modeling language like Z naturally
complement each other. LSC lacks the expressiveness to
capture complicated data and functional models. For
instance, local actions are often ignored or treated as
abstract events in the study of the verification and synthesis

problem [15], [5]. It is often assumed to be local variables
associated with each object. However, there is no way to

specify what exactly the data space of the object is and how
the local actions update the local variables except using

concrete implementations, which we think is not desirable

since sequence diagrams are used in the early stages of
system development. On the other hand, in Z specification,

the system behavior patterns are often implicitly embedded
within various state/operational constraints. Without ex-

plicit system behavior representations, it is difficult to
visualize or implement those abstract models. Moreover, Z

lacks the expressiveness to capture dynamic interactive

behaviors between the system components. Therefore, we
propose a simple yet effective integration of LSC and Z

which allows specification of systems with not only
complicated interactive behaviors, but also complex data

structures.
We require that a combined system specification consist

of two parts. One is a set of LSC universal charts, which
specify mandatory interaction scenarios between system

components. The other is a Z specification, which specifies
the data and functional models associated with the objects

in the system. Each object in the LSC model with nontrivial
data states is associated with a Z package in the Z part. Each

local action in the LSC model is defined in the respective

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 353

Fig. 2. Scenarios of the LCS: PeopleIn and PeopleOut.

Fig. 3. Scenarios of the LCS: TurnOn and TurnOff and RegularAdjust.

Z package as a Z operation schema. Conditions in the LSC
model can only mention variables defined in the respective
Z state schema. The system designing process will start
with building scenarios from system requirements from
which the universal charts are identified. During the
process, local actions with abstract meanings are identified.
The designer may then specify each local action using one
Z operation schema to formally state how each local action
updates the data state. For example, all instances in Fig. 2
and Fig. 3 with nontrivial data states are associated with
Z packages, i.e., the Light package for the Light object and
the RoomController package for the RoomController object.
Local actions like Adjust, TurnOn, TurnOff , Tune, are
defined as operation schemas in the respective package.
Therefore, the Z specification and the LSC model constitute
an integrated specification of the LCS.

Graphically, links from an instance in the chart to its
Z state schema and links from local actions to Z operation
schemas will be provided, e.g., the Z schema is shown in the
popup window once the instance is highlighted and so are
the operation schemas. The result is a rigid system
architecture, which has its advantages: The data and
functional model and the interaction-based model remain
orthogonal throughout development and, so, can be
analyzed or refined separately using existing tools or
theorems. Once both parts stabilize, the integrated specifi-
cations will contain sufficient information on both data and
control aspects of the system, which allows us to auto-
matically synthesize implementable designs.

3 SYNTHESIS OF A DISTRIBUTED OBJECT SYSTEM

In this section, we explain how to synthesize a distributed
object system from the universal charts of the combined
specification. For the time being, local actions are treated as
abstract events. The synthesized object system is refined in
the next section to handle data-related requirements.

The key idea of the synthesis is of the use of a set of
special synchronization barriers to monitor completion of
universal charts locally. The principles are, first, the
synthesis should be robust with the notion of data
refinement [49] so that the synthesized design remains
valid after refinement of the Z operations and, second the
global state machine should never be constructed so that
state explosion is avoided and, above all, the synthesized
design should be consistent with the specification. We
discuss our construction using the notion of finite state
machine.

3.1 Terminology

Definition 1. A state machine is a 6-tuple

M b¼ ðS; S0; F ;�; T ; IÞ;

where S is a set of states, S0 � S is a set of initial states,
F � S is a set of accepting states, � is the alphabet, and T :
S � �! S is a transition relation and I labels each state with
a Boolean formula.

The Boolean formula labeled with a state is also referred
to as a state invariant. Graphically, an initial state is
indicated by an arrow from nowhere. A double-lined circle

represents an accepting state. A run of a state machine,
hs1; e1; s2; e2; � � � ; si; ei; siþ1; � � �i, is an alternating sequence of
states and events subject to the following: 8i : INji �
1 � ðsi; ei; siþ1Þ 2 T and s1 2 S0. An accepting run is a finite
run ending with an accepting state or an infinite one where
at least one accepting state repeats infinitely. A state is
reachable if and only if there is a finite run that reaches it.
For simplicity, all states subsequently mentioned are reach-
able. A false state, i.e., a state labeled with false, is always
removed.

Definition 2. Given two state machinesMi b¼ ðS; S0; F ;�; T ; IÞ,
where i 2 f1; 2g, a state machine M b¼ ðS; S0; F ;�; T ; IÞ is
the product, written as M1kM2 if M:S b¼M1:S �M2:S and
M:S0 b¼M1:S0 �M2:S0 and M:F b¼M1:F �M2:F and
M:� b¼M1:� [M2:� a n d M:I b¼ fððs1; s2Þ7!M1:Iðs1Þ ^
M2:Iðs2ÞÞg and T is the least subset of S � �� S satisfying
the following:

ðs1; s2Þ 2M:S ^ ðs1; e; s
0
1Þ 2M1:T ^ e 62M2:�

) ððs1; s2Þ; e; ðs01; s2ÞÞ 2M:T

ðs1; s2Þ 2M:S ^ ðs2; e; s
0
2Þ 2M2:T ^ e 62M1:�

) ððs1; s2Þ; e; ðs1; s
0
2ÞÞ 2M:T

ðs1; s2Þ 2M:S ^ ðs1; e; s
0
1Þ 2M1:T ^ ðs2; e; s

0
2Þ 2M2:T

) ððs1; s2Þ; e; ðs01; s02ÞÞ 2M:T:

The parallel composition is symmetric and associative. The
indexed product of multiple state machines is written as
kiMi, where i is the index.

Definition 3. Let Mi b¼ ðS; S0; F ;�; T ; IÞ, where i 2 f1; 2g, be
two state machines. A total relation R : M1:S !M2:S is a
fair simulation from M1 to M2 if it satisfies the following:

D1 : 8s : M1:S0 � RðsÞ 2M2:S0

D2 : 8ðs1; e; s2Þ 2M1:T ; s01 : M2:SjRðs1Þ ¼ s01
� 9s02 : M2:S � ðs01; e; s02Þ 2M2:T ^Rðs2Þ ¼ s02

D3 : 8s : M1:F � RðsÞ 2M2:F :

D1 states that there is an initial state in M2 corresponding to
every initial state in M1. D2 states if M1 can engage an event
at a certain state, M2 should be able to simulate the
transition at the corresponding state. D3 guarantees that all
final states in M1 are simulated in M2. A similar definition
appeared in [11] and later development can be found in
[19]. If there is a fair simulation relation from M1 to M2, then
M2 fair trace contains M1, i.e., it is possible to generate by
M2 every fair sequence of operations that can be generated
by M1. The notion of fair trace-containment is robust with
respect to LTL [19].

3.2 Synthesizing Local State Machines

We start with constructing a state machine for each
instance in a single chart. Given a basic chart m (a main
chart or a subchart of a main chart without hierarchy), let
Mi

m b¼ ðS; S0; F ;�; T ; IÞ be a state machine synthesized from
instance i in chart m. The basic idea is to construct a state
for each location. Thus, S is the set of states corresponding
to the locations along the instance. S0 contains exactly the
state corresponding to the first location. F contains the
states corresponding to the cold locations. For locations

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

labeled with cold conditions, an additional state labeled

with the negation of the condition is added so that, if the

condition is violated, the additional state is reached and a

special event is engaged to terminate the (activation of) the

chart. For locations labeled with hot conditions, the

condition is labeled with the respective state and no

additional state is added. This prevents behaviors that

might keep the hot condition from happening. Besides,

there is a transition ðs1; e; s2Þ in T if the location correspond-

ing to s2 is next to the location corresponding to s1 and the

location corresponding to s1 is labeled with e. After

reaching the very last location of the chart (the bottom

line), the state machine behaves freely so that it puts no

further constraint on the system.

Example. Fig. 4 is a universal chart containing a conditional

branch. It is part of the LSC specification for a lift control

system. Whenever the lift approaches the next floor, the

shaft sends a message arriving to the controller. The

controller refreshes its knowledge of the current level by

updating its local variable pos. A hot condition stating

that the value of pos must be within its range is asserted.

The controller decides whether to stop at the next floor. If

the condition toStop is true, i.e., the next level is

requested internally or requested externally with the

right direction, the shaft stops and the door is opened

and the respective request is cleared. Otherwise, the lift

continues traveling in the same direction.
The upper state machine in Fig. 5 is synthesized, for

instance,Shaft from the main chart. EventsArrive:x:main
and Arrive:x:sub1 are barriers used to synchronize the
entering or exiting of the main chart and the subchart
among all participating instances. Variable x is an
identifier which distinguishes different activations of
the same chart. Only participating instances in the same
activation of the chart are synchronized. Whenever the
chart completes (reaching the filled circle), the system
behaves freely, i.e., all visible events can be engaged.
Fig. 5 also shows the state machine synthesized for
instance Controller. For readability, we use a transition
labeled with * to state that all visible events are allowed
to engage. Only transitions labeled with visible events
are constructed since transitions concerning invisible
events are free to occur by Definition 2. The hot condition
is labeled with the state right after the local action
UpdatePos. After entering the subchart, two states are
reached, one labeled with the condition toStop and the
other labeled with the negation of it. The conditional

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 355

Fig. 4. A scenario of the Lift Control System.

Fig. 5. State machine for Shaft and Controller in scenario arrive.

branch is effectively flattened. In general, the state
machine for hierarchical charts can be constructed from
the state machines synthesized from the subcharts
recursively. We skip the detail on how to flatten
hierarchal charts because it is quite standard.

In general, a universal chart u is associated with two sets
of synchronous barriers, namely, u:x:y:conV io and u:x:y,
where x is a counter uniquely identifying an activation of
chart u and y is the identifier of a subchart. There could be
overlapping activations of the same chart. For instance, a
trace hnomotion; nomotion; nomotioni will trigger three
different overlapping activations of the chart PeopleOut.
Event u:x:y is used to synchronize the entering or exiting of
the subchart y in chart u among those participating
instances. Event u:x:y:conV io is engaged if and only if a
cold condition in the subchart y is violated in the
x-activation of u. It is the only event that the system can
engage at the state labeled with the negation of the
condition. However, every state in state machines for other
instances is equipped with transitions labeled with this
event.

Before entering the main chart, a universal chart puts
no constraint over the system. Thus, the part of state
machine synthesized from the prechart will allow all
possible behaviors and, at the same time, monitor
communication sequences that may match the prechart.

Let �i
u be the set of events associated with instance i in

chart u (composed of prechart p and main chart m),
including forbidden events. �u b¼ [�i

u is the visible
events of chart u. Let Mi

p b¼ ðS; S0; F ;�; T ; IÞ be the state
machine synthesized from instance i in prechart p. There is
a transition ðs1; e; s2Þ in Mi

p:T if the location corresponding
to s2 is next to the location corresponding to s1 and the
location corresponding to s1 is labeled with e. In addition, a
transition ðs1; e

0; smaxÞ is constructed for every event e0 in �i
u

but e, where smax is the state corresponding to the last
location on instance i in the main chart, i.e., the filled one.
Intuitively, the prechart proceeds whenever an expected
event is engaged, whereas an unexpected event aborts the
activation of the chart. Because hot conditions in precharts
have no semantic meaning, all conditions in precharts are
treated as cold conditions. Last, the state corresponding to
the last location in the prechart is identified with the state
corresponding to the first location in the main chart, i.e., if
the prechart is completed, the main chart is reached.

Example. Fig. 6 shows the state machines synthesized from
instances in the scenario PeopleOut. The alphabet of
each state machine includes the forbidden events. The
forbidden events are allowed to engage before entering
the main chart. Once a communication sequence matches
the prechart, the state machine synchronizes entering of
the main chart. All states in the prechart are accepting

356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

Fig. 6. State machines for instances in scenario PeopleOut.

because the state machine will not constrain the system
execution before entering the main chart.

Parallel composition of the state machines, e.g., the ones
in Fig. 6, only monitors a single activation of the chart. For
instance, the trace

hnomotion?; nomotion?; nomotion?; nomotion?i

is not allowed by the chart in Fig. 2, yet it is allowed by the
state machine for RoomController in Fig. 6. Though there
could be infinite overlapping activations of the same chart,
only finite copies of such state machines are required to
monitor all the activations. In [4], Bontemps and Schobbens
have shown that every LSC has an equivalent deterministic
Büchi automaton that contains at most exponentially more
states than there are locations in the LSC. A symmetry
reduction shall always make it possible to consider only a
finite (and bounded) number of overlapping activations.
Therefore, only a finite copies of the state machines are
necessary for monitoring overlapping activations and they
can be reused for nonoverlapping activations. The state
machine synthesized from instance i in chart u is written as
Mi

u. In practice, a large number of overlapping activations
of the same chart is unlikely because system behaviors are
increasingly restricted as the number of overlapping
activations increases. For some systems, there is a natural
limit on the number of overlapping activations. For
instance, there could be at most three overlapping activa-
tions of chart PeopleOut because the main chart will
complete before the fourth nomotion event. A simple
analysis will tell the maximum number of overlapping
activations allowed by a chart.

Example. Fig. 7 shows the state machine synthesized from
instance RoomController in chart PeopleOut to monitor
the x-activation of the chart. The state machine is
augmented with a special synchronization barrier
fork:x, which is used internally to fork a new copy of
the state machine whenever it moves beyond the initial
state. Under the assumption that there are at most three
overlapping activations of the chart, three copies of the
state machine with x ranging from 0 to 2 are constructed.
The copy with x ¼ 0 does not have the first state because
it is the seed to fork other copies. The copy with x ¼ 2
does not have the state where fork:3 can be engaged
because there is no fourth copy to be forked. The product
of the three copies is computed as the final result as

shown in Fig. 8. We identify the very last state (the one

composed by three filled state) with the initial state so as

to allow nonoverlapping activations. We remark that the

final state machine can be further reduced using

standard technique like bisimulation reduction [27], etc.

For instance, all states labeled with event fork are

removed as they are irrelevant to system behaviors.

3.3 Discussion

We remark that the product of the state machines for all

instances in the chart, kiMi
u, refines the chart, i.e., all

accepting runs of the state machine satisfy the chart. An

immediate consequence is that the product of the state

machines for all the universal charts, kukiMi
u, refines the

LSC specification, i.e., only behaviors satisfying all the

universal charts are allowed. Because the parallel composi-

tion operator is symmetric and associative, the following

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 357

Fig. 7. The state machines synthesized for Instance RoomController in Chart PeopleOut.

Fig. 8. The final state machine synthesized for instance RoomController

in chart PeopleOut.

rule is established. Let Mi
LSC denote the local behaviors of

an object i.

kukiMi
u b¼ kikuMi

u b¼ kiMi
LSC:

Due to the above transformation, the local behaviors of an
object are determined without constructing the global state
machine. For example, the behaviors of the RoomController
are captured by the product of the state machines
synthesized from all the universal charts.

We skip the formal soundness proof of the synthesis. In our
technical report [40], which extends our earlier work in [41],
we formally defined a trace-based denotational semantics of
LSC. We then developed a sound interpretation of LSC in the
classic notion of CSP [20]. By transforming CSP interpretation
of the LSC model using CSP’s algebraic laws, the local
behaviors of each object are effectively grouped together as a
set of distributed processes. A bisimulate relationship
between the synthesized state machine in this work and
the transition system interpretation of the distributed
processes would prove the soundness of our synthesis.
Alternatively, we may define a similar set of algebraic
laws in terms of state machines and prove the soundness
directly.

So far, our synthesis does not distinguish environmental
objects from system objects. In other words, we handle only
closed systems but not open systems, i.e., systems that
interact with their environment constantly. The synthesis
problem for closed systems is often referred to as satisfia-
bility, i.e., whether the language of a specification is
nonempty or, equivalently, if considering the environment
as part of the system, if there is a benevolent environment in
which some implementation can be deployed in order to
fulfill the specification. Synthesis for open systems asks
whether there is an implementation that can be deployed in
any malevolent environment. In the literature, synthesis for
open systems has long been recognized as a hard problem.
And, it is even harder to synthesize distributed implemen-
tations without constructing the global state machine, i.e.,
undecidable in almost all interesting settings [43], [30], [35].
Thus, we take a lightweight approach to tackling the
problem. The intuition is that, when system engineers
design systems, implicit assumptions on the environment
are often made (enforced later by blocking the user-
interface at certain time, using a queue to delay the arrival
of the environmental event, etc.). Instead of synthesizing an
implementation that works in any environment, we
synthesize one that works in the intended environment. In
other words, we deal with a restatement of the synthesis for
open systems: Given a (partial) modeling of the environ-
ment and an LSC specification, build a distributed object
system such that, for every refinement of the environment,
the object system satisfies the LSC specification.

The objects are marked as either environmental objects or
system objects. Consequently, events are also marked as
either environmental events or system events. An event is an
environmental event if and only if it is a local action of an
environmental object or a communication event that requires
the participation of an environmental object. The system
designer is asked to offer a modeling of the intended
environment, preferably using universal charts, which

capture all implicit assumptions on the environment. Local
state machines for the environmental objects are synthesized
in the same way as system objects. We then verify that the
synthesized state machine for the environment (parallel
composition of all state machines for the environment objects)
simulates the user-supplied modeling of the environment.
From another point of view, the state machines synthesized
for environmental objects are indeed system processes which
monitor the interaction between the environment and the
system as well as trigger the appropriate special events at the
proper time. The refinement relationship therefore ensures
that no interaction is missed.

4 REFINEMENT OF THE DISTRIBUTED OBJECT

SYSTEM

In our combined specification, local actions could be
complicated computation constrained by pre/postcondi-
tion. A sound design will make sure that a local action is
only invoked that satisfies its precondition, a hot condition
will be satisfied in all circumstances, etc. However, it is
difficult to tell if some assertion is true after certain (or a
series of) local computations because the state space of a
Z specification may often be infinite. The problem is further
complicated as Z operation schemas may take inputs from
the environment, which cannot be controlled by the system.

Our remedy is predicate abstraction thanks to recent
development on software model checking [1]. Predicate
abstraction allows us to interpret and then restrict the
behaviors of an object based on the abstract view of the data
variables. For instance, Fig. 9 presents an abstract inter-
pretation of the Light package in which only whether the
light is on or off is of interest. From such an abstract graph,
it is easy to tell that, after operation TurnOn, the variable
dim must be positive, etc. Predicate abstraction is essential
for our synthesis since an implementable control structure
may only contain a finite number of control states.

We present a systematic way of calculating the predicate
abstraction of a Z package. An abstract machine where an
operation can be engaged only at states where its precondi-
tion is satisfied and can reach all states satisfying its
postcondition is constructed. That is, we construct an
abstract state machine for the underlying data structure.
The abstract machine is then used to refine the distributed
object system synthesized from the LSC model on an object
basis, i.e., the control flow, by removing invocation of local
actions that might violate their preconditions, restricting the
operation by requiring it must result in states satisfying the
hot conditions, etc.

4.1 Predicate Abstraction of Z Packages

Given a finite set of predicates P (in terms of the state
variables) for abstracting a Z package, the set of abstract

358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

Fig. 9. Abstract interpretation of the Z-package of Light.

states, denoted as Sa, contains the conjunction of a subset of
the predicates in P and their negations:

Sa b¼ fx j 9X � P � x ¼ ^ðX [f:eje 2 P nXgÞg:

An abstract state groups all possible valuations of the state
variables which satisfy the predicate x. For instance, the
state dim > 0 and on ¼ true in Fig. 9 groups all instances of
schema Light where dim is positive (1-100) and on is true. In
order to guarantee the correctness of the synthesized
design, we require that the set of predicates for abstraction
include all conditions in the universal charts (as well as the
predicate in the initial schema for simplicity).

Given an operation, it is necessary to find out the abstract
states where the operation can be invoked without violating
its precondition and the abstract states which can be reached
via engaging it at a state satisfying its precondition. We define
a functionW to calculate the weakest formula over P , which
implies a predicate p, i.e., WðpÞ ¼ fx 2 Sajx) pg. The
motivation is that if p is the precondition of an operation,
thenWðpÞ is the set of all abstract states where the operation
can be safely invoked. Similarly, we define a function S to
compute all abstract states where a given predicate might
be true, i.e., SðpÞ ¼ Sa n fx 2 Sajx) :pg. If p is the
postcondition of an operation at a state, then SðpÞ is the
set of abstract states that may be reached via invoking the
operation.

A finite state abstraction of a Z package is built by
abstracting both its initial schema and operation schemas.
Because only sound designs are of interest, a local action
will be invoked only when we are certain no assertions will
be violated. It is achieved by replacing the precondition of
each operation by WðpreðOperationÞÞ and replacing the
postcondition of the operation engaged at an abstract state
sa in WðpreðOperationÞÞ by SðpostðOperation; saÞÞ. By
replacing the precondition with a more restrictive one, we
make sure no precondition will be violated. By replacing the
postcondition with a less restrictive one, we make sure that
no hot conditions will be violated in all circumstance. Our
abstraction is consistent with the notion of Z data refine-
ment, i.e., weakening the precondition or strengthening the
postcondition. All abstract states are accepting because the
system may idle infinitely long before engaging an enabled
operation according to the Z semantics [49].

Definition 4. Given a set of predicateP ,Mi
Z b¼ ðS; S0; F ;�; T ; IÞ

is an abstraction of the Z package associated with object i only
if S b¼ Sa and S0 b¼ WðinitialconditionÞ and F b¼ S and � is
the set of operation schemas in the package and I labels a state
with itself and

T b¼ fðs1; e; s2Þ : S � �� Sjs1 2 WðpreðeÞÞ^
s2 2 Sðpostðe; s1ÞÞg:

Example. Assume the set of predicates for abstracting the
Light package is fdim ¼ 0; on ¼ false; dim > 0g, the set
of abstract states thus contains two states:

Sa b¼ fdim ¼ 0 ^ on ¼ false; dim > 0 ^ on ¼ trueg:

The abstract initial state is exactly the state where
dim ¼ 0 ^ on ¼ false. Operation Adjust is abstracted by
computing the following:

WðpreðAdjustÞÞ
b¼ Wð9dim0 : Illumination; on0 : IBjdim0 > 0

() on0 ¼ true � on ¼ true ^ dim0 ¼ dim?Þ
b¼ fdim > 0 ^ on ¼ trueg

SðpostðAdjust; dim > 0 ^ on ¼ trueÞÞ
b¼ Sð9dim; dim? : Illumination; on : IBjdim > 0()
on ¼ true�
dim > 0 ^ on ¼ true ^ on ¼ true ^ dim0 ¼ dim?Þ

b¼ fdim0 ¼ 0 ^ on0 ¼ false; dim0 > 0 ^ on0 ¼ trueg:

Thus, the abstract operation Adjust is enabled only at the
abstract state where on is true, from which both abstract
states can be reached by engaging Adjust once. We skip
the abstraction of the other operations in Light package.
Fig. 8 shows the resultant state machine.

However, both function W and S in our context are
undecidable, i.e., we may not be able to tell if a predicate is
true at a state due to the limited power of proving. The
remedy is to compute approximations of the functions. The
key idea is that an approximation of the function W will
contain at most the set of abstract states in WðpÞ, whereas
the approximation of the function S will contain at least
states in SðpÞ. This way, our abstraction remains robust with
the Z data refinement. In our prototype, we make use of the
theorem prover PVS [33] to compute such approximations
in order to construct an abstract state machine by paying a
reasonable price.

4.2 Pruning

After constructing the abstract state machine from the
Z package, the product of Mi

LSC and Mi
Z is computed. By

removing states labeled with false, we guarantee that no
preconditions or hot conditions will be violated. However,
the problem is complicated by the uncontrollability of the
environment because removing the states may put restric-
tions on the inputs from the environment. Dealing with the
uncontrollability of the environment is essential for open
systems. Informally, it requires that the design should be
able to function correctly, regardless of the environment
input. For instance, if we allow the user to adjust the
illumination by setting it to a certain value, captured by the
universal chart in Fig. 10. It requires that, after operation
Adjust, dim > 0 must hold. Intuitively, we know that this
hot condition may not be satisfied because the user may set
the dim to 0 and, hence, accidentally turn off the light (due
to the state invariant). In the following, we show how such
behaviors can be detected and pruned systematically.
Another important property for open systems is nonblock-
ing, i.e., the design should not introduce any fresh dead-
lock. Both requirements have been discussed in works of
control theory [37], [30]. Our solution is a pruning algorithm
which determines whether there is a satisfying design and
synthesizes one if possible by refining the product state
machine.

We partition the actions enabled at a state into two sets,
controllable actions and uncontrollable actions. An action e
is uncontrollable at a state s1 if its postcondition postðe; s1Þ
depends on some environmental input. An action at a state
is controllable if it is not uncontrollable. An action may be

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 359

controllable at a state but uncontrollable at another one.
This is different from previous works on supervisory

control [37], [36], where all occurrences of an uncontrollable
event are uncontrollable.

Definition 5. Let Mi
b¼ ðS; S0; F ;�; T ; IÞ be the product of

Mi
LSC and Mi

Z . A state machine Mi
D b¼ ðS; S0; F ;�; T ; IÞ is a

design if it satisfies the following conditions:

A1: There is a fair simulation relation R from Mi
D to Mi.

A2:

8ðs1
LSC; s

1
ZÞ : Mi:S; s2

Z : Mi
Z:S; e : Mi

Z:� � ðs1
Z; e; s

2
ZÞ 2Mi

Z:T

) 9ðs3
LSC; s

3
ZÞ : Mi:S; e0 : Mi

Z:� � ðRððs1
LSC; s

1
ZÞÞ; e0;

Rððs3
LSC; s

3
ZÞÞÞ 2Mi

D:T :

A3:

8ðs1
LSC; s

1
ZÞ; ðs2

LSC; s
2
ZÞ : Mi:S; s3

Z : Mi
Z:S; e : Mi

Z:��
ðRððs1

LSC; s
1
ZÞÞ; e;Rððs2

LSC; s
2
ZÞÞÞ 2Mi

D:T ^ ðs1
Z; e; s

3
ZÞ 2Mi

Z:T

^ e is uncontrollable at s1
Z

) ð9s3
LSC : Mi

LSC:S � ðRððs1
LSC; s

1
ZÞÞ; e;

Rððs3
LSC; s

3
ZÞÞÞ 2Mi

D:T Þ:

Informally, A1 guarantees that the design satisfies both the

LSC and Z specification since only behaviors allowed by the
product are permitted. A2;A3 guarantee the additional
properties are satisfied. A2 states if a state is not a deadlock

state, it will not be a deadlock state in the design. A3 states
if a target state is reachable from a source state by engaging
an uncontrollable operation, the target state will also be

reachable in the design. Both requirements A2;A3 concern
only local actions and, hence, communication events
remain.

In the following, we present the pruning algorithm that

prunes states and transitions from the product Mi
LSCkMi

Z

recursively so as to construct a minimally restrictive (if
possible) design. For every reachable state s, we will check

if it satisfies requirement A3. If it does not, i.e., there is an
uncontrollable action e at s whose poststates have been

partially removed, all transitions from s labeled with e are
pruned at once. The intuition is that, if allowing this
operation at the state may result in trouble (given certain

environment inputs), we do not allow the operation at the
state at all. We also check if any state is a fresh deadlock

state. If it is, the state is pruned along with all its incoming
and outgoing transitions. Pruning transitions may create
deadlock states. A state may violate A3 after some of its
immediate successor states get pruned because its outgoing
transitions are pruned too. Therefore, the pruning must be
applied recursively.

Our algorithm is presented in Fig. 11. Lines 1 to 4 declare
the variables. Variable Successor is the set of the initial
states, which can be viewed as immediate successor states
of an imaginary single “initial” state. Variable Path will
contain the states in the path from an initial state to the
current state (inclusive). It is initially empty. The state
machines Product, Raw represent Mi and Mi

Z , respectively.
Line 5 invokes our recursive procedure of pruning. All four
variables are passed as parameters. In the procedure
Pruning, the first line declares a local variable Done as a
local holder of processed states out ofSuccessor. Line 3 checks
if all states inSuccessor have been processed and returns true
if every state in Successor is also in either Path or Done. If a
state is in Path, it is a common ancestor of all states in
Successor. A state out of Successor but not Path or Done is
chosen at line 4. At line 7, we have another loop. The intuition
is that the state will be checked repeatedly until none of its
decedent state is pruned. Lines 8-12 verify if the state satisfies
A3. The function A3ðProduct; Raw; e; sÞ returns true if all
possible environment inputs to operation e at s are handled
properly. Lines 13-16 state that if the state is a fresh
deadlock state, then the pruning backtracks by returning
false, i.e., the parent of the state will be checked again
because one of its child states has been pruned. If the state
satisfies both A2 and A3, its child states are retrieved
(line 17). Line 20 is a recursive method call. If the recursive
call returns false, it means some child state has been pruned
and, thus, the state has to be reexamined. Otherwise, we are
done with the state.

Line 6 in procedure prune checks if there is a design by
removing the states out of reach and the states leading to no
accepting state. There is a design (the pruned state machine)
if and only if the pruned state machine has at least one
initial state and one reachable accepting state. A1 is
obviously satisfied as the identity relation is a fair
simulation relation from the pruned state machine to the
product. The correctness of the algorithm is an immediate
consequence of the fact that a state is not pruned if and only
if it satisfies both requirements and all reachable states from

360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

Fig. 10. Scenario UserAdjust and the state machine for the object Light.

it are not pruned. The algorithm converges because the
states and transitions are finite and it backtracks only when
a state is pruned.

Example. Fig. 10 presents the state machine for instance
Light from scenario UserAdjust assuming there are no
overlapping activations of the chart for simplicity. The
product of the state machines in Fig. 9 and Fig. 10 is
shown in Fig. 12 (where one state labeled with false has
been removed). Applying the pruning algorithm to the
product removes all but the two accepting states and the
transitions between them. The * state is removed because
Adjust is an uncontrollable event at the state and the
state labeled with on ¼ false ^ dim ¼ 0 is not reachable

from the * state by engaging Adjust while it does in the
abstract state machine. Thus, line 10 of the algorithm
applies so that the transitions labeled with Adjust are
removed. The *** state is removed because it is not
reachable any more. The ** state is removed because it
becomes a fresh deadlock state and, thus, line 14 of the
algorithm applies so that the state is pruned. The rest are
removed because they cannot reach an accepting state.
The resulting state machine is a valid design for closed
systems because there are initial and accepting states.
Intuitively, the resulting state machine guarantees that
the chart UserAdjust is satisfied by requiring that it is
never activated. However, for open systems, user is

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 361

Fig. 11. Pruning Algorithm.

Fig. 12. Product of state machine in Fig. 9 and Fig. 10.

considered as part of the environment and, therefore,
there is no way to prevent users from activating the chart
through sending message adjust:dim?. In our approach,
the synthesized modeling of the User failed to simulate
of the default modeling (where users can initiate any
communication at any time) and, thus, there is no design
satisfying the chart.

In the following, we briefly discuss the soundness of the
techniques used in this section. In Section 3.3, we have
shown that the state machines constructed are consistent
with the LSC model treating local actions as abstract events.
We now argue that the refined state machines satisfy both
the LSC model and the Z model. First of all, by Definition 4,
local actions can only be engaged within their (strength-
ened) domain. Engaging in a local action may appear to
reach more states than it could because the postcondition is
weakened. This causes no problem because local actions
will be replaced by concrete implementations which satisfy
their pre/postcondition. Thus, there may be infeasible
pathes in the synthesized implementation. The point is
that, using the weakened postcondition, we can detect a
possible violation of hot conditions early in the synthesis
process (instead of at runtime). The product of the state
machines synthesized from the LSC model of an object and
the abstract state machine of the Z package thus satisfies
both the LSC model and the data requirements. During the
pruning process, transitions and states are pruned. It is easy
to verify that the pruned state machine is fairly simulated
by the original one (A1 in Definition 5). Fair simulation
implies fair trace containment. Thus, the pruned state
machine is consistent with the specification.

5 AUTOMATION

5.1 Prototype

We have implemented a prototype to experiment with our
method with standard case studies. The input to our
experimental tool is an XML representation of the Z model
and an XML representation of the LSC model. The XML
representation for Z family languages is proposed in [42]
and is actively developing. There is not yet a standard
interchange format for LSC. The XML format used in
PlayEngine is not designed to communicate LSC. No
schema or DTD definition is developed. Therefore, we
define the syntax of LSC using both BNF grammar and
XML schema (available at [22]). Together with the XML
schema, a parser and a synthesizer module are built based
on an existing Java XML parser [13] to parse the LSC and
construct the design for each object automatically.

The predicate abstraction is automated with the help of
PVS. By default, the predicates for abstraction include
exactly those conditions in the LSC model. An embedding
of Z in PVS is developed. Lemmas are generated auto-
matically from the Z specification for calculating the
abstract initial schema and abstract pre/postcondition of
each operation schema. PVS is invoked in batch mode to
prove the lemmas automatically without user interaction.
The rest of the steps, i.e., computing the product of the two
state machines and removing states labeled with false and

pruning the product, etc., are fully automated by the
synthesizer module.

Finally, executable codes are to be generated from the
design. Code synthesis from state machines is reasonably
straightforward. However, it is complicated in our case
because of the state invariant. During the pruning process,
nondeterministic choices may get pruned partially. In other
words, the action’s postcondition may be strengthened,
which is not directly implementable in traditional program-
ming languages like C or Java. Two different remedies have
been explored. The first remedy is to guard each invocation
of the action with a proper guard condition. For partially
pruned nondeterministic choices, the transitions will be
guarded with the weakest precondition that guarantees the
reachability of the desired state. LetWP denote the weakest
precondition operator introduced in [10]. Given an opera-
tion e and a source state sa and a target state sb, the weakest
precondition for the state machine to reach sb from sa via
operation e is (defined in [8]):

WPðe; sa; sbÞ b¼ ð9State0 � eÞ ^ ð8State0 � ðe ^ saÞ) sbÞ:

The first part of the condition guarantees the termination of
the operation. The second part guarantees to reach the
desired state. If the weakest precondition evaluates to false,
there is no way to guarantee that the transition ends up
with the desired state. This is normally due to internal
nondeterminism, i.e., some information is missing in the
model. After equipping transitions with proper guards,
executable implementation can be synthesized straightfor-
wardly with the implementation of each local action
supplied by users. As long as the implementation of local
actions conforms to its precondition/postcondition specifi-
cation, our synthesized implementation is correct. How-
ever, because a reasonable guard condition must not
involve any primed variables, computing the weakest
precondition requires elimination of the primed variables.
Variable elimination is, in general, undecidable. Therefore,
this remedy can hardly be fully automated. The other
remedy is to generate a set of proof obligations for
nondeterministic transitions which are partially pruned.
When the user provides an implementation of the opera-
tion, the proof obligations are verified (or tested) in addition
to the pre/postcondition so as to make sure the operation
satisfies the desired more restrictive postcondition at the
system states.

5.2 Efficiency

Our approach is designed to handle complex systems. During
the first step, we synthesize a distributed object system from
the LSC model without constructing the global state machine,
which saves us from state space explosion. We limit the
number of overlapping activations of the same chart so as to
further reduce the size of the local state machines. For
instance, all universal charts except PeopleOut forbid over-
lapping activation in the LCS example. Nevertheless,
computing the product of multiple state machines (kiMi

u)
explicitly is expensive, e.g., the state machine for instance
Light contains 760 states without any reduction. Therefore,
we reuse existing CSP-based process oriented design
patterns [47] to generate structural prototypes.

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

To handle systems with infinite data space, we adopt
predicate abstraction to construct abstract view of system
behaviors in terms of finite assertions. It is the most time-
consuming operation in our method. In general, the size of
the abstract state machine is exponential to the number of
predicates for abstraction. However, we remark that our
abstraction is based on one Z package at a time and there
are unlikely to be a large number of conditions concerning
an object. Our abstraction is developed to construct an
abstract state graph by paying a reasonable price. In our
prototype, sound approximations of the function W and S
are used. To further speed up the abstraction, as well as to
guarantee termination of the proof, a more loop-free
proving strategy than grind (the highest-level command in
PVS) is used to prove every single lemma in a limited
amount of time. The data aspect of the LCS example is
slightly trivial. As for reference, in a vending machine
example with state variables with infinite domain and
multiple operation schemas, 190 lemmas are generated
altogether and all 105 provable lemmas are proven without
user interaction correctly. We also experimented with the
lift control system, which has arrays of variables (refer to
[22]). In addition, a number of tricks have been used to
further reduce the abstract state space, for instance,
removing a false state by considering the corelation
between the predicates and the state invariant before
abstract. The operations that we perform over state
machines are all polynomial time in terms of the number
of states, for example, removing false states, removing
unreachable states, removing states leading to no accepting
state, etc. So is our pruning algorithm. Therefore, they are
carried out reasonably fast.

6 CONCLUSION

In this work, we presented a systematic way of synthesizing
designs from a combination of state-based modeling and
interaction-based modeling, namely, Z and LSC. Our
contribution is threefold. First, we proposed an intuitive
integration of Z model and LSC model, which is capable of
modeling systems with not only complicated data struc-
tures but also with complex interactive behaviors. Second,
we developed a systematic way of synthesizing distributed
finite state designs all the way from the specifications.
Third, we developed an experimental tool to automate our
method. Our method does suffer from being overrestrictive
sometimes, i.e., the design implements a subset of the
behaviors allowed by the specification. There are a few
reasons why the designs may be overrestrictive. One of
them is already mentioned in Section 3. Moreover, because
our pruning applies on an object basis, valid designs
requiring the cooperation of multiple system objects are not
possible. For instance, inputs from other components in the
system can be controllable if we consider the global state
machine, e.g., the value of dim from RoomController is
actually never 0. However, we remark that there is no way
to synthesize such designs without constructing the global
state machine. The other reason is the limited power of
proving. The effectiveness of the predicate abstraction, e.g.,
fewer spurious behaviors, depends on the proving power.
Spurious behaviors may result in pruning valid designs. For

instance, if an uncontrollable operation may reach only a

safe state from a given state and yet the abstraction insists

that it is possible to reach another undesired state, then the

uncontrollable operation will be prohibited from happening

at the given state. Nevertheless, we believe our method

serves as a promising attempt to apply synthesis techniques

to complicated systems and is general enough to be applied

to other integrations of state-based and interaction-based

modeling.

REFERENCES

[1] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani, “Auto-
matic Predicate Abstraction of C Programs,” Proc. SIGPLAN Conf.
Programming Language Design and Implementation, pp. 203-213,
2001.

[2] Y. Bontemps, “Relating Inter-Agent and Intra-Agent Specifica-
tions (The Case of Live Sequence Charts),” PhD thesis, Institut
d’Informatique, University of Namur, Computer Science Dept.,
2005.

[3] Y. Bontemps, P. Heymans, and P. Schobbens, “Lightweight
Formal Methods for Scenario-Based Software Engineering,”
Scenarios, pp. 174-192, 2005.

[4] Y. Bontemps and P. Schobbens, “The Complexity of Live Sequence
Charts,” Proc. Int’l Conf. Foundations of Software Science and
Computational Structures, pp. 364-378, 2005.

[5] Y. Bontemps, P. Schobbens, and C. Löding, “Synthesis of Open
Reactive Systems from Scenario-Based Specifications,” Fundamen-
ta Informaticae, vol. 62, no. 2, pp. 139-169, 2004.

[6] M. Broy, “Message Sequence Charts in the Development
Process—Role and Limitations,” Electronic Notes Theories of
Computer Science, vol. 65, no. 7, 2002.

[7] M. Broy, “A Semantic and Methodological Essence of Message
Sequence Charts,” Science of Computer Programming, vol. 54, nos. 2-
3, pp. 213-256, 2005.

[8] A. Cavalcanti and J. Woodcock, “A Weakest Precondition
Semantics for Z,” Computer, vol. 31, no. 1, pp. 1-15, Jan. 1998.

[9] W. Damm and D. Harel, “LSCS: Breathing Life into Message
Sequence Charts,” Formal Methods in System Design, vol. 19, no. 1,
pp. 45-80, 2001.

[10] E.W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.
[11] D.L. Dill, A.J. Hu, and H. Wong-Toi, “Checking for Language

Inclusion Using Simulation Preorders,” Proc. Int’l Conf. Computer
Aided Verification, pp. 255-265, 1991.

[12] R.L. Feldmann, J. Munch, S. Queins, S. Vorwieger, and G.
Zimmermann, “Baselining a Doman-Specific Software Develop-
ment Process,” Technical Report SFB501 TR-02/99, Univ. of
Kaiserslautern, 1999.

[13] The Apache Software Foundation, “Xerces Java Parser v1.4.4,”
http://xml.apache.org/xerces-j/, 2001.

[14] D. Harel, “Statecharts: A Visual Formulation for Complex
Systems,” Science of Computer Programming, vol. 8, no. 3, pp. 231-
274, 1987.

[15] D. Harel and H. Kugler, “Synthesizing State-Based Object Systems
from LSC Specifications,” Foundations of Computer Science, vol. 13,
pp. 5-51, 2002.

[16] D. Harel, H. Kugler, and A. Pnueli, “Synthesis Revisited:
Generating Statechart Models from Scenario-Based Require-
ments,” Proc. Formal Methods in Software and Systems Modeling,
pp. 309-324, 2005.

[17] D. Harel and R. Marelly, Come, Let’s Play—Scenario-Based
Programming Using LSCs and Play-Engine. Springer, 2003.

[18] O. Haugen and K. Stølen, “Stairs c Steps to Analyze Interactions
with Refinement Semantics,” Proc. Int’l Conf. UML, pp. 388-402,
2003.

[19] T.A. Henzinger, O. Kupferman, and S.K. Rajamani, “Fair Simula-
tion,” Proc. Int’l Conf. Concurrency Theory, pp. 273-287, 1997.

[20] C.A.R. Hoare, Communicating Sequential Processes. Prentice-Hall,
1985.

[21] ISO/IEC 13568:2002, “Information Technology-Z Formal Specifi-
cation Notation-Syntax, Type System and Semantics,” 2002.

[22] J. Sun and J.S. Dong, “Live Sequence Charts as CSP,” http://
www.comp.nus.edu.sg/sunj/LSC2CSP.html, 2005.

SUN AND SONG DONG: DESIGN SYNTHESIS FROM INTERACTION AND STATE-BASED SPECIFICATIONS 363

[23] C.B. Jones, Systematic Software Development Using VDM. Prentice-
Hall, 1990.

[24] J. Klose and H. Wittke, “An Automata Based Interpretation of Live
Sequence Charts,” Proc. Symp. Theoretical Aspects of Computer
Science, pp. 512-527, 2001.

[25] K. Koskimies and E. Mäkinen, “Automatic Synthesis of State
Machines from Trace Diagrams,” Software—Practice and Experience,
vol. 24, no. 7, pp. 643-658, 1994.

[26] I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCS to
Statecharts,” Proc. IFIP Working Conf. Distributed and Parallel
Embedded Systems, pp. 61-72, 1998.

[27] A. Kucera and R. Mayr, “Weak Bisimilarity with Infinite-State
Systems Can Be Decided in Polynomial Time,” Proc. Int’l Conf.
Concurrency Theory, pp. 368-382, 1999.

[28] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Monitoring and
Control in Scenario-Based Requirements Analysis,” Proc. Int’l
Conf. Software Eng., pp. 382-391, 2005.

[29] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem,
“Property Preserving Abstractions for the Verification of Con-
current Systems,” Formal Methods in System Design, vol. 6, pp. 11-
44, 1995.

[30] P. Madhusudan and P.S. Thiagarajan, “Branching Time Con-
trollers for Discrete Event Systems,” Theoretical Computer Science,
vol. 274, pp. 117-149, 2002.

[31] B. Mahony and J.S. Dong, “Timed Communicating Object Z,”
IEEE Trans. Software Eng., vol. 26, no. 2, pp. 150-177, Feb. 2000.

[32] R. Marelly, D. Harel, and H. Kugler, “Multiple Instances and
Symbolic Variables in Executable Sequence Charts,” Proc. Int’l
Conf. Object-Oriented Programming, Systems, Languages, and Appli-
cations, pp. 83-100, 2002.

[33] S. Owre, J.M. Rushby, and N. Shankar, “PVS: A Prototype
Verification System,” Proc. Int’l Conf. Automated Deduction,
pp. 748-752, 1992.

[34] A. Pnueli and R. Rosner, “On the Synthesis of a Reactive Module,”
Proc. ACM Symp. Principles of Programming Languages, pp. 179-190,
1989.

[35] A. Pnueli and R. Rosner, “Distributed Reactive Systems Are Hard
to Synthesis,” Proc. IEEE Symp. Foundations of Computer Science,
1990.

[36] P.J. Ramadge and W.M. Wonham, “Supervisory Control of a Class
of Discrete Event Processes,” SIAM J. Control and Optimization,
vol. 25, no. 1, pp. 206-230, 1987.

[37] F. Lin and W.M. Wonham, “Decentralized Supervisory Control of
Discrete-Event Systems,” Information Sciences, vol. 44, no. 3,
pp. 199-224, 1988.

[38] A. Roychoudhury and P.S. Thiagarajan, “Communicating Trans-
action Processes: An MSC-Based Model of Computation for
Reactive Embedded Systems,” Proc. Lectures on Concurrency and
Petri Nets, pp. 789-818, 2003.

[39] G. Smith and J. Derrick, “Specification, Refinement and Verifica-
tion of Current Systems—An Integration of Object-Z and CSP,”
Formal Methods in System Design, vol. 18, pp. 249-284, 2001.

[40] J. Sun and J.S. Dong, “From Live Sequence Charts to Distributed
Implementations,” Technical Report TRC5/05, Nat’l Univ. of
Singapore, 2005.

[41] J. Sun and J.S. Dong, “Synthesis of Distributed Processes from
Scenario-Based Specifications,” Proc. Int’l Conf. Formal Methods,
pp. 415-431, 2005.

[42] J. Sun, J.S. Dong, J. Liu, and H. Wang, “A Formal Object Approach
to the Design of ZML,” Annals of Software Eng., vol. 13, pp. 329-
356, 2002.

[43] W. Thomas, “On the Synthesis of Strategies in Infinite Games,”
Proc. Symp. Theoretical Aspects of Computer Science, pp. 1-13, 1995.

[44] S. Uchitel and J. Kramer, “A Workbench for Synthesising
Behaviour Models from Scenarios,” Proc. Int’l Conf. Software
Eng., pp. 188-197, 2001.

[45] S. Uchitel, J. Kramer, and J. Magee, “Detecting Implied Scenarios
in Message Sequence Chart Specifications,” Proc. Int’l Symp.
Foundations of Software Eng., pp. 74-82, 2001.

[46] Int’l Telecomm. Union, Message Sequence Chart (MSC), 1999, Series
Z: Languages and general software aspects for telecomm. systems.

[47] P. Welch, “Communicating Sequential Processes for Java (JCSP),”
http://www.cs.kent.ac.uk/projects/ofa/jcsp/, 2003.

[48] J. Whittle, J. Saboo, and R. Kwan, “From Scenarios to Code: An Air
Traffic Control Case Study,” Proc. Int’l Conf. Software Eng., pp. 490-
497, 2003.

[49] J. Woodcock and J. Davies, Using Z: Specification, Refinement, and
Proof. Prentice-Hall, 1996.

Jun Sun received the BSc degree from the
School of Computing, National University of
Singapore (NUS) in 2002. Since then he has
been pursuing the PhD degree in software
engineering from NUS. As of June 2006, he is
a research fellow in the Department of Computer
Science at NUS.

Jin Song Dong received the bachelor’s (first
class honors) and PhD degrees in computing
from the University of Queensland in 1992 and
1996. From 1995-1998, he was a research
scientist at the Commonwealth Scientific and
Industrial Research Organization in Australia.
Since 1998, he has been with the School of
Computing at the Nation University of Singa-
pore, where he is currently an sssociate profes-
sor and assistant dean. He is a steering

committee member of the International Conference on Formal En-
gineering Methods (ICFEM) and the Asia Pacific Software Engineering
Conference (APSEC) series.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

	Design synthesis from interaction and state-based specifications
	Citation

	untitled

