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Abstract. With the development of sensor technology and electronic miniatur-
ization, wireless sensor networks have shown a wide range of promising applica-
tions as well as challenges. Early stage sensor network analysis is critical, which
allows us to reveal design errors before sensor deployment. Due to their distin-
guishable features, system specification and verification of sensor networks are
highly non-trivial tasks. On the other hand, numerous formal theories and analysis
tools have been developed in formal methods community, which may offer a sys-
tematic method for formal analysis of sensor networks. This paper presents our
attempt on applying formal methods to sensor network specification/verification.
An integrated notation named Active Sensor Processes is proposed for high-level
specification. Next, we experiment formal verification techniques to reveal design
flaws in sensor network applications.

1 Introduction

With the development of sensor technology and electronic miniaturization, sensor in-
tegration makes it possible to produce extremely inexpensive sensing devices. The
sensors have been equipped with significant processing, memory, and wireless commu-
nication capabilities. Thus, they are capable of performing complex in-network com-
putation besides sensing and communication. Wireless sensor networks have shown a
wide range of promising applications in a variety of domains [12], e.g., environmental
monitoring, acoustic detection, smart spaces, inventory tracking, etc.

In recent years, a number of sensor devices and sensor programming languages have
been actively developing [1,4,20]. In the following, we review several features of ad hoc
and sensor networks which distinguish them from ordinary systems. In general, sensor
networks may be categorized as event-based distributed reactive hybrid systems.
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– The nature of sensors is event-based. Sensors’ behaviors are often stated in terms of
how they respond to internal/external events. Sensors may have continuous inter-
faces for sensing/actuating as well as discrete message input/output for inter-sensor
communication.

– Sensor networks may be re-configurable, i.e., part of the behaviors may be updated
dynamically. Deployed sensors may need to be updated with new programs to cope
with new system requirements or reused for completely new tasks.

– Sensor network applications are unlikely interested in the state of an individual
sensor. Rather, applications focus on the data generated by sensors. Sensor network
nodes are data-centric. There may not be a unique global address (like IP in the
Internet) associated with each sensor. The data generated at a sensor node is named
by attributes and applications request data matching certain attribute values. Date-
centric routing is favored over end-to-end routing.

– Sensor networks are application-aware. Traditional networks are designed to
accommodate a wide variety of applications. Sensor networks are however
application-specific, i.e., they are configured and deployed for a specific applica-
tion. Thus, they are designed with the knowledge of the types of sensors, the geog-
raphy, the data format generated by the sensors, etc.

On one hand, early stage analysis of sensor networks is critical as, once deployed, sen-
sors may not be easily accessible and updated with corrections. The unique features
of wireless sensor networks present unique challenges for specification, verification
and synthesis. On the other hand, numerous formal theories (e.g., broadcasting mes-
sages [25], higher-order processes [30], mobile processes [5]) and tools (e.g., UPPAAL,
SPIN) have been developed. We believe that wireless sensor networks are a fruitful
application domain of formal methods, which shall provide methodologies as well as
tools for systematic sensor networks specification and verification. This paper presents
our initial attempt on applying formal methods to sensor networks.

In order to apply the rich set of formal methods and theories, the very first task
is to construct a formal description of sensor networks. A formal system description
requires construction of a high-level mathematical model of the system, which can
later be used for a variety of system analysis tasks such as simulation, verification,
performance evaluation and synthesis. In this paper, we adapt ideas from multiple ex-
isting formal specification languages [23,25,6] and propose a simple integrated notation
for formal sensor network specification, namely Active Sensor Processes (shortened as
ASP). ASP is based on classic process algebras with extensions solely for hybrid broad-
casting systems. Next, we demonstrate how to verify sensor network applications using
state-of-the-art verification techniques. Verification based on ASP (instead of concrete
implementation) allows us to focus on the key aspects of the application without being
disturbed by irrelevant details. For instance, it is desirable to prove the soundness of the
high-level specification of a wireless routing protocol (i.e., a package will reach the des-
tination provided that it is feasible) assuming reliable a link layer protocol. Performed
early in the design stage, such modeling and analysis offers the promise of a system-
atic approach. We show that using existing system analysis tools, previously unknown
design flaw can be revealed. Nonetheless, we show that systematic sensor network ver-
ification may require verification capability beyond existing techniques and tools.



320 J.S. Dong et al.

As for related works, the research on sensor networks has been influenced by both the
traditional network community and the database community. The former group tends
to focus on finding efficient communicating protocol [32,17]. The latter focuses on
in-network data aggregation and data querying [8,22]. Other works include building
sensor hardwares and their middleware support [20]. There have also been proposals
for domain specific languages which present programming models for writing sensor
network programs [4,22]. We believe formal methods community can contribute to the
development of sensor network systems by providing new modeling and design tech-
niques capturing high level system behaviors. To our best knowledge, there have been
few formal languages proposed for generic sensor network modeling [24,31]. The pre-
vious closest to ASP is the notion of SensorML [3], which offers a modeling language
for sensor processes. Comparing to SensorML, our language models the dynamic be-
haviors of sensor networks. ASP has a formal semantics, which is essential for formal
analysis. For instance, by translating a large subset of ASP to equivalent timed automata,
we may reuse existing model checkers for formal verification. There have been many
languages proposed for modeling hybrid or mobile reactive systems, e.g., Ambients,
KLAIM, TCOZ, various extensions to π-calculus or automata, etc. However, applying
existing formalisms may not be possible or optimal because of the unique features of
sensors. For instance, the classic CSP, CCS, π-calculus and Ambient calculus rely on
single communication mechanism (e.g., lock-step synchronization between processes),
which is not suitable for inter-sensor communication. Naturally, there are different ways
of communication in sensor networks, i.e., the sensing/actuating may be continuous
rather then discrete; the messaging between sensor nodes are asynchronous as well as
broadcasting; and there may be lock-step synchronization between processes running
in parallel which reside at the same sensor node. Moreover, the network topology in
sensor networks is highly dynamic, which depends on a lot on the geographic location
of the sensor and its own characteristics like radio range. Existing formal specification
languages, like π-calculus and Ambient calculus, support network dynamic reconfigu-
ration by explicitly changing the channel names or the residing location of a process and
thus are in-effective for modeling data-centric sensor network routing. Nonetheless, we
believe wireless sensor networks are a fruitful domain for the scattered works on theo-
retical development on communication as well as process semantics (e.g., broadcasting
semantics, higher-order processes and others as evidenced in [24,25]).

The remainder of the paper is organized as follows. Section 2 explains the constructs
of ASP using illustrative examples. Section 3 explains the semantics of the language.
Section 4.1 models and verifies (using existing tools) a network code propagation algo-
rithm. Section 4.2 studies modeling and verification of a class of sensor network routing
protocols. Section 5 concludes the paper and reviews related works and future works.

2 Specifying Sensor Networks

The objective is to construct a concise and precise model of the sensor nodes. In order
to facilitate later system analysis, the language is designed to be lightweight. In this
section, we present the notation named Active Sensor Processes. We remark that ASP
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P ::= Stop | Skip – deadlock and termination
| Idle(d) – delay
| e → P – event-prefix
| x := exp → P – assignment
| P ; Q – sequential composition
| P � Q – choice
| P � b � Q – conditional branching
| P � Q – interrupt
| P |[X ]|Q – local synchronous composition
| s � x → P – sensing
| s ⊗ v → P – actuating
| c?X → P – inter-sensor message input
| c!X → P – inter-sensor message output
| P = Q – process referencing

Fig. 1. ASP Process Syntax

adapts features from Timed CSP [27] and TCOZ [23] and then extends it with language
constructs which are dedicated to sensor networks.

For simplicity, we distinguish three types, i.e., the set of all data values V , the set
of all events E and the set of all processes P . The specification of a sensor node con-
tains two parts. One is the mapping of a set of data variables to their values. The other
is the mapping of a set of process variables to process expressions. Unlike traditional
CSP/CCS, processes are allowed to be re-defined dynamically so as to model sensors
which are designed to be reconfigurable. This is achieved by assigning a process ex-
pression to process names dynamically, in the same way new values are assigned to data
variables. Data variables identify the context of the node, which may be categorized into
two groups. The first group is a set of pre-defined control variables which determines
the network topology. For instance, one way to capture the network topology is through
two predefined variables, namely location and range. Variable location identifies the
location of the sensor node. Variable range identifies its radio range, which in terms
identifies all connected sensor nodes together with the variable location . The second
group is a set of local data variables, e.g., control variables, sensed data store, etc. A
process expression is formed by the syntax summarized in Figure 1. In the following,
we will briefly review the process constructs using illustrative examples. A number of
process constructs introduced in CSP and Timed CSP are reused. Note that some have
different semantics.

The process Skip terminates successfully. The process Stop deadlocks. A sensor
node which behaves as Stop (if the battery runs out or the antenna is broken) disappears
from the network since it can not communicate with the rest of the system any more.
The process Idle(d) where d is a positive real number idles for exactly d time units. A
sensor node behaving as Idle(d) may go to sleep mode or power off (to save energy).
In contrast to sensors which behave as Stop, the sensor wakes up after exactly d time
units or responding to some interrupts. Note that clocks, as data variables, are always
local to a sensor node. The process e → P is called event-prefixing. It engages e and
then behaves as P , where e is an abstract event. If the event is shared by multiple
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processes running in parallel residing at the same sensor node, the event acts like a
synchronization barrier. Local variables or processes may be updated by assignments
of the form x := exp where exp is an expression.

Diversity of behaviors are specified using choices, which are often guarded with
events or Boolean conditions. Process a → P � b → Q will proceed as specified by
P if a is firstly engaged. A conditional branch is written as P � b � Q , where b is a
Boolean expression over the sensor’s context. It behaves as specified by P if b evaluates
to true, otherwise it behaves as specified by Q . We view interrupt as a biased choice.
The process P � e → Q behaves as P until the moment e is engaged and then behaves
as Q afterward. Alphabetized parallel composition is written as P |[X ]|Q , where X
is a set of events. Events in X must be synchronized by P and Q . X is omitted if it
is exactly the set of common events of P and Q . Recursion is defined through process
referencing. Its semantics is defined as Tarski’s weakest fixpoint as in CSP [16].

Sensor nodes may communicate with its local continuous environment via sensing
or actuating. A sensor node can sense data from its ever changing environment so as to
detect certain phenomenon or to be aware of its context. The process s � x → P reads
the value x from a sensing channel s from the environment. If the external environment
is specified as a continuous function, the object ‘monitors’ the value of the continuous
function through s . Sensor nodes with the same sensing device may receive the same
datum from the external environment. There may be multiple sensing channels on one
sensor node. Different sensing channels may be dedicated to different phenomenons.
The data sensed by a sensor node may come from the external environment or another
sensor node in the system. Sensor nodes influence its environment through actuating.
Process s⊗v → P actuates value v continuously to the environment. A sensing channel
and an actuating channel match if they share the channel name.

Example 1. A light sensor of a camera detects the light condition and outputs the light
level continuously. The camera reads the light level regularly so as to update the screen1.

LightSensor
Main = Idle(2); daylight � x → illumination ⊗ x → Main

where daylight is a sensing channel and x is the sensed value. The process Main iden-
tifies the behaviors of the object after initialization (as in TCOZ [23]). After sensing
the day light level from the environment, its value is actuated on channel illumination.
The process repeats after 2 time units.

Display
value = 0
Main = illumination � x →

(Main � value = x � refresh → value := x → Main)

where value is a data variable recording the current light level. Its initial value is 0.
refresh is the event of refreshing the screen. The above defines a local display device.

1 We use a Z-schema like syntax to group components of a sensor node. It by no means implies
that we adapt the Z syntax and semantics.
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It reads the value of illumination through sensing. If the value is different from the
previous one, the screen is refreshed to show the new value, else the screen is not re-
freshed. Thus, the illumination displayed is in real-time. Initially, 0 is displayed. Chan-
nel daylight connects the system with the external environment as there is no matching
sensing channel named daylight . �

As shown above, the specification of one sensor node contains a set of mapping from
data/process variables to their value. The initial values identify the initial state. The
process Main identifies the behavior of the node. Sensor nodes which form a network
must communicate with each other, e.g., typically through radio transmission. There are
unique characteristics about inter-sensor messaging. First of all, messaging between
different nodes is almost always asynchronous because processing time per bit com-
municated is plentiful in sensor networks, i.e., CPUs are fast and bandwidths are low.
Depending on the communication media and the transfer rate, it may take considerably
long time. Secondly, there may not be a global identity for each sensor and thus end-
to-end communication is unlikely in sensor networks. Thus, broadcasting is favored in
sensor networks instead of messaging through channels shared by a pre-determined set
of processes (as in CSP [16]).

c!X → P – output
c?X → P – input

where c is a channel. The message content X , which is called a gradient , could be an
abstract event or a data message or even a process itself. We assume that the output is
broadcasted so that all sensors within the range may receive it. Yet only those intended
ones may process it. A receiving sensor node may only listen on channels of its own
interest. A gradient is always treated as a single parameter, and its syntax and how it
is evaluated should be defined by a designer of the system and be incorporated into the
operational semantics.

Example 2. Suppose the sensors have been deployed around a volcano (e.g., they are
thrown from an aircraft) so as to monitor the volcano activity. The sensors report
through radio whenever the sensed temperature is above certain threshold. Due to the
rising of temperature, we now want those sensors which sensed high temperature to
report more frequently. Thus, a station is set up near the volcano, which is modeled as
follows,

Station
Main = c!set(5, 20) → Main

where c is a channel, set is a message tag and (5, 20) is a compound message in a
pre-agreed format. The first number identifies the intended receivers and the second
is used to update the frequency. A channel can be implemented on a separate port or
radio frequency or as simple as a flag bit in the message package. The station repeatedly
broadcasts the message. The sensors are designed as follows,
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Node
delay = 5
data = 0
Routine = Idle(delay); temperature � x → data := x → Routine
Update = c?set(threshold , x ) → (delay := x → Update

� data > threshold � Update)
Main = Routine ‖ Update

where delay is a local variable used to control sensing frequency and data is used to
store the most recent sensed data. The Main process is composed two sub-processes
running in parallel. Process Routine executes a routine task, i.e., after idling for delay
time units, collects temperature data from the environment and then store the sensed
data into variable data. Process Update awaits for messages from the station. Once
a message arrives on channel c, if the newly sensed data is above the threshold , the
newdelay is adapted. Otherwise, process Update is repeated.

The above design relies on a pre-defined message format, which is acceptable since
sensor networks may be application specific. Alternatively, instead of updating one pa-
rameter of a process in a pre-determined way, a flexible sensor may be designed to
be reconfigurable so that its behavior can be changed dynamically to cope with differ-
ent tasks. The following shows such an approach based on the notion of higher-order
processes, i.e., a message can be a process itself.

ReconStation
Sender = c!set(110, Idle(20)) → Sender

The sender sends a piece of program, i.e., Idle(20), to directly change the behaviors
of the sensors. A re-configurable sensor is designed as follows,

ReconNode
data = 0
Recon = Idle(5)
Routine = Recon; temperature � x → data := x → Routine
Update = c?set(threshold ,X ) →

(Recon := X → Update � data > threshold � Update)
Main = Routine ‖ Update

where Recon is defined as a process variable. Routine is to execute Recon first fol-
lowed by sensing. Notice that whenever a process reference (e.g., Recon) is invoked, it
is replaced by its current value. Once a new piece of program is received, the value of
Recon is updated by an assignment. �

There are two levels of concurrency in sensor networks. Firstly, local processes of a
sensor node or computation devices connected by wire where communication delay
is ignored can execute concurrently with possible barrier synchronization. Secondly,
different sensor nodes run independently with each other and communicate through
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message passing. The parallel composition of local processes located at the same sensor
node is denoted as P |[X ]|Q where common events of ΣP and ΣQ are synchronized.
All sensor nodes are implicitly executing in parallel and the communication between
different sensor nodes is through asynchronous message passing2.

Example 3. Because inter-sensor messaging may take considerably long time, it is of-
ten desirable to have separate processes for local computation and interfacing so that
local computation carries on without being delayed by message sending or receiving.
The following shows such a design,

SampleNode
average = 0
n = 0
Accumulate = data � x → average := (average × n + x )/(n + 1) →

n := n + 1 → Idle(2); Accumulate
Interface = sink !average → Interface
Main = Interface ‖ Accumulate

where n is a counter. Process Interface handles communication (with a data sink). It
repeatedly reads the average and then sends it out. Process Accumulate collects data
from the environment. It gets the value of data through sensing. It then computes the
new average. After idling for 2 time units, process Accumulate is invoked again. �

Complex process constructs can be composed from the simple ones. For instance, a
process that times out after some time units is written as P �d Q . The process Q takes
control from the process P if P has not made a move after d time units elapsed, i.e.,
P �d Q is equivalent to P � (Idle(d); Q). A process that is interrupted after executing
exactly d time units is written as P �d Q . The process Q takes control from P after
d time units, i.e., P �d Q is equivalent to P � (Idle(d); Q). [b] • P is a guarded
process which behaves as P when b is evaluated to true, i.e., [b] • P =̂ P � b � Stop.
Since they are considered as syntax sugars, we skip the rest for brevity.

3 Operational Semantics

In this section, the operational semantics of ASP is explained. The configuration of
a node is composed of two components, i.e., the current process expression and the
binding of data/process variables to their current values. Given a set of sensor nodes,
the local state of each sensor node constitutes the global configuration.

Let B be a binding, which maps data variables to a data values or process
variables to process expressions. Let P be a process. A configuration of a node
is a pair of the form (P ,B). The global state of a network of n nodes is
{(P1,B1), (P2,B2), · · · , (Pn ,Bn)}, i.e., the configuration of all sensor nodes. For sim-
plicity, we write (P1,B1) ||| (P2,B2) to denote that (P1,B1) and (P2,B2) are part of

2 Nearby sensors may interact through sensing/actuating.
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the global state3, i.e., there are a node with configuration (P1,B1) and a node with
configuration (P2,B2) running in parallel. In the previous examples, the initialization
consists of a set of equations of the form name = initial value. The initial state of
a node is (Main,BInit) where Main is the main process and BInit is the binding
of all variables with their initial values. The following action prefixes are defined as
abbreviations.

α ::= s � v | s ⊗ v
β ::= c?v | c!v
λ ::= e | τ | �
a ::= α | λ

where τ is the event of idling and � is the event of termination. The operational seman-
tics is presented using a set of transition rules associated with the language constructs.
A transition is of the form (P ,B)

a
↪→ (P ′,B ′), which denotes that a process P with a

binding B performs an action a and evolves to a new process P ′ and a new binding B ′.
A new binding of a variable x to v in B is denoted by B ⊕ {x �→ v}, i.e., the old value
of x is replaced by v .

Inspired by the operational semantics defined in [26] for Timed CSP, we extend the
rules with a component B to cope with our setting, as presented in Appendix A. We
remark that �, |[X ]| and ||| are symmetric. Because of the shared variables, rules
in [26] are extended to capture semantics of operators which deal with variables. Fig-
ure 2 presents those transitions rules. Rule Assign states that an assignment replaces
the value of variable x with eval(B , exp) which is the value of exp evaluated against
binding B . We remark that x may be a process variable and exp may be a process
expression. Rule Con1 and Con2 capture the semantics of conditional branching. If
the the condition b is true, written as B |= b, the system proceeds as P . Otherwise,
it behaves as Q . Timing information is important in modeling (and verifying) sensor
networks. We adapt a simple explicit-time approach, i.e., a variable time is used to
represent the current time [18]. Rule Idle1 and Idle2 captures how process Idle(d) be-
haves. Notice that the behaviors of the clock are modeled implicitly as a process which
updates the variable time. Rule ProcDef deals with process referencing. The idea is to
load the definition of P dynamically from B .

In order to capture the semantics of sensing/actuating, we introduce discard ac-
tions. Discard actions are defined as α :. The discard action (P ,B)

α:
↪→ (P ,B) means

that P discards the action α. Figure 3 shows rules associated with sensing and ac-
tuating. These are based on CBS (Calculus of Broadcasting Systems) in [25] except
rule DiscardSensing . Rule DiscardSensing means that any node with the same sensor
name may not receive the data from the environment or some corresponding actuator.
This rule can mimic the locality of sensors. We regard the set of rules which includes
Sensing, DiscardSensing, SAParallel and other discard rules (which only take the dis-
card sensing action) the sensor process calculus, which captures the behaviors of sen-
sors receiving data only from the environment. This set of rules is semantically weak
but models how sensors behave in general.

3 The operator ||| denotes interleaving in CSP. Here it implies there is no barrier synchronization
among different sensor nodes.
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eval(B , exp) = v
[ Assign ]

(x := exp → P ,B)
e

↪→ (P ,B ⊕ {x �→ v})

B |= b (P ,B)
λ
↪→ (P ′,B ′)

[ Con1 ]

(P � b � Q ,B)
λ
↪→ (P ′, B ′)

B �|= b (Q ,B)
λ
↪→ (Q ′,B ′)

[ Con2 ]

(P � b � Q ,B)
λ
↪→ (Q ′,B ′)

{time �→ n} ⊆ B d > m
[ Idle1 ]

(Idle(d),B)
τ

↪→ (Idle(d − m),B ⊕ {time �→ n + m})

{time �→ n} ⊆ B
[ Idle2 ]

(Idle(d),B)
�
↪→ (Stop, B ⊕ {time �→ n + d})

{P �→ Q} ⊆ B (Q ,B)
λ
↪→ (Q ′,B ′)

[ ProcInst ]

(P ,B)
λ
↪→ (Q ′,B ′)

P = Q (Q ,B)
λ
↪→ (Q ′,B ′)

[ ProcDef ]

(P ,B)
λ
↪→ (Q ′,B ′)

Fig. 2. Basic Operational Rules

Similarly, we define the rules for inter-sensor communication. All the rules for inter-
sensor messaging, presented in Appendix B, are based on CBS but we need to take
care of gradient. The syntax of gradients and how they will be evaluated should be
pre-defined by a specifier of a sensor network system.

4 Case Studies

In this section, we demonstrate how ASP can be applied to model real-world sensor
network applications concisely. Next, we discuss sensor network verification based on
the ASP models. We show that using existing model checkers, bugs which are not pre-
viously known may be detected. Yet existing verification tools and techniques may not
be sufficient in general.

4.1 The Trickle Algorithm

Communication in sensor networks may be extremely costly (in terms of time and bat-
tery). For some applications, sending a data of tens of kilobytes can have the same cost
as days of operation. Thus, code propagation by flooding is undesirable. The Trickle
algorithm [21] is a self-regulating algorithm for code (or large datum) propagation and
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[ Sensing ]

(s � x → P ,B)
s�v
↪→ (P ,B ⊕ {x �→ v})

[ Actuating ]

(s ⊗ v → P ,B)
s⊗v
↪→ (P ,B)

[ DiscardActuating ]

(s⊗v → P ,B)
s⊗v:
↪→

[ DiscardSensing ]

(s � x → P ,B)
s�v:
↪→

(P ,B1)
s�v
↪→ (P ′,B ′

1) (Q ,B2)
s⊗v
↪→ (Q ′,B2)

[ SACom(1) ]

(P ,B1) ||| (Q ,B2)
s⊗v
↪→ (P ′,B ′

1) ||| (Q ′,B2)

(P ,B1)
s⊗v
↪→ (P ′,B1) (Q ,B2)

s�v
↪→ (Q ′,B ′

2)
[ SACom(2) ]

(P ,B1) ||| (Q ,B2)
s⊗v
↪→ (P ′,B1) ||| (Q ′,B ′

2)

(P ,B1)
s�v
↪→ (P ′,B ′

1) (Q ,B2)
s�v
↪→ (Q ′,B ′

2)
[ SAParallel ]

(P ,B1) ||| (Q ,B2)
s�v
↪→ (P ′,B ′

1) ||| (Q ′,B ′
2)

(P ,B1)
α:
↪→ (Q ,B2)

α:
↪→

[ SAJoinDiscard ]

(P ,B1) ||| (Q ,B2)
α:
↪→

(P ,B1)
α:
↪→ (Q ,B2)

α
↪→ (Q ′,B ′

2)
[ SADiscard(1) ]

(P ,B1) ||| (Q ,B2)
α
↪→ (P ,B1) ||| (Q ′, B ′

2)

(P ,B1)
α
↪→ (P ′,B ′

1) (Q ,B2)
α:
↪→

[ SADiscard(2) ]

(P ,B1) ||| (Q ,B2)
α
↪→ (P ′,B ′

1) ||| (Q ,B2)

Fig. 3. Sensor-Actuator rules

maintenance in wireless sensor networks. It combines typical sensor network behav-
iors like broadcasting, higher-order processes, etc. The sensors are designed to be re-
configurable, i.e., the received code will be installed and executed. It uses a “polite
gossip” policy. Each node announces its metadata (e.g., a version number) every few
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Mote
data = 0
version = 0
counter = 0
threshold = 2
timer = 2
tau = 5
Routine = sense � x → data := x ; Idle(5); Routine
Update = c?pro(v , R) → ((version := v ; Routine := R; Update)

� version < v � Update)
Gossip = (Talk || Reply) �tau counter := 0; Gossip
Talk = Idle(timer); (meta!version → Talk � counter < threshold � Talk)
Reply = meta?x → ([x = version] • counter := counter + 1; Reply �

[x > version] • meta!version → Reply �

[x < version] • c!pro(version, Routine) → Reply)
Main = Routine ‖ Update ‖ Gossip

Fig. 4. The Trickle Algorithm

time units. If a node hears an old metadata, it broadcasts the code necessary to update
the node sending the old metadata. If it hears a new metadata (e.g., a larger version
number), it broadcasts its own metadata, which triggers the receiver to send the up-
dated program. To reduce the number of communication, each node announces only
a limited number of times during each gossip. Through time, a network of thousands
of sensor nodes shall be updated with the new code. The algorithm has been evaluated
with extensive simulation in [21].

The modeling is presented in Figure 4. The main process of each sensor node (called
mote in [20]) consists of three components running in parallel. Process Routine, which
is reconfigurable, performs the routine task. Process Update updates the node if an up-
dated version of Routine has been received. Process Gossip models the “polite gossip”
policy which is used to discover whether the node is outdated or not. In order to keep
the mote up-to-date, a mote records a number of parameters, i.e., version records the
version of Routine, a counter, a threshold, a timer and a constant tau . Process Routine
periodically senses data from the external environment. Process Update keeps waiting
for an input on channel c (with message tag pro). Once such a gradient is received, both
version and Routine are updated if the received code is newer. Process Gossip cap-
tures the essence of the algorithm. The mote announces its current version on channel
meta once a while (specified by Talk ) or it listens to other motes and reacts (spec-
ified Reply). In the process Talk , after t time units, the mote checks if it has talked
too much (counter ≥ threshold ). If it has, the mote will keep silent until the next
gossip. Otherwise, it will broadcast its version on channel meta and wait for the next
turn to talk. Every tau time units, the process restarts (and resets the counter). In the
process Reply , when a mote hears a version identical to its own (x = version), it
increments counter . If the mote hears a version greater than its own (x > version),
it broadcasts its own version, which will trigger a receiver to send the updated pro-
gram. If the mote hears an old version, it broadcasts the code necessary to update the
sending mote.
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We believe that formal specification is a starting point for a number of formal analysis
tasks. It is natural to ask whether this algorithm satisfies important safety and liveness
properties. In this experiment, we reuse existing state-of-the-art verification support for
real-time systems (e.g., UPPAAL [19]) to reason about the algorithm. In order to model
check the algorithm, we must first close the system by explicitly specifying the environ-
ment. The following components are part of the environment, i.e., the network topology,
the different versions of Routine and the external data resource from which the sensor
nodes collect data. As discussed above, the network topology may be specified using
pre-defined variables (e.g., location and range). There is a link between two nodes if
and only if the nodes are within each other’s range. In UPPAAL, however, processes
communicate only through pre-defined channels. Thus, we need to pre-process the net-
work topology and define channels for each link between the nodes, which is statically
done given the values of the variables are not changing. One feature which is missing
from timed automata is higher order processes. To the best of our knowledge, there are
few tools which support verification of higher-order processes. Thus, higher-order pro-
cesses are reduced to ordinary processes whenever the system is closed. This may not
be always desirable or possible. For this experiment, because the details of Routine are
irrelevant, we simply abstract it away. In UPPAAL, timed automata are extended with
broadcasting channels and committed states, which can be used to mimic broadcasting
in ASP. Because the sensed data is irrelevant, it is simply ignored.

In our previous work, we have developed a systematic translation from Timed CSP
to timed automata [10]. We defined a rich set of compositional operators for timed au-
tomata, which corresponds to the compositional operators in Timed CSP. By following
the same approach, we develop a systematic translation from ASP to timed automata.
Figure 5 presents the generated automata. Automaton (a) corresponds to the process
Update. Because passing data through channels is not allowed in UPPAAL, we use
shared variables to communicate instead, i.e., message sending writes a shared vari-
able whereas message receiving reads the value. The state after the synchronization is
marked as urgent so as to read the input value immediately. The parallel composition
of automaton (b) and (c) corresponds to process Gossip. Adapting the timed patterns
defined in [10], the timed interrupt �tau has been resolved using extra state invariants
and transition guards. For instance, automaton (b) which loosely corresponds to process
Talk is modified to guarantee that whenever x == tau , the system is restored to the
initial state. Automaton (c) loosely corresponds to process Reply .

Table 6 shows the experiment results using UPPAAL to verify instances of the
algorithm. The network topologies are randomly generated with one constraint, i.e., all
nodes are reachable. The results are obtains by executing UPPAAL 4.0.6 on Windows
XP platform with Intel Core Duo 2.33GHz CPU and 3.25 GB memory. All models are
deadlock-free as expected. A desired property of code propagation algorithms is that if
a node is reachable, it will always eventually be updated. A counterexample is produced
unexpectedly. Figure 7 elaborates the counterexample with a network containing 3
motes connected circularly. The link between nodes are directed as it is possible that
node B hears A but node A cannot hear from B , e.g., A has a longer radio range.
Initially, node A’s version is 1, meaning that it is updated already. Once node A hears
a meta-data from node C , it broadcasts its updated program. Only node B hears from
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version:= input

c?

(a)

y<=timer && x<=tau

y==timer && counter<threshold && x<taumetas!
input:=version

x==tau
counter:=0,x:=0

y==timer &&
counter>=threshold && x<tau

y:=0

(b)

x<=tau

x<=tau

x<=tau

x<=taux:=0

x==tau counter:=0,x:=0

x==tau
counter:=0,x:=0

x==tau counter:=0,x:=0

x==tau
counter:=0,x:=0

x<tau c!

input3:=version

x<tau
metas1!
input2:=version

x<tau

input1<version && x<tau

input1>version && x<tau

input1==version && x<tau
counter:=counter+1

metas?

(c)

Fig. 5. UPPAAL Model of the Trickle Algorithm

Model Property time taken Result
2 Motes deadlock-free < 1 true
3 Motes same above 1 true
4 Motes same above 12 true
5 Motes same above 1080 true
6 Motes same above − true
2 Motes always-eventually all motes are updated < 1 true
3 Motes same above 1 false
4 Motes same above 3 false
5 Motes same above 25 false
6 Motes same above − −

Fig. 6. Verifying Randomized Sensor Networks using UPPAAL

node A and thus node B is updated. Consequently, node C broadcasts its meta-data ev-
ery time after receiving meta-data from node B and then node A broadcasts the updated
program every time after receiving the meta-data from node C . However, because only
node B receives from node A and it ignores the message since it has already been
updated. As a result, node C is never updated. Notice that the property is true if all links
are bi-directional or each node has fixed location and radio range. In order to prove the
latter, we can show that if B hears A and A cannot hear from B , then the range of A
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rangeA rangeB

rangeC

A B C
1 0 0

rangeA rangeB

rangeC

A B C
1 01

==>

Fig. 7. A Counterexample

must be larger than that of B . Thus, a circular network like the one in Figure 7 is not
possible. Nevertheless, such network topology is possible in practice.

For a network with 6 motes, UPPAAL needs significant amount time to verify the
property. A typical sensor network application, however, may contain hundreds or thou-
sands of sensor nodes. Observing that some distinguishable features are missing from
UPPAAL (e.g., higher-order processes), this suggests that specialized verification mech-
anism and state space reduction techniques must be developed.

4.2 Face Routing Protocols

In this experiment, we review another example of sensor network application. We argue
that current formal verification tools may not be sufficient to provide answers to natural
questions on those systems.

Geographic routing algorithms are an important family of routing protocols of wire-
less ad hoc sensor networks. They have been shown to scale better than other alterna-
tives, i.e., they require per node state that depends only on network density and not on
network size. Established proposals include GFG [2], GPSR [17], etc. However, due to
different forwarding mechanism, reachability between sensor nodes is not always guar-
anteed. In many of these algorithms (e.g., [17]), nodes forward packets to the neighbor
closest to the destination whenever possible. The following process models the relevant
behaviors of a node in the simplest greedy routing protocol.

Main = c?new(src, des ,msg) →
([loc = des ] • message := msg; Skip �

[src − des > loc − des ] • c!new(loc, des ,msg) → Main �

[loc − des � src − des ] • Main)

where loc is the location of the node and message is a local data store recording the
message received. In what follows, we assume that each node acquires its own posi-
tion using GPS devices (as assumed in [17]). Without loss of generality, location is
abstracted as a natural number. The message is composed of three parts, i.e., src is
the location of the sender, des is the location of the intended receiver and msg is the
message content itself. Each node tries to forward the message to its neighbors who are
geographically closer to the destination than the node itself (i.e., src−des > loc−des).
If the location of the sensor is the same as the destination, it means that message has
reached the destination. If the sensor is not the destination and it is closer to the des-
tination than the the sender, it would go on broadcasting the message with the sender
location replaced by its own location. Otherwise it will discard this message. In [17], a
simple beaconing algorithm provides all nodes with their neighbors’ positions: periodi-
cally, each node broadcast a beacon which its own identifier and position. For simplicity,
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we skip the modeling of the beaconing algorithm and assume that the messages are al-
ways broadcasted in the above modeling. Nonetheless, this modeling shares the same
pitfall with the one in [17].

A critical requirement for any routing protocol is that, given a static network topol-
ogy and reliable link layer support, the protocol must guarantee message delivery to a
reachable node. It has been shown that message delivery is not always guaranteed for
face routing algorithms [13]. For instance, there are topologies in which the only route
to a destination requires a packet move temporally further in geometric distance from
the destination, due to the presence of routing holes. Refer to [13] for more compli-
cated protocols as well as pitfalls. Given a newly designed protocol, it is thus desirable
to answer the question whether there exists a network topology such that the proto-
col does not function as expected. Different from traditional model checking, a model
satisfying different constraints including temporal logic properties (e.g., always eventu-
ally the message is delivered) must be constructed and presented as a counterexample.
This problem may be categorized as a model satisfiability problem. Because it concerns
temporal logic constraints, bounded model checking techniques must be applied.

One solution is to formula the question as a Boolean formula and then apply state-
of-the-art SAT-solvers to generate solutions automatically. In our previous work [29],
we have developed ways of encoding compositional processes as SAT problems for
bounded model checking. By applying a similar approach, our primary experiments
show that for face routing protocols, not only we can prove/disprove desirable proper-
ties given a network topology but also generate one particular network topology which
makes the given algorithm faulty. Given a bound on the number of nodes, and the data
range of the pre-defined variable location and range (which identifies the network
topology), a fixed number of Boolean variables are used to represent status of each
node. The behaviors of each node can be translated to a labeled transition system (by
applying the operational semantic) and then encoded as a Boolean formula in the stan-
dard way [9]. The encoded sensor nodes are composed using a similar approach pro-
posed in [29]. After composing with the Boolean formula which represents the property
(e.g., if there is a path from the source to the destination, then the message must always
eventually reach the destination), an SAT-solver is used to assign true/false value to
all Boolean variables. An assignment to the variables representing location and range
identifies a network topology in which the protocol can not guarantee message deliv-
ery. In the above example, we have successfully generated connectivity graphes which
contains routing holes. We are currently extending our tool [29] to fully automate the
process. We have implemented and experimented a number of face routing protocols
(like the above one and GFG). However, because of the size of sensor network appli-
cations, our prototype implementation must be extended with partial order reduction as
well as symbolic techniques before practical usage.

5 Conclusion

In this paper, we proposed a high-level formal specification language specifically for
wireless sensor networks. Unique language constructs have been defined to cope with
the unique characteristics of such systems, e.g., sensing and actuating, inter-sensor



334 J.S. Dong et al.

messaging, etc. Next, we developed a formal semantics for ASP. Lastly, we demon-
strated how to use ASP to model sensor network applications as well as how to verify
those models. From the examples, ASP showed its high expressiveness and conciseness
in formally specifying the communications and behaviors of sensor network systems. In
summary, ASP not only offers a way of modelling/specifying sensor networks, with the
precise semantics defined, but also gives us a starting point for formal sensor network
simulation, verification and synthesis.

We are currently developing a series of tools based on ASP. e.g., a high-level simula-
tor, a verifier and a synthesizer (e.g., [28,7,11]). Existing simulators for sensor networks
like TOSSIM and ns-2 mimic physical environment rather closely and thus provide
rich simulation results. Nevertheless, they may not be as abstract as expected by sys-
tem designers who are only interested in the high-level functionality of the system. For
instance, a protocol designer would be firstly interested in if “in theory” the newly de-
signed protocol is free of deadlocks and livelocks and then analysis the performance
of the protocol with realistic settings. We are developing a simulator based on ASP

for high-level simulation, based on the operational semantics presented in Section 3. A
promising technique to handle large number of sensor nodes is the symbolic simulation
proposed in [15]. One in-expensive approach to connect ASP to the current practise
of sensor networks programming is by providing a transformation (which has been
planned) from ASP to languages like nesC which is designed to embody the execution
model of TinyOS [14].
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Appendix A: Basic Operational Semantics

(Stop,B)
τ
↪→ (Stop,B) (Skip,B)

�
↪→ (Stop,B)

(e → P ,B)
e

↪→ (P ,B)

(P ,B)
λ
↪→ (P ′,B ′) λ 	= �

(P ; Q ,B)
λ
↪→ (P ′; Q ,B ′)

(P ,B)
�
↪→ (P ′,B)

(P ; Q ,B)
�
↪→ (Q ,B)

(P ,B)
λ
↪→ (P ′,B ′)

(P � Q ,B)
λ
↪→ (P ′,B ′)

(P ,B)
λ
↪→ (P ′,B ′)

(P � Q ,B)
λ
↪→ (P ′ � Q ,B ′)

(Q ,B)
λ
↪→ (Q ′,B ′)

(P � Q ,B)
λ
↪→ (Q ′,B ′)

(P ,B)
λ
↪→ (Skip,B)

(P � Q ,B)
λ
↪→ (Skip,B)

λ 	∈ X (P ,B)
λ
↪→ (P ′,B ′)

(P |[X ]|Q ,B)
λ
↪→ (P ′ |[X ]|Q ,B ′)

e ∈ X (P ,B)
e

↪→ (P ′,B) (Q ,B)
e

↪→ (Q ′,B)

(P |[X ]|Q ,B)
e

↪→ (P ′ ‖ Q ′,B)
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Appendix B: Operational Rules for Inter-sensor Messaging

[ BI ]
(c?X → P ,B)

c?v
↪→ (P ⊕ {X �→ v},B)

[ DisI ]
(c?v → P ,B)

c?v :
↪→

[ BO ]
(c!v → P ,B)

c!v
↪→ (P ,B)

[ DisO ]
(c!v → P ,B)

c!v :
↪→

(P1,B1)
c!v
↪→ (P ′

1,B1) (P2,B2)
c?v
↪→ (P ′

2,B
′
2) [ Broadcast ]

(P1,B1) ||| (P2,B2)
c!v
↪→ (P ′

1,B1) ||| (P ′
2,B ′

2)

(P1,B1)
c?v
↪→ (P ′

1,B
′
1) (P2,B2)

c?v
↪→ (P ′

2,B
′
2) [ IParallel ]

(P1,B1) ||| (P2,B2)
c?v
↪→ (P ′

1,B
′
1) ||| (P ′

2,B
′
2)

(P1,B1)
β:
↪→ (P2,B2)

β:
↪→

[ BJointDiscard ]
(P1,B1) ||| (P2,B2)

β:
↪→ (P1,B1) ||| (P2,B2)

(P1,B1)
β:
↪→ (P2,B2)

β
↪→ (P ′

2,B
′
2) [ BDiscard(1) ]

(P1,B1) ||| (P2,B2)
β
↪→ (P1,B1) ||| (P ′

2,B
′
2)

(P1,B1)
β
↪→ (P ′

1,B
′
1) (P2,B2)

β:
↪→

[ BDiscard(2) ]
(P1,B1) ||| (P2,B2)

β
↪→ (P ′

1,B
′
1) ||| (P2,B2)
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