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Abstract. Linearizability is an important correctness criterion for implementa-
tions of concurrent objects. Automatic checking of linearizability is challenging
because it requires checking that 1) all executions of concurrent operations be
serializable, and 2) the serialized executions be correct with respect to the se-
quential semantics. This paper describes a new method to automatically check
linearizability based on refinement relations from abstract specifications to con-
crete implementations. Our method avoids the often difficult task of determining
linearization points in implementations, but can also take advantage of lineariza-
tion points if they are given. The method exploits model checking of finite state
systems specified as concurrent processes with shared variables. Partial order re-
duction is used to effectively reduce the search space. The approach is built into a
toolset that supports a rich set of concurrent operators. The tool has been used to
automatically check a variety of implementations of concurrent objects, including
the first algorithms for the mailbox problem and scalable NonZero indicators. Our
system was able to find all known and injected bugs in these implementations.

1 Introduction

Linearizability is an important correctness criterion for implementations of objects
shared by concurrent processes, where each process performs a sequence of operations
on the shared objects. Informally, a shared object is linearizable if each operation on
the object can be understood as occurring instantaneously at some point, called the
linearization point, between its invocation and its response, and its behavior at that
point is consistent with the specification for the corresponding sequential execution of
the operation.

One common strategy for proving linearizability of an implementation (used in man-
ual proofs or automatic verification) is to determine linearization points in the imple-
mentation of all operations and then show that these operations are executed atomically
at the linearization points [11/229]]. However, for many concurrent algorithms, it is dif-
ficult or even impossible to statically determine all linearization points. For example,
in the K-valued register algorithm (Section 10.2.1 of [4]]), linearization points differ
depending on the execution history. Furthermore, the linearization points determined
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might be incorrect, which can give wrong results of linearizability. Therefore, it is de-
sirable to have automatic solutions to verifying these algorithms without knowing lin-
earization points. However, existing methods for automatic verification without using
linearization points either apply to limited kinds of concurrent algorithms or are
inefficient [29].

Contribution. This paper describes a new method for automatically checking lineariz-
ability based on refinement relations from abstract specifications to concrete imple-
mentations. Our method does not rely on knowing linearization points, but can take
advantage of them if given. The method exploits model checking of finite state systems
specified as concurrent processes with shared variables, and is not limited to any partic-
ular kinds of concurrent algorithms. We exploit powerful optimizations to improve the
efficiency and scalability of our checking method.

Refinement requires that the set of execution traces of a concrete implementation be
a subset of that of an abstract specification. Thus, we express linearizability as trace
refinement of operation invocations and responses from the abstract specification to the
concrete implementation, where the abstract specification is correct with respect to se-
quential semantics. The idea of refinement has been explored before: Alur et al.
showed that linearizability can be cast as containment of two regular languages, and
Derrick et al. expressed linearizability as non-atomic refinement of Object-Z and
CSP models. Some similar approaches prove linearizability using trace simu-
lation. In this work, we give a general and rigorous definition of linearizability, regard-
less of the modeling language used, using refinement.

Our model checking method exploits on-the-fly refinement checking (so that coun-
terexamples, if any, can be produced without generating the entire search space, as in
FDR [20Q]), partial order reduction (to effectively reduce the search space), symmetry
reduction (to handel large or even unbounded number of processes) and other optimiza-
tions. If linearization points are known and can be marked in the implementation, our
approach constructs an even smaller search space. Some of the optimizations are spe-
cialized for linearizability checking while others are general. The result is a powerful
linearizability checking method that is much more efficient than prior work. A model
checking tool, PAT [24] (http://pat.comp.nus.edu.sg),is developed to provide automated
support for this approach. PAT supports an event-based modeling language that has a
rich set of concurrent operators. Our engineering effort realizes all these optimizations
in PAT. We have used PAT to automatically check not only established algorithms, such
as concurrent stack and queue algorithms, but also larger and more sophisticated al-
gorithms that were not formally verified before—the first algorithms for the mailbox
problem [3] and scalable NonZero indicators [[T1]]. Both algorithms use sophisticated
data structures and control structures, so the linearization points are difficulty to de-
termine. The verification details of the two algorithms can be found in and
respectively. Counterexamples were reported quickly for incorrect algorithms, such as
an incorrect implementation of concurrent queues [21]]. Experimental results show that
our solution is much more efficient and scalable than prior work [29].

The rest of the paper is structured as follows. Section 2 gives the standard defini-
tion of linearizability. Section 3 shows how to express linearizability using refinement
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relations in general. Section 4 describes verification and optimization methods. Section 5
presents experimental results. Section 6 discusses related work and concludes.

2 Linearizability

Linearizability is a safety property of concurrent systems, over sequences of events
corresponding to the invocations and responses of the operations on shared objects. It
is formalized as follows.

In a shared memory model M, O = {01, ..., o5} denotes the set of k shared objects,
P ={p1,...,pn} denotes the set of n processes accessing the objects. Shared objects
support a set of operations, which are pairs of invocations and matching responses.
Every shared object has a set of states that it could be in. A sequential specification
of a (deterministic) shared objecﬂl is a function that maps every pair of invocation and
object state to a pair of response and a new object state.

The behavior of M is defined as H, the set of all possible sequences of invocations
and responses together with the initial states of the objects. A history o € H induces
an irreflexive partial order <, on operations such that op; <, ops if the response of
operation op; occurs in o before the invocation of operation ops. Operations in o that
are not related by <, are concurrent. o is sequential iff <, is a strict total order. Let
ol; be the projection of o on process p;, which is the subsequence of o consisting of all
invocations and responses that are performed by p;. Let o|,, be the projection of o on
object o;, which is the subsequence of ¢ consisting of all invocations and responses of
operations that are performed on object o;.

A sequential history o is legal if it respects the sequential specifications of the ob-
jects. More specifically, for each object o;, if s; is the state of o; before the invocation of
the j-th operation op; in o|,,, then response of op; and the resulting new state s; 1 of
o,; follow the sequential specification of o;. For example, a sequence of read and write
operations of an object is legal if each read returns the value of the preceding write
if there is one, and otherwise it returns the initial value. Every history ¢ of a shared
memory model M must satisfy the following basic properties:

Correct interaction. For each process p;, o|; consists of alternating invocations and
matching responses, starting with an invocation. This property prevents pipelining
operations.

Closeness. Every invocation has a matching response. This property prevents pending
operations.

In addition to these two, liveness property is also important for some critical systems,
which guarantees the progress of the systems. Even if the model satisfies linearizabil-
ity, it may not progress as desired. For instance, even under a fair scheduler Treiber’s
push/pop might never terminate if there is always another concurrent push/pop.
We remark that liveness properties can be formulated as Linear Temporal Logic (LTL)
formulae (an example is given at the end of Example 1) and checked using standard
LTL model checkers (with or without the assumption of a fair scheduler).

! More rigorously, the sequential specification is for a rype of shared objects. For simplicity,
however, we refer to both actual shared objects and their types interchangeably in this paper.
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Given a history o, a sequential permutation 7 of ¢ is a sequential history in which
the set of operations as well as the initial states of the objects are the same as in . The
formal definition of linearizability is given as follows.

Linearizability. There exists a sequential permutation 7 of o such that
1. for each object o;, 7|,, is a legal sequential history (i.e. 7 respects the sequen-
tial specification of the objects), and
2. if op1 <, op2, then op; <, ops (i.e., ™ respects the run-time ordering of
operations).

Linearizability can be equivalently defined as follows: In every history o, if we assign
increasing time values to all invocations and responses, then every operation can be
shrunk to a single time point between its invocation time and response time such that
the operation appears to be completed instantaneously at this time point [16/4]]. This
time point for each operation is called its linearization point. Linearizability is a safety
property [[16], so its violation can be detected in a finite prefix of the execution history.

Linearizability is defined in terms of the interface (invocations and responses) of
high-level operations. In a real concurrent program, the high-level operations are im-
plemented by algorithms on concrete shared data structures, e.g., using a linked list to
implement a shared stack object. Therefore, the execution of high-level operations may
have complicated interleaving of low-level actions. Linearizability of a concrete con-
current algorithm requires that, despite complicated low-level interleaving, the history
of high-level invocation and response events still has a sequential permutation that re-
spects both the run-time ordering among operations and the sequential specification of
the objects. This idea is formally presented in the next section using refinement relations
in a process algebra extended with shared variables.

3 Linearizability as Refinement Relations

We model concurrent systems using a process algebra extended with shared variables.
The behavior of a model is described using a labeled transition system generated from
the model. We define linearizability as a refinement relation from an implementation
model to a specification model.

3.1 Modeling Language

We introduce the relevant subset of syntax of CSP (Communicating Sequential Pro-
cesses) [14] extended with shared variables and give its operational semantics. Note
that our approach is not limited to process algebra like CSP; it is also applicable to
any programming language with formal operational semantics. We chose this language
because of its rich set of operators for concurrent communications.

Definition 1 (Process). A process P is defined using the grammaiﬁ:

P ::= Stop | Skip | e{assignments} — P | P\ X | Py; Py | Py O Py
| Pr<b> Py | Pl Pal] - |l Pn

% Parallel composition (P || P || --- || Py) is omitted in the paper since it is irrelevant to our
discussion. We include it in our technical report [13].
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where P, Py, Po, ..., P, are processes, e is a name representing an event with an op-
tionally attached sequence of assignments to shared variables, X is a set of names,
and b is a Boolean expression.

Stop is the process that communicates nothing, also called deadlock. Skip = v* —
Stop, where v is the termination event. Event prefixing e — P performs e and af-
terwards behaves as process P. If e is attached with assignments, the valuation of the
shared variables is updated accordingly. For simplicity, assignments are restricted to
update only shared variables. Process P \ X hides all occurrences of events in X. An
event is invisible iff it is explicitly hidden by the hiding operator P \ X. Sequential
composition, Py; Ps, behaves as P; until its termination and then behaves as Ps. Ex-
ternal choice P; O Ps is solved only by the occurrence of a visible event. Conditional
choice P; <1 b > P, behaves as P; if the Boolean expression b evaluates to true, and
behaves as P» otherwise. Indexed interleaving Py ||| P2 ||| - - - ||| Py runs all processes
independently except for communication through shared variables. Processes may be
recursively defined, and may have parameters (see examples later).

The most noticeable extension to CSP is the use of shared variables. It has long
been known [14]] that one can model a variable as a process parallel to the processes
that use it. Nevertheless, direct support of variables allows concise modeling and ef-
ficient verification. The shared memory contains integer/Boolean variables and arrays,
which can be read/written atomically by all processes. Nonblocking algorithms use syn-
chronization primitives such as compare and swap (CAS) and load linked (LL)/store-
conditional (SC). Our language provides strong support for these synchronization
primitives by using conditional choices, which is elaborated in [32]]. The complete syn-
tax and formal operational semantics of our language is presented in [23]).

The semantics of a model is defined with a labeled transition system (LTS). Let X/
denote the set of all visible events and 7 denote the set of all invisible events. Since
invisible events are indistinguishable, we sometimes also use 7 to represent an arbitrary
invisible event. Let X* be the set of finite traces. Let - be X U 7.

Definition 2 (LTS). A LTS is a 3-tuple L = (S, init, T) where S is a set of states,
it € S is the initial state, and T C S x X, x S is a labeled transition relation.

For states s, s’ € S and e € X, we write s — s’ to denote (s, e,s’) € T. The set of
enabled events at s is enabled(s) = {e: 3, | Is' € 8,5 5 s'}. We write s ~ 257"
s’ iff there exist s1,-- -, $,41 € S such that s; 5 si41 foralll < i < n, sy = sand

. T T
Sne1 = s, and s 5 ¢ iff s = s’ or s ' '. The set of states reachable from s
by performing zero or more 7 transitions is 7*(s) = {s’ : S | s =5 s'}. Let tr : X*

.. t . . .
be a sequence of visible events. s = s’ if and only if there exist e, e, - -, e, € X
such that s 257 &/ and tr = (ey, ea,- -, e,) | 7 is the trace with invisible events

removed. The set of traces of L is traces(L) = {tr: X* | I’ € S, init £ s’}

For example, Fig. [[lshows a LT generated from ReaderA process in Example 1,
where 7 labels are omitted for simplicity. Due to the use of shared variables, a state of
the system is a pair (P, V), where P is the current process expression, and V is the

3 The dotted circles will be explained in Section @l and should be ignored for now.
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- ~Tread_iny; P ~read_iny—"-
ooy o)

""" " Tead_res.2

Fig.1. A LTS Example

current valuation of the shared variables represented as a mapping from names to values.
Given a LTS (S, init, T), the size of .S can be infinite for two reasons. First, variables
may have infinite domains. Second, processes may allow unbounded replication by
recursion, e.g., P = (¢ — P; ¢ — Skip) O b — Skip,or P = a — P ||| P. In this
paper, we consider only LTSs with a finite number of states. In particular, we bound
the sizes of value domains and the number of processes by constants. In our examples,
bounding the sizes of value domains also bounds the depths of recursions.

Definition 3 (Refinement). Let L;,, = (Sim, initim, Tim) be a LTS for an implemen-
tation. Let Lgy, = (Ssp, initsp, Tsp) be a LTS for a specification. Liy, refines Lgy,, writ-
ten as Ly .5 Lgp, iff traces(Liy) C traces(Lgp).

3.2 Linearizability

This section shows how to create high-level linearizable specifications and how to use
a refinement relation to define linearizability of concurrent implementations.

To create a high-level linearizable specification for a shared object, we rely on the
idea that in any linearizable history, any operation can be thought of as occurring at
some linearization point. We define the specification LTS L, = (Ssp, initsp, Tsp) for
a shared object o in the following way. Every execution of an operation op of o on a
process p; includes three atomic steps: the invocation action inv(op);, the lineariza-
tion action lin(op);, and the response action res(op, resp);. The linearization action
lin(op); performs the computation based on the sequential specification of the object.
In particular, it maps the invocation and the object state before the operation to a new
object state and a response, changes the object to the new state, and buffers the re-
sponse resp locally. The response action res(op, resp), generates the actual response
resp using the buffered result from the linearization action. Each of the three actions is
executed atomically without being interfered by any other action, but the three actions
of one operation may be interleaved with the actions of other operations. In Lg,, all
inv(op),; and res(op, resp), are visible events, while lin(op); are invisible events.

In a LTS Ly, = (Ssp, initsp, Tsp), each process p; has (a) an idle state s, o, (b)
a state s(op)p, 1 for every operation op of object o, representing the state after the
invocation of op but before the linearization action of op, and (¢) s(op, resp)p, 2 for
every operation op and every possible response resp of this operation, representing the
state after the linearization action of op but before the response of op. Then S, is
the cross product of all object values and all process states. init,, is the combination
of the initial value of object o and sy, o’s for all processes p,. For s € Ss,, let s, be
the value of object o encoded in s, s, be the state of p; in s, and s_,,, and s_,, _, be
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the state s excluding s,, and excluding s,, and s,, , respectively. The labeled transition
relation Ty, is such that for (s,e,s’) € T, (a) if e = inv(op),, then s_,, = s’fpi,
Sp, = Sp,0, and s, = s(op)y, 15 (b) if e = lin(op);, then s_p, —, = s, _, .
sp, = s(0p)p,,1, and s, = s(op, resp),, 2, such that s, and resp are the new object
value and the response, respectively, based on the sequential specification of object o
as well as the old object state s, and the state s,, = s(op),, 1 of process p;; (c) if

A A
e = res(op, resp);, then s_,, = 8L s Sp = s(op, resp)p, 2, and 8y, = Sp;.0-

Example 1 (K-valued register). We use a shared K-valued single-reader single-writer
register algorithm (Section 10.2.1 of [4]) to demonstrate the ideas above. The lineariz-
able abstract model is defined as follows, where R is the shared register with initial
value K, and M is a local variable to store the value read from R.

ReaderA() = read inv — read{M = R; } — read res.M — ReaderA();
WriteA(v) = write inv.v — write{ R = v; } — write res — Skip;

WriterA() = (WriteA(0) O WriteA(1) O ... O WriteA(K — 1)); WriterA();
RegisterA() = (ReaderA() ||| WriterA())\{read, write};

The ReaderA process repeatedly reads the value of register R and stores the value
in local variable M. Event read res.M returns the value in M. WriteA(v) writes the
given value v into R. Event write inv.v stores the value v to be written into the register.
The WriterA process repeatedly writes a value in the range of 0 to K — 1. External
choices are used here to enumerate all possible values. RegisterA interleaves the reader
and writer processes and hides the read and write events (linearization actions). The
only visible events are the invocation and response of the read and write operations.
This model generates all the possible linearizable traces.

We now consider a LTS L;,;, = (Sim, initin, Tim) that supposedly implements ob-
ject o. The visible events of L;,, are also those inv(op);’s and res(op, resp);’s. For
example, the following models an implementation of a K -valued register using an ar-
ray B of K binary registers (storing only 0 and 1).

Reader() = read inv — UpScan(0);
UpScan(1) = DownScan(i —1,i) < B[i] =1 > UpScan(i + 1);
DownScan(i,v) = (read res.v — Reader()) < i < 0>

(DownScan(i —1,4) < Bli] = 1 > DownScan(i — 1, v));
Write(v) = write inv.v — T7{B[v] = 1; } — WriterScan(v — 1);
WriterScan (i) = (write res — Skip) <1 < 0 >

(r{Bi] = 0; } — WriterScan(i — 1));

Writer() = (Write(0) O Write(1) O ... 0O Write(K)); Writer();
Register() = Reader() ||| Writer();

The Reader process first does a upward scan from element 0 to the first non-zero ele-
ment ¢, and then does a downward scan from element ¢ — 1 to element 0 and returns
the index of last element whose value is 1. Event read res.v returns this index as the
return value of the read operation. The Write(v) process first sets the v-th element of
B to 1, and then does a downward scan to set all elements before 7 to 0. Note that
in this implementation, the linearization point for Reader is the last point where the
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parameter v in DownScan process is assigned in the execution. Therefore, the lin-
earization point can not be statically determined. Instead, it can be in either UpScan or
DownScan. We remark that one liveness property can be verified by model checking
Oread inv = Oread res where [0 and > are modal operators which read as ‘always’
and ‘eventually’ respectively. O

Theorem 1 characterizes linearizability of the implementation through a refinement
relation and thus establishes our approach to verifying linearizability. Different ver-
sions of this result appeared in distributed computing literature, for example, in Lynch’s
book [16], Theorems 13.3-13.5.

Theorem 1. All traces of Liy, are linearizable iff Liy, 3 L.

Proof (sketch). Sufficient condition: For any trace o € traces(L;p, ), because Ly, 5
Ly, o is also a trace of Lg,. Let p be the execution history of L, that generates the
trace 0. We define the sequential permutation 7 of ¢ as the reordering of operations in
o in the same order as the linearization actions lin(op);’s of all operations op and all
processes p; in p. If op; <, op2, the linearization action of op; must be ordered before
the linearization action of ops in p, and thus op; <, ops. It is also easy to verify that 7
is a legal sequential history of object o, since the linearization action of every operation
in p is the only action in the operation that affects the object state based on its sequential
specification, and the order of operations in 7 respects the order of linearization actions
in p.

Necessary condition: Let o be a trace of L;,,. By assumption o is linearizable. We
need to show that o is also a trace of L,. Since o is linearizable, there is a sequential
permutation 7 of o such that 7 respects both the sequential specification of object o and
the run-time ordering of the operations in o. We construct an execution history p of Ly,
from o and 7 as follows. Starting from the first event of o, for any event e in o, (a) if it
is an invocation event, append it to p; (b) if it is a response event res(op, resp);, locate
the operation op in 7, and for each unprocessed operation op’ by a process j before
op in m, process op’ by appending a linearization action lin(op’); to p, following the
order of 7; finally append lin(op); and res(op, resp); to p. It is not difficult to show
that the execution history p constructed this way is indeed a history of L,. Moreover,
obviously the trace of p is 0. Therefore, o is also a trace of L. O

The above theorem shows that to verify linearizability of an implementation, it is
necessary and sufficient to show that the implementation LTS is a refinement of the
specification LTS as we defined above. This provides the theoretical foundation of our
verification of linearizability. Notice that the verification by refinement given above
does not require identifying low-level actions in the implementation as linearization
points, which is a difficult (and sometimes even impossible) task. In fact, the verifica-
tion can be automatically carried out without any special knowledge about the imple-
mentation beyond knowing the implementation code.

In some cases, one may be able to identify certain events in an implementation as
linearization points. We call these linearization events. For example, three linearization
events have been identified in the stack algorithm [2]]. In these cases, we can make these
events visible and hide other events (including the invocation and response events) and
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verify refinement relation only for these events. More specifically, we obtain a speci-
fication LTS L’Sp by the following two modifications to Lg),: (a) for each linearization
action lin(op);, we change it to lin(op, resp); so that the response resp computed by
this linearization action is included; and (b) all linearization actions are visible while all
inv(op); and res(op, resp); are invisible. Let L, be an implementation LTS such that
its linearization events are visible and all other events are invisible, and its linearization
events are also specified as lin(op, resp);.

Theorem 2. Let L’sp and L', be the specification and implementation LTSs such that
linearization events are specified as lin(op, resp); and are the only visible events. If
L, 3., L;p, then the implementation is linearizable. Conversely, if the implementation
is linearizable, and it can be shown that no other actions in the implementation can be

L . ) )
linearization actions, then Ly, Jp Ly,.

The proof of the theorem can be found [15]. With this theorem, the verification of lin-
earizability could be more efficient based on only linearization events. However, one
important remark is that, as stated in the theorem, to make refinement a necessary con-
dition of linearizability in this case, one has to show that no other actions in the im-
plementation can be linearization points. In other words, the determined linearization
points have to be complete. Otherwise, even if the verification finds a counterexample
for the refinement relation, we cannot conclude that the implementation is not lineariz-
able since we may have failed in determining all possible linearization events. Examples
of implementations modeled using linearization points can be found in [13]].

4 Verification of Linearizability

This section presents a general algorithm for refinement checking, which is further ex-
tended with partial order reduction and other optimizations.

4.1 Refinement Checking Algorithm

To establish a refinement relationship, every reachable state of the implementation must
be compared with every state of the specification reachable via the same trace. Because
of nondeterminism caused by interleaving of multiple clients and invisible events, there
may be many such states in the specification. Thus, the specification is normalized, by
standard subset construction. A normalized state is a set of states that can be reached
by the same trace from a given state.

Definition 4 (Normalized LTS). Let (S, init, T') be a LTS. The normalized LTS is
(NS, Ninit, NT) where NS is the set of subsets of S, Ninit = 7*(init), and NT =
{(P,e,Q) | PeENSAQ={s:S |3 :P, Fn:8, (n,e,m2) € TAsEcE
7 (v2)}}

Given a normalized state s € NS, enabled(s) is |, ., enabled(r). Given a LTS con-
structed from a process, the normalized LTS corresponds to the normalized process. A
state in the normalized LTS groups a set of states in the original LTS which are all con-
nected by T-transitions. For instance, the dotted circles in Fig. [l shows the normalized
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procedure linearizability (Impl, Spec)
1. checked := @; pending.push((initim, 7" (initsp)));
2. while pending is not empty do

3. (Im, NSp) := pending.pop();

4 checked := checked U {(Im,NSp)};

5. if enabled(Im) ¢ (enabled(NSp) U {r}) then -C1
6. return false;

7 endif

8 foreach (Im', NSp') € next(Im, NSp)

9. if (Im’, NSp') & checked then

10. pending.push((Im’, NSp"));

11. endif

12. endfor

13. endwhile
14. return true;

Fig. 2. Algorithm: linearizability(Impl, Spec)

states. Notice that, given a trace, the normalized transition relation N7 is deterministic,
i.e., for any normalized state P and any event e, there is at most one normalized state
@ such that (P,e, Q) € NT.

Based on the refinement checking algorithms in FDR [19], we present a modi-
fied on-the-fly refinement checking algorithm that applies partial order reduction. We
remark that partial order reduction is an effective reduction method due to the na-
ture of concurrent algorithms. Let Spec = (Ssp, inits,, Tsp) be a specification and
Impl = (Sim, initiy,, Tim) be an implementation. Refinement checking is reduced to
reachability analysis of the product of Impl and normalized Spec. Because normaliza-
tion in general is computationally expensive, our checking algorithm in Fig. 2l performs
normalization on-the-fly, whilst searching for a counterexample.

The algorithm in Fig. Rlperforms a depth-first search for a pair (Im, NSp) where Im
is a state of the implementation and NSp is a normalized state of the specification such
that, the set of enabled events of Im is not a subset of those of NSp (C1). The algorithm
returns true if no such pair is found. If C1 is satisfied, a counterexample violating trace
refinement is found. The procedure for producing a counterexample is straightforward
and hence omitted. Lines 8 to 12 proceed to explore new states of the product of Impl
and Spec and push them onto the stack pending. Function next(Im, NSp) returns the
children of state (/m, NSp) in the product, which is the following set,

{(Im’', NSp) | (Im,7,Im") € Tin,} U {(Im',NSp") | 3e, (Im,e,Im’) € Tim A
Vs: NSp', 3s1: NSp, Iso: NSp', (s1,€,8) € Tsp A s € 7(s2)}

A new state of the product is obtained by either the implementation taking a 7 transition
(and the specification remains unchanged) or the implementation and the specification
engaging the same event simultaneously. To compute next(Im, NSp) (e.g., calculating
T*(s2)), it is necessary to compute the set of states reached by a 7-transition from a
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procedure tau(S)

1. foreach P;

2. por := enabledp,(S) C 7U X A enabledp,(S) = current(P;);

3. foreach e € enabledp, (S)

4. por := por A Tonstack(e) AV e :X;, j#1i= "dep(e,e');

5. endfor

6. if por then return {(((-+- ||| P/ Il \ X), V) | (i, V) = (P, V)};
7. endfor

8. return {S' | S = S'};

Fig. 3. Algorithm: tau(S)

given state. This function is implemented by procedure tau(.S) (Fig.[3), which explores
all outgoing transitions of S and returns the set of states reachable from S via one
T-transition. It uses partial order reduction and is explained in the next section.

The linearizability algorithm is linear in the number of transitions in the prod-
uct. Assume both Impl and Spec have finite states. The algorithm terminates because
checked is monotonically increasing. The soundness of the algorithm follows from [19].
Because normalization is done on-the-fly, it is possible to find a counterexample before
the specification is completely normalized.

4.2 Optimizations

Like any model checking algorithm, linearizability checking suffers from state space
explosion. This section describes several optimization techniques to solve this problem.
Partial order reduction (POR) is effective for checking linearizability. Our reduc-
tion realizes and extends early works on POR for process algebras and refine-
ment checking [31]]. The idea of the reduction is that events may be independent, e.g.,
read inv of different readers are independent of each other. Given P = Py ||| - -+ ||| Py
and two enabled events e; and ez, e; depends on eq, written as dep(eq, e2), if e; and ey
are from the same process or e; updates a variable to be accessed by ez, or vice versa.
Notice that dep(e;, e2) < dep(ez, e1). Two events are independent if neither depends
on the other. Because the ordering of independent events is irrelevant to the correctness
of linearizability checking, we may ignore some of the ordering so as to reduce the
search space. Since interleaving composition is the main source of state space explo-
sion, we consider that Im is in the form of ((Py ||| P2 ||| -+ ||| Pn) \ X, V), where
P; is a process, X is a set of events and V is the valuation of the variables. We show
how to explore only a subset of enabled transitions and yet preserve soundness.
Function next(Im, NSp), which depends on function tau(S), is used to expand the
search tree. POR is mainly applied to function tau(S). Because tau is applied to the
specification or implementation independently, as long as we guarantee that the reduced
state graph (of either Impl or Spec) is trace-equivalent to the full state graph, there is
a refinement relationship in the reduced state space if and only if there is one in the
full state space. Fig. 3] shows function tau(S). The idea is to identify one process P;
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such that all 7-transitions from P; are independent of those from other processes, by
checking a set of heuristic conditions. Intuitively, a process P; is chosen if and only if,

— enabledp,(S) C 7 U X, i.e., events enabled in process P; are all invisible,

- enabledp,(S) = current(P;), i.e., given P; and any valuation of the global vari-
ables, all events that could be enabled in process P; (denoted by current(P;)) are
enabled (denoted by enabledp, (.S)). This is a sufficient condition to guarantee that
an event that is dependent on a transition from P; cannot be executed without a
transition from P; occurring first,

— = onstack(e), i.e., executing e does not result in a state on the search stack,

-Ve X, j#i= —dep(e, ¢),1ie., all enabled events are independent of events
from other process P; (denoted as ;).

If no such P; is found, we expand the node with all enabled events (line 8). Following
the arguments of [28]] and [31]}, it can be shown that the reduced state graph is trace-
equivalent to the full graph.

The above applies POR to 7-transitions only. PAT is capable of applying POR to
visible events. Because both Impl and Spec must make corresponding transitions for a
visible event, reduction for visible events is complicated. Fig. d presents the algorithm,
i.e., the refined next. If I'm is not stable (i.e., tau(Im) # Im), we apply the algorithm
tau’ (taw' is same as tau in Fig. 3] except that line 8 returns @) to identify a subset
of T-transitions (line 2). If no such subset exists, the pair (Im, NSp) is fully expanded
(line 10). An algorithm wvisible similar to tau’ is used to check if a given visible event
e is a candidate for POR. Function processes(e) returns all process components (of the
composition) whose alphabet contains e. Firstly, we choose a possible candidate from
Im using the algorithm wvisible. Event e is chosen if and only if, for each process in
processes(e), e is the only event from the process that can be enabled, all other enabled
events are independent of e, and performing e does not result in a state on the stack.
Next, we check if e satisfies the same set of conditions for each state in the normalized
state of the specification. If it does, e is used to expand the search tree at line 9 (and all
other enabled events are ignored). In order to find such e efficiently, the candidate events
are selected in a pre-defined order, i.e., events that have the least number of associated
processes are chosen first. The soundness proof of the algorithm can be found in our
technical report [15].

Our approach works without knowledge of linearization points. Nonetheless, having
the knowledge would allow us to take full advantage of POR. Because the linearization
points are the only places where data consistency must be checked, we may amend
the above algorithm to perform data consistency check at the linearization points. As
a result, encoding relevant data as part of the event is not necessary and the model
contains fewer events, which translates to fewer traces. Furthermore, because only the
linearization points need to be synchronized, we may hide all other events, and turn
visible transitions into T-transitions that are subject to POR.

Besides partial order reduction, our approach is compatible with other state space
reduction techniques or abstract interpretation techniques. Distributed algorithms and
protocols are usually designed for a large (or even unbounded) number of similar pro-
cesses. They are therefore subject to symmetric reduction [12]]. For instance, different
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procedure next’ (Im, NSp)
1. if 7 € enabled(Im) then

2. nextmoves := tau'(Im);

3. if (nextmoves # @) then return nextmoves;

4. else

5. foreach e € enabled(Im)

6. por := visible(Im, e);

7. foreach S € NSp

8. por := por A visible(S, e);

9. if por then return {(Im/,7*(NSp')) | Im = Im’ A NSp % NSp'};

10. return nezt(Im, NSp);

procedure visible(Im, e)

1. por := —1onstack(e) AVe' :X;, ¢ # e= —1dep(e,e);
2. foreach P; € processes(e)

3. por := por A enabledp,(Im) = current(P;) = {e};
4. return por;

Fig. 4. Algorithm: next’(Im, NSp) and visible(Im, e)

writers (i.e., WriterA(4)) in Example[Ilare symmetric and therefore, it is sound (subject
to property-specific conditions) to only explore one writer and conclude the same for
all other writers. If the processes are identical, then it is subject to process counter ab-
straction. For example, in the concurrent stack algorithm, the processes invoking push
and pop are symmetric and therefore, we only keep track of the number of processes,
instead of the exact processes. In this way, we may prove the property for arbitrary
number of processes. We skip the details due to space constraints.

5 Experiments

Our method has been implemented and applied to a number of concurrent algorithms,
including register—the K-valued register algorithnﬂ in Section 3, stack—a concur-
rent stack algorithm [23]], queue—a concurrent non-blocking queue algorithm in Fig.
3 of 18], buggy queue—an incorrect queue algorithm [21], and mailbox and SNZI—
the first algorithms for the mailbox problem [3]] and scalable Non-Zero indicators ,
respectively. Details for verifying these examples can be found in our technical re-
port [13]]. Table [T summarizes part of our experiments, where ‘-” means out of memory
or more than 4 hours, and ‘(points)’ means that linearization points are given.

The number of states and running time increase rapidly with data size and the num-
ber of processes, e.g., 3 processes for register, stack, queue, and SNZI vs. 2 processes.
The results conform to theoretical results [[1]: model checking linearizability is in EX-
PSPACE for both time and space. When linearization points are known, the complexity

* We extend this example with 2 readers and 1 writer. The correctness is verified using PAT.
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Table 1. Experiment results on a PC with 2.83 GHz Intel Q9550 CPU and 2 GB memory

Algorithm #Proc. Linear- Time(sec) #States Time(sec) #States
izable w/o POR w/o POR with POR with POR

4-valued register 2 true 6.14 50893 5.72 43977

5-valued register 2 true 44.9 349333 60.4 307155
2 true 297 2062437 789 1838177

3 true 294 479859 393 361255

6-valued register
3-valued register with
2 readers and 1 writer

stack of size 12 2 true 138 540769 65.9 395345
stack of size 14 2 true 411 763401 99.4 599077
stack of size 2 3 true - - 4321 4767519
stack of size 12 (points) 2 true 0.62 9677 0.82 9677
stack of size 14 (points) 2 true 0.82 12963 1.11 12963
stack of size 2 (points) 3 true 1.14 10385 1.56 10385
stack of size 2 (points) 4 true 37.6 219471 49.4 219471
queue of size 6 2 true 134 432511 86.2 343446
queue of size 8 2 true 256 104582 218 938542
buggy queue of size 10 2 false 10.9 32126 6.87 32126
buggy queue of size 20 2 false 52.73 105326 41.1 105326
mailbox of 3 operations 2 true 71.6 272608 27.8 120166
mailbox of 4 operations 2 true 2904 9928706 954 3696700
SNZI of size 2 2 true 1298 712857 322 341845
SNZI of size 3 3 true - - 6214 8451568

is still EXPSPACE, but the state space reduces significantly since the state spaces of im-
plementation and specification are smaller. We show that the speedup of knowing lin-
earization points is in the order of O(2%2"(*"=k")) ‘where k is the size of the shared
object and n is the number of processes [[13]]. Use of partial order reduction effectively
reduces the search space and running time in most cases, including stack and queue,
and especially mailbox and SNZI because their algorithms have multiple internal tran-
sitions. For register, the state space is reduced but running time increases because of
computational overhead. For buggy queue [21]], the counterexamples (discovered firstly
in [7]) are produced quickly after exploring only part of the state space.

Vechev and Yahav [29] also provided automated verification. Their approach needs
to find a linearizable sequence for each history, whose worst-case time is exponential in
the length of the history, as it may have to try all possible permutations of the history. As
aresult, the number of operations they can check is only 2 or 3. In contrast, our approach
handles all possible interleaving of operations given sizes of the shared objects. Because
of partial order reduction and other optimizations, our approach is more scalable than
theirs. For instance, we can verify stacks of size 14, which means any number of stack
operations that contain up to 14 consecutive push operations.

Experiments suggest that PAT is faster than FDR for systems without variables [22]].
Modeling variables using processes and lack of partial order reduction will make FDR
even slower. Therefore we skip comparison with FDR on these examples.
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6 Discussions

In terms of modeling of linearizability, our approach is based on the trace refinement of
LTSs, which is similar to [1]]. Our refinement checking algorithm is related to existing
on-the-fly behavioral equivalence and pre-order checking algorithms (e.g., [19/9]). The
non-atomic refinement defined in [8] separates the data explicitly as state-based formal-
ism Object-Z. This modeling requires to have the knowledge of linearization points, and
also prevents automatic verification techniques such as model checking to be used.

Formal verification of linearizability is a much studied research area, since lineariz-
ability is a central property for the correctness of concurrent algorithms. There are var-
ious approaches in the literature, as discussed below.

Manual proving. Herlihy and Wing present a methodology for verifying lineariz-
ability by defining a function that maps every state of an concurrent object to the set of
all possible abstract values representing it. Vafeiadis et. al. use rely-guarantee rea-
soning to verify linearizability for a family of implementations for linked lists. Neither
of them requires statically determined linearization points, but they are manual.

Using theorem provers. Verification using theorem provers (e.g., PVS) is another
approach [10l6]. In these works, algorithms are proved to be linearizable by using sim-
ulation between input/output automata modeling the behavior of an abstract set and the
implementation. However, theorem prover based approach is not automatic. Conversion
to IO automata and use of PVS require strong expertise.

Static analysis. Wang and Stoller present a static analysis that verifies linearizabil-
ity for an unbounded number of threads. Their approach detects certain coding patterns,
which are known to be atomic regardless of the environment. This solution is not com-
plete (i.e., not applicable to all algorithms).

Model checking. Amit et al. [2]] presented a shape difference abstraction that tracks the
difference between two heaps. This approach works well if the concrete heap and the
abstract heap have almost identical shapes. Recently, Manevich et al. and Berdine
et al. [3] extended it to handle larger number and unbounded number of threads, re-
spectively. Vafeiadis [26] further improved this solution to allow linearization points in
different threads. The main limitation of these approaches is that users need to pro-
vide linearization points, which are unknown for some algorithms. In [29], Vechev
and Yahav provided two methods for linearizability checking. The first method is a
fully automatic, but inefficient as discussed in Section 5. The second method requires
algorithm-specific user annotations for linearization points, which is not generic.

In this work, we expressed linearizability using a refinement relation. A fully auto-
matic model checking algorithm for linearizability verification is developed and built in
a practical tool PAT. Several case studies show that our approach is capable of verifying
practical algorithms and identifying bugs inX faulty implementations. Several future di-
rections are possible. Algorithms that accept an infinite number of threads or unbound
data structures make model checking impossible. Symmetric properties among threads
can reduce infinite number of threads to a small number. Shape analysis can also be
incorporated into the model checking to handle unbounded data size.
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