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Abstract. Liveness/Fairness plays an important role in software specification,
verification and development. Existing event-based compositional models are
safety-centric. In this paper, we describe a framework for systematically speci-
fying and verifying event-based systems under fairness assumptions. We intro-
duce different event annotations to associate fairness constraints with individual
events. Fairness annotated events can be used to embed liveness/fairness assump-
tions in event-based models flexibly and naturally. We show that state-of-the-art
verification algorithms can be extended to verify models under fairness assump-
tions, with little computational overhead. We further improve the algorithm by
other model checking techniques like partial order reduction. A toolset named
PAT has been developed to verify fairness enhanced event-based systems. Exper-
iments show that PAT handles large systems with multiple fairness assumptions.

1 Introduction

Critical system requirements like safety, liveness and fairness play important roles in
system/software specification, verification and development. Safety properties ensure
that something undesirable never happens. Liveness properties state that something de-
sirable must eventually happen. Fairness properties state that if something is enabled
sufficiently often, then it must eventually happen. Often, fairness assumptions are nec-
essary to prove liveness properties.

Over the last decades, specification and verification of safety properties have been
studied extensively. There have been many languages and notations dedicated to safety-
critical systems, e.g., Z, VDM, CCS and CSP. The concept of liveness itself is problem-
atic [17]. Fairness constraints have been proved to be an effective way of expressing
liveness, not mentioning that itself is important in system specification and verification.
For instance, without fairness constraints, verifying of liveness properties may often
produce counterexamples which are due to un-fair executions, e.g., a process or choice
is infinitely ignored. State-based fairness constraints have been well studied in automata
theory based on accepting states, e.g., in the setting of Büchi/ Rabin/Streett/Muller au-
tomata. It has been observed that the notion of fairness is not easily combined with
the bottom-up type of compositionality (of process algebra for instance [23]), which is
important for attacking the complexity of system development.
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6 J. Sun et al.

A common practice of verifying liveness relies on explicitly stating all fairness as-
sumptions as premises of the liveness properties. This approach is not feasible if there
are many fairness constraints. Note that it is relatively straightforward to verify whether
the system satisfies a fairness property. It is verification under multiple fairness assump-
tions which may be infeasible. For instance, a method to prove that a program satisfies
some property is Linear Temporal Logic (LTL) model checking. Given an LTL formula
φ, the model checker transforms the negation of φ into a Büchi automaton, builds the
product of the automaton and the program and then checks this product for emptiness.
The size of the constructed Büchi automaton is exponential to the length of φ. A for-
mula composing of many fairness premises results in a huge Büchi automaton and thus
makes model checking infeasible. For example, SPIN is a rather popular LTL model
checker [15]. The algorithm it uses for generating Büchi automata handles only a lim-
ited number of fairness constraints. The following table shows experiments on the time
and space needed for SPIN to generate the automaton from standard notion of fairness,
in particular, justice and compassion [16].

Prop. n Time (Sec.) Memory #Büchi States
(
∧n

i=1 ��pi) ⇒ ��q 1 0.08 466Kb 74
same above 3 4.44 27MB 1052
same above 5 more than 3600 more than 1Gb −

(
∧n

i=1(��pi ⇒ ��qi)) ⇒ ��s 1 0.13 487.268 134
same above 2 1.58 10123.484 1238
same above 3 30.04 55521.708 4850
same above 4 4689.24 more than 1Gb −

The experiments are made on a 3.0GHz Pentium IV CPU and 1 GB memory executing
SPIN 4.3. The results show that it takes a non-trivial amount of time to handle 5 fairness
constraints. In order to overcome this problem, SPIN offers an option to handle weak
fairness on the level of processes. However, it may not be always sufficient. Process-
level fairness states that all enabled events from different processes must be engaged or
disabled eventually, which is overwhelming sometimes. For instance, it is reasonable
to require that a submitted request must eventually be served, while it is not to require
that always eventually there is a request. Another approach [16] to model check under
fairness assumptions is to model fairness using global accepting states (or in the form of
justice/compassion condition [16]). For instance, a run accepted by a Büchi automaton
must visit at least one accepting state infinitely often. This approach is not applicable to
event-based compositional systems.

In [17], a language independent definition of event-based fairness has been proposed
and studied. Let e be an event. Let �, � be the temporal operators which informally
reads as ‘eventually’ and ‘always’ respectively.

wf (e) =̂ ��(e is enabled) ⇒ ��(e is engaged)
sf (e) =̂ ��(e is enabled) ⇒ ��(e is engaged)

The weak fairness wf (e) asserts that if an event e eventually becomes enabled forever,
infinitely many occurrences of the event steps must be observed. The strong fairness
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sf (e) asserts that if e is infinitely often enabled (or in other words, repeatedly enabled),
infinitely many occurrences of the event must be observed. Strong fairness implies weak
fairness. A system satisfies a fairness constraint if and only if every run of the system
satisfies the fairness constraint.

Partly inspired by the work above, we propose an alternative approach for specifying
fairness constraints, with efficient verification in mind. Instead of stating the fairness as-
sumptions as a part of the property to verify or additional global accepting states, they
are embedded in the compositional models. We introduce different event annotations to
associate fairness assumption with individual events. Event-based annotation allows us
to model fairness naturally and flexibly. For instance, by annotating all events weak fair,
we achieve process-level fairness (as offered in SPIN). Next, we investigate automated
verification of models with event-based fairness. We show that existing state-of-the-
art verification algorithms can be extended to handle event-based fairness with little
computational overhead. An on-the-fly model checking algorithm is developed. The al-
gorithm is further improved by techniques like partial order reduction. A toolset named
PAT (stands for Process Analysis Toolset) has been developed to realize the algorithms
(which also supports functionalities like standard model checking, model simulation,
etc). Experiment results show that PAT handles non-trivial systems with multiple fair
constraints efficiently.

Our contribution includes an approach to model fairness in event-based composi-
tional system models and an on-the-fly model checking algorithm with partial order
reduction for verifying those models. This paper is related to works on specification
and verification of liveness and fairness, e.g., verification under weak fairness in SPIN
and early works discussing liveness associated with events in the framework of Promela,
CCS or CSP, evidenced in [15, 7, 6, 21]. One way of capturing fairness is to alter the lan-
guage semantics so that all events are fairly treated (e.g., [15, 21, 3]), i.e., the semantics
of parallel composition is enhanced to be fair. From our point of view, the difference
between parallel and sequential processes may be irrelevant and fairness shall be inde-
pendent of one particular operator. In practice, it may be that only certain events need
to fulfill fairness constraints. For instance, a common requirement is that “some ac-
tion must eventually occur if some other action occurs” (i.e., compassion conditions).
In other works [7, 6], events or processes are annotated with special markings to cap-
ture fairness. However, previous approaches do not easily combine with the bottom-up
compositionality of process algebra, i.e., the fairness constraints may be lost once the
process is composed with others. In this work, annotations are used to associate differ-
ent kinds of fairness assumptions with relevant events in the relevant module/process,
which may yet has global effects. Moreover, we develop automated verification support
for our notion of fairness. We remark that the concept of event-based fairness is not lim-
ited to process algebras. Specification of fairness in programming languages has been
discussed in the line of works by Apt, Francez and Katz [2]. Event-based fairness may
allow fairness constraints that may not be feasible (and thus violates one of the princi-
ples in [2]), which makes our verification techniques crucial. Our works on verification
of models with embedded fairness constraints are related to previous works on verifica-
tion under fairness assumptions [16, 18, 13], in which liveness/fairness constraints are
either specified using temporal logic formulae or captured using global accepting states.
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We use a different way of specifying fairness constraints and hence our model checking
algorithm is different from theirs. We also extend our algorithm with techniques like
partial order reduction to handle large systems. This work is remotely related to our
previous works on verification of event-based specifications [10, 9, 19].

The remainder of the paper is organized as follows. Section 2 reviews the input lan-
guage of PAT and its semantics. Section 3 introduces our event annotations. Section 4
presents and evaluates the on-the-fly model checking algorithm and partial order reduc-
tion. Section 5 concludes the paper.

2 Background

Without loss of generality, we present our ideas using a simple compositional language
which supports concurrency, multi-threaded synchronization, shared variables and as-
signments. In the next section, we will extend this language with fairness annotations.

A model is composed of a set of global variables and a set of process definitions.
One of the processes is identified by the starting process (as the main method in Java),
which captures the system behaviors after initialization. A process is defined as using
the following constructs. Most of the compositional operators are borrowed from the
classic CSP [14].

P =̂ Stop | Skip | e → P1 | P1; P2 | P1 � P2 | P1 � P2

| P1 � b � P2 | [b] • P | P1 � P2 | P1 |[X ]|P2

where b is a Boolean expression, X is a set of events and e is an event. Note that e could
be an abstract event (single or compound) or an assignment (e.g., x := x + 1). Process
Stop does nothing but deadlocks. Process Skip terminates successfully. Event prefixing
e → P is initially willing to engage in event e and behaves as P afterward. Skip = � →
Stop where � is the termination event. The sequential composition, P1; P2, behaves
as P1 until its termination and then behaves as P2. A choice between two processes is
denoted as P1 � P2 (for external choice) or P1 � P2 (for nondeterminism). A choice
depending on the truth value of a Boolean expression is written as P1 � b � P2. If
b is true, the process behaves as P1, otherwise P2. The state guard [b] • P is blocked
until b is true and then proceeds as P, i.e., a guarded command. P1 � P2 behaves as
P1 until the first event of P2 is engaged, then P1 is interrupted and P2 takes control.

One reason for using a CSP-based language is to study fairness assumptions in a
setting with multi-threaded lock-step synchronization. Let ΣP be the alphabet of P
which excludes τ (internal action) and �. Note that alphabets can be manually set or by
default be the set of events constituting the process expression. Parallel composition of
processes is written as P |[X ]|Q . Events in X must be synchronized by both processes.
If X is empty, P and Q run in parallel independently. X is skipped if it is exactly
ΣP ∩ ΣQ . Multiple processes may run in parallel, written as P1 ‖ P2 ‖ · · · ‖ Pn .
Shared events must be synchronized by all processes whose alphabet contains the event.
Recursion is allowed by process referencing. The semantics of recursion is defined as
Tarski’s weakest fixed-point. The valuation of the variables is a set of pairs which map
a variable to its current value. A system state is a pair (P ,V ) where P is a process
expression and V is the valuation of the global variables.
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Example 1. The classic dining philosophers example [14] is used as a running example.

Phil(i) = get .i .(i + 1)%N → get .i .i → eat .i → put .i .(i + 1)%N →
put .i .i → Phil(i)

Fork(i) = get .i .i → put .i .i → Fork(i) �

get .(i − 1)%N .i → put .(i − 1)%N .i → Fork(i)

College(N ) = ‖N−1

i=0
(Phil(i) ‖ Fork(i))

where N is the number of philosophers, get .i .j (put .i .j ) is the action of the i-th
philosopher picking up (putting down) the j -th fork. Process Phil(i) models the be-
haviors of the i-th philosopher. Process Fork(i) models the behaviors of the i-th fork.
Process College(N ) is the indexed parallel composition of multiple philosophers and
forks. It is known that College(N ) deadlocks when each dining philosopher picks up
one fork. By asking one of the philosophers to pick up the forks in a different order, the
system becomes deadlock-free. �

We focus on the operational semantics in this paper. The operational semantics for CSP
presented in [4] has been extended with shared variables (presented in [28]). The sets
of behaviors of processes can equally and equivalently be extracted from the opera-
tional semantics, thanks to congruence theorems. Fairness properties state that an event
which is either repeatedly or continuously enabled must eventually occur. They there-
fore affect only the infinite, and not finite, traces of a process. We present an infinite
trace semantics, inspired by the infinite trace semantics for CSP [25]. Note that finite
traces are extended to infinite ones in a standard way, i.e., by attaching infinite number
of idling events to the rear. Let Σ∗ and Σω be the set of finite and infinite sequences of
events respectively.

Definition 1 (Infinite Traces). Let P be a process and V be a valuation of the data
variables. The set of infinite traces is written as inftr(P ,V ). An infinite trace t̃r : Σω

is in inftr(P ,V ) if and only if there exists an infinite sequence of P̃ and Ṽ such that

– P̃(0) = P and Ṽ (0) = V ,

– for all i , (P̃ (i), Ṽ (i))
t̃r(i)⇒ (P̃(i + 1), Ṽ (i + 1))

where ⇒ is the smallest transition relation defined by the operational semantics [28].

An infinite run of a process P with variable valuation V is an alternating infinite se-
quence of states and events (P̃(0), Ṽ (0)), ã(0), · · · (P̃(i), Ṽ (i)), ã(i), · · · which con-
forms to the operational semantics. An infinite sequence of events is a trace if and only
if there is a run with the exact same sequence of events. A state (P ′,V ′) is reachable
from (P ,V ) if and only if there is a finite run from (P ,V ) to (P ′,V ′).

Definition 2 (Enabledness). Let P be a process. Let V be a valuation of the data
variables. enabled(P ,V ) = {e : Σ | ∃P ′,V ′ • (P ,V ) e⇒ (P ′,V ′)}.

Given P and V , an event is enabled if and only if it is in enabled(P ,V ). It is disabled
if it is not enabled. Note that given a parallel composition P |[X ]|Q , an event in X is
enabled in the composition if and only if it is enabled in both P and Q .
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It is known that CSP (as well as CCS) lacks the notion of liveness or fairness [14,
6]. An event can be enabled forever but never be engaged, or an event may be enabled
infinitely often but never been engaged. In the paper, we assume properties are stated
in the form of LTL formulae. Different from stand LTL, we adopt the work presented
in [5] so that events may be used to form LTL formulae. A desirable property for process
College(5) is ��eat .0, i.e., always eventually the 0-th philosopher eats and thus never
starves. Note that this property is not true, i.e., College(5) 	� ��eat .0. The following
traces may be returned as counterexamples.

〈get .0.1, get .1.2, get .2.3, get .3.4, get .4.0〉 – T0
〈get .3.4, get .3.3, eat .3, put .3.4, put .3.3〉ω – T1
〈get .1.2, get .1.1, eat .1, put .1.2, put .1.1〉ω – T2

Assume that given a trace tr , trω repeats tr infinitely. T0 is a trace which leads to
the deadlock situation, in which case all philosophers starve. T1 and T2 are returned
because the model lacks of both weak and strong fairness. In T1’s scenario, the 3-
rd philosopher greedily gets the forks and eats forever. This counterexample is due
to lack of weak fairness, i.e., the event get .0.1 is always enabled but never engaged.
In T2’s scenario, the 1-st philosopher greedily gets the forks and eats forever. This
counterexample is due to lack of strong fairness, i.e., the event get .0.1 is repeatedly
enabled (after event put .1.1 and disabled after event get .1.1) but never engaged.

In order to verify that the system does satisfy the property under the assumption that
the system is (strongly) fair and the deadlock situation never occurs, we may verify the
following property,

(
∧N−1

i=0 ��get .i .(i + 1)%N ) – C1
∧ ��put .1.2 – C2
⇒ ��eat .0

where C1 and C2 are stated as premises of the property. C1 states that each philosopher
must always eventually get his first fork. C2 states that one of the philosopher (in this
case, the 1-st) must eventually put down a fork. It is used to avoid the deadlock situation.
Though this property is true, automata-based verification is deficient because of its size.

3 Event Annotations

In this section, we introduce a way of modeling event-based fairness, i.e., by annotating
an event with fairness assumptions. Given an event e, four different annotations can be
used to associate different fairness assumptions with e. The annotations are summarized
in Table 1. In the following, we discuss them one by one.

A weak fair event is written as wf (e). Event wf (e) plays the same role as e except
that it carries a weak fairness constraint. That is, if a weak fair event is always enabled, it
must be eventually engaged. In other words, the system must move beyond a state where
there is a weak fair event enabled. Weak fair events allow us to express weak fairness
constraints naturally. It can be shown that both weak and strong fairness are expressible
using weak fair events (as strong fairness can be transformed to weak fairness by paying
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Table 1. Event-based Fairness Annotations

Annotation Name Semantics

wf (e) weak fair event ��e is enabled ⇒ ��e is engaged

sf (e) strong fair event ��e is enabled ⇒ ��e is engaged

wl(e) weak live event ��e is ready ⇒ ��e is engaged

sl(e) strong live event ��e is ready ⇒ ��e is engaged

the price of one variable [16]). However, strong fairness constraints may require more
than what fair events can offer in a natural way. Therefore, we introduce the notion of
strong fair events to capture strong fairness elegantly. A strong fair event, written as
sf (e), must be engaged if it is repeatedly enabled.

Example 2. The following demonstrates how we may achieve process level weak fair-
ness (as the option offered in SPIN).

fPhil(i) = wf (get .i .(i + 1)%N ) → wf (get .i .i) → wf (eat .i)
→ wf (put .i .(i + 1)%N ) → wf (put .i .i) → fPhil(i)

fFork(i) = wf (get .i .i) → wf (put .i .i) → fFork(i) �

wf (get .(i − 1)%N .i) → wf (put .(i − 1)%N .i) → fFork(i)

fCollege(N ) = ‖N−1

i=1
(fPhil(i) ‖ fFork(i))

The idea is to annotate all events in a process weak fair so that an enabled event of
the process is not ignored forever. Model checking ��eat .0 against fCollege(5) may
return T0 and T2 as counterexamples but not T1. �

Example 3. The following specifies the Peterson’s algorithm for mutual exclusion.
Without fairness assumptions, the algorithm allows unbounded overtaking, i.e., a pro-
cess which intends to enter the critical section may be overtaken by other processes
infinitely (refer to [1] for a concrete example).

P(i , j ) = (sf (pos [i ] := j ) → wf (step[j ] := i) →
[step[j ] 	= i ∨ ∀ k | k 	= i • pos [k ] < j ] • P(i , j + 1))

� j < N � (wf (cs .i) → wf (pos [i ] := 0) → P(i , 1))

Peterson(N ) = ‖N

i=1
P(i , 1)

where N is the number of processes and pos , step are two lists of integers (with initial
value 0) of size N − 1 and N respectively. Infinite overtaking is evidenced by showing
that Peterson(N ) 	� �(pos [i ] > 0 ⇒ �cs .i). Once a process has indicated that
its intention to enter the critical section (by setting pos [i ] and step[j ]), the assignment
pos [i ] := j may be enabled only repeatedly. This is because it depends on the condition
[step[j ] 	= i ∨ ∀ k | k 	= i • pos [k ] < j ]. Because the assignment step[j ] :=
i is not synchronized or guarded, weak fairness is sufficient to guarantee it will be
engaged once enabled. The weak fairness associated with cs .i and pos [i ] := 0 prevents
the system from idling forever. Notice that this is not necessary if we assume that the
system shall never idle forever unless it is deadlocked. The above model guarantees that
Peterson(N ) � �(pos [i ] > 0 ⇒ �cs .i). �
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In order to guarantee a system is completely strongly fair, communicating events or
events guarded by conditions must be annotated with strong fairness, whereas weak
fairness is sufficient for local actions which are not guarded. Weak/strong fairness an-
notation allows us to model event-based fairness flexibly. In practice, even stronger
fairness may be necessary. One example of a fairness constraint which is very strong
is the notion of accepting states in Büchi automata, i.e., the system must keep moving
until entering at least one accepting state (and do that infinitely often). Other examples
of stronger fairness include the compassion conditions [16]. In order to capture these
fairness constraints, we introduce two additional fairness annotations, which have the
capability of driving the system to reach certain point. The additional annotations relies
on the concept of “readiness” so that system behaviors may be restricted by fairness
assumptions which are associated with events that are not even enabled.

Definition 3 (Readiness). Let P be a process. Let V be a valuation of the variables.

ready(Stop,V ) = ready(Skip,V ) = ∅

ready(e → P ,V ) = {e}
ready(Skip; Q ,V ) = ready(Q ,V )
ready(P ; Q ,V ) = ready(P ,V ) – if P 	= Skip.
ready(P � Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )
ready(P � Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )
ready(P � Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )
ready(P � b � Q ,V ) = ready(P ,V ) – if V � b.
ready(P � b � Q ,V ) = ready(Q ,V ) – if V � ¬ b.
ready([b] • P ,V ) = ready(P ,V ) – if V � b.
ready([b] • P ,V ) = ∅ – if V 	� b.
ready(P |[X ]|Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )

Event e is ready given process P and valuation V if and only if e ∈ ready(P ,V ). Note
that enabledness and readiness are similarly defined for all process expressions except
parallel composition. The difference is captured by the last line of the above definition.
Given process P |[X ]|Q , an event in X is enabled if and only if it is enabled in both P
and Q , whereas it is ready if it is ready in either P or Q . Intuitively, an event is ready
if and only if one thread of control is ready to engage in it. An enabled event must be
ready. A weak live event, written as wl(e), must be engaged if it is always ready (not
necessarily enabled). Similarly, a strong live event, written as sl(e), must be engaged
if it is repeated ready1. Because whether an event is ready or not depends on only one
process (in a parallel composition), live events may be used to design a controller which
drives the execution of a given system.

Example 4. Let LiftSystem be the modeling of a multi-lift system, which contains two
events turn on light and turn off light . In order to model that the light is always
eventually turned off, the LiftSystem may be replaced by LightSystem ‖ LightCon
where LightCon = turn on light → wl(turn off light) → LightCon . Because

1 A similar modeling concept is hot locations in Live Sequence Charts [8], which force the
system to move beyond.
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both events must be synchronized, whenever event turn on light is engaged, event
turn off light becomes ready. In this case, it remains ready until it is engaged. Thus,
by definition, the light must eventually be turned off. �

Example 5. With live events, the dining philosophers may be modified as follows,

lPhil(i) = wl(get .i .(i + 1)%N ) → get .i .i → eat .i
→ put .i .(i + 1)%N → put .i .i → lPhil(i)

lFork(i) = get .i .i → wl(put .i .i) → lFork(i) �

get .(i − 1)%N .i → wl(put .(i − 1)%N .i) → lFork(i)

lCollege(N ) = ‖N−1

i=1
(lPhil(i) ‖ lFork(i))

Model checking ��eat .0 against lCollege(5) returns true. Initially, wl(get .i .(i +
1)%N ) is ready and therefore by definition, it must be engaged (since it is not possible
to make it not ready). Once get .i .(i+1)%N is engaged, wl(put .(i−1)%N .i) becomes
ready and thus the system is forced to execute until it is engaged. For the same reason,
wl(put .i .i) must be engaged afterwards. Once put .i .i is engaged, wl(get .i .(i+1)%N )
becomes ready again. Therefore, the system is forced to execute infinitely and fairly.
The traces which lead to the deadlock state is not returned as a counterexample. This is
because event wl(put .(i − 1)%N .i) is ready in the deadlock state. Hence the trace is
considered invalid because it does not satisfied the fairness assumption, i.e., the event
wl(put .(i−1)%N .i) is always ready but never engaged. Refer to Example 6 for further
explanation. �

The fairness annotations restrict the possible behaviors of the system. It thus results in
a smaller set of traces. Note that fairness constraints cannot be captured using structural
operational semantics. Therefore, a two-levels semantics is used to prune un-fair traces
from infinite traces. Let Σwf , Σsf , Σwl and Σsl be the set of all weak fair, strong fair,
weak live and strong live events respectively.

Definition 4 (Fair Traces). Let P be a process. Let V be a valuation of the data vari-
ables. The set of fair traces is written as ftraces(P ,V ). An infinite sequence of events
t̃r : Σω is in ftraces(P ,V ) if and only if there exists an infinite sequence of P̃ and Ṽ
such that

– t̃r is in inftr(P ,V ),
– for all i , if there exists e : Σwf such that e is enabled at state (P̃(i), Ṽ (i)), there

exists j such that j ≥ i and t̃r(j ) = e or e is not enabled at state (P̃(j ), Ṽ (j )).
– for all i , if there exists e : Σsf such that e is enabled at state (P̃(i), Ṽ (i)), there

exists j such that j ≥ i and t̃r(j ) = e or for all k such that k ≥ j , e is not enabled
at state (P̃(k), Ṽ (k)).

– for all i , if there exists e : Σwl such that e is ready at state (P̃(i), Ṽ (i)), there
exists j such that j ≥ i and t̃r(j ) = e or e is not ready at state (P̃(j ), Ṽ (j )).

– for all i , if there exists e : Σsl such that e is ready at state (P̃(i), Ṽ (i)), there
exists j such that j ≥ i and t̃r(j ) = e or for all k such that k ≥ j , e is not ready
at state (P̃(k), Ṽ (k)).
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Compared to Definition 1, the additional constraint states that an infinite trace must be
fair. That is, whenever a weak fair (live) event is enabled (ready), later it must be either
engaged or become not enabled (ready); whenever a strong fair (live) event is enabled
(ready), either it becomes not enabled (ready) forever after some execution or it is even-
tually engaged. By definition, all traces in ftrace(P ,V ) satisfy the fairness constraints
regarding the annotated events (see proof in [28]). Compared with previous propos-
als [6, 7, 3], our notion of fair events is more flexible and natural. For example, in [3]
fairness constraints only concern parallel composition, whereas in our setting fairness
concerns individual events and thus not only parallel composition but also choice and
others. For instance, the process P = sl(a) → b → P � sl(b) → a → P requires that
the choice must not be completely biased, i.e., both choices must eventually be taken.

CSP algebraic laws [14] are largely preserved in our extended semantics, e.g., the
symmetry and associativity laws of parallel composition. Nevertheless, a few do not
apply any more because of the weak/strong live events, e.g., a new expansion laws
for parallel composition is needed (refer to [28]). Moreover, the fairness might be
overwhelming so that the specification may become infeasible. For instance, given
P = wl(e) → P , ftraces(P ‖ (e → College(5)), ∅) = ∅. This specification is
not feasible because the fairness constraint can never be satisfied, i.e., event e can be
engaged only once. This boils down to the question on how to effectively verify a model
under the embedded fairness.

4 Verification

In this section, we show that existing state-of-the-art model checking algorithms may
be extended to handle our notion of event-based fairness with little computational over-
head. We define the notion of feasibility and then present an algorithm for feasibility
checking. A specification is feasible if it allows at least one infinite trace. Given a pro-
cess and a valuation of the data variables, a feasibility checking checks whether there
exists an infinite trace which satisfies the fairness constraints. The same algorithm is
used for LTL model checking. The product of the model and the Büchi automaton gen-
erated from negation of the property is feasible if only and if the property is not true.
For simplicity, we assume the number of system states is always finite, i.e., the domains
of the variables are finite and the process specifies regular languages.

Definition 5 (State Graph). Let P0 be a process. Let V0 be the valuation of the vari-
ables. A state graph G(P0,V0) is (S , s0,E ) where S is a set of system states of the form
(e,P ,V ); s0 is the initial state (init ,P0,V0) where init is the event of system initial-

ization; and E is a set of edges such that ((e,P ,V ), (e ′,P ′,V ′)) ∈ E ⇔ (P ,V ) e′⇒
(P ′,V ′).

Without loss of generality, the just-engaged events are stored as part of the state infor-
mation instead of transition labels, which turns a labeled transition system to a directed
graph. A run of G(P ,V ) is an infinite sequence of vertices following the edges. It is
straightforward to show that for all tr such that tr ∈ inftr(P ,V ) if and only if there
is a corresponding run in G(P ,V ). There is a loop in G(P ,V ) if and only if a vertex is
reachable from the initial state and itself.
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Fig. 1. LTS for 2 Dining Philosophers

Definition 6 (Fair Loop). Let P0 be a process. Let V0 be a valuation of the data
variables. Let 〈(ai ,Pi ,Vi), (ai+1,Pi+1,Vi+1), · · · , (aj ,Pj ,Vj ), (ai ,Pi ,Vi)〉 where
j ≥ i be a loop in G(P0,V0). Let Engaged = {ak | i ≤ k ≤ j} be the set of engaged
events during the loop. The loop is fair if and only if the following are satisfied,

–
⋂j

k=i(enabled(Pk ,Vk ) ∩ Σwf ) ⊆ Engaged
–

⋃j
k=i(enabled(Pk ,Vk ) ∩ Σsf ) ⊆ Engaged

–
⋂j

k=i(ready(Pk ,Vk ) ∩ Σwl ) ⊆ Engaged
–

⋃j
k=i(ready(Pk ,Vk ) ∩ Σsl ) ⊆ Engaged

The set
⋂j

k=i(enabled(Pk ,Vk )∩Σwf ) contains the weak fair events which are always
enabled during the loop. Similarly,

⋂j
k=i(ready(Pk ,Vk) ∩ Σwf ) is the set of weak

live events which are always ready during the loop. The set
⋃j

k=i(enabled(Pk ,Vk ) ∩
Σsf ) contains the strong fair events which are enabled once during the loop. Similarly,
⋃j

k=i(ready(Pk ,Vk)∩Σsl ) is the set of strong live events which are ready once during
the loop. A loop is fair if and only if,

– all always-enabled weak fair events are engaged,
– all once-enabled strong fair events are engaged,
– all always-ready weak live events are engaged,
– all once-enabled strong live events are engaged.

A loop may contain the same state more than once, e.g., states 0,1,2,3,4,0,5,6,7,8,0 in
Figure 1 forms a loop. It is straightforward to prove that a specification is feasible if
and only if the state graph contains a fair loop. Feasibility checking is thus reduced to
find a fair loop if possible. Equivalently, we can show that a specification is feasible
if and only if the graph contains a fair strongly connected component (SCC) [16]. A
strongly connected subgraph is fair if and only if the loop which visits every vertex in
the subgraph is fair.

Example 6. Figure 1 shows the labeled transition system generated from lCollege(2)
(presented in Example 5). The loop containing state 0,1,2,3,4 is not fair because event
get .1.0, which is annotated weak live, is always ready during the loop (though not al-
ways enabled, Definition 3). Similarly, the loop containing states 0,5,6,7,8 is not fair
neither because get .0.1 is always ready. Note that the deadlock state 9 is considered as
a trivial loop. It is not fair because both put .0.1 and put .1.0, which are annotated weak
live, are ready (and therefore trivially always ready during the loop). The loop contain-
ing 0,1,2,3,4,5,6,7,8 (which constitute an SCC) is fair. Note that this loop satisfies the
property ��eat .0. �
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1. preorder , lowlink , found := ∅; stack ; done := 1; i := 0;
2. working := 〈(Init ,P0, V0,S0)〉;
3. while working �= 〈〉
4. v = (a,P ,V , S) := working .peek();
5. if preorder(v) = null then preorder [v ] := i++;
6. foreach v ′ ∈ ample(P ,V ,S)
7. if preorder(v ′) = null then working .push(v ′); done := 0; break;
8. else early-fair-loop-detection
9. if done = 1
10. lowlink [v ] := preorder [v ];
11. foreach w ∈ ample(P ,V ,S)
12. if w �∈ found
13. if preorder [w ] > preorder [v ]
14. lowlink [v ] := min(lowlink [v ], lowlink [w ]);
15. else lowlink [v ] := min(lowlink [v ],preorder [w ]);
16. working .pop();
17. if lowlink [v ] = preorder [v ]
18. found .add(v); scc := {v};
19. while stack �= 〈〉 ∧ preorder [stack .peek()] > preorder [v ]
20. k := stack .pop(); found .add(k); scc.add(k);
21. if scc is Büchi-fair
22. if scc is fair and nontrivial then return false;
23. if not OntheflyMC2(scc \ bad(scc)) then return false;
24. else stack .push(v);
25. return true;

Fig. 2. On-the-fly Model Checking Algorithm: OnTheFlyMC1

4.1 On-the-Fly Verification

In literature, there are two sets of algorithms for identifying a loop or equivalently
checking the emptiness of Büchi automata, namely, ones based on nested depth-first-
search and ones based on SCC (refer to the survey in [26]). We present here an SCC-
based algorithm which extends the one presented in [12].

The problem of LTL model checking with event-based fairness is to verify whether
every fair trace of the model satisfies a given LTL formula φ. Or equivalently, let B¬ φ

be a Büchi automaton which is equivalent to the negation of φ, the model violates φ if
and only if there is a fair SCC in the synchronized product of G(P ,V ) and B¬ φ which
contains at least one accepting state from the Büchi automaton. In [16], a backward
searching algorithm is used to identify all fair maximum SCCs if there is any. Because
the query language of PAT is based on LTL (extended with events), we developed an
on-the-fly approach based on Tarjan’s algorithm for finding one maximum SCC. The
idea is to search for maximum SCCs while building the state graph. If the found one is
not fair, a set of ‘bad’ states are pruned and then the SCC is decomposed into smaller
SCCs. Whenever a fair SCC is found, we proceed to produce a counterexample.

Figure 2 shows the detailed algorithm. The inputs are a process P0, a valuation of
the data variables V0 and an initial state of the Büchi automaton S0. Note that S0 is
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skipped for feasibility checking. The main loop from line 3 to 25 is based on an itera-
tive improved version of Tarjan’s algorithm (refer to [20, 12] for details). Stack working
holds all states that are yet to explored and stack holds states which may be part of an
SCC. At line 6 (and 11), a subset of the enabled actions (i.e., ample(P ,V ,S ) which
will be explained in detail in Section 4.2) is expanded. In order to conclude as soon as
possible, a simple procedure is added at line 8 to check whether the found loop is fair.
Experiences show that although this procedure becomes overhead for true properties, it
may produce a counterexample early if there is any. This is particularly true for models
which are strongly connected. A maximum SCC is discovered once the condition at
line 17 is satisfied. Line 18 to 20 collect states of the SCC from stack. If the found SCC
contains a Büchi accepting state (as a component of one state in scc), i.e., satisfying
the condition at line 21, and if scc is fair and nontrivial (i.e., with at least one transi-
tion), the algorithm returns false after producing a counterexample (refer to algorithms
presented in [16] on how to produce counterexamples). If the SCC is not fair, a set of
bad states is removed from scc (line 23). A bad state carries a fairness constraint which
can not be fulfilled by any loop formed by states in the SCC. A node (e,P ,V ) in scc
is bad , i.e., (e,P ,V ) ∈ bad(scc), if and only if one of the following conditions is
satisfied,

– there exists x ∈ Σwf such that x ∈ enabled(P ,V ) and there does not exist a state
(e ′,P ′,V ′) in scc such that e ′ = x or x 	∈ enabled(P ′,V ′). That is, x is always
enabled but never engaged.

– there exists x ∈ Σsf such that x ∈ enabled(P ,V ) and there does not exist a state
(x ,P ′,V ′) in scc. That is, x is enabled but never engaged.

– there exists x ∈ Σwl such that x ∈ ready(P ,V ) and there does not exist a state
(e ′,P ′,V ′) in scc such that e ′ = x or x 	∈ ready(P ′,V ′). That is, x is always
ready but never engaged.

– there exists x ∈ Σsl such that x ∈ ready(P ,V ) and there does not exist a state
(x ,P ′,V ′) in scc. That is, x is ready in SCC but never engaged.

Then algorithm OnTheFlyMC2 is invoked at line 23. The logic of OnTheFlyMC2 is
the same as OnTheFlyMC1 except that it only searches for maximum SCCs within the
given states (and transitions which have been stored externally during OnTheFlyMC1).
Refer to [28] for the details of OnTheFlyMC2. Whenever OnTheFlyMC2 returns
false (i.e., a nontrivial fair SCC is found), we conclude a counterexample is found. If
OnTheFlyMC2 returns true (i.e., no fair SCC is found) or there is a weak fair/live event
which is always ready/enabled but never engaged or a Büchi fairness condition is not
fulfilled by scc, scc is abandoned and then we proceed to search for the next maximum
SCC. The soundness of Algorithm 2 is presented in Appendix.

Example 7. Applying feasibility checking to lCollege(2) (shown in Figure 1) would
return two maximum SCCs, i.e., one containing state 9 only and one containing the
rest. By definition, the one containing 9 is not fair (as discussed) and state 9 is a bad
state. Removing state 9 from the SCC results in an empty set and thus it is abandoned.
The other SCC is fair and therefore the model is feasible. �
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4.2 Partial Order Reduction

In the worst case, where the whole system is one SCC or the property is true, Algo-
rithm 2 constructs the complete state graph and suffers from state space explosion. We
thus apply partial order reduction to solve the problem. The idea is to only construct a
reduced graph (in contrast to the complete graph in Definition 5) which is equivalent to
the complete one with respect to the given property. This is realized by exploring only
a subset of the enabled transitions at line 6 of algorithm 2.

Partial order reduction has been explored for almost two decades now. There have
been theoretical works on partial order reduction under fairness constraints [22] in a
different setting. In our setting, not only the reduction shall respect the property but
also the fairness constraints. That is, a fair loop must be present in the reduced graph if
there is one in the complete graph. In the reduced graph, for every node, only a subset of
the enabled synchronized (outgoing) transition of the model and the Büchi automaton
is explored. In particular, given a state (a,P ,V ,S ) where a is the just engaged event,
P is the current process expression, V is the current valuation and S is the current
state of the Büchi automaton, a successor node (a′,P ′,V ′,S ′) is explored, written as
(a′,P ′,V ′,S ′) ∈ ample(P ,V ,S ), if and only if the following conditions are satisfied,

– (a′,P ′,V ′,S ′) is a successor in the complete graph, i.e., (P ,V ) a′⇒ (P ′,V ′) and
the transition is allowed by the Büchi automaton, i.e., (S , a′,S ′) is a transition in
B¬φ and the condition which guards the transition is true. Note that the Büchi
automata are transition-labeled for efficient reasons.

– the successors must satisfy a set of additional conditions for property-preserving
partial order reduction, which is denoted as (P ′,V ′) ∈ ample(P ,V ).

The algorithm presented in Figure 3 has been implemented in PAT to produce small but
sound ample(P ,V ), which extends the one proposed in [11] to handle event annotations.

If P is not an indexed parallel composition (or indexed interleaving), the node is
fully expanded. Otherwise, we identify one process which satisfies a variety of con-
ditions and expand the node with only enabled events from that process. Notice that
enabledPi (P ,V ) is enabled(P ,V )∩ enabled(Pi ,V ), e.g., the set of globally enabled
events which Pi participates in. current(Pi) is the set of actions that could be enabled
given Pi and a cooperative environment. For instance, a guarded event is in the set even
if the guard condition is false. Two events are dependent, written as dep(e, e ′) if they
synchronize or write/read a shared variable (with at least one writing). Note that both
current(Pi) and dep(e, e ′) are based on static information, which can be collected
during compilation. A component Pi is chosen if and only if the following conditions
are satisfied,

– enabledPi (P ,V ) = current(Pi). No other events could be enabled given Pi . Re-
fer to [11] for intuitions behind this condition.

– The condition on stack(P ′,V ′) is true if and only if the state (P ′,V ′) is on the
search stack (refer to [11]). Performing any event in enabledPi (P ,V ) must not
result in a state on the search stack. This is to prevent enabled actions from being
ignored forever. Note that this condition can be removed for checking
deadlock-freeness.
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1. if P is of the form P1 ‖ P2 ‖ · · · ‖ Pn

1. foreach i such that 1 ≤ i ≤ n
2. if enabledPi (P ,V ) = current(Pi )
3. ample := true;
4. ampleset := ∅;

5. foreach e,P ′, V ′ s.t. e ∈ enabledPi (P ,V ) and (P ,V )
e⇒ (P ′,V ′)

6. if visible(e) ∨ on stack(P ′,V ′) ∨ ∃ e ′ : ΣPj | i �= j • dep(e, e ′)
7. ample := false; break;
8. else
9. ampleset := ampleset ∪ {(e,P ′,V ′)};
10. endif
11. endfor
12. if ample then return ampleset ;
13. endif
14. endfor
15. endif
16. return {(e,P ′,V ′) | e ∈ enabled(P ,V ) and (P ,V )

e⇒ (P ′,V ′)};

Fig. 3. Partial Order Reduction

– The actions in enabledPi (P ,V ) must be independent from transitions of other
components, i.e., �e ′ : ΣPj | i 	= j • dep(e, e ′). Refer to [11] for intuitions
behind this condition.

– Different from the one in [11], an event is visible, i.e., written as visible(e), if it
is visible to a given property or the fairness annotations. Event e is visible to a
property if and only if e constitutes the property, e.g., eat .0 is visible given prop-
erty ��eat .0, or e updates a variable which constitutes the property. Event e is
visible to the fairness annotations if and only if performing e may change the set of
annotated events which are enabled or ready.

The soundness of the partial order reduction with respect to next-free LTL and event-
based fairness is proved in Appendix. Note that the above realizes only one of the possi-
ble heuristics for partial order reduction, which we believe is cost-effective. Achieving
the maximum reduction is in general computational expensive.

Besides partial order reduction, we have also implemented optimizations based on
CSP’s algebraic laws. For instance, in order to handle systems with large number of
identical or similar processes, efficient procedures are applied to sort the processes of
a parallel or interleaving composition. The soundness is proved by the symmetry and
associativity of indexed interleaving and parallel composition.

4.3 Experiments

In this part, we evaluate the algorithm and the effectiveness of the reductions using
benchmarks systems. Table 2 presents a part of the experimental results. The experi-
ments are conducted on Windows XP with a 2.0 GHz Intel CPU and 1 GB memory.
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Table 2. Experiment Results

Model Property without fairness with event-based fairness
result. w/o red. with red. result. w/o red. with red.

College(7) ��eat0 No < 1 < 1 Yes 10.3 11.3

College(9) ��eat0 No < 1 < 1 Yes 469.1 504.4

College(11) ��eat0 No 4.2 < 1 Yes − −
College(13) ��eat0 No 25.6 < 1 Yes − −
College(15) ��eat0 No − < 1 Yes − −

Milner Cyclic(10) ��work0 Yes 17.8 < 1 Yes 17.7 < 1

Milner Cyclic(12) ��work0 Yes 322.9 < 1 Yes 283.3 < 1

Milner Cyclic(100) ��work0 Yes − 3.3 Yes − 3.4

Milner Cyclic(200) ��work0 Yes − 17.6 Yes − 18.1

Milner Cyclic(400) ��work0 Yes − 118.4 Yes − 119.2

ReadersWriters(100) �!error Yes − 4.3 Yes − 3.9

ReadersWriters(200) �!error Yes − 37.3 Yes − 29.1

ReadersWriters(400) �!error Yes − 251.3 Yes − 257.1

The first model is the dining philosophers. The property is ��eat .0. Without fair-
ness assumptions, this property is false. A counterexample is quickly produced in most
of the cases. Nonetheless, it may take considerably long if the trace leading to a coun-
terexample is explored very late (e.g., for College(15) without reduction). Partial order
reduction significantly reduces the time to discover a counterexample for this exam-
ple. This model is then annotated with fairness, as shown in Example 5. The last three
columns show verification results of lCollege(N ). The property becomes true and there-
fore a complete search is necessary. Note that partial order reduction gains little. The
reason is that the model is highly coupled and heavy in communication. Manually hid-
ing local communicating could reduce the verification time, as shown in [24].

The second model is Milner’s cyclic scheduler. Milner’s cyclic scheduler describes
a scheduler for N concurrent processes. The processes are scheduled in cyclic fash-
ion so that the first process is reactivated after the N -th process has been activated.
The fairness assumptions state that a process must eventually finish its local task and
then activate the next process. The property to verify is that a process must eventually
be scheduled, which is true with/without the fairness assumptions. This model demon-
strates the effectiveness of the partial order reduction. Without the reduction, the size
of the search graph grows exponentially and thus verification soon becomes infeasible
(e.g., for 15 processes). With partial order reduction, we are able to verify 400 processes
reasonably fast (using less than 2 minutes). Notice that the computational overhead for
handling fairness annotations are negligible, e.g., same amount of time is taken to verify
the model with/without fairness. The third models the classic readers/writers problem.
The readers/writers model describes a protocol for coordination of N identical readers
and N identical writers accessing a shared resource. The property to verify is reacha-
bility of an erroneous situation (i.e., wrong readers/writers coordination). This mode is
then annotated with fairness assumptions to state that each reader/writer must eventu-
ally finish reading/writing. This model demonstrates the effectiveness of the reduction
for handling identical/similar processes.
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Details of the models and more experiments are available online [28]. Compared
to existing tools, PAT complements the CSP model checker FDR in serval aspects.
Namely, PAT supports verification under fairness assumptions and temporal logic based
verification. For common features like deadlock-freeness checking, PAT outperforms
FDR sometimes because we use a completely on-the-fly checking strategy (refer to the
results at our web site). Compared to SPIN, PAT is not yet as efficient for systems with
no event-based fairness and small LTL properties. PAT offers a more flexible way of
modeling fairness and verifying under fairness assumptions (than SPIN’s option for
process-level weak fairness). PAT differs from SPIN in two aspects. Firstly, because we
are dealing with an event-based formalism, we extend LTL with events so that prop-
erties concerning both states and events can be stated and verified. Secondly, because
fairness constraints have been embedded in the specification, the size of the property is
reduced and thus model checking under fairness is carried out efficiently.

5 Conclusion and Future Works

In this work, we presented an approach to systematically model a variety of fairness in
event-based compositional systems. We also developed algorithms to efficiently verify
systems under fairness assumptions. A toolset named PAT has been developed for spec-
ification and verification of event-based fairness enhanced systems. Our experiments
show clear advantage over the common practise of assuming a fair scheduler and then
proving liveness properties over safety-centric specifications.

As for future works, there are a number directions to go in terms of tool develop-
ment. We are currently adding more language features, e.g., arrays, broadcasting mes-
sages, etc. We are exploring how to extend event-based fairness and its verification to
languages like C# or Java. PAT is not yet as efficient for systems with no event-based
fairness and small LTL properties. Optimization techniques like symmetry reduction
need to be studied under fairness and incorporated. One future work of theoretical in-
terests is to study the notion of process refinement/equivalence for fairness enhanced
processes. Because of fairness constraints, trace refinement becomes a stronger notion.
Namely, a fair branching may not be removed in a refined process without introducing
new traces. In this work, we choose not to prevent inputs from being marked fair. Mark-
ing inputs from an open channel fair restricts the behaviors of the environment, which
could be largely undesirable. Nevertheless, assuming fair/live environments would help
effective model checking of open systems and synthesis (e.g., [27]). One future work is
to investigate verification/synthesis of open systems under fairness assumptions.
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Appendix: Soundness Proofs

Theorem 1. Let P be a process and V be a valuation of the variables. Let φ be a
next-free LTL formula (with events). (P ,V ) � φ if and only if Algorithm 2 returns true.

Proof. By a standard proof we can show that (P ,V ) � φ if and only if there does
not exist an infinite path of G(P ,V ) × B¬φ which is fair with respect to G(P ,V ) and
is accepting to B¬φ. Equivalently, (P ,V ) 	� φ if and only if there is a fair loop (since
we assume G(P ,V ) is finite) in G(P ,V ) × B¬φ which is also accepting. Equivalently,
(P ,V ) 	� φ if and only if there is a fair SCC which is also accepting to B¬φ. To prove
the above theorem, we thus need to show that if the algorithm returns false if and only if
there is such an SCC. If there exists such an SCC (say scc), there must be one maximum
SCC (say SCC ) which contains scc. By the soundness of Tarjan’s algorithm, SCC must
be discovered by line 21. If scc is SCC , the algorithm returns false as we shall prove.
Otherwise, because scc contains no bad states (by Definition 6 and the definition of bad
states on page 13), all states of scc are not pruned. By induction we conclude either
a fair and accepting SCC which contains all states of scc is found or scc is found. In
both cases, the algorithm returns false. Thus, the algorithm returns false if there is a fair
SCC which is also accepting. Ergo, it returns false if (P ,V ) 	� φ. It is straightforward to
prove that the algorithm returns false, either at line 8 (a fair loop which is also accepting
is found) or line 22 (the maximum SCC found is fair and accepting) or line 23 (a sub-
SCC is), only if such an SCC is found. The algorithm is terminating because the number
of States is finite (by assumption) and i is monotonically increasing (i.e., the number
of visited states). The ‘recursive’ call at line 23 is terminating because the number of
states in scc is monotonically decreasing (i.e., bad(scc) is not empty by definition).
Therefore, we conclude the algorithm returns true only if (P ,V ) � φ. �

Theorem 2. Let P be a process. Let V be the valuation of the global variables. Let
R(P ,V ) be the reduced graph constructed by expanding each node with only events
returned by the Algorithm (shown in Figure 3). Then, for every next-free LTL formula
φ, G(P ,V ), s0 � φ if and only if R(P ,V ), s0 � φ.
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Proof. For simplicity, we only prove the case for weak live events, i.e., given the weak
live annotations, there is a fair loop in the reduced graph if and only if there is one in the
complete graph. Strong live events can be transformed to weak live events at the cost of
auxiliary variables as shown in [16]. Weak/strong fair events can be proved similarly.

For each weak live event wl(a), we introduce an auxiliary variable xa . P is modified
to be P ′ in which xa is set to 0 if it is not ready or just engaged or otherwise set to
1. φ is then modified to be φ′ which is of the form (∧a ��xa = 0) ⇒ φ for each
auxiliary variable xa . We show that (P ,V ) � φ if and only if (P ′,V ) � φ′. For every
loop in the given model, if it is fair with respect to the fairness constraints, then for
every auxiliary variable xa , the loop satisfies that ��xa = 0 because wl(a) can not be
always ready during the loop and never engaged by Definition 6. Thus, if the fair loop
satisfies φ, it satisfies φ′. The reverse is proved trivially. Thus, (P ,V ) � φ if and only
if (P ′,V ) � φ′.

Next, we apply Theorem 12 in Chapter 10 of [11] to show that G(P ′,V ), s0 � φ′

if and only if R(P ′,V ), s0 � φ′. By apply similar arguments, we can show that the
Algorithm satisfies the following conditions,

C0. ample(P ,V ) is empty if and only if enabled(P ,V ) is empty. This is trivial.
C1. Along every path in the full state graph that starts at s, a transition that is depen-

dent on a transition in ample(P ,V ) cannot be executed without a transition in
ample(s) occurring first. This is proved by the same argument in Section 10.5.2
in [11].

C2. If a node is not fully expanded, then every event in ample(P ,V ) is invisible.
This is guaranteed by line 6 and 7 in the algorithm presented in Figure 3, i.e., the
condition visible, so that only events which preserves the valuation of propositions
in φ and the auxiliary variables are presented in the ample set .

C3. There must be at least one node which is fully expanded along a cycle. This is
guaranteed by condition on stack(P ′,V ′) at line 6.

Thus, we conclude that G(P ′,V ), s0 � φ′ if and only if R(P ′,V ), s0 � φ′. By transitivity,
we conclude that the theorem holds. �
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