
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2009

Verification of population ring protocols in PAT Verification of population ring protocols in PAT

Yang LIU

Jun PANG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jianhua ZHAO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
LIU, Yang; PANG, Jun; SUN, Jun; and ZHAO, Jianhua. Verification of population ring protocols in PAT.
(2009). Proceedings of the 2009 Third IEEE International Symposium on Theoretical Aspects of Software
Engineering, Tianjin, China, July 29-31. 81-89.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5044

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Verification of Population Ring Protocols in PAT

Yang Liu‡, Jun Pang†, Jun Sun‡, and Jianhua Zhao�

† Université du Luxembourg
Faculté des Sciences de la Technologie et de la Communication

‡ National University of Singapore
School of Computing

� Nanjing University
State Key Laboratory of Novel Software Technology

Abstract

The population protocol model has emerged as an ele-
gant paradigm for describing mobile ad hoc networks, con-
sisting of a number of nodes that interact with each other
to carry out a computation. One essential property of self-
stabilizing population protocols is that all nodes must even-
tually converge to the correct output value, with respect to
all possible initial configurations. It has been shown that
fairness constraints play a crucial role in designing popula-
tion protocols. The Process Analysis Toolkit (PAT) has been
developed to perform verifications under different fairness
constraints efficiently. In particular, it can handle global

fairness, which is required for the correctness of most of
population protocols. It is an ideal candidate for automati-
cally verifying population protocols. In this paper, we sum-
marize our latest empirical evaluation of PAT on a set of
self-stabilizing population protocols for ring networks. We
report one previously unknown bug in a protocol for leader
election identified using PAT.

1 Introduction

In distributed computing, when designing or implement-

ing protocols to achieve specific goals, such as mutual ex-

clusion or leader election, it is important to be aware that the

correctness of such protocols can only be guaranteed under

certain kind of fairness constraint. Fairness, which is con-

cerned with a fair resolution of non-determinism, is often

necessary to establish liveness properties, meaning some-

thing good must eventually happen. Fairness is an abstrac-

tion of the fair scheduler in a multi-threaded programming

environment or the relative speed of the processors in dis-

tributed systems. Without fairness, unrealistic behaviours

of the protocols cannot be ignored. For example, without a

fair scheduler, it is possible that one processor is infinitely

faster than others. It is crucial to rule out these unrealistic

behaviours in order to establish the correctness.

Recently, the population protocol model [4] has emerged

as an elegant computation paradigm for describing mobile

ad hoc networks, consisting of multiple mobile nodes which

interact with each other to carry out a computation. Appli-

cation domains of the protocols include wireless sensor net-

works and biological computers. One essential property of

population protocols is that with respect to all possible ini-

tial configurations all nodes must eventually converge to the

correct output values (or configurations), which is a typical

liveness property. To guarantee that such kind of proper-

ties can be achieved, the interactions of nodes in population

protocols are subject to fairness. The fairness constraint is

imposed on the scheduler to ensure that the protocol makes

progress. In population protocols, the required fairness con-

dition will make the system behave nicely eventually, al-

though it can behave arbitrarily for an arbitrarily long pe-

riod [4]. That is why for population protocols correctness

arguments are always rephrased as a property to be satisfied

eventually. A number of population protocols have been

proposed and studied [1, 3, 9, 12, 2]. Fairness plays an im-

portant role in these protocols. Most of the protocols only

work if global fairness1 is imposed. For instance, it was

shown that without global fairness uniform self-stabilizing

leader election in rings is impossible [9].

Formal verification, model checking in specific, has been

recognized as an important method to prove the correct-

ness of distributed algorithms formally and automatically.

Model checking first builds a finite state space of a formal

model of a system, and then verifies if a property, written in

some temporal logic, about the system holds or not through

an explicit state space search. A counterexample can be

generated when the checked property fails to hold, which

explains why the formal model does not satisfy the property.

In formal verification, fairness is typically used to rule out

1Definition of global fairness is given in Section 2.

2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3757-3/09 $25.00 © 2009 IEEE

DOI 10.1109/TASE.2009.51

81

unrealistic runs due to non-determinism, and mainly con-

cerns with a fair resolution of non-determinism in the mod-

els. There is a rich literature on how to handle fairness con-

straints in model checking, see e.g. [15, 14, 16]. However,

existing verification algorithms/tools are ineffective with re-

spect to fairness. One way to apply existing model checkers

for verification under fairness is to re-formulate the prop-

erty so that fairness assumptions become premises of the

property. This practice is deficient though flexible. Typi-

cally, automata-based model checking relies on construct-

ing a Büchi automaton from the property. The size of the

Büchi automaton is exponential to the size the property.

For example, Spin is a rather popular linear temporal logic

(LTL) model checker [11]. The algorithm it uses for gen-

erating Büchi automata handles only a limited number of

fairness constraints [20]. Pang et al [17, 18] applied the

Spin model checker to establish the correctness of a fam-

ily of population protocols. Only small networks (i.e., with

few nodes) were verified under weak fairness in Spin be-

cause of the problem discussed above. Verification under

global fairness is infeasible in Spin. This situation calls for

efficient model checking algorithms to deal with large LTL

formulas. The work reported in [10] is closely related, but

it still cannot be applied to population protocols. There-

fore, it is important to have an alternative approach to han-

dling stronger fairness constraints. A model checking tool,

Process Analysis Toolkit (PAT), is developed to verify sys-

tem with fairness efficiently and flexibly [20, 21, 19]. It

supports different ways of applying fairness and has a uni-

fied on-the-fly model checking algorithm which handles a

variety of fairness constraints. In particular, it can handle

global fairness required for the correctness of most popu-

lation protocols, which makes PAT an ideal candidate for

automatically verifying population protocols.

In this paper, we summarize our latest empirical evalua-

tion of PAT on a set of self-stabilizing population protocols

for ring networks. The choice of ring topology makes it less

demanding when we model the interactions of nodes and it

also makes our models scale up easily. We select protocols

for two-hop coloring and orienting nodes and protocols for

leader election and token passing. All these protocols only

work under global fairness. We report on our model check-

ing results. Especially, we present one previously unknown

bug in a leader election protocol [12], which can only be

identified using PAT (as far as we know). This work is re-

lated to research on verifying distributed systems. It is also

remotely related to our previous works on verification and

model checking [5, 8, 7].

Roadmap In Section 2, we review the basic population

protocol model and define fairness constraints required for

population protocols. In Section 3, we briefly introduce

PAT, its modelling language and its support for verification

under fairness. The population protocols studied in this pa-

per are presented in Section 4, with focus on the counterex-

ample we have found on the leader election protocol. The

model checking results are summarized in Section 5. Fi-

nally, Section 6 concludes the paper.

2 The Population Protocol Model

In this section, we briefly introduce the population pro-

tocol model. More details are available in [1, 9].

2.1 Model and definitions

In the model, the underlying network can be described as

a directed graph G = (V, E) without multi-edges and self-

loops. Each vertex represents a simple finite-state sensing

device, and each edge (u, v) means that u as an initiator
could possibly interact with v as a responder.

A protocol is specified as a tuple P(Q, C, X, Y, O, δ),
which contains

• a finite set Q of states,

• a set C of configurations,

• a finite set X of input symbols,

• a finite set Y of output symbols,

• an output function O : Q → Y , and

• a transition function δ : (Q × X) × (Q × X) → 2Q×Q.

If (p′, q′) ∈ δ((p, x), (q, y)), then we write

((p, x), (q, y)) → (p′, q′) and call it a transition. When δ
always maps to a set that only contains a single pair of

states, then we call the protocol deterministic.

A configuration C is a mapping C : V → Q as-

signing to each node its internal state, and an input as-
signment α : V → X specifies the input for each

node. Let C and C′ be configurations, α be an input

assignment, and u, v be different nodes. If there is a

pair (C′(u), C′(v)) ∈ δ((C(u), α(u)), (C(v), α(v))), we

say that C goes to C′ via edge e = (u, v) by transition

((C(u), α(u)), (C(v), α(v))) → (C′(u), C′(v)), abbreviated

to (C, α) e−→ C′. A pair of a transition r and an edge e con-

stitutes an action σ = (r, e). If C goes to C′ via some edge,

then C can go to C′ in one step, written as (C, α) → C′.
An execution is an infinite sequence of configurations

and assignments (C0, α0), (C1, α1), . . . , (Ci, αi), . . ., such

that C0 ∈ C and for each i, (Ci, αi) → Ci+1.

2.2 Fairness

Let E = (C0, α0), (C1, α1), . . . , (Ci, αi), . . . be an ex-

ecution. Two different fairness conditions [9] are defined

below:

82

Global fairness For every C, α, and C′ such that

(C, α) → C′, if (Ci, αi) = (C, α) for infinitely many i,
then (Ci, αi) = (C, α) and Ci+1 = C′ for infinitely many i.
(i.e., step (C, α) → C′ is taken infinitely many times in E.)

Local fairness For every action σ, if σ is enabled in

(Ci, αi) for infinitely many i, then (Ci, αi)
σ−→ Ci+1 for

infinitely many i. (Hence, the action σ is taken infinitely

many times in E.)

It should be noticed that global fairness is strictly stronger

than local fairness [9]. In population protocol model, steps

specify how the whole protocol transforms from one con-

figuration to another configuration, and actions specify the

interactions between two nodes and only depend on the lo-

cal states of the two interacting nodes. Global fairness re-

quires that each step that can be taken infinitely often is

actually taken infinitely often, while local fairness asserts

that each action which is enabled infinitely often is actu-

ally taken infinitely often. Since one action can be enabled

in different configurations, global fairness insists that an ac-

tion must be taken infinitely often in all such configurations,

whereas local fairness only requires that it occurs infinitely

often in one of such configurations. Most of population pro-

tocols [1, 3, 9, 12, 2] will only work if global fairness is

assumed. For instance, Fischer and Jiang [9] have proved

that without global fairness uniform self-stabilizing leader

election in rings is impossible.

In the area of formal verification, there are usually two

notions of fairness: weak and strong fairness. A strong fair-

ness condition states that if an activity is infinitely often en-

abled then it has to be executed infinitely often. This can be

mapped into the population protocol model as global fair-

ness and local fairness, depending that the activity is either

one step or one action. Note that global fairness is more ex-

pensive when model checking, as its definition takes all con-

figurations where one action can be enabled into account.

3 Verification under Fairness in PAT

Process Analysis Toolkit (PAT2) is developed as an in-

teractive toolkit to support composing, simulating and rea-

soning of concurrent systems. PAT is developed in C#

for the benefit of Object-Oriented design and compatible

performance. PAT supports a modeling language which

mixes high-level specification language features (determin-

istic/nondeterministic choice, parallel, interleaving, inter-

rupt, etc.) with programming language features (arrays,

while, if-then-else, etc.), so that users are offered with great

expressiveness and flexibility.

2http://pat.comp.nus.edu.sg

Example. A self-stabilizing population protocol for two-

hop coloring is proposed [2]. This algorithm can guarantee

that the neighbors of a node in a ring have different colors.

Details of this protocol is given in Section 4.

Figure 1 presents (part of) its model in PAT to illustrate

the modelling language. Line 1 defines two global constants

(N and C of value 3) and global variables. N models the net-

work size, i.e., number of nodes and C models the number

of colors. Array color models the color of each node. F
is a bit array for each node, indexed by colors. Next, line

2 to 9 defines how an initiator u interacts with a respon-

der v, which captures the essence of the protocol. Every

time there is an interaction in the network, the initiator and

responder must update themselves according to a set of pre-

defined rules. A rule is applicable only if the guarding con-

dition (e.g., F[u][color[v]]! = F[v][color[u]]) is satisfied. An

action (e.g., act1.u.v) may be attached with variables up-

dating (e.g., color[u] = 0). Line 11 models the two-hop

coloring protocol as process TwoHopColoring, which starts

with process Init (which initializes the system in every pos-

sible configuration and is omitted here). After initialization,

the system is the interleaving (modeled by the operator |||)
of nodes’ interactions in the network. Which nodes can in-

teract reflects the topology of the network. The property

is ��twohopcoloring (defined as an assertion at line 13),

where � and � are modal operators which read as even-
tually and always respectively. twohopcoloring (defined at

line 12) is a proposition which states that the neighbors of a

node in a ring have different colors (for rings of size three).

PAT provides users friendly interfaces for system mod-

eling. User input models can then be simulated using au-

tomatic animations. More importantly, PAT supports stan-

dard reachability analysis, deadlock checking, refinement

checking and verification of LTL properties. PAT finds its

strength in two unique aspects: (1) it is designed to verify

systems under a variety of fairness assumptions, including

local/gloabl fairness; (2) it supports mechanical refinement

checking, possibly with data refinement relationships. In

order to handle large systems, PAT is further improved with

effective reduction techniques like partial order reduction.

In this paper, we focus on its support for efficient verifi-

cation under global fairness, which is partly motivated by

recently developed population protocols (which only work

under global fairness). The other motivation is that the cur-

rent practice of verification is deficient under fairness.

Existing verification algorithms/tools are ineffective

with respect to fairness. In automata based LTL model

checking, the negation of a property is translated to an

equivalent Büchi automaton, which is then composed with

the automaton representing the system for analysis. The

size of the Büchi automaton is exponential to the size of

the property. Existing model checkers for verification under

fairness is to re-formulate the property so that fairness as-

83

1. #define N 3; #define C 3; var color[N]; var F[N][C];
2. Interaction(u, v) =
3. if (F[u][color[v]]! = F[v][color[u]]){
4. act1.u.v{F[u][color[v]] = F[v][color[u]]; color[u] = 0; } −> Interaction(u, v)
5. [] act2.u.v{F[u][color[v]] = F[v][color[u]]; color[u] = 1; } −> Interaction(u, v)
6. [] act3.u.v{F[u][color[v]] = F[v][color[u]]; color[u] = 2; } −> Interaction(u, v)
7. } else {
8. act4.u.v{F[u][color[v]] = 1 − F[u][color[v]]; F[v][color[u]] = 1 − F[v][color[u]]; } −> Interaction(u, v)
9. };
10. Init() = ...
11. TowHopColoring() = Init(); (||| x : {0..N − 1}@Interaction(x, (x + 1)%N) ||| (Interaction((x + 1)%N, x));
12. #define twohopcoloring(color[0]! = color[2]&&color[1]! = color[2]&&color[0]! = color[1]);
13. #assert TowHopColoring() |= <> []twohopcoloring;

Figure 1. PAT Model for Two Hop Coloring Protocol

sumptions become premises of the property. Model check-

ing under fairness is then to search for an infinite execu-

tion which is accepting to the Büchi automaton and at the

same time satisfies the fairness assumptions. This approach

becomes impractical when fairness assumptions have com-

plex structures. Especially, when model checking popula-

tion protocols, global fairness must take all configurations

where one action can be enabled into account, which often

makes the size the property very large.

In [20], a unified algorithm is presented to verify whether

a system is feasible under different fairness assumptions.

It avoids the problem of constructing a Büchi automaton

from a property with (global) fairness as the premise of

the property. A system is feasible if and only if there ex-

ists at least one infinite execution which satisfies the fair-

ness assumptions. Applied to the product of the system and

the Büchi automaton, the algorithm can be easily extended

to do model checking with fairness. Because of fairness,

nested depth-first-search [11] is not feasible, the algorithm

is therefore based on Tarjan’s algorithm [22] for identifying

strongly connected components. We refer interested readers

to the paper [20] for detailed discussions.

4 Population Ring Protocols

In this section, we take a set of self-stabilizing popula-

tion protocols for ring networks. A distributed system or

a population protocol is said to be self-stabilizing [6] if it

satisfies the following two properties:

• convergence: starting from an arbitrary configuration,

the system is guaranteed to reach a correct configura-

tion;

• closure: once the system reaches a correct configura-

tion, it cannot become incorrect any more.

This means that in our modelling of these protocols, we

have to take all possible initial configurations into account,

and the checked properties have the form of ��property.

The choice of ring topology makes it less demanding when

we model the interactions of nodes (see the example in Sec-

tion 3) and it also makes our models easily scale up to larger

instances. We have selected protocols for two-hop coloring

and orienting nodes and protocols for leader election and to-

ken passing. Note that all these protocols only work under

global fairness.

In the population protocol model, one protocol consists

of N nodes, numbered from 0 to N − 1.3 A protocol is

usually described by a set of interaction rules between an

initiator u and a responder v. Such rules have conditions

on the state and the input of the initiator and the responder,

and specify the state of the initiator and the responder if a

transition can be taken.

4.1 Two hop coloring

A protocol to make nodes to recognize their neighbors in

a ring is presented in [2]. In fact, it is a general algorithm

that enables each node in a degree-bounded graph to dis-

tinguish between its neighbors. The graph is colored such

that any two nodes adjacent to the same node have differ-

ent colors. More precisely, for each node v, if u and w are

distinct neighbors of v, then u and w must have different

colors. (u, w) is called a two-hop pair. In the current paper,

we restrict ourselves to rings, and three colors suffice the

purpose (see [2]).

Each node u in a ring has two state components, color[u]
encodes the color of node u and F[u] is a bit array, indexed

by colors. Initially, color[u] and F[u] can have arbitrary val-

3In the following discussion, we set N as three for simplicity.

84

ues. The following description defines the interaction be-

tween an initiator u and a responder v.

Nondeterministic two-hop coloring protocol.

if F[u][color[v]] �= F[v][color[u]] then
color[u] ← color′[u]
F[u][color[v]] = F[v][color[u]]

else F[u][color[v]] = ¬F[u][color[v]]
F[v][color[u]] = ¬F[v][color[u]] endif

One edge (or interaction) (u, v) is synchronized if

F[u][color[v]] = F[v][color[u]], then these two nodes do

not change their color but flip their bits (F[u][color[v]] and

F[v][color[u]]). On the other hand, node u is nondetermin-

istically recolored, and it copies F[v][color[u]] of node v as

its bit F[u][color[v]]. The statement color[u] ← color′[u]
means one of the three possible colors is nondeterministi-

cally assigned as the new color of u. The model of this

protocol in PAT and its property to be checked are detailed

in Section 3. In [2], a deterministic version of two-hop col-

oring is given as well (see below). Instead of nondetermin-

istically assigning all possible colors to the initiator u, its

color is updated as color[u] ← (color[u] + r[u]) mod C.

The additional state component r[u] is a local bit for node

u that flits whenever u acts as the initiator of an interaction.

We also model and analyse this protocol in PAT.

Deterministic two-hop coloring protocol.

if F[u][color[v]] �= F[v][color[u]] then
color[u] ← (color[u] + r[u]) mod C
F[u][color[v]] = F[v][color[u]]

else F[u][color[v]] = ¬F[u][color[v]];
F[v][color[u]] = ¬F[v][color[u]] endif

r[u] ← ¬r[u]

4.2 Orienting undirected rings

Given a ring colored by protocols in Section 4.1, it is

possible to have a protocol that gives a sense of orientation

to each node on an undirected ring [2]. After the orienting,

(1) each node has exactly one predecessor and one succes-

sor, the predecessor and successor of a node are different;

(2) for any two nodes u and v, u is the predecessor of v if

and only if v is the successor of u, for any edge (u, v), either

u is the predecessor of v or v is the predecessor of u.

Each node u in a ring has three state components:

color[u] encodes the color of node u, precolor[u] the color

of its predecessor, and succolor[u] the color of its successor.

Initially, all nodes are two-hop colored (array color satisfies

the two-hop coloring property), precolor[u] and succolor[u]
can have arbitrary values. The following description defines

the interaction between an initiator u and a responder v.

Orienting an undirected ring protocol.

if color[v] = precolor[u] and color[v] �= succolor[u] then
succolor[v] ← color[u]

elseif color[v] = succolor[u] and color[v] �= precolor[u] then
precolor[v] ← color[u]

else precolor[u] ← color[v]; succolor[v] ← color[u] endif

The PAT model of this protocol is shown in Figure 2 in the

appendix. Lines 2-8 model how two nodes can interact. The

initialization at line 9 makes sure that the nodes are initially

two-hop colored. Line 10 defines a model of orienting an

undirected ring, which takes two-hop coloring as inputs.

The assertions that the protocol satisfies two properties are

given at line 13 and 14. For example, property1 formalizes

that the predecessor and successor of a node are different.

4.3 Leader election

In this section, we study a leader election protocol in

oriented odd rings. The following description is partially

taken from [12, 2]. Supposing each node has a label bit,

a maximal sequence of alternating labels is called a seg-

ment. According to the orientation of the ring, the head

and tail of a segment can be defined in a natural way. One

edge of the form (0, 0) or (1, 1) connecting the tail of one

segment to the head of another segment is called a barrier
edge. For a node u in a ring, it has four state components:

leader[u] states whether the node is a leader, label[u] is its

label, probe[u] is 1 if u holds a probe token, and phase[u]
alternates between 0 and 1 to make each barrier alternate

between firing a probe and moving forward. The protocol

consists of several parts. In the basic part, the barriers move

clockwise around the ring. Each barrier advances by flip-

ping the label bit of the second node on the barrier (the head

of the next segment). When two barriers collide, they can-

cel out each other. Because the ring size is odd, there is

always at least one barrier. In the rest of the protocol, the

leader bullet and probe marks are manipulated. Probes are

sent out by the barrier in a clockwise direction and absorbed

by any leader they run into. If a probe meets the barrier on

its way back, it is converted to leader. Leaders fire bullets
counter-clockwise around the ring. Bullets are absorbed by

the barrier, but they kill any leaders they encounter along

the way. More detailed discussion of the protocol is referred

to [12, 2].

The PAT model of this protocol is shown in Figure 3 in

the appendix. Lines 2-9 model how two nodes can interact.

We have totally eleven (act1.u.v up to act11.u.v) cases sep-

arated according to the protocol description. For example,

the condition of the action act1.u.v collects the conditions

at the first, second and fourth line in the description and the

updates of variables at the second, third, and fourth line,

correspondingly. The initialization of the model is taken

85

care of at line 10, it captures any possible evaluations of the

variables. Line 11 defines how nodes interact in an oriented

ring. Line 12 defines a predicate that there is one leader

in the network. Line 13 claims that the protocol eventually

self-stabilize to a unique leader existing in the network.

Leader election protocol for odd rings.

if label[u] = label[v] then
if probe[u] = 1 then leader[u] ← 1; probe[u] ← 0 endif
bullet[v] ← 0
if phase[u] = 0 then phase[u] ← 1; probe[v] ← 1
elseif probe[v] = 0 then

label[v] = ¬label[v]; phase[v] ← 0
endif

elseif leader[v] = 1 then
if bullet[v] = 1 then leader[v] ← 0
else bullet[u] ← 1 endif

else
if bullet[v] = 1 then bullet[v] ← 0; bullet[u] ← 1 endif
if probe[u] = 1 then probe[u] ← 0; probe[v] ← 1 endif

endif

Counterexample. We have analyzed this protocol in PAT,

and found one counterexample. We consider a ring of size

three, nodes are numbered as 0, 1 and 2. The counterex-

ample found by PAT can be described as follows: it is an

infinite execution containing a loop, u is the node for the

initiator and v for the responder of one interaction accord-

ing to the protocol description. The execution can start with

a configuration bullet = [1, 1, 1], label = [1, 1, 1], leader =
[1, 1, 0], phase = [1, 1, 1], probe = [1, 1, 0].

1. Since label[2] = label[0], probe[2] = 0, phase[2] = 1
and probe[0] = 1, we have bullet[0] ← 0. (u = 2 and

v = 0)

2. Then since label[0] = label[1], probe[0] = 1,

phase[0] = 1 and probe[1] = 1, we have leader[0] ←
1, probe[0] ← 0, and bullet[1] ← 0. (u = 0 and v = 1)

3. Then since label[2] = label[0], probe[2] = 0,

phase[2] = 1 and probe[0] = 0, we have bullet[0] ← 0,

label[0] ← 1− label[0], and phase[0] ← 0. (u = 2 and

v = 0)

4. Then since label[1] = label[2], probe[1] = 1,

phase[1] = 1 and probe[2] = 0, we have leader[1] ←
1, probe[1] ← 0, bullet[2] ← 0, label[2] ← 1−label[2]
and phase[2] ← 0. (u = 1 and v = 2)

5. Then since label[2] = label[0], probe[2] = 0 and

phase[2] = 0, we have bullet[0] ← 0, phase[2] ← 1
and probe[0] ← 1. (u = 2 and v = 0)

Now, we have reached a configuration with bullet =
[0, 0, 0], label = [0, 1, 0], leader = [1, 1, 0], phase =
[0, 1, 1], probe = [1, 0, 0].4 From here, we have a loop.

Within this loop, all actions enabled at reachable configu-

rations of the loop are executed. But these configurations

contain more than two leaders. Hence, this infinite execu-

tion is global fair but not self-stabilizing for leader election.

The loop is given below.

1. Since label[2] = label[0], probe[2] = 0, phase[2] = 1
and probe[0] = 1, we have bullet[0] ← 0. (u = 2 and

v = 0)

2. Then since label[0]! = label[1], leader[1] = 1 and

bullet[1] = 0, we have bullet[0] ← 1. (u = 0 and

v = 1)

3. Then since label[0]! = label[1], leader[1] = 1 and

bullet[1] = 0, we have bullet[0] =← 1. (u = 0 and

v = 1)

4. Then since label[2] = label[0], probe[2] = 0,

phase[2] = 1 and probe[0] = 1, we have bullet[0] =←
0. (u = 2 and v = 0)

The last step in the loop leads us back to the starting con-

figuration of the loop. We have communicated this coun-

terexample to the author of [12], it is confirmed as a valid

counterexample which has escaped simulations of the pro-

tocol [13]. The reason to the counterexample is the fol-

lowing [13]. In the explanation of the protocol, it says that

“probes are sent out by the barrier in a clockwise direction

and absorbed by any leader they run into”. The second half

of the sentence is missing from the pseudo code descrip-

tion. The protocol also requires consistent ordering of the

position of tokens within each node (in the order of leader,

bullet, and probe clockwise). A barrier edge should only

generate a probe at the responder if the responder is not

a leader. Otherwise, the probe would be able to pass the

leader token. In the description, this property is not pre-

served either. Modifications of the description have been

made in [2]. We also modeled the revised version of the pro-

tocol, and found no counterexample. By this case study, we

emphasize that without the newly developed model check-

ing algorithm [20] for efficient verification under (global)

fairness, it is impossible to find such an error in a pseudo

code description of a population protocol, especially when

a protocol tends to be intuitively more complicated.

4.4 Token circulation

The token circulation protocol in directed rings depicted

below is proposed in [1, 2]. The desired behavior of this

4As the protocol is self-stabilizing, the counterexample can start di-

rectly from here. We keep the first part just to faithly represent the infinite

trace found by PAT.

86

protocol can be described as follows: (1) there is only one

node who holds the token; (2) a node does not obtain again

until every other node has obtained a token once; (3) each

node can have the token infinitely often.

Token circulation protocol.

Rule 1. ((∗ b, N), (∗ b, L)) → ((− b), (+ b̄))
Rule 2. ((∗ b, ∗), (∗ b̄, N)) → ((− b), (+ b))

It is assumed that every node passes the token to next

one right after it has got it. Furthermore, the protocol also

requires the existence of a leader. Informally, there is a sta-

tic node with the leader mark L, and all other nodes have the

non-leader mark N in every configuration. The state of each

node is represented by a pair in {−,+} × {0, 1}. + means

that the node is holding a token and − means the opposite.

The second part of a state of a node is called the label. The

∗ here denotes an always-matched symbol. On the left hand

side, the symbol b matches either 0 or 1 and b̄ is its comple-

ment. It should be noticed that different occurrences of b in

a same rule refer to the same value. The input for each node

informs them who is leader, which is unique in the network.

When two nodes interact, if the responder is the leader, it

sets its label to the complement of the initiator’s label; oth-

erwise the responder copies the label from the initiator. If

an interaction triggers a label change, a token is passed from

the initiator to the responder. If a token is not present at the

initiator, a new token is generated.

The PAT model of this protocol is shown in Figure 4 in

the appendix. We only give the assertion for the first prop-

erty. The other two can be defined in a similar way. The

states of the whole system are represented by three arrays of

bits (leader[N], token[N] and label[N]). Without loss of gen-

erality, we assume that node 0 is always the leader. There-

fore, we could simply set each node a fixed input (leader[i])
for leader election without considering complicated details

of a dynamic leader election process, which we have ana-

lyzed in Section 4.3.

5 Verification Results in PAT

Table 1 collects the experimental results of all protocols

presented in the paper. For the two-hop coloring protocol,

there are two version: 1 for nondeterministic and 2 for de-

terministic. For the orienting undirected ring protocol, both

properties in Figure 2 are checked. Leader election proto-

col is only checked for odd rings as required. All protocols,

together with many other system models have been built

inside the latest release of PAT 2.05. The experiment test-

bed is a PC running Windows XP SP3 with 2.83GHz Intel

Q9550 CPU and 4 GB memory. In the table, ‘−’ means out

5http://www.comp.nus.edu.sg/∼pat/.

of memory. Windows XP allocates maximum 2GB mem-

ory for each application, which limits the model checking

for larger state spaces. We skip the statistics on memory

consumption because the dynamic garbage collection facil-

ity in C# makes the estimation inaccurate. Nonetheless, the

number of states and transitions reflect the memory usage.

From the table, firstly it shows that the number of states,

transitions and running time increase rapidly (exponen-

tially) with the number of nodes in rings, especially for

two-hop coloring and leader election protocols. The rea-

son is that these protocols use more state components than

the others, e.g., the arrays. This conforms to the theoret-

ical results. Secondly, we show that PAT is effective, it

can handle millions states in hundreds of seconds (which

is compatible to Spin [11]). Notice that Spin is infeasible

for verifying the protocols because it does not support the

fairness notions6. Although we are bound to check rela-

tively small instances of the protocols, the newly developed

verification techniques in [20], does complement existing

model checkers with the improvement in terms of the per-

formance and ability to handle different forms of fairness.

It enables us to establish the correctness of these protocols

under global fairness or, in the case of the leader election

protocol, identify bugs. Readers can compare the result pre-

sented in [17] on a similar verification practice using the

Spin model checker. The argument for using model check-

ing techniques in general, is that, if there is a bug in the

protocol design, probably it is present in a small network.

6 Concluding Remarks

In the literature, a number of population protocols have

been proposed to solve problems in wireless sensor net-

works. The correctness of these protocols relies on global

fairness, which makes their automatic verification using ex-

isting model checkers expensive or even infeasible. In this

paper, we have applied PAT, a newly developed toolkit han-

dling verification under fairness more efficiently, to a set of

self-stabilizing population ring protocols. We have shown

that the model checking algorithm [20] behind PAT allows

us to successfully verify instances of these protocols. More-

over, it has helped us to identify one previously unknown

bug in a leader election protocol.

During the analysis, we have faced the infamous state

explosion problem (see Table 1). In future, we will explore

how to combine different state space reduction techniques

with the feasibility checking algorithm in [20]. For exam-

ple, we want to explore how to perform abstraction with the

presence of global fairness. The immediate future work is

to apply PAT to other population protocols, such as self-

stabilizing consensus protocols [3, 2].

6Spin supports only process-level weak fairness.

87

Model Property Ring Size Results #States #Transitions Time (Sec)

two-hop coloring1
��twohopcoloring 3 Yes 122856 1972174 43.3

two-hop coloring1
��twohopcoloring 4 Yes − − −

two-hop coloring2
��twohopcoloring 3 Yes 983016 9473998 627

two-hop coloring2
��twohopcoloring 4 Yes − − −

orienting rings ��property1 3 Yes 3200 28540 0.61
orienting rings ��property2 3 Yes 3221 28163 0.64
orienting rings ��property1 4 Yes 69766 883592 18.1
orienting rings ��property2 4 Yes 66863 794662 17.5
orienting rings ��property1 5 Yes 1100756 18216804 601
orienting rings ��property2 5 Yes 1021851 15486265 536
leader election ��oneleader 3 Yes 55100 216699 10.6
leader election ��oneleader 5 Yes − − −

token circulation ��onetoken 3 Yes 244 655 0.07
token circulation ��onetoken 4 Yes 1118 3870 0.13
token circulation ��onetoken 5 Yes 4971 20838 0.58
token circulation ��onetoken 6 Yes 21559 105577 2.86
token circulation ��onetoken 7 Yes 91954 514703 14.9
token circulation ��onetoken 8 Yes 388076 2446736 88.6

Table 1. Experiment Results

References

[1] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-

stabilizing Population Protocols. In OPODIS’05, volume

3974 of LNCS, pages 103–117. Springer, 2005.

[2] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-

stabilizing Population Protocols. ACM Transactions on Au-
tonomous and Adaptive Systems, 3(4):643–644, 2008.

[3] D. Angluin, M. J. Fischer, and H. Jiang. Stabilizing Consen-

sus in Mobile Networks. In DCOSS’06, pages 37–50. IEEE

Computer Society, 2006.

[4] J. Aspnes and E. Ruppert. An Introduction to Population

Protocols. Bulletin of the European Association for Theo-
retical Computer Science, 93:98–117, 2007.

[5] C. Q. Chen, J. S. Dong, and J. Sun. A Verification System

for Timed Interval Calculus. In ICSE’08, pages 271–280.

ACM, 2008.

[6] E. Dijkstra. Self-stabilizing Systems in Spite of Distrib-

uted Control. Communications of the ACM, 17(11):643–

644, 1974.

[7] J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reason-

ing Method for Timed CSP Based on Constraint Solv-

ing. In ICFEM’06, volume 4260 of LNCS, pages 342–359.

Springer, 2006.

[8] J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verifica-

tion of Computation Orchestration Via Timed Automata.

In ICFEM’06, volume 4260 of LNCS, pages 226–245.

Springer, 2006.

[9] M. J. Fischer and H. Jiang. Self-stabilizing Leader

Election in Networks of Finite-state Anonymous Agents.

In OPODIS’06, volume 4305 of LNCS, pages 395–409.

Springer, 2006.

[10] M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL

Model Checking. In TACAS’05, volume 3440 of LNCS,

pages 191–205. Springer, 2005.
[11] G. J. Holzmann. The Spin Model Checker: Primer and Ref-

erence Manual. Addison-Wesley, 2003.
[12] H. Jiang. Distributed Systems of Simple Interacting Agents.

PhD thesis, Yale University, 2007.
[13] H. Jiang. Personal communications, 2008.
[14] Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model Check-

ing with Strong Fairness. Formal Methods in System Design,

28(1):57–84, 2006.
[15] T. Latvala and K. Heljanko. Coping with Strong Fairness.

Fundamenta Informaticae, 43(1-4):175–193, 2000.
[16] M. Musuvathi and S. Qadeer. Fair stateless model checking.

In PLDI’08, pages 362–371. ACM Press, 2008.
[17] J. Pang, Z. Luo, and Y. Deng. On Automatic Verification

of Self-stabilizing Population Protocols. In TASE’08, pages

185–192. IEEE Computer Society, 2008.
[18] J. Pang, Z. Q. Luo, and Y. X. Deng. On Automatic Verifi-

cation of Self-stabilizing Population Protocols. Frontiers of
Computer Science in China, 2(4):357–367, 2008.

[19] J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Revis-

ited: Introducing a Process Analysis Toolkit. In ISoLA’08,

volume 17 of Communications in Computer and Informa-
tion Science, pages 307–322. Springer, 2008.

[20] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexi-

ble Verification under Fairness. In CAV’09, 2009. to appear.
[21] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Speci-

fying and Verifying Event-based Fairness Enhanced Sys-

tems. In ICFEM’08, volume 5256 of LNCS, pages 318–337.

Springer, 2008.
[22] R. Tarjan. Depth-first Search and Linear Graph Algorithms.

SIAM Journal on Computing, 2:146–160, 1972.

88

Appendix

1. #define N 3; #define C 3; var color[N]; var precolor[N]; var succolor[N];
2. Interaction(u, v) = if (color[v] == precolor[u]&&color[v]! = succolor[u]){
3. act1.u.v{succolor[v] = mycolor[u]; }−> Interaction(u, v)
4. } elseif (color[v] == succolor[u]&&color[v]! = precolor[u]){
5. act2.u.v{precolor[v] = color[u]; }−> Interaction(u, v)
6. } else {
7. act3.u.v{precolor[u] = color[v]; succolor[v] = color[u]; }−> Interaction(u, v)
8. };
9. Init() = ...
10. OrientingUndirected() = Init(); ||| x : {0..N − 1}@(Interaction(x, (x + 1)%N) ||| Interaction((x + 1)%N, x));
11. #define property1 (x : 0..N − 1@precolor[x]! = succolor[x]));
12. #define property2 (...);
13. #assert OrientingUndirected() |= <> []property1;
14. #assert OrientingUndirected() |= <> []property2;

Figure 2. PAT Model for Orienting Undirected Ring Protocol

1. #define N 3; var leader[N]; var label[N]; var probe[N]; var phase[N]; var bullet[N];
2. Interact(u, v) =
3. [label[u] == label[v]&&probe[u] == 1&&phase[u] == 0]
4. act1.u.v{leader[u] = 1; probe[u] = 0; bullet[v] = 0; phase[u] = 1; probe[v] = 1;}−> Interact(u, v)
5. [][label[u] == label[v]&&probe[u] == 1&&phase[u] == 1&&probe[v] == 0]
6. act2.u.v{leader[u] = 1; probe[u] = 0; bullet[v] = 0; label[v] = 1 − label[v]; phase[v] = 0;}−> Interact(u, v)
7. []...
8. [][label[u]! = label[v]&&leader[v] == 0&&bullet[v] == 1&&probe[v] == 0]
9. act11.u.v{bullet[u] = 1; bulllet[v] = 0;}−> Interact(u, v)
10. Init() = ...
11. LeaderElection() = Init(); (||| x : 0..N − 1@Interaction(x, (x + 1)%N));
12. #define leaderelection (leader[0] + leader[1] + leader[2] = 1);
13. #assert LeaderElection() |=<> []leaderelection;

Figure 3. PAT Model for Leader Election Protocol in Odd Rings

1. #define N 3; var leader[N]; var label[N]; var token[N];
2. Rule1(u, v) = [!leader[u]&&leader[v]&&label[u] = label[v]]
3. rule1.u.v{token[u] = 0; token[v] = 1; label[v] = 1 − label[u];}−> Rule1(u, v);
4. Rule2(u, v) = [!leader[v]&&label[u]! = label[v]]
5. {rule2.u.v{token[u] = 0; token[v] = 1; label[v] = label[u];}−> Rule2(u, v)};
6. Init() = ...
7. TokenCirculation() = Init(); (||| x : 0..N − 1@(Rule1(x, (x + 1)%N) ||| (Rule2(x, (x + 1)%N));
8. #define onetoken(token[0] + token[1] + token[2] == 1);
9. #assert TokenCirculation() |=<> []onetoken;

Figure 4. PAT Model for Token Circulation Protocol

89

	Verification of population ring protocols in PAT
	Citation

	Verification of Population Ring Protocols in PAT

