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Machine-Assisted Proof Support for Validation
Beyond Simulink

Chunqing Chen, Jin Song Dong, and Jun Sun

School of Computing
National University of Singapore

{chenchun,dongjs,sunj}@comp.nus.edu.sg

Abstract. Simulink is popular in industry for modeling and simulating
embedded systems. It is deficient to handle requirements of high-level
assurance and timing analysis. Previously, we showed the idea of ap-
plying Timed Interval Calculus (TIC) to complement Simulink. In this
paper, we develop machine-assisted proof support for Simulink models
represented in TIC. The work is based on a generic theorem prover,
Prototype Verification System (PVS). The TIC specifications of both
Simulink models and requirements are transformed to PVS specifica-
tions automatically. Verification can be carried out at interval level with
a high level of automation. Analysis of continuous and discrete behav-
iors is supported. The work enhances the applicability of applying TIC
to cope with complex Simulink models.

Keywords: Simulink, Real-Time Specifications, Formal Verification,
PVS.

1 Introduction

Simulink [18] is popular in industry for modeling and simulating embedded sys-
tems. It is deficient to handle requirements of high-level assurance and timing
analysis. Formal methods have been increasingly applied to the development of
embedded systems because of their rigorous semantics and powerful verification
capability [15]. Previously, we showed the idea of applying Timed Interval Calcu-
lus (TIC) [10], a formal notation of real-time systems to complement Simulink [5]:
an automatic translation from Simulink models to TIC specifications preserves
the functional and timing aspects; important timing requirements can hence
be formally validated by the well-defined TIC reasoning rules and the strong
support of mathematical analysis in TIC.

Currently, the validation is accomplished by hand. When verifying complex
Simulink models, it becomes difficult to ensure the correctness of each proof step
and to manage all proof details manually. Thus, developing machine-assisted
proof support is necessary and important to ease the analysis beyond Simulink.

Simulink models usually involve continuous dynamics, and important timing
requirements often concern behavior over arbitrary (infinite) intervals. These
features make the automated verification of Simulink models challenging. An
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approach, i.e., model checking [6] has successfully handled finite state transition
systems with its fully automatic proving process. Nevertheless the discretization
abstraction of infinite state transition systems can decrease the accuracy when
analyzing properties of continuous dynamics (e.g., space distance [22]). On the
other hand, theorem proving [4] can directly deal with infinite state transition
systems with powerful proof methods (e.g. mathematical induction). Higher or-
der theorem proving systems such as PVS [24], HOL [11], and Isabelle [23] sup-
port expressive input forms and automated proof capabilities (e.g., automated
linear arithmetic reasoning over natural numbers). A recently developed NASA
PVS library [1] formalizes and validates integral calculus based on the work [8]
that supports elementary analysis. The library has been successfully used to
verify a practical aircraft transportation system [21] which involves complex
continuous behavior. In this paper, we apply PVS as a framework to encode and
verify the TIC models generated from Simulink. The NASA PVS library allows
us to rigorously represent and analyze continuous Simulink models.

We firstly construct the TIC denotational semantic models and validate the
TIC reasoning rules in PVS. Based on the encoding, we define a collection of PVS
parameterized types which correspond to the TIC library functions of Simulink
library blocks. The TIC specifications are automatically transformed into PVS
specifications. The transformation preserves the hierarchical structure. We de-
fine a set of rewriting rules to simplify the proving process and keep certain
detailed TIC semantic encodings transparent to users. Hence we can formally
validate Simulink models at interval level with a high grade of automation: pow-
erful proving capability (including automatic type checking) of PVS guarantees
the correctness of each reasoning step; proofs at low level can be automatically
discharged, mainly by the decision procedures on sets and the propositional sim-
plifications over real numbers in PVS. We have successfully validated continuous
and hybrid systems represented in Simulink against safety and bounded liveness
requirements.

The rest of the paper is organized as follows. In section 2, we brief the work
on representing Simulink models in TIC followed by an introduction of PVS.
The encoding of the primary TIC semantics and reasoning rules is presented in
Section 3. Section 4 defines the library of PVS parameterized types. In the next
section, the transformation strategy is illustrated with a non-trivial hybrid con-
trol system. Section 6 shows the benefits of the rewriting rules and the facilities
of our approach by formally validating the control system in PVS. Related works
are discussed in section 7. Section 8 concludes the paper with future work.

2 Background

2.1 Simulink in Timed Interval Calculus (TIC)

A Simulink [18] model is a wired block diagram that specifies system behavior
by a set of mathematical functions over time. A block can be either an ele-
mentary block or a wired block diagram for a sub-model. An elementary block
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denotes a primitive mathematical relationship over its inputs and outputs. Ele-
mentary blocks are generated from a rich set of Simulink library blocks by using
the parameterization method. A wire depicts the dependency relationship be-
tween connected blocks. The source (destination) block can write (read) values
to (from) a wire according to its sample time which is the execution rate of an
elementary block during simulation. Simulink adopts continuous time as the uni-
fying domain to support various systems (continuous, discrete or hybrid). Note
that discrete systems behave piecewise-constantly continuously in Simulink.

Example 1. A brake control system is used as a running example to explain
our idea and illustrate the results. The system aims to prevent a vehicle from
over speeding by automatically enabling a brake device to decelerate the vehicle
in time. The Simulink model is shown in Figure 1: each square box is an elemen-
tary library block, and each ellipse denotes an interface. The model consists of
three subsystems, namely, subsystem plant depicting the physical speed behav-
ior, subsystem sensor discretizing the speed, and subsystem brake controlling
the brake device status based on the sensed speed. More details are provided in
Section 5 where we translate the system with its requirements into PVS specifi-
cations, and here we select subsystem sensor to describe our previous work. The
subsystem contains three components: two denote the interface (i.e., speedS and
speedR), and block detector created from Simulink library block ZeroOrderHold
stores the input value at each sample time point (the sample time is 1 second in
the example) and keeps it till the next sample time point. Its simplified content
is available in Figure 2.

We applied the Timed Interval Calculus (TIC) [10] to formally represent the
Simulink denotational semantics, and developed a tool to automatically translate
Simulink models into TIC specifications. The translation preserves the functional
and timing aspects as well as the hierarchical structure [5].

TIC is set-theory based and reuses the Z [30] mathematical and schema nota-
tions. It extends the work in [17] by defining interval brackets to abstract time

Fig. 1. The brake control system with its subsystems in Simulink
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points and specifies properties at interval level. Time domain (T) is non-negative
real numbers, and intervals are continuous ranges of time points. In addition,
α, ω, δ are interval operators in TIC to return the infimum, supremum and length
of an interval. Note that they can be used to explicitly access endpoints. Timed
traces defined in TIC are total functions of time to depict physical dynamics,
and integration and differentiation have been rigorously defined in [9]. Each pair
of interval brackets denotes a set of intervals during which an enclosed predicate
holds at all time points. There are four basic interval types according to the
endpoint inclusion. When the involvement of endpoints is unspecified, a general
interval type is defined to cover all types of intervals. Hence system behavior can
be modeled by predicates as relations over intervals. To manage the TIC specifi-
cations, TIC schemas are adopted: a TIC schema groups a collection of variables
in the declaration part and constrains the relationships among the variables at
the interval level in the predicate part. A set of well-defined TIC reasoning rules
captures properties over sets of intervals and is used to verify complex systems.

We defined a set of TIC library functions to capture the denotational se-
mantics of Simulink library blocks, i.e., mathematical functions between their
inputs and outputs over time. Each TIC library function accepts a collection of
arguments that correspond to Simulink library parameters, and returns a TIC
schema that specifies the functionality of an instantiated library block. For ex-
ample, function ZOH shown in Figure 2 preserves the sample time value (i.e.,
variable st) and describes the discrete execution in each sample time intervals
(where interval brackets represent a set of left-closed, right-open intervals).

The translation from Simulink models into TIC specifications is in a bottom-
up manner. Elementary blocks are translated into TIC schemas by applying
appropriate TIC library functions to relevant Simulink parameters. For exam-
ple, schema vehicle sensor detector below is constructed by passing the sample
time value to the ZOH function. Note that symbol “ ” is used to retain the
hierarchical order in Simulink models (vehicle sensor detector indicates that
block detector is a component of system sensor which is a subsystem of system
vehicle). Simulink diagrams are converted into TIC schemas. Specifically, the
schemas declare each component as an instance of a TIC schema that represents
the corresponding component, and each wire is expressed by an equation that
consists of variables from the declaration. For example, schema vehicle sensor
in Figure 2 captures its three components and the connections.

2.2 Prototype Verification Systems (PVS)

PVS [24] is an integrated environment for formal specification and formal verifi-
cation. The specification language of PVS is based on the classic typed, higher-
order logic. Built-in types in PVS include Boolean, real numbers, natural numbers
and so on. Standard predicate and arithmetic operations, such as conjunction
(AND) and addition (+) on these types are also defined in PVS. Types can be
defined starting from the built-in types using the type constructions. For exam-
ple, record types are of the form [#a1 : t1, . . . , an : tn#], where the ai are named
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Fig. 2. The sensor subsystem in Simulink and TIC

record accessors and the ti are types. Elements of a record can be referenced by
using the projection functions: ‘ai for instance.

Functions in PVS are total, and partial functions are supported by predicate
subtype and dependent types which restrict the function domain. In addition,
functions in PVS can share the same name as long as the types of their param-
eters are different. PVS specifications are organized into theories, which usually
contain type declaration, axioms and lemmas. A theory can be reused in other
theories by means of the importing clause.

The PVS theorem prover offers powerful primitive proof commands that are
applied interactively under user guidance. Proofs are performed within a se-
quent calculus framework. A proof obligation consists of a list of assumptions
A1, . . . ,An as antecedents and a list of conclusions B1, . . . ,Bm as consequents. It
denotes that the conjunction of the assumptions implies the disjunction of the
conclusions.

Primitive proof commands deal with propositional and quantifier rules, in-
duction, simplification and so on. Users can introduce proof strategies which
are constructed from the basic proof commands to enhance the automation of
verification in PVS.

PVS contains many built-in theories as libraries which provide much of the
mathematics needed (e.g. real numbers and set) to support verification. Recently,
the NASA PVS library1 extends the existing PVS libraries by providing means of
modeling and reasoning about hybrid systems. The library formalizes the math-
ematical element analysis such as continuity, differentiation and integration, and
contains many lemmas and theorems for manipulating these notations.

1 It is available at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
pvslib.html

Block {
BlockType SubSystem
Name "sensor"
System {

Block {
BlockType Inport
Name "speedR" }

Block {
BlockType ZeroOrderHold
SampleTime "1"
Name "detector"}

Block {
BlockType Outport
Name "speedS" }

Line {
SrcBlock "speedR"
DstBlock "detector" }

Line {
SrcBlock "detector"
DstBlock "speedS" }}}

ZOH : T→ P[In1,Out : T→ R; st : T]

∀ t : T • ZOH (t) = [In1,Out : T→ R; st : T |
st > 0 ∧ st = t ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:Out = In1(α)7]

vehicle sensor detector =̂ ZOH (1)

vehicle sensor

speedR, speedS : T→ R
detector : vehicle sensor detector

I = >speedR = detector .In1?

I = >detector .Out = speedS?
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3 Primitive Encoding of TIC

We construct the TIC denotational semantic model in PVS in a bottom up fash-
ion. Each subsection below corresponds to a PVS theory. Complex theories can
hence reuse the simple ones. The encoding forms a foundation to generate PVS
specifications for TIC specifications and support TIC verification by formalizing
and validating all TIC reasoning rules in PVS2.

Time and Interval. The Time domain is represented by the PVS built-in type,
i.e., nnreal for nonnegative real numbers. Time: TYPE = nnreal.

An interval is a tuple made up by two elements: The first specifies the interval
type, i.e., InterVal Type: TYPE = {OO, CO, OC, CC} (e.g., CO indicates that
the interval type is left-closed, right-open). The second is a pair which denotes
the starting point (stp) and the ending point (etp).

GenInterVal: TYPE = [invt: Interval_Type, {stp: Time, etp: Time | stp <= etp}]

The general interval type (II ) captures the relation between basic interval
types and endpoints. For example, when the interval is both-closed (gi‘1 = CC ),
its ending point can equal the starting point (gi ‘2‘1 <= gi ‘2‘2 where symbols
‘1 and ‘2 are the projection operators of PVS for accessing a tuple). Note that
when an interval is general, it can be one of the four basic interval types. We
apply the predicate subtype mechanism of PVS to define basic interval types (e.g.
the type of left-closed, right-open intervals, COInterVal is given below).

II: TYPE = { gi : GenInterVal | (gi‘1 = CC and (gi‘2)‘1 <= (gi‘2)‘2) or
((gi‘1 = OO or gi‘1 = OC or gi‘1 = CO) and (gi‘2)‘1 < (gi‘2)‘2)};

COInterVal: TYPE = {i: II | i‘1 = CO}

Timed Trace and Interval Operators. The type of timed traces is a total
function from time to real number. The interval operators, α, ω, and δ are func-
tions from interval to time (We show the encoding of α here due to the size limit,
and variable i is a variable of type II ).

Trace: TYPE = [Time -> real];
ALPHA(i): Time = (i‘2)‘1; % i: var II

Expressions and Predicates. Though time and intervals are abstracted in
TIC specifications for concise modeling, they need to be explicitly accessible
when interpreting expressions and predicates in PVS.

A basic element of TIC can have different types. Specifically, it can be a timed
trace, an interval operator, or a constant. To unify different types into one type
during the encoding, function LIFT is defined in the way which accepts three
kinds of parameters (where the second and third parameters are the time and
intervals respectively) and returns real numbers. Note that this is accomplished

2 The complete PVS specifications of the TIC semantics and the reasoning rules are
available at http://www.comp.nus.edu.sg/~chenchun/PVSTIC
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by the overloading mechanism of PVS. For example, a timed trace is evaluated
at a given time point while a constant is unchanged regardless of the time points
and intervals.

LIFT(x)(t, i): real = x; % t : var Time, x: var real
LIFT(tr)(t, i): real = tr(t); % tr : var Trace
LIFT(tm)(t, i): real = tm(i); % tm : var Term

Expressions in TIC are constructed by applying mathematical operators (in-
cluding calculus operators, e.g., “

∫
”) to the basic elements and other sub-

expressions. As time and intervals are required by the LIFT function, they are
passed down to the constituent sub-expressions. The propagation stops when all
the sub-expressions are primitive elements. Similarly way is applied to analyze
predicates which are formed from applying mathematical relation over expres-
sions or predicate logic on constituent sub-predicates. We show below the type
declarations of the expressions and predicates, a subtraction expression, and a
disjunctive predicate:

TExp: TYPE = [Time, II -> real];
-(el, er)(t, i): real = el(t, i) - er(t, i); % el, er: var TExp
TPred: TYPE = [Time, II -> real];
or(pl, pr)(t, i): bool = pl(t, i) or pr(t, i); % pl, pr: var TPred;

An important feature of TIC is that the elemental calculus operations are
supported, in particular integration and differentiation. Their definitions are
formalized precisely in the NASA PVS library, and hence we can directly rep-
resent them in PVS. For example, the integral operation of TIC encoded below
uses function Integral from the NASA PVS library where expressions el and er
denote the bounded points of an integral.

TICIntegral(el, er, tr)(t, i): real = Integral(el(t, i), er(t, i), tr);

Quantification in TIC is supported in PVS by defining a higher-order function
from the range of the bounded variable to the quantified predicate. For example,
if the range of the bounded variable is natural numbers, and then the type of
the quantification is from natural numbers to TIC predicate. Note that the fol-
lowing representation adopts the existence quantifier (EXISTS ) of PVS directly.

QuaPred: TYPE = [nat -> TPred]; qp: var QuaPred;
exNat(qp)(t, i): bool = EXISTS (k: nat): (qp(k)(t, i))

TIC Expressions. A TIC expression is either formed by the interval brackets
or a set operation on other TIC expressions. We present the way of encoding the
interval brackets and concatenation operation below as they are defined special
in TIC. Other TIC expressions can be constructed by using the PVS set theory.

In TIC, a pair of interval brackets denotes a set of intervals during which an en-
closed predicate holds everywhere. Firstly function t in i detects if a time point
is within an interval according to the interval type. Next, function Everywhere?
checks whether a predicate is true at all time points within an interval. Lastly
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the set of desired intervals is formed by using the set constructor in PVS. For
example, the definition of the interval brackets ( ) which return a set of general
intervals is shown below:

t_in_i(t, i): bool = (i‘1 = OO and t > (i‘2)‘1 and t < (i‘2)‘2) or
(i‘1 = OC and t > (i‘2)‘1 and t <= (i‘2)‘2) or
(i‘1 = CO and t >= (i‘2)‘1 and t < (i‘2)‘2) or
(i‘1 = CC and t >= (i‘2)‘1 and t <= (i‘2)‘2);

Everywhere?(pl, i): bool = forall t: t_in_i(t, i) => pl(t, i);
AllS(pl): PII = {i | Everywhere?(pl, i)}; % PII: TYPE = setof[II];

In TIC, concatenations are used to model sequential behavior over intervals.
A concatenation requires the connected intervals to meet exactly, i.e., no gap and
no overlap. Note that there are eight correct ways to concatenate two intervals
based on the inclusion of their endpoints. Here we just consider one situation
that a set of left-closed, right-open intervals is the result of linking two sets of
left-closed, right-open intervals: the absence of gap is guaranteed by the equiva-
lence of the connected endpoints (i.e., the ending point of co1 equals the starting
point of co2), and the overlap is excluded by restricting the types of the con-
nected endpoints (i.e., co1 is right-open while co2 is left-closed).

concat(cos1, cos2): PCC = {c : COInterVal | % cos1 is a set of CO intervals
exists (co1 : cos1), (co2: cos2): % cos2 is a set of CO intervals

OMEGA(co1) = ALPHA(co2) and ALPHA(co1) = ALPHA(c) and OMEGA(co2) = OMEGA(c)}

Based on the above encoding, we can formalize and validate the TIC rea-
soning rules in PVS. They capture the properties of sets of intervals and the
concatenations and used to verify TIC specifications at the level of intervals.
We have checked all rules stated in [10, 2], and hence they can be applied as
proved lemma when verifying TIC specifications of Simulink models in PVS in
the following sections.

4 Constructing PVS Library Types

Simulink library blocks create elementary blocks by instantiating parameters
specific values. Similarly, we previously defined a set of TIC library function to
represent the library blocks. To be specific, an instantiation of a library block is
modeled as an application of a TIC library function. In this section, we construct
a library of PVS parameterized types for the TIC library functions. In this way
we produce concise PVS specifications for Simulink elementary blocks, and keep
a clear correspondence of mathematical functions denoted in different notations.

A TIC library function accepts a set of parameters and returns a TIC schema,
where the inputs, outputs and relevant parameters of an elementary block are de-
fined as variables with their corresponding types, and the functional and timing
aspects are captured by constraints among the variables.

We represent each TIC library function by a PVS parameterized type, which
declares a type based on parameters. The parameters are the ones of a TIC
library function, and the declared type is a record type. The record type models
a generated schema by a TIC library function: variables are the record accessors ;

> ?
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and each predicate is represented by a constraint restricting the type domain of
an associated accessor which is used to construct a set of records. Note that there
are two categories of schema predicates: one indicates the relations between the
declared variables and the TIC function parameters (or constants); the other
captures the relations between variables denoting the inputs and outputs of
Simulink blocks. For the first category of predicates, they constrain the domains
of the corresponding variables; and the predicates of the second category restrict
the domains of the outputs.

Taking TIC library function ZOH from Section 2.1 as an example, the PVS
library type, ZOH below represents a record type that contains three accessors,
i.e. st , In1 and Out . The TIC predicates constrain the type domains of relevant
accessors. To be specific, the first two predicates (that belong to the first cat-
egory) are the criteria for assigning sample time value correctly, and the last
predicate (which satisfies the second category) is used to express the behavior
of timed trace Out. Note that the PVS library type closes to the TIC library
function in terms of the structure (where operator “o” is a function composition
defined in PVS).

ZOH (t: Time): TYPE = [# st : {temp: Time | temp > 0 AND temp = t},
In1: Trace,
Out: {temp: Trace |

COS(exNat(lambda(k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS(LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))} #]

Continuous library blocks are important in Simulink modeling. They are
directly represented in TIC with the well-defined operators [9] on elementary
analysis. Using the recently developed NASA PVS library, these features can be
preserved in PVS. For example, a continuous Simulink library block Integrator
that performs an integration operation over its input is modeled formally in the
TIC library function Integrator :

Operator in the TIC specification indicates that the output is continuous.
We retain this feature explicitly by function continuous from the NASA PVS
library (specifically, continuous(temp) in the set constraint below). Note that
PVS variable fullset denotes all valid intervals and maps to the TIC symbol, I.

Integrator (init: real): TYPE = [# IniVal: {temp: real | temp = init},
In1: Trace,
Out: {temp: Trace | temp(0) = IniVal and continuous(temp) and

fullset = AllS((LIFT(temp) o LIFT(OMEGA)) = (LIFT(temp) o LIFT(ALPHA)) +
TICIntegral(LIFT(ALPHA), LIFT(OMEGA), In1))} #]

We found it useful to formalize functions as type declarations instead of con-
ventional functions, although the second seems more intuitive. The reason is that

Integrator : R→ P[IniVal : R; In1 : T→ R; Out : T1 R]

∀ init : R • Integrator(init) =
[IniVal : R; In1 : T→ R; Out : T1 R | IniVal = init ∧

Out(0) = IniVal ∧ I = >Out(ω) = Out(α) +
∫ ω

α
In1?]

1
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type information is available to the PVS prover, and hence we can minimize the
number of type correctness conditions generated which are side effects of proof
steps during the type checking in PVS. The benefit has also been investigated
by Stringer-Calvert et al. [27]. They applied PVS to prove Z refinements for a
compiler development. Their work focused on supporting partial functions of Z
in PVS, however the way of handling schemas was missing. As we will show in
the following sections, representing schemas as record types can facilitate both
transformation and verification of TIC specifications.

5 Transformation of TIC Specifications

In this section, we present a strategy to transform TIC specifications which
represent both Simulink models and requirements. The transformation preserves
the hierarchical structure and has been implemented in Java for the automation.

5.1 Transforming TIC Schemas of Simulink Models

A Simulink model is a wired block diagram, and a block can be another wired
block diagram. This hierarchical structure modeling feature eases the challenge
of handling large scale systems. In the TIC specifications of Simulink models,
using schemas as types is the way to preserve the hierarchical structure. When
verifying these TIC specifications in PVS, it is important and necessary to retain
the same hierarchical structure: on the one hand, we can support large scale
systems in PVS, on the other hand the diagnostic information obtain at the
level of PVS can be reflected back to the level of Simulink. The goal is achieved
by using the record type of PVS as illustrated below.

The TIC specifications of Simulink models are TIC schemas and can be clas-
sified into two groups. One group represents the elementary blocks, and each
schema is formed by an application of a TIC library function with relevant
Simulink parameters. The transformation of this type of schemas is direct be-
cause of the PVS library types defined in the previous section. Namely, each
schema is converted to a PVS record type which is an application of an ap-
propriate PVS library type (i.e., the parameterized record type). The selection
criterion is the name of the TIC library function by the one-to-one relation-
ship between the TIC library functions and the PVS library types. For exam-
ple, schema vehicle sensor detector of elementary block detector in Figure 1 is
transformed to the following PVS specification:

vehicle sensor detector =̂ ZOH (1)

vehicle_sensor_detector: TYPE = ZOH(1);

The other group represents (sub)diagrams. A schema of this group models the
diagram components in the declaration part and the connections in the predicate
part. Taking the brake control system (see Figure 1) as an example, the whole
system is made up of three subsystem, where each is represented by a variable
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of schema type, and the wires between components are expressed as equalities
in terms of intervals.

Similar to the way of dealing with the first group, each schema is transformed
into a PVS record type. However, the difference is that the predicates constrain
all accessors together rather then some accessors. The main reason is that un-
like Simulink elementary blocks which denote relationships between inputs and
outputs, the predicates of Simulink diagrams denote the connections among
components, and it is thus difficult to determine which accessor should be con-
strained, especially when the wires form a cycle. For example, if we adopt the
previous way, one possible PVS specification of schema vehicle is below:

vehicle: TYPE = [# plant: vehicle_plant,
sensor: {temp: vehicle_sensor |

fullset = AllS(LIFT(temp‘speedR) = LIFT(plant‘speed))},
brake: {temp: vehicle_brake |

fullset = AllS(LIFT(temp‘speedin) = LIFT(sensor‘speedS) AND
fullset = AllS(LIFT(temp‘status) = LIFT(plant‘command))} #]

It is not hard to observe that above PVS specification forces a dependency
relation among three subsystems, and the correspondence between the PVS type
declaration and the TIC library function is loose. To solve the problem, we ap-
ply the predicate subtype mechanism of PVS to define a set of records which
represent the schema variables as accessors and satisfy the restrictions denoted
by the schema predicates. In this way the transformed PVS specifications follow
closely the schemas. Regarding the previous example, the schema is converted
to the following PVS type declaration:

vehicle: TYPE = { temp: [#
plant: vehicle_plant, sensor: vehicle_sensor, brake: vehicle_brake #] |
fullset = AllS(LIFT(temp‘plant‘speed) = LIFT(temp‘sensor‘speedR)) AND
fullset = AllS(LIFT(temp‘sensor‘speedS) = LIFT(temp‘brake‘speedin)) AND
fullset = AllS(LIFT(temp‘brake‘status) = LIFT(temp‘plant‘command)) }

We remark that representing TIC schemas by the PVS record types supports
the popular modeling technique in Z that uses schemas as types. As shown in
the above PVS specification, the projection function (‘) acts like the selection
operator (.) in Z to access a component. We remark that our way is differ-
ent from Gravell and Pratten [12] who discussed some issues on embedding Z
into both PVS and HOL. They interpreted Z schemas as Boolean functions of
record types and it is thus difficult to handle the case where schemas declared
as types.

vehicle
plant : vehicle plant ; sensor : vehicle sensor ; brake : vehicle brake

I = >plant .speed = sensor .speedR?
I = >sensor .speedS = brake.speedin?
I = >brake.status = plant .command?
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5.2 Transforming Requirements

Requirements are predicates formed from the TIC specifications of Simulink
models. They are directly converted into PVS theorem formulas based on the
PVS specifications of the TIC schemas. With the primitive encoding of TIC
semantics mentioned in Section 3, the way of transforming requirements is similar
to the one analyzing schema predicates explained in the previous section. Below
we skip details of the transformation due to the page limit, and provide the
transformed PVS specifications of two requirements of the brake control system.
They are used to illustrate the verification of TIC specifications in the next
section.

One requirement checks the computational accuracy of the sensed speed.
Namely, at any time the sensor should measure the speed within an accuracy
of 10 meters/second. The TIC predicate and the translated PVS specification
(where the used PVS variables such as plant can be found in Appendix B) are
given below respectively.

Approximation: THEOREM forall (v: vehicle): fullset =
AllS(LIFT(v‘sensor‘speedS) - LIFT(v‘plant‘speed) <= LIFT(10) AND

LIFT(v‘sensor‘speedS) - LIFT(v‘plant‘speed) >= LIFT(-10));

Another requirement concerns the response time within which the brake de-
vice should respond. To be specific, if an interval of which the length is more
than 1 second and during which the speed in the plant is not less than 50 me-
ters/second, the brake must be enabled within 1 second and keep on till the end.
The requirement is represented by the TIC predicate followed by the transformed
PVS specifications:

Response: THEOREM forall (v: vehicle): subset?(
CCS(LIFT(v‘plant‘speed) >= LIFT(50) AND LIFT(DETLA) > LIFT(1)),
concat( COS(LIFT(DELTA) < LIFT(1)),

CCS(LIFT(v‘brake‘status) = LIFT(1))));

We have demonstrated the strategy to automatically transform system design
and requirements into PVS specifications. Important issues about different ways
to represent TIC schemas have been discussed as well. The transformation pre-
serves the hierarchical structure denoted in TIC specifications. In other words,
systems specified in three notations (i.e. Simulink, TIC, and PVS) share the
same viewpoint of structure. This feature improves the traceability when ana-
lyzing systems in different formalisms, for example, verifying TIC specifications
in PVS can follow a similar proving procedure in TIC.

6 Validation Beyond Simulink in PVS

After transforming system designs and requirements into PVS specifications, we
can formally verify Simulink models at the interval level (by the encoded TIC

Approximation == ∀ v : vehicle • I = >|v .sensor .speedS − v .plant .speedR| ≤ 10?

Response == ∀ v : vehicle • :v .plant .speed ≥ 50 ∧ δ > 1; ⊆
:δ < 17y :v .brake.status = 1;
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reasoning rules) with a high grade of automation (by powerful proving support
of PVS). In this section, we first define and validate a set of rewriting rules
dedicated for Simulink modeling features to make verification more automated,
followed by an illustration of verifying the brake control system to show that
our developed tool supports the validation beyond Simulink such as dealing
with open systems and checking timing properties.

6.1 Rewriting Rules for Simulink

Wires in Simulink models are represented by equations in TIC. Each equation
consists of two timed traces that denote the connected block ports. When veri-
fying TIC specifications in PVS, it is often to replace one timed trace by another
when they both are in an equation. However, the substitution could be tedious
in PVS since we need to expand the TIC semantic encoding thoroughly to make
both time and interval explicitly for allowing the PVS prover to automatically
discharge the proof obligation. To simplify the process as well as keep the detailed
encoding transparent to users, we define a set of rewriting rules to easily handle
the replacement of two equivalent timed traces. For example, rule BB ge sub
substitutes two timed traces tr1 and tr2 over an inequality at the interval level.

BB_ge_sub: LEMMA forall (tr1, tr2, tr3: Trace):
fullset = AllS(LIFT(tr1) = LIFT(tr2)) =>
AllS(LIFT(tr1) > LIFT(tr3)) = AllS(LIFT(tr2) > LIFT(tr3));

Time domain of discrete systems in Simulink is decomposed into a sequence of
left-closed, right-open intervals. We can hence define rewriting rules to facilitate
the analysis of the discrete Simulink models. For example, rule CO to All states
that for a predicate that is interval operator free3, if it holds on all sample inter-
vals (a sample interval is a left-close, right-open interval of which the endpoints
are a pair of adjacent sample time points.), it is true in any interval. We remark
that the rule is useful to check safety requirements of discrete systems.

st: var Time; tp: TPred;
CO_to_All: LEMMA st > 0 AND No_Term?(tp) =>

subset?(COS(exNat( lambda(k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st))),

COS(tp))
=> fullset = AllS(tp);

6.2 Reasoning About the Brake Control System

The brake control system is open as the exact function of the acceleration change
is difficult to known. Simulink can check functional behavior for just closed
systems by simulation. Moreover, timing requirements are difficult to specify in
Simulink. In the following, we show how our approach can formally validate the
nontrivial system with a high level of automation.

3 We define PVS function No Term? to check if the predicate is dependent on the
interval endpoints or interval length.
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Adding Environment Assumptions. When analyzing open physical envi-
ronment, it is often that the exact functions of environment variables is un-
known while loose information is available such as the ranges of environment
inputs. The loose information can be easier modeled as constraints in TIC than
in Simulink, and we can hence check the open systems represented in Simulink
with the new constraints. For example, the range of the acceleration (the output
of block switch in Figure 1) is known as below: input port on which denotes the
value when the brake is enabled has a range between -10 and 0 meters/second2;
input port off which indicates the acceleration when the brake is disabled has a
range from 0 to 10 meters/seond2. The loose information is thus expressed by
the following TIC predicate as well as the corresponding PVS specification.

InputAssump: LEMMA FORALL (v: vehicle):
fullset = AllS(LIFT(v‘plant‘on) >= LIFT(-10) AND

LIFT(v‘plant‘on) <= LIFT(0))
AND fullset = AllS(LIFT(v‘plant‘off) >= LIFT(0) AND

LIFT(v‘plant‘off) <= LIFT(10))

Checking the Approximation Requirement. The requirement concerns the
functional behavior. It involves the analysis of continuous dynamics (e.g., the
vehicle speed is the integration of the acceleration.), and it requires the checking
over all types of intervals. The reasoning process is sketched below4:

1. We apply the rewriting rule, i.e., CO to All to reduce the type of intervals
to be checked. Namely, we only need to observe the behavior over the sample
intervals instead of all types of intervals. This is motivated by the discrete
components, i.e., block detector is discrete in the sensor subsystem.

2. By the functionality of block detector (specified by the ZOH type defined
in Appendix A) and the connection within the vehicle system and its sensor
subsystem, we need to compare the output value of subsystem plant at the
beginning of a sample interval and other values at all time points in the
sample interval. The PVS skolemization instantiation mechanism allows to
replacing all time points by an arbitrarily fixed time point, so we can just
analyze the output values within a both-closed interval formed by two time
points, i.e., the beginning endpoint and the fixed time point.

3. Since variable speed of subsystem plant is the output of continuous block
integration, the analysis of continuous dynamics is needed. Based on the as-
sumption of the environment encoded early, we can apply a lemma from the
NASA PVS library to show that the difference of the speed at two specific
time points mentioned in Step 2 is between -10 and 10. The lemma named
Integral bound relates the bound of the integration of a function and the
bound of the function over a closed interval.

4 The complete verification of both requirements in PVS is available at http://www.
comp.nus.edu.sg/~chenchun/brakecontrol

InputAssump == ∀ v : vehicle •
I = >−10 ≤ v .plant .on ≤ 0? ∧ I = >0 ≤ v .plant .off ≤ 10?
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Integral_bound: LEMMA a < b AND Integrable?(a,b,f) AND
(FORALL (x: Closed_interval(a,b)): m <= f(x) AND f(x) <= M )

IMPLIES m*(b-a) <= Integral(a,b,f) AND Integral(a,b,f) <= M*(b-a)

In the above analysis, the rewriting rules and the powerful proving capability of
PVS facilitate the verification, and the NASA PVS library enhances the capa-
bility of our tool to handle continuous dynamics.

Checking the Response Requirement. Verifying Simulink models against
timing requirements is non-trivial: the models usually involve continuous dynam-
ics; and the timing requirements often investigate system behavior over arbitrary
(infinite) intervals. Here we demonstrate how a typical timing requirement, re-
sponse requirement of the brake control system can be validated.

The requirement involves all three subsystems, where subsystem sensor acts
as a converter to pass the sensed speed to the brake. Note that the detector
updates its output only at sample time points. The verification thus becomes
nontrivial as each endpoint of an arbitrary interval may not be a sample time
point. We adopt the proof by exhaustion method to solve the difficulty. An in-
formal proof procedure is given below:

Firstly, we show that any arbitrary interval can be classified into one of finite
cases. The following lemma, Endpoints general form states that given a positive
sample time (ST ), the interval endpoints can be expressed in a uniform format.
The lemma has been checked correctly in PVS. Therefore we can group all
intervals into four cases according to the values assigned to variables n and q
(either 0 or positive real number).
Endpoints_general_form: LEMMA FORALL (i: II):

EXISTS (m, p: nat), (n, q: nnreal): n < ST AND q < ST AND
ALPHA(i) = m * ST + n AND OMEGA(i) = p * ST + q;

Next, we check that the validity of the response requirement in all cases. We
consider the case where the intervals consist of multiple sample intervals as the
basic case, as variables n and q are 0. Other types of intervals from the left three
cases can be formed by appending an interval which lasts less than one sample
time to the front or the back of a multiple sample intervals.

Lemma Mult Sample Intervals is defined specially for the basic case, and it
facilitates the analysis over other three cases. The lemma allows a proof over a
multiple sample intervals to be accomplished by reasoning about sub-proofs over
every constituent sample interval. To be specific, the lemma checks the conse-
quence relation between two predicates (tp1 and tp2 ) which both are interval
operator free. Note that by the skolemization instantiation method of PVS, we
can only check the proof over one sample interval instead of every sample inter-
val, and hence reduce the complexity of proving the lemma correctness.

Mult_Sample_Intervals: LEMMA No_Term?(tp1) AND No_Term?(tp2) AND x < y =>
((FORALL (k: {n: nat | x <= n AND n < y}):
subset?( COS( tp1 AND LIFT(ALPHA) = LIFT(k) * LIFT(ST) AND

LIFT(OMEGA) = LIFT(k) * LIFT(ST)), COS(tp2)))
=> subset?( COS( tp1 AND LIFT(ALPHA) = LIFT(x) * LIFT(ST) AND

LIFT(OMEGA) = LIFT(y) * LIFT(ST)), COS(tp2)));
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We remark that the lemma is generic to be applied to other systems which
involve periodical behavior. For example, it can check the exportable interval
properties defined in Interval Temporal Logic [20] which is a linear-time temporal
logic with a discrete model of time.

The verification of the requirement is nontrivial: initial proof without
using auxiliary lemmas takes more than 1000 steps. The complexity can be
reduced by half after applying five proved lemmas: Four of five represent the
validity of the requirement over four cases mentioned above according to lemma
Endpoints general form, and the fifth captures the behavior over the primitive
interval (i.e., the requirement holds everywhere in the interval of which the start-
ing point is a sample time point and the interval length is not longer than one
sample time). The reason for the decrease is that using lemmas we can save proof
steps in many repeated sub-proofs.

Besides the method, proof by exhaustion, used here, we have also applied
other powerful methods, such as proof by contradiction and proof by induction
to verify safety requirements of continuous and hybrid Simulink models.

7 Related Works

Recently, there are a number of works on reasoning about Simulink models.
Meenakshi et al. [19] used a model checker to analyze single-rate discrete
Simulink models. Tripakis et al. [29] applied synchronous programming language
Lustre to support multi-rate discrete Simulink models. Tiwari et al. [28] discretiz-
ing differential equations denoted by Simulink models into difference equations
to construct discrete transition systems. Different from theirs our approach can
directly represent and analysis continuous Simulink models. Gupta et al. [13]
developed a tool to increase the modeling capability of Simulink. The tool em-
phasized on checking functional behavior which is also the main concern of the
works mentioned previously, and hence timing analysis lack support. Jersak et
al. [16] translated Simulink models into SPI models for timing analysis, although
the translation abstracts the functional aspect. In contrast, our approach sup-
ports the validation over functional and timing behavior.

There were two preliminary works on supporting TIC using theorem provers.
Dawson and Goré [7] validated TIC reasoning rules in Isabelle/HOL [23]. But
the encoding of TIC semantics is incomplete, and it is hence difficult to support
verification of TIC in general. Cerone [2] described many axioms on interpreting
TIC expressions and predicates. However, the interpretation of the concatenation
operator differed from the original [10], and his work dealt with just five reasoning
rules. Our approach encoded the complete TIC semantics and handled all TIC
reasoning rules in PVS. Some researchers have investigated the machine-assistant
proof for a similar formal notation, Duration Calculus (DC) [31]. Skakkebaek and
Shankar [26] developed a proof checker upon PVS, and Heilmann [14] applied
Isabelle to support the mechanized proof. Chakravorty and Pandya [3] digitized
a subclass of DC (i.e. Interval Duration Calculus) into another subclass for just
discrete systems. As DC and its extensions [33, 32] describe systems behavior
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without explicit reference to absolute time, they are limited to represent the
constraints which are relevant to the values of interval endpoints. For example,
the function of Simulink library block Zero Order Hold relies on specific sample
time points. We remark that continuous behavior which is usually involved in
Simulink models lacks of support in above works on TIC and DCs. For example,
the integral function is either ignored or captured by a few axioms of limited
properties. This is different from ours, as our approach can handle the analysis
of continuous behavior.

8 Conclusion

In this paper, we extended our previous work which applied TIC to capture
functional and timing aspects of Simulink diagrams as well as preserve the hier-
archical structure. We developed a tool based on PVS to support the machine-
assisted proofs for the Simulink models represented in TIC. A strategy has been
implemented in Java to automatically transform the TIC specifications to PVS
specifications. The transformed PVS specifications follow closely the hierarchi-
cal structured denoted by TIC specifications. Hence we can relate the diagnostic
information of validation at the level of PVS to the level of Simulink.

We define a set of rewriting rules to simply the proving process and capture
special characteristics of Simulink modeling. With the support of the NASA
PVS library, we can directly analyze continuous dynamics which are usually
involved in Simulink models. Validation in our framework can be carried out
at the interval level with a high grade of automation. Open systems which are
not checkable in Simulink can be reasoned about by specifying assumptions in
TIC. Powerful mathematical proof methods (e.g. proof by induction) are useful
to verify timing requirements (of safety and bounded liveness) beyond Simulink.

Currently, we are enhancing our framework in several directions. One is to de-
velop graphical user interface (GUI) on top of the framework so as to facilitate
the usability of our framework: transformation or proving can be executed by
clicking buttons, and systems modeled in different notations can be shown in a
better layout with colors to highlight the correspondence. Another is to improve
the automation of the validation. Though verification of complex Simulink mod-
els is challenging, we are constructing more rewriting rules for special features
of specific domain (e.g. hybrid control systems, the primary domain of Simulink
modeling), and developing more PVS strategies to simplify the proving process.
Extending the framework to support real-time systems development [25] of other
formal notations is also one of our goals in the future.
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A PVS Library Types of the Brake Control System

ZOH(t: Time): TYPE = [# st: {temp: Time | temp > 0 and temp = t}, In1: Trace,
Out: {temp: Trace | COS(exNat(lambda (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND

LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))
= COS(LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))} #]

Integrator(x: real): TYPE = [# IniVal: {temp: real | temp = x}, In1: Trace,
Out: {temp: Trace| temp(0) = IniVal AND

AllTrue((LIFT(temp) o LIFT(OMEGA)) = (LIFT(temp) o LIFT(ALPHA))
+ TICIntegral(LIFT(ALPHA), LIFT(OMEGA), In1)) AND

continuous(temp)} #]

Switch_G(t: Time, x: real): TYPE = [# st: {temp: Time | temp = t},
TH: {temp: real | temp = x}, In1, In2, In3: Trace,
Out: {temp: Trace |

IF st = 0 THEN AllS(LIFT(In2) > LIFT(TH)) = AllS(LIFT(temp) = LIFT(In1)) AND
AllS(LIFT(In2) <= LIFT(TH)) = AllS(LIFT(temp) = LIFT(In3))

ELSE COS(exNat(lambda (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS( ((LIFT(In2) o LIFT(ALPHA)) > LIFT(TH) =>
LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))

AND ((LIFT(In2) o LIFT(ALPHA)) <= LIFT(TH) =>
LIFT(temp) = (LIFT(In3) o LIFT(ALPHA))))

ENDIF} #];
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Relation_GE(t: Time): TYPE = [# st: {temp: Time | temp = t}, In1, In2: Trace,
Out: {temp: BTrace |

IF st = 0 THEN AllS(LIFT(In1) >= LIFT(In2)) = AllS(LIFT(temp) = LIFT(1)) AND
AllS(LIFT(In1) < LIFT(In2)) = AllS(LIFT(temp) = LIFT(0))

ELSE COS(exNat(lambda (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS( ((LIFT(In1) o LIFT(ALPHA)) >= (LIFT(In2) o LIFT(ALPHA))=>
LIFT(temp) = LIFT(1))
AND
((LIFT(In1) o LIFT(ALPHA)) < (LIFT(In2) o LIFT(ALPHA)) =>
LIFT(temp) = LIFT(0)))

ENDIF} #];

InitCond(t: Time, x: real): TYPE = [# st: {temp: Time | temp = t},
IniVal: {temp: real | temp = x}, In1: Trace,
Out: {temp: Trace |

IF st = 0 THEN subset?(AllS(LIFT(ALPHA) = LIFT(0)),
AllS((LIFT(temp) o LIFT(0)) = LIFT(IniVal)))

AND subset?(AllS(LIFT(ALPHA) > LIFT(0)),
AllS(LIFT(temp) = LIFT(In1)))

ELSE COS(LIFT(ALPHA) = LIFT(0) AND LIFT(OMEGA) = LIFT(st)) =
COS(LIFT(temp) = LIFT(IniVal))

AND COS(exNat1(lambda (k: posint): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st)))

= COS(LIFT(temp) = (LIFT(In1) o LIFT(ALPHA)))
ENDIF} #];

Constant(x: real): TYPE = [# IniVal: {IniVal: real | IniVal = x},
Out: {temp: Trace| AllTrue(LIFT(temp) = LIFT(IniVal))} #];

B Transformed PVS Specifications of the Brake Control
System

For subsystem brake:

vehicle_brake_max: TYPE = Constant(50);
vehicle_brake_check: TYPE = Relation_GE(0);
vehicle_brake_IC: TYPE = InitCond(0, 0);
vehicle_brake: TYPE = {temp: [# speedin, status: Trace,

max: vehicle_brake_max, check: vehicle_brake_check, IC: vehicle_brake_IC #] |
fullset = AllS(LIFT(temp‘speedin) = LIFT(temp‘check‘In1)) AND
fullset = AllS(LIFT(temp‘max‘Out) = LIFT(temp‘check‘In2)) AND
fullset = AllS(LIFT(temp‘check‘Out) = LIFT(temp‘IC‘In1)) AND
fullset = AllS(LIFT(temp‘IC‘Out) = LIFT(temp‘status))}

For subsystem sensor:

vehicle_sensor_detector: TYPE = ZOH(1);
vehicle_sensor: TYPE = {temp: [# speedS, speedR: Trace,

detector: vehicle_sensor_detector #] |
fullset = AllS(LIFT(temp‘speedR) = LIFT(temp‘detector‘In1)) AND
fullset = AllS(LIFT(temp‘detector‘Out) = LIFT(temp‘speedS))}

For subsystem plant:

vehicle_plant_Integration: TYPE = Integrator(0);
vehicle_plant_Switch: TYPE = Switch_G(0, 0);
vehicle_plant: TYPE = {temp: [# on, off, command, speed: Trace,

Switch: vehicle_plant_Switch, Integration: vehicle_plant_Integration #] |
fullset = AllS(LIFT(temp‘on) = LIFT(temp‘Switch‘In1)) AND
fullset = AllS(LIFT(temp‘command) = LIFT(temp‘Switch‘In2)) AND
fullset = AllS(LIFT(temp‘off) = LIFT(temp‘Switch‘In3)) AND
fullset = AllS(LIFT(temp‘Switch‘Out) = LIFT(temp‘Integration‘In1)) AND
fullset = AllS(LIFT(temp‘Integration‘Out) = LIFT(temp‘speed))}

For whole system vehicle:

vehicle: TYPE = { temp: [# plant: vehicle_plant, sensor: vehicle_sensor,
brake: vehicle_brake #] |

fullset = AllS(LIFT(temp‘plant‘speed) = LIFT(temp‘sensor‘speedR)) AND
fullset = AllS(LIFT(temp‘sensor‘speedS) = LIFT(temp‘brake‘speedin)) AND
fullset = AllS(LIFT(temp‘brake‘status) = LIFT(temp‘plant‘command))}
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