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Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit

Jun Sun, Yang Liu, and Jin Song Dong

School of Computing,
National University of Singapore

{dongjs,liuyang,sunj}@comp.nus.edu.sg

Abstract. FDR, initially introduced decades ago, is the de facto analyzer for
Communicating Sequential Processes (CSP). Model checking techniques have
been evolved rapidly since then. This paper describes PAT, i.e., a process analysis
toolkit which complements FDR in several aspects. PAT is designed to analyze
event-based compositional system models specified using CSP as well as shared
variables and asynchronous message passing. It supports automated refinement
checking, model checking of LTL extended with events, etc. In this paper, we
highlight how partial order reduction is applied to improve refinement checking
in PAT. Experiment results show that PAT outperforms FDR in some cases.

1 Introduction

Hoare’s classic Communicating Sequential Processes (CSP [7]) has been a rather suc-
cessful event-based modeling language for decades. Theoretical development on CSP
has advanced formal methods in many ways. Its distinguishable features like alphabet-
ized parallel composition have proven to be useful in modeling a wide range of systems.

FDR (Failures-Divergence Refinement) [12] is the de facto analyzer for CSP, which
has been successfully applied in various domains. Based on the model checking algo-
rithm presented in [12] and later improved with other reduction techniques presented
in [15], FDR is capable of handling large systems. Nonetheless, since FDR was initially
introduced, model checking techniques have evolved a lot in the last two decades. Quite
a number of effective reduction methods have been proposed which greatly enlarge the
size the systems that can be handled. Some noticeable ones include partial order re-
duction, symmetry reduction, predicate abstraction, etc. Moreover, verification based
on temporal logic properties has gathered much attention. In this work, we present a
process analysis toolkit named PAT1, which is designed to incorporate advanced model
checking techniques to analyze event-based compositional system models. PAT comple-
ments FDR in a number of ways. The following is a list of PAT’s main functionalities.

– refinement checking. Refinement checking in FDR has been proved useful [16,14].
Given a process representing the implementation and another representing the spec-
ification, PAT (like FDR) automatically verifies whether there is a refinement rela-
tionship between them. Refinement checking in FDR replies on normalizing the

1 Available at http://www.comp.nus.edu.sg/˜liuyang/pat
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specification before hand, which has proven to be very effective for some sys-
tems [15]. Nonetheless, normalization is computational expensive in general. In
PAT, an alternative approach which brings normalization on-the-fly is adopted.

– temporal logic based model checking. An LTL model checker is embedded in PAT.
Users are allowed to specify properties using standard LTL (extended with events,
refer to Section 4.4). An on-the-fly explicit model checking algorithm is then used
to produce counterexamples (if there is) or to conclude true.

– simulation. PAT supports various ways of system simulation, e.g., random simula-
tion, user-guided step-by-step simulation, system graph generation, etc.

Besides, dedicated algorithms have been developed to analyze specialized properties,
e.g., deadlock-freeness, divergence-freeness, invariants, LTL properties under weak or
strong fairness assumptions, etc. In order to handle systems with large number of states,
partial order reduction has been realized in PAT to enhance LTL model checking, re-
finement checking as well as other dedicated verification algorithms. Previous works
on partial order reduction have only been applied to refinement checking in limited
ways (refer to diamond reduction presented in [15]). Based on previous theoretical
works [18,19], novel reduction techniques have been developed in PAT to enhance re-
finement checking. In this paper, the algorithms for partial order reduction as well as its
soundness are discussed in detail. Other features of PAT are briefly introduced.

The remainder of the paper is organized as follows. Section 2 reviews PAT’s input
language. We briefly introduce FDR and its refinement checking in Section 3. Section 4
presents FDR’s refinement checking algorithm and the refined one with partial order
reduction. Section 5 concludes the paper and reviews related works and future works.

2 Communicating Sequential Processes with Extensions

In this section, we introduce our extended CSP language, i.e., its operational semantics
as well as the definitions of the trace refinement, stable failure refinement and fail-
ure/divergence refinement.

Definition 1 (Process). A process is defined as follows,

P ::= Stop | Skip | e → P | c!exp → P | c?x → P
| P ; Q | P � Q | P � Q | P � b � Q | [b] • P | P � Q | P \X
| P1 ‖ P2 ‖ · · · ‖ Pn | P1 ||| P2 ||| · · · ||| Pn

where c is a channel with bounded buffer size, b is a Boolean expression, X is a set of
events, exp is an expression and e is an event. Event e may be a simple abstract event
or a compound one (e.g., e.x .y) with an optional sequence of assignments.

We support most of the CSP language constructs. The two most noticeable extensions
are shared variables and asynchronous message passing. It has long been known (see [7]
and [13], for example) that one can model a variable as a process parallel to the one that
uses it. The user processes then read from, or write to, the variable by CSP communica-
tion. Similarly, one can model a (bounded) message channel as a process. Nonetheless,
these ‘syntactic sugars’ are mostly welcomed. Supporting them explicitly allows us to
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avoid generating multiple parallel processes and hence verify more efficiently in some
cases2. Most of the operators (as explained in [7]) are well-understood. We briefly re-
view the extended ones as well as ones whose semantics needs clarification. The oper-
ational semantics is presented in Appendix A.

Let Σ denote the set of all visible events and τ denote an invisible action. Let Σ∗

be the set of finite traces. Let Στ be Σ ∪ {τ}. Event prefixing e → P performs e and
behaves as P afterward. If e is attached with assignments, the valuation of the global
variables is updated accordingly. For simplicity, assignments are restricted to update
only global variables.Skip = � → Stop where � is the termination event. Sequential
composition, P1; P2, behaves as P1 until its termination and then behaves as P2. An
external choice is solved only by the engagement of an visible event. A choice depend-
ing on the truth value of a Boolean expression is written as P1 � b � P2. If b is true,
the process behaves as P1, otherwise P2. State guard [b] • P is blocked until b is true
and then proceeds as P. P1 � P2 behaves as P1 until the first visible event of P2 is en-
gaged, then P1 is interrupted and P2 takes control. Process P \X hides all occurrences
of events in X . One of the key features of CSP is the alphabetized multi-threaded paral-
lel composition. LetαP be the alphabet of P which excludes τ and �. In PAT, alphabets
can be manually set or derived from the events constituting the process expression. Par-
allel composition of processes is written as P1 ‖ P2 ‖ · · · ‖ Pn , where shared events
must be synchronized by all processes whose alphabet contains the event. The indexed
interleaving is written as P1 ||| P2 ||| · · · ||| Pn , in which all processes run inde-
pendently except communication through shared variables and message channel (and
synchronization upon termination, i.e., rule ter ). Recursion is allowed by process refer-
encing. The semantics of recursion is defined as Tarski’s weakest fixed-point. Processes
may be parameterized (see examples later).

For simplicity, we focus on the operational semantics in this work, i.e., the semantics
of a model is associated with a labeled transition system. Due to the global variables
and channels, configuration of a given system is composed of three parts (P ,V ,C )
where P is the current process expression, V is the current valuation of the global
variables which is a set of mappings from a name to a value, and C is the current status
of the channels which is a set of mappings from a channel name to a sequence of items
in the channel. A transition is of the form (P ,V ,C ) e→ (P ′,V ′,C ′), which means
(P ,V ,C ) evolves to (P ′,V ′,C ′) by performing event e.

Example 1. The following models the classic dining philosophers [7],

Phil(i) = get .i .(i + 1)%N → get .i .i → eat .i →
→ put .i .(i + 1)%N → put .i .i → think .i → Phil(i)

Fork(i) = get .i .i → put .i .i → Fork(i) �

get .(i − 1)%N .i → put .(i − 1)%N .i → Fork(i)
Pair(i) = (Phil(i) ‖ Fork(i)) \ {get .i .i , put .i .i , think .i}
College = (‖N−1

i=0
Pair(i)) \⋃N−1

i=0 {get .i .(i + 1)%N , put .i .(i + 1)%N }
where N is a global constant (i.e., the number of philosophers), get .i .j (put .i .j ) is the
action of the i-th philosopher picking up (putting down) the j -th fork and fc is a global

2 Refer to [13] for cases in which this is not true in the world of FDR.
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variable recording the amount of food that has been consumed. The system is composed
of N philosopher-fork-pairs running in parallel. The following is the transition system
of College with N = 2. All events except the bolded ones are invisible. �

eat.0 eat.1
get.0.1

get.0.0
get.1.0

get.1.1
get.1.0 get.0.1

0

123
put.0.1

put.0.0 think.0
put.1.0

put.1.1think.1
4 5

6 7 8

910

11

3 FDR and Refinement Checking

Failures-Divergence Refinement (FDR [12]) is a well-established model checker for
CSP. Different from temporal logic based model checking, using FDR, safety, liveness
and combination properties can be verified by showing a refinement relation from the
CSP model of the system to a CSP process capturing the properties. In addition, FDR
verifies whether a process is deadlock-free or not. In the following, we review the notion
of different refinement/equivalence relationship in terms of labeled transition systems.

Definition 2 (Labeled Transition System). An LTS is 3-tuple L = (S , init ,T ) where
S is a set of states, init ∈ S is the initial state and T : S × Στ × S is a labeled
transition relation. Let s , s ′ be members of S .

– s
e1,e2,···,en→ s ′ if and only if there exists s0, · · · , sn ∈ S such that for all 0 ≤ i ≤ n

such that si
ei→ si+1 and s0 = s ∧ sn = s ′.

– Let tr : Σ∗ be a sequence of visible events. s tr⇒ s ′ if and only if there exists
e1, e2, · · · , en such that s

e1,e2,···,en→ s ′ and tr = 〈e1, e2, · · · , en〉 � {τ} is the trace
with invisible actions filtered.

– s →∗ s ′ if and only if there exists e1, · · · , en such that s
e1,e2,···,en→ s ′. In particular,

s →∗ s .
– enabled(s) = {e : Στ | ∃ s ′ • s e→ s ′}. A state is stable if and only if τ �∈

enabled(S ).
– mrefusal(S ) = Σ \ enabled(S ) is the maximum refusal set, i.e., the maximum set

of events which can be refused.
– s τ∗→ s ′ if and only if s

τ,···,τ→ s ′. τ∗(s) = {s ′ : S | s τ∗→ s ′} is the set of stable states
reachable from s by performing zero or more τ transitions.

– A state is a divergence state div(s) if and only if τ ∈ enabled(s) ∧ s ∈ τ∗(s).

The set of traces of L is traces(L) = {tr : Σ∗ | ∃ s ′ : S • init tr⇒ s ′}. The set of diver-
gence traces of L, written as divergence(L), is {tr : Σ∗ | ∃ tr ′ • tr ′ is a prefix of tr ∧
∃ s : S • init tr ′→ s ∧ div(s)}. Note that if some prefix of a given trace is a di-
vergence trace, the given trace is too. The set of failures of L, written as failures(L), is

{(tr ,X ) : Σ∗×2Σ | ∃ s : S • init tr→ s ∧ X ⊆ Σ\enabled(s)}∪{(tr , Σ) : Σ∗×2Σ |
tr ∈ divergence(L)}. Note that the system state reached by a divergence state may
refuse all events. Given a model composed of a process P and a valuation V and a set of
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channels C , we may construct an LTS (S , init ,T ) where S = {s | (P ,V ,C ) →∗ s},
init = (P ,V ,C ) and T = {(s1, e, s2) : S × Στ × S | s1

e→ s2} using the
operational semantics. However, S can be infinite due to several reasons. The first
one is that the variables may have infinite domains or the channels may have infi-
nite buffer size. We require (syntactically) that the sizes of the domains and buffers
are bounded. The second is that P may allow unbounded recursion or replication, e.g.,
P = (a → P ; c → Skip) � b → Skip or P = a → P ||| P . In this paper, we
focus on LTSs with finite number of states for practical reasons. The following defines
refinement and equivalence.

Definition 3 (Refinement and Equivalence). Let Lim = (Sim , initim ,Tim ) be an
LTS representing an implementation. Let Lsp = (Ssp , initsp ,Tsp) be an LTS represent-
ing a specification. Lim refines Lsp in the trace semantics, written as Lim �T Lsp ,
if and only if traces(Lim) ⊆ traces(Lsp). Lim refines Lsp in the stable failures se-
mantics, written as Lim �F Lsp , if and only if failures(Lim ) ⊆ failures(Lsp). Lim

refines Lsp in the failures/divergence semantics, written as Lim �D Lsp , if and only if
failures(Lim ) ⊆ failures(Lsp) and divergence(Lim ) ⊆ divergence(Lsp ). Lim equals
Lsp in the trace (stable failures/failures divergence) semantics if and only if they refine
each other in the respective semantics.

Different refinement relationship can be used to establish different properties. Safety
can be verified by showing a trace refinement relationship. Combination of safety and
liveness is verified by showing a stable failures refinement relationship if the system is
divergence-free or otherwise by showing a failures/divergences refinement relationship.
The readers shall refer to [14] for a discussion on the expressiveness of CSP refinement.
In the following, we write Im � Sp to mean LIm � LSp whenever it will not cause
confusion. Internally, equivalence relationships may be used to simplify process expres-
sions, e.g., P � P is replaced by P for simplicity.

Example 2. Assume that the following process is used to capture the property for the
dining philosophers: Prop =̂‖N−1

i=0 Eat(i) where Eat(i) = eat .i → Eat(i). It can
be shown that College trace-refines Prop (given a particular N ). Informally speaking,
that means it is possible for each philosopher to eat, i.e., {eat .0, · · · , eat .(N − 1)}∗
are traces of College. In order to show that it is always possible for him/her to eat,
we need to establish College �F Prop, which is not true, i.e., assume N = 2,
(〈get .0.1, get .1.0〉, {eat .0, eat .1}) is in failures(College) but not failures(Prop). �

In order to check refinement, every state of the implementation reachable from the ini-
tial state via some trace must be compared with every state of the specification reachable
via the same trace. There may be many such states in the specification due to nonde-
terminism. In FDR, the specification is firstly normalized so that there is exactly one
state corresponding to each possible trace. A state in the normalized LTS is a set of
states which can be reached by the same trace from the initial state. For instance, The
following shows the normalized LTS of the one presented in Example 1.

0,1,2,3,6,7,110,1,2,3,4,5,6,7,11 0,1,2,6,7,8,9,10,11
eat.0eat.1

eat.1

eat.1

eat.0

eat.0
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Definition 4 (Normalized LTS). Let (S , init ,T ) be an LTS. The normalized LTS is
(NS ,Ninit ,NT ) where NS are subsets of S , Ninit = τ∗(init) and NT ={(P , e,Q) |
Q = {v : S | ∃ v1 : P • v1

e→ v2 ∧ v ∈ τ∗(v2)}}. Given a normalized state s ∈ NS ,

– enabled(s) is
⋃

x∈s enabled(x ),
– mrefusal(s) is {mrefusal(x ) | x ∈ s}, which is a set of maximum refusal sets,
– div(s) is true if and only if there exists x ∈ s such that div(x ) is true.

Given an LTS constructed from a process, the normalized LTS corresponds the nor-
malized process. A state in the normalized LTS groups a set of states in the origi-
nal LTS which are all connected by τ -transitions. Given a trace, exactly one state in
the normalized LTS is reached. FDR then traverses through every reachable states of
the implementation and compare them with the corresponding normalized states in the
specification (refer to the algorithm presented in [12]).

4 Verification

This section is devoted to algorithms for refinement checking. We start with reviewing
a slightly modified on-the-fly checking algorithm based on the one implemented in
FDR and then improve it with partial order reduction. Lastly, we review an alternative
approach for verification that has been implemented in PAT, i.e., LTL-based verification.

4.1 On-the-Fly Refinement Checking Algorithm

Let Spec be the specification and Impl be the implementation. In FDR, Spec is firstly
normalized. Refinement checking is then reduced to reachability analysis of the product
of the Impl and the normalized Spec. It has been shown that such an approach works
well for certain models [15]. Nonetheless, because normalization in general is com-
putational expensive, it may not be always desirable. Thus, we adopted an alternative
approach. Figure 1 presents the on-the-fly refinement checking algorithm which is mod-
ified and implemented in PAT. The algorithm similarly performs a reachability analysis
in the product of the implementation and the normalized specification. The different is
that normalization is brought on-the-fly as well.

Details of the following procedures are skipped for brevity. Procedure tau(S ) ex-
plores all outgoing transition of S and returns the set of states reachable from S via a τ -
transition. We remark that this procedure will be refined later. Procedure tauclosure(S )
implements τ∗(S ) using a depth-first-search procedure. The set of states reachable
from S via only τ transitions is returned. For instance, given the LTS in Example 1,
tauclosure(0) returns {0, 1, 2, 6, 7, 11}. The procedure tau(S ) is applied repeatedly
until all τ -reachable states are identified. Procedure existSuperSet(x ,Y ) where x is a
set and Y is a set of sets returns true if and only if there exists y in Y such that x ⊆ y .

Depending on the type of refinement relationship, the algorithm performs a depth-
first search for a pair (Im,NSp) where Im is a state of the implementation and NSp is a
state of the normalized specification such that, the enabled events of Im is not a subset
of those of NSp (C1), or Im is stable and there does not exist a state in NSp which
refuse all events which are refused by Im (C2), or Im diverges but not NSp (C3). The
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procedure refines(Impl ,Spec)
0. checked := ∅

1. pending .push((Impl , tauclosure(Spec)));
2. while pending �= ∅

3. (Im,NSp) := pending .pop();
4. checked := checked ∪ {(Im,NSp)};
5. if ¬(enabled(Im) \ {τ} ⊆ enabled(NSp)) – C1
6. ∨ (τ �∈ Im ∧ ¬ existSuperSet(mrefusal(Im), mrefusal(NSp))) – C2
7. ∨ (¬ div(NSp) ∧ div(Im)) – C3
8. return false;
9. else
10. foreach (Im ′, NSp′) ∈ next(Im,NSp)

11. if (Im ′,NSp′) �∈ checked
12. pending := pending ∪ {(Im ′,NSp′)}
13. endif
14. endfor
15. endif
16. endwhile
17. return true;

Fig. 1. Algorithm: refines(Impl , Spec)

algorithm returns true if no such pair is found. Note that if C1 is satisfied, a coun-
terexample is found for any refinement checking; if C2 is satisfied, a counterexample is
found for stable failures refinement checking or fairlure/divergence refinement check-
ing; if C3 is satisfied, a counterexample is found for fairlure/divergence refinement
checking only. The procedure for producing a counterexample is skipped for simplicity.
Producing the shortest counterexample requires a breath-first-search after identifying
the faulty state. Line 10 to 14 of algorithm refines explores new states of the product
and pushes them into the stack pending . The procedure next is presented in Figure 2.
Given a pair (Im,NSp), it returns a set of pairs of the form (Im ′,NSp′) for each en-
abled event in Im. If the event is visible, NSp′ is a successor of NSp via the event
and Im ′ is the successor of Im via the same event. Otherwise, Im ′ is a successor of
Im via a τ -transition and NSp′ is Sp. Because normalization is brought on-the-fly, it
is sometimes possible to find a counterexample before the specification is completely
normalized. The soundness of the algorithm follows the soundness discussion in [12].

4.2 Partial Order Reduction

As any model checking algorithm, refinement checking suffers from state space explo-
sion. A number of attempts have been applied to reduce the search space [15]. This
section describes the one implemented in PAT based on partial order reduction. Our
reduction realizes and extends the early works on partial order reduction for process
algebras and refinement checking presented in [18] and [19]. The inspiration of the re-
duction is that events may be independent, e.g., think .i is mutually independent of each
other. Given P = P1 ‖ · · · ‖ Pn and two enabled events e1 and e2, e1 is dependent of
e2, written as dep(e1, e2), and vice versa only if one of the following is true,
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procedure next(Im,NSp)
0. toReturn := ∅

1. foreach e ∈ enabled(Im)
2. if e = τ
3. foreach Im ′ ∈ tau(Im)
4. toReturn := toReturn ∪ {(Im ′,NSp)};
5. endfor
6. else
7. NSp′ := {s | ∃ x : NSp • x

e→ x ′ ∧ s ∈ tauclosure(x ′)};
8. foreach Im ′ such that Im

e→ Im ′

9. toReturn := toReturn ∪ {(Im ′,NSp′)};
10. endfor
11. endif
12. endfor
13. return toReturn;

Fig. 2. Algorithm: next(Im, NSp)

– e1 and e2 are from the same process Pi .
– e1 = e2 so that they may be synchronized, e.g., get .i .i of process Phil(i) and

get .i .i of process Fork(i).
– e1 updates a variable which e2 depends on or vice versa, e.g., because eat .i updates

a global variable, all eat .i are inter-dependent.

Two events are independent if they are not dependent. Because the ordering of inde-
pendent events may be irrelevant to a given property, we may deliberately ignore some
of the ordering so as to reduce the search space. Partial order reduction may be ap-
plied to a number of places in algorithm refines , namely, the procedure tau(S ) (and
therefore tauclosure) and next . Since indexed parallel composition (and indexed inter-
leaving) is the main source of state space explosion, we assume that Im is of the form
((P1 ‖ P2 ‖ · · · ‖ Pn) \X ,V ,C ) in the following and show how it is possible to only
explore a subset of the enabled transitions and yet preserve the soundness.

We start with applying partial order reduction to the procedure tau . Note that tau
is applied to the specification or implementation independently. Thus, as long as we
guarantee that the reduced state space (of either Impl or Spec) is failures/divergence
equivalent to the full state space, we prove that there is a refinement relationship in
the reduced state space if and only if there is one in the full state space. Figure 3
show our algorithm for selecting a subset of the τ -transitions. The soundness proof
is presented in Appendix B. In the algorithm tau ′, we try to identify one set of τ -
transitions which are independent of the rest. If such a subset is found (i.e., the al-
gorithm stubborn tau returns a non-empty set of successors), only the subset is ex-
plored further. Otherwise (i.e., stubborn tau returns an empty set), all possible τ -
transitions are explored. In stubborn tau , the idea is to identify one process Pi such
that all τ -transitions from Pi are independent of those from other processes. Note that
this approach is most effective with τ -transition generated from one process only. It is
possible to handle τ -transition generated from multiple processes with a slightly more
complicated procedure (which we skip for brevity). The details of the following simple
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procedure tau ′(Im)
0. nextmoves := stubborn tau(Im);
1. if (nextmoves �= ∅) then return nextmoves; else return tau(Im);

procedure stubborn tau(Im)
0. foreach Pi

1. por := enabledPi (Im) ⊆ {τ} ∪ X ∧ enabledPi (Im) = current(Pi )
2. foreach e ∈ enabledPi (Im)
3. por := por ∧ ¬ loop(e) ∧ ∀ e ′ : Σj • j �= i ⇒ ¬ dep(e, e ′)
4. endfor
5. if por then

6 return {(((· · · ‖ P ′
i ‖ · · ·) \ X ),V ,C ′) | (Pi , V ,C )

e→ (P ′
i ,V ,C ′)};

7. endif
8. endfor
9. return ∅;

Fig. 3. Algorithm: tau ′(Im) and stubborn tau(Im)

procedures have been skipped. Given Im = (P ,V ,C ), enabledPi (Im) is the set of
enabled event from component Pi , i.e., enabled(Im) ∩ enabled((Pi ,V ,C )). For in-
stance, given College with N = 2, enabled(Pair(0)) is {get .0.1}. current(Pi) is the
set of events that could be enabled in process Pi given the most cooperative environ-
ment. For instance, current(Phil(i)) = {get .i .(i + 1)%N } despite whether the fork
is available or not. loop(e) is true if and only if performing this event results in a state
on the search stack, i.e., forming a cycle.

A process Pi is considered a candidate only if all enabled events from Pi result
in τ -transitions (i.e., enabledPi (Im) ⊆ {τ} ∪ X ) and no other transition could be
possibly enabled given a different environment (i.e., enabledPi (Im) = current(Pi)).
The former is required because we are only interested in τ -transitions. The latter (partly)
ensures that no disabled event from Pi is enabled before executing an event from Pi .
Furthermore, all enabled events from Pi must not form a cycle (so that an enabled event
is not skipped for ever) or dependent on an enabled event from some other component.
For detailed discussion on the intuition behind these conditions, refer to [4].

Example 3. Assume that N = 2 and the following is the current process expression,

((think .0 → Phil(0) ‖ put .1.0 → Fork(0)) \ {get .0.0, put .0.0, think .0}) ‖
(((get1.1 → eat .1 → put .1.0 → put .1.1 → think .1 → Phil(1)) ‖ Fork(1))

\{get .1.1, put .1.1, think .1})\ {get .0.1, get .1.0, put .0.1, put .1.0}

where the first philosopher has just put down both forks while the second one has just
picked up his first fork. Two τ -transitions are enabled, i.e., one due to think .0 and the
other due to get .1.1. The algorithm tau ′ would return only the successor state after
performing get .1.1 (assuming it is not on the stack). This is the only event enabled for
the second component of the outer parallel composition is the τ transition due to get .1.1
(and thus the condition at line 1 of stubborn tau is satisfied). Because get .1.1 is local
to the component, por is true after the loop from line 2 to line 4. �
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procedure next ′(Im,Sp)
0. if τ ∈ enabled(Im)
1. nextmoves := stubborn tau(Im);
2. if (nextmoves �= ∅) then return nextmoves;
3. else
4. foreach e ∈ enabled(Im)
5. por := stubborn visible(Im, e);
6. foreach S ∈ Sp
7. por := por ∧ stubborn visible(S , e);
8. endeach
9. if por then return {(Im ′, tauclosure(Sp′)) | Im e→ Im ′ ∧ Sp

e→ Sp′}
10. endeach
11. return next(Im,Sp);

procedure stubborn visible(Im, e)
0. por := ¬ loop(e) ∧ ∀ e ′ : Σj • e ′ �= e ⇒ ¬ dep(e, e ′);
1. foreach Pi ∈ processes(e)
2. por := por ∧ enabledPi (Im) = current(Pi ) = {e};
3. return por ;

Fig. 4. Algorithm: next ′(Im,Sp) and stubborn visible(Im, e)

The above algorithms apply partial order reduction to τ -transitions only. tauclosure
is refined as well since it is based on tau ′. Unlike FDR, PAT is capable of applying
partial order reduction to visible events. Because both Impl and Spec must make cor-
responding transitions for a visible event, reduction for visible events is complicated.
A conservative approach has been implemented in PAT. Figure 4 present the algorithm,
i.e., the refined next . If Im is not stable, we apply the algorithm stubborn tau to iden-
tify a subset of τ -transitions (line 1). If no such subset exists, the pair (Im,Sp) is fully
expanded (line 11). An algorithm stubborn visible similar to stubborn tau is used
to check if a given visible event e is a candidate for partial order reduction. Function
processes(e) returns all process components (of the parallel composition) whose al-
phabet contains e. Firstly, we choose a possible candidate from Im using the algorithm
stubborn visible. Event e is chosen if and only if, for each process in processes(e), e
is the only event from the process which can be enabled and all other enabled events
are independent of e and performing e does not result in a state on the stack. Next, we
check if e satisfies the same set of conditions for each state in the normalized state of
the specification. If it does, e is used to expand the search tree at line 9 (and all other
enabled events are ignored). In order to find such e efficiently, the candidate events are
selected in a pre-defined order, i.e., events which have the least number of associated
processes are chosen first. The soundness of the algorithm is presented in Appendix B.

Example 4. Let P(i) = a.i → b.i → P(i). Assume the specification and implemen-
tation is defined as: Spec =‖2

i=0 P(i) and Impl =‖1
i=0 P(i). Assume we need to show

that Impl trace-refines Spec. Initially, two events are enabled in Impl , i.e., a.0 and a.1.
Assume that a.0 is selected first, because loop(a.0) is false and a.0 is independent of
all other enabled events (i.e., a.1), the condition at line 0 of algorithm stubborn visible
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is satisfied. Because a.0 is the only event that would possibly be enabled from P(0),
the condition at line 2 is satisfied too. Thus, a.0 is a possible candidate for partial order
reduction for Impl . Similarly, it is also a candidate for Spec (which is the only state in
the normalized initial state). Therefore, we only need to explore a.0 initially. �

4.3 Refinement Checking Experiments

We compare PAT with FDR using benchmark models for refinement checking. For the
sake of a fair comparison, all models use only standard CSP features which are sup-
ported by both. The following table shows the experiment results for three models,
obtained on a 2.0 GHz Intel Core Duo CPU and 1 GB memory.

model N property result PAT FDR
Dining Philosophers 5 P [T= S true 0.28125 0.067
Dining Philosophers 6 P [T= S true 0.8593 0.069
Dining Philosophers 8 P [T= S true 13.78 0.076
Dining Philosophers 10 P [T= S true 430.28 0.107
Dining Philosophers 12 P [T= S true - 0.319

Reader/Writers 12 P [T= S true < 1 0.812
Reader/Writers 14 P [T= S true < 1 6.906
Reader/Writers 16 P [T= S true < 1 81.247
Reader/Writers 18 P [T= S true < 1 -
Reader/Writers 50 P [T= S true 1.097 -
Reader/Writers 100 P [T= S true 9 -
Reader/Writers 200 P [T= S true 77.515 -

Milner’s Cyclic Scheduler 11 P [T= S true < 1 19.011
Milner’s Cyclic Scheduler 13 P [T= S true < 1 419.021
Milner’s Cyclic Scheduler 14 P [T= S true < 1 -
Milner’s Cyclic Scheduler 50 P [T= S true 2.406 -
Milner’s Cyclic Scheduler 100 P [T= S true 9.765 -
Milner’s Cyclic Scheduler 200 P [T= S true 60.453 -

The first example is the classic dining philosopher problem, where N is the number of
philosophers and forks. Because of the modeling, partial order reduction is not effective
for this example. As a result, PAT handles about 107 states (about 11 philosophers and
forks) in a reasonable amount of time. FDR performs extremely well for this exam-
ple because of the strategy discussed in [15]. Namely, it builds up a system gradually,
at each stage compressing the subsystems to find an equivalent process with (for this
particular example) many less states. Notice that with manual hiding (to localize some
events), PAT performs much better. The second example is the classic readers/writers
problem, in which the readers and writers coordinate to ensure correct read/write or-
dering. N is the number of readers/writers. Reduction in PAT is very effective for this
example. As a result, PAT handles a few hundreds readers/writers efficiently, whereas
FDR suffers from state space explosion quickly (for N = 18). The third example is
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the Milner’s cyclic scheduling algorithm, in which multiple processes are scheduled
in a cyclic fashion. Partial order reduction is extremely effective for this model. As a
result, PAT handles hundreds of processes, whereas FDR handles less than 14 processes.
The experiment results show our best effort by far on automated model checking of an
extended version of CSP. It by no means suggests the limit of our tool. We believe
that by incorporating more reduction techniques (e.g., symmetry reduction) as well as
fine-tuning the implementation, the performance of PAT can be improved significantly.

4.4 Temporal Logic Based Verification

Verification of CSP models has been traditionally based on refinement checking. CSP
refinement is expressive enough to cover a large class of properties [14]. Nonetheless,
temporal logic formulae have been proved effective as well as intuitive. Verification
based on temporal logic has gathered much, evidenced by the rich set of theories and
tools developed for CTL/LTL based verification [3,8]. In this section, we briefly discuss
the LTL model checker embedded in PAT. We adopt an automata-based approach for ex-
plicit LTL model checking as Spin [8]. Because we are dealing with an event-based for-
malism, we extend standard Linear Temporal Logic (LTL) with events so that properties
concerning both states and events can be stated and verified. For instance, the following
specifies a desirable property of process College: ��eat0 ∧ ��eat1 · · ·��eatN−1

where � reads as “always” and � reads as “eventually”. The property states that every
philosopher will always eventually eat, i.e., no one starves.

Definition 5. Let Pr be a set of propositions. An extended LTL formula is3,

φ ::= p | a | ¬φ | φ ∧ ψ | �φ | �φ | φUψ

where p ranges over Pr and a ranges over Σ. Let π = 〈P0, x0,P1, x1, · · ·〉 be an
infinite sequence of events. Let πi be the suffix of π starting from Pi .

πi � p ⇔ Pi � p
πi � a ⇔ xi−1 = a
πi � ¬φ ⇔ ¬(πi � φ)
πi � φ ∧ ψ ⇔ πi � φ ∧ πi � ψ
πi � �φ ⇔ ∀ j ≥ i • πj � φ
πi � �φ ⇔ ∃ j ≥ i • πj � φ
πi � φUψ ⇔ ∃ j ≥ i • πj � ψ ∧ ∀ k | i ≤ k ≤ j − 1 • πj � φ

The simplicity of writing formulae concerning events as in the above example is not
purely a matter of aesthetics. It may yield gains in time and space (refer to examples
in [2]). Given an extended LTL formula, PAT internally constructs a trace equivalent
Büchi automaton using the state-of-the-art conversion proposed in [6]. For efficient
reasons, the Büchi automata are transition-labeled (instead of state-labeled). Let B¬φ

be the Büchi automaton constructed from property ¬φ. The product of B¬φ and the
model is generated. Two different algorithms (e.g., nested depth first search and strongly

3 The next operator is not supported purposely because of partial order reduction.
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connected component search based on Tarjan’s algorithm) are then used to determine
the emptiness of the product, i.e., explore on-the-fly whether the product contains a loop
which is composed of at least one accepting state. Finite traces are extended to infinite
ones in a standard way. In the presence of a counterexample, on-the-fly model checking
usually produces a trace leading to a bad state or a loop quickly (refer to Section 4.3).
Partial order reduction (similar to the one implemented in Spin) is applied for LTL
verification. One unique feature of LTL verification in PAT is that we allow fairness
assumptions to be associated with individual events and then verify the system under
the fairness assumptions. For details, refer to [9].

5 Conclusion and Future Works

We present PAT, a process analysis toolkit, designed to apply model checking tech-
niques to verify event-based compositional models. A number of verification algorithms
have been implemented. This paper is related to works on developing tool support for
CSP and process algebras, works on heuristics for partial order reduction and works
on model checking in general. ARC (Adelaide Refinement Checker [11]) is a refine-
ment checker based on ordered binary decision diagrams (BDD). It has been shown
that ARC outperforms FDR in a few cases [11]. PAT adapts an explicit approach for
model checking. It has long been known there are pros and cons choosing an explicit
approach or a BDD approach (refer to comparisons between SPIN and SMV). Nonethe-
less, in the future, we may incorporate partial order reduction and BDD to achieve better
performance. ProBE [1] is a simulator developed by Formal Method Europe to inter-
actively explore traces of a given process. The simulator embedded in PAT has the full
functionality of Probe. Though we have shown cases where PAT outperforms FDR,
we believe that a full comparison is yet to be carried out with more experiments. A
number of algorithms have been previously proposed for partial order reduction which
is trace/failures/divergence preserving, e.g., [18,19]. The algorithms presented in the
paper may be considered as lightweight realization and extension of those presented
in [18,19]. In addition, this work is related to the huge amount of works dedicated to
theories and tools development for model checking.

We are actively developing PAT. There are a number of directions to pursue in the fu-
ture. Firstly, based our framework, more languages features will be incorporated, e.g.,
higher-order processes, broadcasting communication, integrated data operations as in
integrated languages [10,5,17], etc. Secondly, more advanced reduction techniques will
be incorporated. Lastly, a broad range of experiments and case studies must be per-
formed to not only fully compare PAT with FDR but also to make PAT as a reliable and
extensible framework for developing model checking techniques.
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Appendix A: Operational Semantics

The following Structural Operational Semantics (SOS) rules. We remark that �, �, ‖
and ||| are symmetric and associative. eval(V , exp) evaluates the value of the exp given
valuation V . Notice that for any P , � ∈ ΣP .

(Skip,V ,C )
�→ (Stop,V ,C )

(P ,V ,C )
e→ (P ′,V ′,C ′), e �= �

[ int1 ]
(P ||| Q ,V ,C )

e→ (P ′ ||| Q ,V ′,C ′)

[ ass ]
(e{x = exp} → P ,V ,C )

e→ (P ,V [x/eval(V , exp)],C )

¬ full(C [c])
[ output ]

(c!exp → Q ,V ,C )
c!eval(V ,exp)→ (Q ,V ,C [c/C [c] � 〈c!eval(V , exp)〉])

¬ empty(C [c])
[ input ]

(c?x → Q ,V ,C )
c?C [c].head→ (Q ,V ,C [c/C [c].tail ])

(P ,V ,C )
e→ (P ′,V ′,C ′)

(P ; Q ,V ,C )
e→ (P ′; Q ,V ′,C ′)

(P ,V ,C )
�→ (P ′,V ′,C ′)

[ seq2 ]
(P ; Q ,V ,C )

τ→ (Q ′,V ′,C ′)

(P ,V ,C )
e→ (P ′,V ′,C ′), e �= τ

[ ex1 ]
(P � Q ,V ,C )

e→ (P ′,V ′,C ′)

(P ,V ,C )
τ→ (P ′,V ′,C ′)

(P � Q ,V ,C )
τ→ (P ′ � Q ,V ′,C )

(P � Q ,V ,C )
τ→ (P ,V ,C )

(P ,V ,C )
e→ (P ′,V ′,C ′),V � b

[ con1 ]
(P � b � Q ,V ,C )

e→ (P ′,V ′,C ′)

(Q ,V ,C )
e→ (Q ′,V ′,C ′),V �� b

(P � b � Q ,V ,C )
e→ (Q ′,V ′,C ′)

(P ,V ,C )
e→ (P ′,V ′,C ′),V � b

[ grd ]
([b] • P ,V ,C )

e→ (P ′,V ′,C ′)

(P ,V ,C )
e→ (P ′,V ′,C ′)

(P � Q ,V ,C )
e→ (P ′ � Q ,V ′,C ′)

(Q ,V ,C )
e→ (Q ′,V ′,C ′), e �= τ

[ int2 ]
(P � Q ,V ,C )

e→ (Q ′,V ′,C ′)

(Q ,V ,C )
τ→ (Q ′,V ′,C ′)

(P � Q ,V ,C )
τ→ (P � Q ′,V ′,C ′)

(P ,V ,C )
e→ (P ′,V ′,C ′), e �∈ X

(P \X ,V ,C )
e→ (P ′ \X ,V ′,C ′)
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(P ,V ,C )
e→ (P ′,V ′,C ′), e ∈ X

(P \X ,V ,C )
τ→ (P ′ \X ,V ′,C ′)

(P ,V ,C )
e→ (P ′,V ′,C ′) ∧ e �∈ ΣQ

(P ‖ Q ,V ,C )
e→ (P ′ ‖ Q ,V ′,C ′)

(P ,V ,C )
e→ (P ′,V ,C ) ∧ (Q ,V ,C )

e→ (Q ′,V ,C )
[ syn ]

(P ‖ Q ,V ,C )
e→ (P ′ ‖ Q ′,V ,C )

Appendix B: Soundness of the Partial Order Reduction

We prove the soundness in two steps. Firstly, because the algorithm tau ′ applies to one
model only (whereas next ′ must coordinate both the implementation and the specifica-
tion), it is sufficient to show that the reduction regarding τ -transitions (i.e., the algorithm
stubborn tau) preserves failures/divergence equivalence. Secondly, we show that the
reduction regarding visible events (i.e., the algorithm next ′) is sound.

In [18], a set of sufficient conditions has been proved to preserve CSP failures diver-
gence equivalence. It is thus sufficient to prove that the reduction regarding τ -transitions
satisfies the sufficient conditions. In the following, let E be the reduced set of succes-
sors (i.e., the stubborn set as in [18]) and F be the full set. Notice that the result returned
by algorithm stubborn tau is returned by algorithm tau ′ or next ′ if and only if it is not
empty (line 1 of tau ′ and line 2 of next ′). Thus, as long as F is not empty, E is not
empty. By line 3 of algorithm stubborn tau , transitions other than those selected in E
are all independent of those in E . By line 1 of stubborn tau , because the set of pos-
sibly enabled events must be the same of the set enabled event from the component, a
transition from the component must remain disabled unless a transition from the com-
ponents has been taken. By theorem 3.2 of [18], Ä0, Ä1, Ä2, Ä3 hold. Because only
τ -transitions are reduced in tau ′, condition Ä4 is trivial. By the condition ¬ loop(e)
at line 3 of stubborn tau , no action will be ignored forever, and thus Ä5 holds. Ä6 is
trivial for the same reason as for Ä4. By theorem 4.2 and 5.3 in [18], the reduction re-
garding τ -transitions preserves trace/failures/divergence equivalence and thus is sound.

In order to prove that algorithm next ′ is sound, we need to prove (in addition to
the above) that the reduction regarding visible events are sound as well. We reuse the
results which have been proved in [19] and show that the sufficient conditions proposed
in [19] have been full-filled. Firstly, C1 and C3 in [19] are trivial true. Because of line
0 and 2 of stubborn visible, an action dependent (say e) on an action selected can only
be executed after some action selected has been executed. There are two cases in which
this might be violated. In both of these cases, some transition (say a) independent of e
are executed, eventually enabled a transition that is dependent on e. In the first case, if
a belongs to some other components. A necessary condition for this to happen is that a
is dependent on e. This is prevented by line 1. In the other case, a belongs to the same
component of e, which is not possible because we require that current(Pi) = {e}. The
same argument applies to line 6 to 8 which guarantees that no action dependent on e is
executed before e is executed (and there C1in [19] is proved). C2 in [19] is guaranteed
by the condition ¬ loop(e). Therefore, we conclude the reduction is sound.
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