
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2009

Towards expressive specification and efficient model checking Towards expressive specification and efficient model checking

Jin Song DONG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
DONG, Jin Song and SUN, Jun. Towards expressive specification and efficient model checking. (2009).
Proceedings of the 2009 Third IEEE International Symposium on Theoretical Aspects of Software
Engineering, Tianjin, China, July 29-31. 9-9.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5043

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5043&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards Expressive Specification and Efficient Model Checking

Jin Song Dong
National University of Singapore
dongjs@comp.nus.edu.sg

Jun Sun
National University of Singapore

sunj@comp.nus.edu.sg

System modeling is important and highly non-trivial.
The choice of specification language is an important fac-
tor in the success of the entire development. The language
should cover several facets of the requirements and the
model should precisely capture (up to abstraction of irrele-
vant details) an existing system or a system to be built. The
language should have a semantic model suitable to study the
behaviors of the system and to establish the validity of de-
sired properties. A formal model can be the basis for a va-
riety of system development activities, e.g., system simula-
tion, visualization, verification or prototype synthesis.
In general, specifications are not necessarily executable

[2]. Over the last decade, expressiveness is the main driv-
ing force in the specification language research community.
Many integrated formal specification languages have been
proposed in order to model systems with not only compli-
cated control flows but also complex data structures and op-
erations. Examples include Circus [6] and TCOZ [3]. How-
ever the downside of the high expressitiveness is that it is
extremely difficult to develop automatic reasoning tools for
those languages. On the other hand, popular model checkers
like SPIN, SMV and FDR are designed for specialized do-
mains and are therefore based on restrictive modeling lan-
guages. For instance, Promela (supported by SPIN) is based
on a subset of CSP for communicating network protocols.
The input language of SMV is initially designed for specifi-
cation of hardware circuits. A number of compositional op-
erators which model common system behavior patterns are
missing in both languages. FDR, which supports all opera-
tors of CSP, however, lacks support of shared variables or
non-trivial data-types. Language limitations can be signifi-
cant barrier to the practical verification of complex systems.
We share the views that specifications are prefer-

ably executable [1]. In this tutorial, we introduce our
latest effort on combining the expressiveness of inte-
grated formal specification languages with the power of
mechanical system analysis method like model check-
ing. We present a process analysis toolkit (PAT [4, 5],
available at http://pat.comp.nus.edu.sg), which is a
self-contained framework for system specification, simu-
lation and verification. PAT supports a modeling language
named CSP# (short for communicating sequential pro-

grams), which shares similar design principle with spec-
ification languages like TCOZ. Nonetheless, instead of
relying on the Z language, CSP# mixes high-level mod-
eling operators with low-level programs, for the pur-
pose of flexible system modeling and efficient verification.
In CSP#, data operations can be modeled as terminating se-
quential programs, which then can be composed using
high-level compositional operators. The idea is to treat se-
quential terminating programs, which may indeed be C#
programs, as internal events. The result is a highly expres-
sive modeling language which covers many application
domains.
CSP# models are executable with complete operational

semantics, and therefore subject to fully automated system
verification techniques like model checking. PAT verifies
CSP# models using state-of-art model checking techniques,
e.g., on-the-fly explicit state model checking with partial or-
der reduction. Besides new modeling techniques, PAT com-
plements existing model checkers in a number of aspects.
For instance, it supports an assertion language which allows
LTL formulae constituted with propositions and events. It
has dedicated algorithms for model checking under a vari-
ety of fairness constraints, which are often required for veri-
fication of liveness properties. CSP# and PAT have been ap-
plied a many systems including distributed algorithms, con-
current data objects, parameterized systems, etc. Previously
unknown bugs have been identified.

References

[1] N.E. Fuchs. Specifications are (preferably) executable. Soft-
ware Eng. Journal, 7:323–334, 1992.

[2] I. Hayes and C. Jones. Specifications are not (necessarily) ex-
ecutable. Software Eng. Journal, 4:330–339, 1989.

[3] B. Mahony and J. S. Dong. Timed Communicating Object Z.
IEEE Trans. on Soft. Eng., 26(2):150–177, 2000.

[4] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. CAV’09, 2009. to appear.

[5] J. Sun, Y. Liu, J. S. Dong, and H. Wang. Specifying and Veri-
fying Event-based Fairness Enhanced Systems. In ICFEM’08,
volume 5256 of LNCS, pages 318–337. Springer, 2008.

[6] J. Woodcock and A. Cavalcanti. The Semantics of Circus. In
ZB 2002, volume 2272 of LNCS, pages 184–203, 2002.

2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3757-3/09 $25.00 © 2009 IEEE

DOI 10.1109/TASE.2009.63

9

	Towards expressive specification and efficient model checking
	Citation

	Towards Expressive Specification and Efficient Model Checking

