
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2008

A scalable approach to multi-style architectural modeling and A scalable approach to multi-style architectural modeling and

verification verification

Stephen WONG

Jing SUN

Ian WARREN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
WONG, Stephen; SUN, Jing; WARREN, Ian; and SUN, Jun. A scalable approach to multi-style architectural
modeling and verification. (2008). Proceedings of the 13th International Conference on Engineering of
Complex Computer Systems (ICECCS 2008), Belfast, Northern Ireland, March 31 - April 4. 25-34.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5047

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5047&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A Scalable Approach to Multi-Style Architectural Modeling and Verification

Stephen Wong, Jing Sun, Ian Warren
Department of Computer Science

The University of Auckland
38 Princes Street, Auckland, New Zealand

swon149@ec.auckland.ac.nz
{j.sun, ian-w}@cs.auckland.ac.nz

Jun Sun
School of Computing

National University of Singapore
10 Kent Ridge Cresent, Singapore

sunj@comp.nus.edu.sg

Abstract

Software Architecture represents the high level descrip-
tion of a system in terms of components, external properties
and communication. Despite its importance in the software
engineering process, the lack of formal description and ver-
ification support limits the value of developing architectural
models. Automated formal engineering methods can pro-
vide an effective means to precisely describe and rigorously
verify intended structures and behaviors of software sys-
tems. In this paper, we present an approach to support the
design and verification of software architectural models us-
ing the Alloy analyzer. Based on our earlier work, we pro-
pose a fundamental library for specifying system structures
in terms of different architectural styles. We illustrate use
of the architecture style library in modeling and verifying a
complex system that utilizes multi-style structures. To pro-
mote scalability, we use model decomposition to parallelize
the verification process. Results show that our approach
enhances the performance of verifying models significantly.

1 Introduction

Software Architecture plays a key role in the software
development process. Principally, an architectural model
of a software system allows individuals to reason and com-
municate about the system at an abstract level, thereby hid-
ing superfluous complexity. An architectural model is typ-
ically expressed in terms of components, properties and
inter-component communication. The architectural mod-
eling process is associated with various tools that support
system modeling, analysis and verification, and which pro-
mote communication amongst different stakeholders [11].

Architectural Description Languages (ADLs) are an es-
tablished means of expressing architectural models in terms
of components and connectors [10]. Many researchers

have investigated how to add formalism to ADLs in order
to support formal verification. Notably, Allen and Gar-
lan [2, 3] have described a CSP-like notation named Wright
that can be used to formally express inter-component inter-
action. More recently, Garlan and Schmerl [6] have shown
how formal definitions can be applied to ADLs to create
a formally-based architectural centric approach to software
design. Such approaches aim to improve software quality
by offering a way of formally verifying software at an early
stage in the development process.

The aim of verification is to determine whether a mod-
eled system will satisfy given properties. Formal verifica-
tion takes a mathematical approach and relies on a formally
described system model. Formal description could help ex-
press properties such as interaction, load balancing, avail-
ability and security in a rigorous manner [4]. Automated
verification potentially offers an efficient means of verifying
a system model. However, one drawback of many existing
approaches to automated formal verification is their limited
scalability, where large size models are computationally ex-
pensive to process. A key aspect of the work described in
this paper is to address the scalability problem.

Following early work [1] in modeling system architec-
tures using components and connectors, there has been
much interest in specifying architectural styles. A style es-
sentially imposes constraints on types of components, con-
nectors and their assembly into a system. For example,
the pipe and filter style [13] dictates that components be
stateless and that components be connected to form a lin-
ear chain, where components accept data on their inbound
connection, transform the data, and output the transformed
data on their outbound connection. Recent work done by
Kim and Garlan [9] also proposed modeling and verification
of architecture styles using the Alloy formal language. In
their approach, a few architectures were modeled based on
ACME [12] ADL definitions. It offers a useful insight to the
ability of using Alloy to verify properties within/between
architecture styles such as inter-operability. However, the

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.16

25

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.16

25

scalability issue remains as a practical limitation of the re-
search. The problem arises from the large scope of prob-
lems expanding the search space for verification of the Al-
loy reasoning tool.

Large and complex software systems are often best mod-
eled using a combination of architectural styles. In this pa-
per, we propose an approach that allows systems to be mod-
eled and composed by a formally defined reusable library of
fundamental architectural styles. Using the library, a system
model can be easily and rapidly constructed. The resulting
model captures the intended structures and properties that
each specific style structure must hold, which is typically
augmented with system-specific properties and constraints.
Furthermore, in order to promote scalability of the verifica-
tion, we apply a model splitting approach to identify sub-
systems that conform to particular architectural styles and
perform parallelized verification accordingly. In essence, a
subsystem becomes a unit of formal verification that can be
verified in parallel to other units.

Figure 1. The Overall Modeling Approach

Figure 1 presents an overview of our approach. The
first activity, ‘Modeling for reuse’, involves defining the set
of reusable architectural styles. In practice, this step also
includes the verification of these pre-defined architecture
styles, since each style has its associated behaviors and cor-
responding properties. These verified styles can be used to
construct more complicated architecture structures for mod-
eling target systems. In the second step, ‘Modeling’, a sys-
tem model is constructed by drawing on styles held in the
library. Library styles can be extended and augmented as
necessary to model the target system. In preparation for
formal verification, subsystems that conform to particular
architectural styles are automatically detected in the ‘Sub-
Dividing’ phase for distributed verification. The final activ-

ity, ‘Parallel Verification’, employs distributed instances of
the Alloy tool to formally verify each subsystem in parallel
and report the results.

The remainder of this paper is structured as follows. In
Section 2, we present an overview of the Alloy notation and
its associated tool. In Section 3, we present formal model-
ing of the architectural style library that includes a number
of popular architectural styles. Section 4 illustrates use of
the architecture style library in modeling and verifying a
multi-styled system as a case study. In Section 5, we de-
scribe the model splitting approach where a system model
is decomposed into subsystems for distributed verification.
Prior to drawing conclusions and outlining the future work,
in Section 6 we present results based on an initial scalability
evaluation.

2 Alloy

Alloy [8] is a structural modeling language based on set
theory and first order logic. It is suitable for expressing
complex structural constraints and behaviors of software
and hardware systems. The main language constructs of
Alloy include: signatures, facts, functions, predicates and
assertions [7].

• Signatures (sig) - Describe a particular set of object
entities. These descriptions can contain relationships
with other signatures as well as constraints on those
relationships. A signature may extend another signa-
ture such that all relationships and constraints for the
extended signature hold true for the new signature.

• Facts (fact) - Statements describe a particular set of
constraints that are invariably true within a model.
These facts can utilize any signatures, functions or
predicates available.

• Functions (fun) - Functions are expressions that can
accept parameters to evaluate relations. A function
will return a value, and can be invoked providing any
necessary parameter values.

• Predicates (pred) - Predicates are constraints that can
accept parameters. They evaluate to either true or false,
and can be invoked providing given parameter values.

• Assertions (assert) - Assertions are theorems that are
required to be proved. They can be used to check if
a model has certain properties and whether it satisfies
various constraints.

Alloy Analyzer allows the models written in Alloy to
be verified automatically in two ways, i.e., simulation and
checking. Both techniques require a certain scope of in-
stances to be specified. Simulation is used to ensure that

2626

systems are feasible and that a model has not been over con-
strained with conflicting constraints.

Checking is done through searching the problem space
within the given scope to identify any possible solutions
that would violate its constraints. After a solution has been
found, the Alloy Analyzer visualizes it in different formats,
such as graph, dot, XML or tree representations. The lat-
est version of Alloy Analyzer 4 incorporates a new con-
straint solver called KodKod [14], which improves effi-
cient searching of a problem space by introducing partial
instances.

3 Multi-Style Architecture Library

As we mentioned earlier, complex system structures can
be modeled through a composition of different architecture
styles. In this section, we present a multi-style architecture
library in Alloy to support a reusable and extensible mod-
eling approach for this purpose. Furthermore, the specified
architecture style library also provides a good basis for dis-
tinguishing key sub-models in the later parallel verification
stage.

3.1 The component and connector model

Architecture modeling focuses on the high level descrip-
tion of a system in term of the elements in the system and
the interactions among the elements [5]. Components and
connectors are two fundamental units in an architecture de-
scription. Components describe the identifiable computa-
tion entities of a system, where connectors specify the pat-
terns of communication among these entities.

Figure 2. An example view of the component
and connector style.

Figure 2 illustrates a simple example of such a structure.
In the diagram, each component consists of a set of ports as
its external visible interfaces. These ports act as communi-
cation points between the component and other components

or the environment. For example, a port can be a requested
interface that obtains information from others, or a provided
interface that outputs information.

A connector consists of a set of roles that are used to
describe the pattern of a particular kind of communication.
For example, the connector in a Pipe-Filter style describes
a directional and stream communication pattern that reads
data from an input role and passes it on through an output
role. In order to establish a connection between different
components of the system, the roles of a connector must be
attached to the ports of the participating components. The
use of connectors brings the following three advantages to
architecture modeling.

• It separates the concern of computation from commu-
nication in a system description, where components
only focus on computation and connectors take care
of the communication.

• It further promotes encapsulation and reusability in ar-
chitecture modeling. Components and connectors with
same/similar computation functionalities and commu-
nication patterns can be reused/extended easily.

• It provides a more flexible means of modeling different
interactions among components. As each connector
describes a specific pattern of communication, a com-
ponent can participate in various types of interactions
in the system through different connectors. For exam-
ple, the output port of a component can be attached to
a role in a Client-Server connector to send out requests
to a server, as well as it can be attached to a role in a
Pipe-Filter connector to send out streamed data com-
mands to a log file, such as shown in Figure 2.

The following gives an Alloy specification of the com-
ponent and connector style.

3.1.1 Components
abstract sig Component {
ports : set Port,
action : set Process -> lone Process

}{
this = ports.component
action.Process.parent in ports
action[Process].parent in ports

}
abstract sig Port{
component : one Component,
portProcesses : set Process

}{
this in component.ports
this in portProcesses.parent

}
abstract sig Process{
parent : (Port + Role)

}{
this in parent.(portProcesses + roleProcesses)

}

2727

The above defines three signatures, i.e., Component,
Port and Process. A port specifies the component it
belongs to and a set of processes that it is entitled to per-
form. A process represents a generalized means of a be-
havior description, e.g., a ‘write’ operation for the port of
a filter component in the Pipe-Filter architecture style. A
component consists of a set of ports and its actions.
The actions is a relation between processes that captures
inter-behavior sequences of a component. For example, the
action of a client component in a Client-Server structure can
perform sending a request and then receiving a result. A
process can be associated with a port or a role in describing
their behavior patterns.

3.1.2 Connectors
abstract sig Connector {
roles : set Role,
dataflow : set Process -> set Process

}{
this = roles.connector
dataflow.Process.parent in roles
dataflow[Process].parent in roles
irreflexive[dataflow]

}
abstract sig Role{
connector : one Connector,
roleProcesses : set Process

}{
this in connector.roles
this in roleProcesses.parent

}

A role specifies the connector it belongs to to-
gether with a set of processes that it is entitled to per-
form. A connector consists of a set of roles and its
dataflow. The dataflow is a relation of processes for
modeling the behavior patterns of a communication, it is set
as a relations to allow mutliple broadcasting connector type
such as eventbus where one event may be received by mul-
tiple members. For example, the dataflow of a connector
in a Client-Server structure can perform either receiving a
request and invoking a corresponding service or obtaining
a server response and returning it to the client. In addition,
a dataflow is made irreflexive to disallow behavior rela-
tionship between the same processes.

3.1.3 Attachments of a system
abstract sig System{
components : set Component,
connectors : set Connector,
attachments : Role -> lone Port

}{
attachments.Port in connectors.roles
attachments[Role] in components.ports

}
fact SameProcess{
all p :Port , r : Role |
r->p in System.attachments =>

r.roleProcesses in p.portProcesses
}
fact noLooseObject{
all c:Component, con : Connector |
some s : System | c in s.components
&& con in s.connectors

}

The above shows a structural view of the compo-
nent and connector style, where a system contains a
set of components, a set of connectors and the
attachments between them. The attachments are
defined between roles and ports, where a port can be at-
tached to different roles, but not verse versa. This provides
flexible descriptions which allow the interface of a compo-
nent to play different roles in various communications. The
constraints part of the System ensures that the participat-
ing components can communicate with the desired connec-
tor and are expected to play the given roles.

Two fact specifications further ensure a correct structure
of the style. The fact ‘SameProcess’ states that for each
attachment established between a port and a role, the pro-
cesses of the role are a subset of the processes of the port,
which ensures that the attached port can offer all the opera-
tions required from the role. The fact ‘noLooseObject’
states that all components and connectors should be at-
tached in the style, which prevents the existence of iso-
lated components or connectors in a given model. Fur-
thermore, for capturing the state changes of a system, the
following defines two parameterized predicates for attach-
ing/detaching a port with a role.

pred attached(s:System,s’:System,r:Role,p:Port){
s’.attachments = s.attachments ++ r->p

}
pred detached(s:System,s’:System,r:Role,p:Port){
s’.attachments = s.attachments - r->p

}

Based on the above definitions, we can run the Alloy An-
alyzer to create a snapshot of the component and connector
style similar to that of shown in Figure 2.

3.2 The Client Server Model

One of the most commonly used architecture styles is
the client server structure. It offers a loosely coupled multi-
connection mechanism in a consumer and provider fashion.
A server can be viewed as a component that provides a set
of services. This set of services are exposed to the vari-
ous clients for consumption. The external behaviors of the
server vary in specific systems, however, two generalized
operations can be observed as receiving and responding to
client requests. A client can be viewed as a consumer com-
ponent of the server. It mainly performs two types of opera-
tions that request and obtain results from different services.

2828

Furthermore, the client and server structure also has a set
of properties (protocol or contract) for its service consump-
tion. For instance, for each valid service request from a
client, there should be a corresponding response from the
server to the client within a certain response period.

3.2.1 Server and clients

The following gives an Alloy specification of the client and
a server style.

abstract sig Server extends Component{} {
some ports & ClientAccess

}
abstract sig Client extends Component{} {
some ServerRequest & ports

}
abstract sig ClientAccess extends Port{} {
some component & Server
some Invoke & portProcesses
some Return & portProcesses

}
abstract sig ServerRequest extends Port{} {
some Request & portProcesses
some Result & portProcesses

}

The above defines four signatures, Server,
Client, ClientAccess and ServerRequest.
A ClientAccess extends the definition of a Port and
has two associated processes, Invoke and Return. A
ServerRequest is a special kind of Port that can
perform the Request and Result processes. A Server
extends a component signature and has ClientAccess
as its ports; while a Client is a special type of component
that has ServerAccess as its ports.

Furthermore, properties that are specific to a Client-
Server style can also be modeled accordingly. For exam-
ple, the following fact ‘InvokeLeadstoReturn’ states
the property that if a request is received at the server from
a client invocation, a corresponding result shall be returned
as its consequence.

fact InvokeLeadstoReturn{
all s: Server| some i:Invoke, r:Return|
some s.action.Process & i

=> some s.action[Process] & r
}

3.2.2 Connection
abstract sig CnsConnector extends Connector{}{
some Provider & roles
some Requester & roles
Request -> Invoke in dataflow
Return -> Result in dataflow

}
abstract sig Provider extends Role{} {
some connector & CnsConnector
some Invoke & roleProcesses
some Return & roleProcesses

}
abstract sig Requester extends Role{} {
some connector & CnsConnector
some Request & roleProcesses
some Result & roleProcesses

}
fact SomeRole{
all c : CnsConnector|
some p : Provider, r:Requester |
p in c.roles <=> r in c.roles

}

There are only two types of roles in a client and server
connection, i.e., the Provider and the Requester. A
Provider can perform the operations such as Invoke
and Return; while the Requester plays the role of
Request and obtains a Result. A connector in a
client server structure, CnsConnector, has a set of
providers and requesters as its roles. And its behavior de-
scriptions are modeled by two types of data flows, i.e.,
‘Request -> Invoke’ (client requests and server in-
vokes) and ‘Return -> Result’ (server returns and
client receives). Finally, the fact ‘SomeRole’ ensures that
both the provider and requester must be present in order to
establish a client-server connection.

Based on the above specification, we can run the Al-
loy Analyzer to create a snapshot of the client and server
style. Figure 3 shows running instances of a server with two
clients, where each client establishes a separate connection
to the server, accessing the same interface (port) that the
server provides.

Figure 3. Alloy instances of the Client-Server
style

In this section, we demonstrated the Alloy modeling of
two commonly used architecture styles, i.e., Component-
Connector and Client-Server. To construct a multi-style
architecture library for reuse, we have also defined other
styles, such as Publisher-Subscriber, Pipe-Filter and so on.
Due to the page limitation, we will not present their spec-
ifications here. The completed Alloy style library has
been made available at http://www.cs.auckland.
ac.nz/˜jingsun/multi-style/library/.

2929

4 Case study - A Web Site System Example

In this section we present the modeling and verification
of a web site system example that illustrates use of the
multi-style architecture library defined in the previous sec-
tion.

Figure 4. A simple web site system overview

A simple web site system describes the interactions from
the user input to the web server and its database, as shown in
Figure 4. It consists of components such as user interface,
display manager, application, server and database. Based
on multi-style modeling, this system can be identified to
utilize three different architecture structures, i.e., Client-
Server , Pipe-Filter and Publish-Subscriber, which can be
further specified as follows.

4.1 User interface, display driver and GUI

User interface can be viewed as a component that han-
dles various inputs from the users and assigns commands
to other parts of the system. Thus it can be modeled as a
publisher in the Publisher-Subscriber style as follows.

sig UserInterface extends Publisher{}{
some DataEvent & ports
some HumanInput & ports
dataInput -> PublishData in action

}

The DisplayDriver component receives data from
the UserInterface component and writes it to a buffer
for the Graphical User Interface (GUI) which forwards data
to the display driver. It can be considered as a filter com-
ponent in the Pipe-Filter style, which can be modeled as
follows.

one sig GraphicalUserInterface extends Filter{}{
DisplaySubscriber + SendDisplayChanges = ports
ReceiveDisplayData->WriteDisplayBuffer = action

}
one sig DisplayDriver extends DataSink{}{
ReceiveDisplayChanges = ports
no action

}
sig DisplayChannel extends Pipe{}{
WriteDisplayBuffer -> ReadDisplayBuffer +
EOF -> CloseConnection = dataflow

}

A GraphicalUserInterface component contains
DisplaySubscriber and SendDisplayChanges
as its interfaces. These two ports describes the input
and output of the GUI respectively. The second compo-
nent is the DisplayDriver being a data sink. The
DisplayChannel shows that the dataflow is from a
writer to a reader, however an EOF (end of file) indicates
that the connection will be closed by the Reader.

4.2 Application, web server and database

The application and server structure reassembles the
Client-Server style. A client application is responsible for
retrieving requests from the UserInterface and send-
ing requests to the server enquiring about the information
needed. The server then accesses the database to query spe-
cific information to return it to the client. There are two
types of clients available in the system, i.e., web application
and mobile application, which can be modeled as follows.

abstract sig Application extends Client{}{
some ServiceInvocation & ports

}
sig WebApplication extends Client{}{
some DataSubscriber & ports
some WebServiceInvocation & ports
ReceiveData -> SearchRequest = action

}
sig MobileApplication extends Client{}{
some MobileServiceInvocation & ports

}

A web server links between the applications and the
database, hiding the business logic. Its connection (TCP/IP)
extends a CnsConnector and consists of two types, i.e.,
broadband and wireless.

abstract sig WebServer extends Server{}{
some RequestAccess & ports
some DatabaseQuery & ports
InvokeSearch -> RequestDBQuery +
DBQueryResult -> ReturnSearchData = action

}
abstract sig TCPIPConnection

extends CnsConnector{}{
SearchRequest -> InvokeSearch +
ReturnSearchData -> SearchResult in dataflow

}
sig BroadBand extends TCPIPConnection{}
sig WirelessConnection extends TCPIPConnection{}

The database can be considered as a server for the web
server, holding information that the server would request. It
was modeled by a replication technique, creating a main
and a backup database. Each database is capable of ac-
cepting queries and returning the information required. The
main database is also capable of sending information to its
replica. A database connection is defined as an extension of
the CnsConnector as follows.

3030

abstract sig Database extends Server{}{
some DBAccess & ports

}
one sig MainDataBase extends Database{}{
some DataChange & ports
some DBAccessMain & ports
InvokeDBQuery -> ReturnData +
InvokeDBQuery -> DataWrite = action

}
one sig BackupDatabase extends Database{}{
some DataUpdate & ports
some DBAccessBack & ports
InvokeDBQuery -> ReturnData = action

}
...
abstract sig DataBaseConnection

extends CnsConnector{}{
RequestDBQuery->InvokeDBQuery +
ReturnData-> DBQueryResult = dataflow

}

After defining the basic elements of the web site sys-
tem, we can specify a structure predicate to describe state
changes on the dynamic aspects of the system as follows.

pred Structure(s:WebSys, s’:WebSys){
PublishAnEvent[s,s’,UserInterface,DataEventBus,
DataEvent] && ...

SubscribeToEvent[s,s’,GraphicalUserInterface,
DisplayEventBus,DisplaySubscriber]&& ...

ClientConnection[s,s’,MobileApplication,
WirelessConnection,MobileServiceInvocation]

&& ...
}

The above predicate constraints the model to give a
proper and intended structure, e.g., PublishAnEvent
ensures the connection to an event bus of a publisher or
subscriber, etc. Based on the specification, we can run the
Alloy Analyzer to create a snapshot of the system 1.

4.3 Checking system properties

Apart from generating snapshots of the running system,
we are also able to perform assertion checks on desired
properties that must hold in the system using the Alloy An-
alyzer. Note that some of these properties are specific to
the architecture styles that used in the system and others are
related to the the system itself. For example, the following
assertion specifies that any updates on a publisher will result
in notifications to all its subscribers.

assert CorrectFlow{
all s:System, conn:EventBus,pub:Publisher,
sub:Subscriber|some pp:pub.ports,sp:sub.ports,
a:pp.portProcesses, l:sp.portProcesses|
pp in s.attachments[conn.roles] &&

1For the complete specification of the web site system example,
please refer to http://www.cs.auckland.ac.nz/˜jingsun/
multi-style/websitesystem.als for modeling and verification
details.

sp in s.attachments[conn.roles] &&
some a & Announce && some l & Listen =>
a -> l in conn.dataflow

}

The assertion CorrectFlow defines if a Publisher
and a Subscriber share an EventBus connection,
there must be a flow from the Announce process to the
Listen process respectively. If we run the Alloy Ana-
lyzer to check the above assertion, it returns ‘No counter-
example found’, which indicates that no counter-examples
can be generated, thus the assertion is true.

The second example ensures a fault tolerance property
among the web server and its two databases.

assert backup{
all s:WebSys | Structure[s,s] &&
some conn : DataBaseConnection |
(no s.attachments.DBAccessMain in conn.roles &&
some s.attachments.DataQuery in conn.roles) =>
(some s.attachments.DBAccessBack in conn.roles
&& some s.attachments.DataQuery in conn.roles)

&& some p:Pipe |
some s.attachments.DBAccessMain in p.roles
&& some s.attachments.DBAccessBack in p.roles

}

The above assertion states two properties, i.e., (1)
if the connection (DBAccessMain) between the web
server and the main database is lost, another connection
(DBAccessBack) from the web server will automatically
switch to the backup database; (2) there should always be
a connection between the main and backup database. This
assertion can be checked via the Alloy Analyzer.

In the following example, a load balancing property is
specified, where the number of connections between all
server’s attachments should only differ by at most one.

assert LoadBalanced{
all s:WebSys, s’:WebSys-s |
|all ws:WebServer, ws’:WebServer-ws |
Structure[s,s’] &&
#s.attachments.(ws.ports) =

#s.attachments.(ws’.ports) ||
#s.attachments.(ws.ports)+1 =

#s.attachments.(ws’.ports) ||
#s.attachments.(ws.ports)-1 =

#s.attachments.(ws’.ports)
}

In this section, we demonstrated the modeling of a sim-
ple web site system based on the reuse and extension of dif-
ferent architecture styles defined in section 3. We used Al-
loy Analyzer to apply automated verification on desired sys-
tem properties. However, the performance of such a verifi-
cation does not show a practical solution to the problem. For
instance, the running time of a scope of 18 Processes and
9 Components on the web site system model took 307924
milliseconds (5.2 minutes) to execute. Such a performance
could not meet any practical verification needs since a more

3131

typical computer system may consist of hundreds of com-
ponents (instances). To overcome this disadvantage, we fur-
ther propose a model splitting approach to accommodate
distributed parallel verification.

5 Model Splitting and Parallel Verification

The model splitting approach is a methodology devel-
oped to improve the efficiency of the verification processes.
It aims at decomposing a complex architecture model into
various smaller sub-models to allow parallel verification.
Scalability of the verification can be greatly improved by
decreasing the size of the model (scope of the Alloy in-
stances). This section details the necessary steps in dividing
a model for parallel computation according to its architec-
ture structures. The previously mentioned web site system
example of Section 4 is used to illustrate the model splitting
process.

5.1 Identifying sub-models

The key issue in a modeling splitting approach is to iden-
tify sub-models for decomposition. As we mentioned ear-
lier, such a decomposition could be based on the architec-
ture structure of a system. Each identifiable architecture
style in the model provides a perfect grouping of a sub-
system that performs specialized tasks. A sub-system is a
smaller model that contains less scope, hence, easier to ver-
ify. Together all sub-systems can be verified in a distributed
manner and the results of the verification can be collected
in a more efficient way. In general, our basic approach in
model splitting is similar to the modular programming tech-
nique as follows.

• Firstly, identify the number of architecture styles avail-
able in the system. For each style instance, a sub-
model is created respectively.

• Secondly, for each global constraint (i.e., fact, predi-
cate, function, assertion) defined in the model, localize
it to become the constraints inside the corresponding
sub-models. This process may involve the re-definition
of these constraints in terms of the components and
connectors inside the sub-models, as well as the cre-
ation of additional constraints among the identified
sub-models.

• Finally, a simplified system model may be introduced
to handle the high level constraint definitions among
the sub-systems. This high level model can also be
used to collect the running results of parallel verifica-
tion.

In addition, hierarchial structure can be established
among the sub-models, such as the high level system de-
scription consists of identified sub-style models, and each
sub-model may further contain other sub-systems inside.
For instance, a composite Client-Server style may contain
a Pipe-Filter structure as one of its sub-systems. Thus sub-
model can be viewed as a composite component which may
also have a set of interfaces (ports) as its external represen-
tation. Those interfaces are used as the interaction points
regarding communication among the sub-systems and the
rest of the system.

The above presents a brief guideline for model decom-
position. It can offer a systematic approach to divide and
deliver multiple sub-models for parallel verification. The
following is a pseudo algorithm detailing the various steps
it takes to sub-divide components into sub-models.

SubDivide(components, connectors, attachments) {
let sm be the current submodel;
sort the connectors from loose to tight coupling;
take the loosest type from connectors as conn;
let connset be the set of connectors in sm;
let cs be the set of components in sm;
for each c attached to conn
if (c is a publisher){
cs += c;
connset += all EventBus connected to c;
cs += all subscriber connected to

EventBus in cs;
}
else if (c is server){
...

}
else if (c is filter){
...

}
for all pc in cs {
if pc is connected to (connectors - connset) {
generalize pc as a sub-system with
name ’pc-subsystem’;

replace pc as ’pc-subsystem’ in cs;
let pcs be the set of all components

reachable from pc outside of connset;
let pconnset be the set of all connectors

reachable connectors outside of connset;
SubDivide(pcs, pconnset, attachments);

}
}
include cs and connset in sm;
add sm to the set of recognized submodels;

}

The algorithm performs the model splitting on a system
model via recursion using the set of components, connec-
tors and their attachments as inputs. Firstly, all the connec-
tors are sorted based on their coupling aspects, i.e., in the
order of Publish-Subscriber, Client-Server and Pipe-Filter.
This represents the precedence of different types of connec-
tions in the system, which keeps the tightly coupled con-
nections to form sub-systems first, then use them to form
other sub-systems with the less coupled connections. Sec-

3232

ondly, after the loosest connector is selected, the algorithm
extracts all the attached components and connectors in re-
lation with the loosest connector and uses them to form a
sub-system with respect to different styles. Thirdly, for each
component in the created sub-system above, if the compo-
nent is also attached with other connectors outside this sub-
system, a recursive call is made on all its reachable compo-
nents and connectors together with the attachments to form
a new sub-system. And this new sub-system is used to re-
place the component in the current sub-model. Once all the
recursive calls returned, every component and connector in
the original model will be divided to their corresponding
sub-systems.

Applying the above component splitting algorithm to
the example web site system in section 4, we could gen-
erate 5 sub-models accordingly. The following shows
part of the first extracted Publisher-Subscriber sub-model,
where two other sub-systems DataSubSystem and
DisplaySubSystem are recursively identified. Please
note that the original GraphicalUserInterface and
WebApplication components that was connected to the
component UserInterface, is now encapsulated and
replaced by the two sub-systems DataSubSystem and
DisplaySubSystem.

sig UserInterface extends Publisher{}{......}
sig GUISubSystem extends DataSink{}{
some DisplaySubscriber & ports

}
sig WebApplicationSubSystem extends Subscriber{}
{
some DataSubscriber & ports

}
......

Recursion of the algorithm can generate the remaining of
4 sub-models accordingly, i.e., a Pipe-Filter system over the
GUI and DisplayDriver units, two Client-Server sys-
tems over the Application, Server and Database,
and a final Pipe-Filter system over the MainDatabase
and BackupDatabase.

After identified components into their corresponding
sub-models, the next step is to localize the global con-
straints. In general, a global constraint is defined in terms
of the relationships among the interfaces of the participation
components. If we consider each sub-model as a compos-
ite component that has a set of external visible interfaces
for communicating with other sub-models, then the follow-
ing can be applied to the constraint splitting case: (1) if
the constraint only involves components from the same sub-
model, simply put the constraint into the sub-model; (2) if
the constraint involves components from two or more dif-
ferent sub-models, re-write the constraint in terms of the in-
terfaces from the sub-models. For example, let us consider
the following assertion CheckDataFlow in the original
model, which states that a data request from the user would

lead to updates on the display as well as the database being
queried.

assert CheckDataFlow{
SearchRequest in Component.action.dom =>
InvokeDBQuery in Replies[SearchRequest,
Component.action+Connector.dataflow]

}

By inspecting the variables (interfaces) involved the
assertion, we can easily identify which sub-models they
belong to. That is, SearchRequest belongs to the
WebApplicationSubSystem and InvokeDBQuery
belongs to the WebServerSubSystem. Please note that
the WebServerSubSystem is a sub-model inside the
WebApplicationSubSystem. After realizing the sub-
models involved, the next step is to identify the common
interfaces of the sub-models that enabled the communica-
tions. In this case, the interface RequestAccess con-
tains a process InvokeSearch that represents the inputs
into the WebServerSubSystem. With the linking pro-
cess InvokeSearch being identified, an assertion for the
WebApplicationSubSystem could be generated by
replacing the InvokeDBQuery as follows.

module WebApplicationSubSystem
...
assert CheckDataFlow{
SearchRequest in Component.action.dom =>

InvokeSearch in Replies[SearchRequest,
Component.action+Connector.dataflow]

}

Similarly, another assertion can be introduced into the
WebServerSubSystem through the common interface
InvokeSearch as follows.

module WebServerSubSystem
...
assert CheckDataFlow{
InvokeSearch in Component.action.dom =>

InvokeDBQuery in Replies[InvokeSearch,
Component.action+Connector.dataflow]

}

This assertion is local to the WebServerSubSystem,
which represents the second half of the original assertion
that ensures if inputs happen through the InvokeSearch,
a database invocation shall follow. The above gives a brief
illustration about the constraint splitting. An algorithm for
splitting the constraints into sub-models can be developed
similarly to automate the sub-dividing process.

5.2 Verification and Evaluation

After the sub-models have been created from a compli-
cated system model, we can perform parallel verification to
run the sub-models in a distributed manner to improve the

3333

efficiency of verification. The results from the divided Al-
loy models show promise. Due to the fact that each smaller
model requires a smaller scope to be verified, it dramati-
cally decreased the total time in which to verify the model
as a whole. Some evaluation results are presented as fol-
lows. This evaluation was carried out using an Intel (R)
Core (TM) 2 CPU 6400 @ 2.13GHZ, 2.13GHZ with 2.00
GB Ram computer. The time taken to execute the models,
with their respective scope is presented in Table 1.

Model Scope Time(ms)
Full Model 18 307924

Pns Sub Model 4 78
Cns Sub Model1 8 172
Cns Sub Model2 5 188
Pnf Sub Model 5 62

Pnf Sub Model2 6 93

Table 1. Time taken to process a large system
and its sub-models

Sub-models after splitting might be executed in a se-
quential manner due to their dependencies. In this case,
“Pnf2 → Cns2 → Cns1 → Pns”. The dependencies is
caused by the subsystems within a model, e.g., ‘Pnf2’ is a
subsystem within ‘Cns2’, therefor it needs to be processed
first. This chain reaction would require roughly 531 mil-
liseconds (=78+172+188+93ms). It is still a significant im-
provement than that of the execution time of the full sized
model, which is about 307924 ms. These statistics support
the theory of our model splitting approach as well as the fact
that it is an effective method that allows a multi-style archi-
tecture modeling and verification to be feasible and practi-
cal in a scalable manner.

6 Conclusion

In this paper we presented a multi-style approach to soft-
ware architecture modeling and verification. A library of
styles is defined using the Alloy formal language to assist
the reuse and extensible modeling of complex computer
systems. We demonstrate use of the style library in the mod-
eling of a web site system. It shows the capability of offer-
ing a clear method of expressing software architecture in a
formal manner. It also provides a platform for which differ-
ent properties of software architecture could be expressed
as well as automatically verified via the Alloy Analyzer.
Furthermore, to improve the performance of verification, a
model splitting and parallel verification approach was pro-
posed. By creating various independently verifiable sub-
models, this approach has enabled verification to be done
in parallel, which increases dramatically the scalability of
Alloy verification.

In future, we plan to further automate the model splitting
and verification process. This includes the automatic gen-
eration of sub-models from a system description, and dis-
tributing the Alloy sub-models using distributed computa-
tion middleware allowing an effective way to verify system
models in close to real time fashion.

References

[1] G. Abowd, R. Allen, and D. Garlan. Formalizing Style to
Understand Descriptions of Software Architecture. ACM
Trans. Softw. Eng. Methodol., 4(4):319–364, 1995.

[2] R. Allen and D. Garlan. Formalizing Architectural Connec-
tion. In Proceedings of the 16th International Conference
on Software Engineering, pages 71–80, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

[3] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–
249, 1997.

[4] C. Chen, P. Grisham, S. Khurshid, and D. Perry.
Design and Validation of a General Security Model
with the Alloy Analyzer. First Alloy Workshop’06,
available at http://alloy.mit.edu/workshop/
papers/chen.pdf, 2006.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documentaing Software
Architectures: Views and Beyond. Addison-Wesley, 2003.

[6] D. Garlan and B. Schmerl. Architecture-driven Modelling
and Analysis. In Proceedings of the 11th Australian work-
shop on safety critical systems and software, pages 3–17,
Darlinghurst, Australia, 2006. Australian Computer Society.

[7] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[8] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2006.

[9] J. S. Kim and D. Garlan. Analyzing Architectural Styles
with Alloy. In Proceedings of the ISSTA 2006 workshop on
Role of software architecture for testing and analysis, pages
70–80, New York, NY, USA, 2006. ACM.

[10] N. Medvidovic and R. N. Taylor. A Framework for Classify-
ing and Comparing Architecture Description Languages. In
Proceedings of the 6th European Software Engineering Con-
ference, pages 60–76, New York, NY, USA, 1997. Springer-
Verlag New York, Inc.

[11] H. Miao, J. Sun, and X. Cao. Formalizing and Analyzing
Service Oriented Software Architecture Style. Proceedings
of the 10th IEEE International Enterprise Distributed Ob-
ject Computing Conference, pages 387–390, October 2006.

[12] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and
D. Zhang. Understanding Tradeoffs among Different Archi-
tectural Modeling Approaches. Proceedings of the 4th Work-
ing IEEE/IFIP Conference on Software Architecture, pages
47–56, June 2004.

[13] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[14] E. Torlak and G. Dennis. KodKod for Alloy Users. First
Alloy Workshop’06, available at http://alloy.mit.
edu/workshop/papers/torlak.pdf, 2006.

3434

View publication statsView publication stats

	A scalable approach to multi-style architectural modeling and verification
	Citation

	tmp.1584000708.pdf.29y71

