
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2009 

PAT: Towards flexible verification under fairness PAT: Towards flexible verification under fairness 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Yang LIU 

Jin Song DONG 

Jun PANG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
SUN, Jun; LIU, Yang; DONG, Jin Song; and PANG, Jun. PAT: Towards flexible verification under fairness. 
(2009). Proceedings of the 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2. 
709-714. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5038 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5038&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


PAT: Towards Flexible Verification under Fairness

Jun Sun1, Yang Liu1, Jin Song Dong1, and Jun Pang2

1 School of Computing, National University of Singapore
2 Computer Science and Communications, University of Luxembourg

Abstract. Recent development on distributed systems has shown that a variety
of fairness constraints (some of which are only recently defined) play vital roles in
designing self-stabilizing population protocols. Current practice of system anal-
ysis is, however, deficient under fairness. In this work, we present PAT, a toolkit
for flexible and efficient system analysis under fairness. A unified algorithm is
proposed to model check systems with a variety of fairness effectively in two dif-
ferent settings. Empirical evaluation shows that PAT complements existing model
checkers in terms of fairness. We report that previously unknown bugs have been
revealed using PAT against systems functioning under strong global fairness.

1 Introduction

In the area of system/software verification, liveness means something good must even-
tually happen. A counterexample to a liveness property is typically a loop (or a deadlock
state) during which the good thing never occurs. Fairness, which is concerned with a fair
resolution of non-determinism, is often necessary and important to prove liveness prop-
erties. Fairness is an abstraction of the fair scheduler in a multi-threaded programming
environment or the relative speed of the processors in distributed systems. Without fair-
ness, verification of liveness properties often produces unrealistic loops during which
one process or event is unfairly favored. It is important to systematically rule out those
unfair counterexamples and utilize the computational resource to identify the real bugs.

The population protocol model has recently emerged as an elegant computation
paradigm for describing mobile ad hoc networks [1]. A number of population protocols
have been proposed and studied [6]. Fairness plays an important role in these proto-
cols. For instance, it was shown that the self-stabilizing population protocols for the
complete network graphs only works under weak fairness, whereas the algorithm for
network rings only works under strong global fairness [2]. It has further been proved
that with only strong local fairness or weaker, uniform self-stabilizing leader election in
rings is impossible [2]. In order to verify (implementations of) those algorithms, model
checking techniques must take the respective fairness into account. However, current
practice of model checking is deficient with respect to fairness.

One way to apply existing model checkers for verification under fairness is to re-
formulate the property so that fairness become premises of the property. A liveness prop-
erty φ is thus verified by showing the truth value of the following formula:
fairness assumptions ⇒ φ. This practice is deficient for two reasons. Firstly, a typical
system may have multiple fairness constraints, whereas model checking is PSPACE-
complete in the size of the formula. Secondly, partial order reduction which is one of

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 709–714, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



710 J. Sun et al.

the successful reduction techniques for model checking becomes ineffective. Partial or-
der reduction ignores/postpones invisible actions, whereas all actions/propositions in
fairness constraints are visible and therefore cannot be ignored or postponed. An alter-
native method is to design specialized verification algorithms which take fairness into
account while performing model checking. In this work, we present a toolkit named PAT
(http://www.comp.nus.edu.sg/˜pat)which checks linear temporal logic (LTL) properties
against systems functioning under a variety of fairness (e.g., weak fairness, strong lo-
cal/global fairness, process-level weak/strong fairness, etc.). A unified on-the-fly model
checking algorithm is developed. PAT supports two different ways of applying fairness,
one for ordinary users and the other for advanced users. Using PAT, we identified pre-
viously unknown bugs in the implementation of population protocols [2,6]. For experi-
ments, we compare PAT and SPIN over a wide range of systems.

This work is related to research on categorizing and verifying fairness [2,8,9]. We
investigate different forms of fairness and propose a verification algorithm (and a tool)
which handles many of the fairness notions. In automata theory, fairness/liveness is of-
ten captured using accepting states. Our model checking algorithm is related to previous
works on emptiness checking for Büchi automata and Streett automata [4]. In a way,
our algorithm integrates the two algorithms presented in [3,7] and improves them in a
number of aspects.

2 Background

Models in PAT are interpreted as labeled transition systems (LTS) implicitly. Let a be
an action, which could be either an abstract event (e.g., a synchronization barrier if
shared by multiple processes) or a data operation (e.g., a named sequential program).
Let Σ be the set of all actions. An LTS is a 3-tuple (S , init ,→) where S is a set of
states, init ∈ S is an initial state and →⊆ S × Σ × S is a labeled transition relation.

For simplicity, we write s a→ s ′ to denote that (s , a, s ′) is a transition in→. enabled(s)
is the set of enabled actions at s , i.e., a is in enabled(s) if and only if there exist s ′

such that s a→ s ′. An execution is an infinite sequence of alternating states and actions
E = 〈s0, a0, s1, a1, · · ·〉 where s0 = init and for all i such that si

ai→ si+1. With-
out fairness constraints, a system may behave freely as long as it starts with an initial
state and conforms to the transition relation. A fairness constraint restricts the set of sys-
tem behaviors to only those fair ones. In the following, we focus on event-level fairness.
Process-level fairness can be viewed as a special case of event-level fairness.

Definition 1 (Weak Fairness). Let E = 〈s0, a0, s1, a1, · · ·〉 be an execution. E satisfies
weak fairness, or is weak fair, iff for every action a, if a eventually becomes enabled
forever in E , ai = a for infinitely many i , i.e., �� a is enabled ⇒ �� a is engaged .

Weak fairness [8] states that if an action becomes enabled forever after some steps, then
it must be engaged infinitely often. An equivalent formulation is that every computation
should contain infinitely many positions at which a is disabled or has just been taken,
known as justice condition [9]. Weak fairness has been well studied and verification
under weak fairness has been supported to some extent [5].



PAT: Towards Flexible Verification under Fairness 711

Definition 2 (Strong Local Fairness). Let E = 〈s0, a0, s1, a1, · · ·〉 be an execution. E
satisfies strong local fairness iff for every action a, if a is infinitely often enabled, then
a = ai for infinitely many i , i.e., �� a is enabled ⇒ �� a is engaged .

Strong local fairness [8,9,2] states that if an action is infinitely often enabled, it must be
infinitely often engaged. This type of fairness is useful in the analysis of systems that
use semaphores, synchronous communication, and other special coordination primi-
tives. Strong local fairness is stronger than weak fairness (since �� a is enabled
implies �� a is enabled ). Verification under strong local fairness or compassion con-
ditions has been discussed previously [3,4,7]. Nonetheless, there are few established
tool support for formal verification under strong local fairness.

Definition 3 (Strong Global Fairness). Let E = 〈s0, a0, s1, a1, · · ·〉 be an execution.
E satisfies strong global fairness iff for every s , a, s ′ such that s a→ s ′, if s = si for
infinite many i , then si = s and ai = a and si+1 = s ′ for infinitely many i .

Strong global fairness [2] states that if a step (from s to s ′ by engaging in action a) can
be taken infinitely often, then it must actually be taken infinitely often. Strong global
fairness concerns about both actions and states. It can be shown by a simple argument
that strong global fairness is stronger than strong local fairness. Strong global fairness
requires that an infinitely enabled action must be taken infinitely often in all contexts,
whereas strong local fairness only requires the enabled action to be taken in one context.
A number of population protocols reply on strong global fairness, e.g., self-stabilizing
leader election in ring networks [2] and token circulation in rings [1]. As far as the
authors know, there are no previous work on verification under strong global fairness.

A number of other fairness notions have been discussed by various researchers. We
remark that our approach can be extended to handle other kinds of fairness.

3 Verification under Fairness

Verification under fairness is to examine only fair executions of a given system and to
decide whether certain property is true. Given a property φ, model checking is to search
for an infinite fair execution which fails φ. In the following, we present PAT’s unified
algorithm to verify whether a system is feasible under different fairness constraints. A
system is feasible if and only if there exists at least one infinite execution which satisfies
the fairness constraints. Applied to the product of the system and (the negation of) the
property, the algorithm can be easily extended to do model checking under fairness. The
soundness of the algorithm and a discussion on its complexity is discusssed in [10].

Without loss of generality, we assume that a system contains only finite states. A
system is feasible under fairness if and only if there exists a loop which satisfies the
fairness. Feasibility checking is hence reduced to loop searching. In this work, we de-
velop a unified algorithm, shown below, extending existing SCC-based algorithms to
cope with fairness. Notice that nested DFS is not ideal as whether an execution is fair
or not depends on the path instead of one state [5]. The algorithm is based on Tarjan’s
algorithm for identifying SCCs. It searches for fair strongly connected subgraph on-the-
fly. The basic idea is to identify one SCC at a time and then check whether it is fair or
not. If it is, the search is over. Otherwise, the SCC is partitioned into multiple smaller
strongly connected subgraphs, which are then checked recursively one by one.



712 J. Sun et al.

procedure feasible(S ,T )
1. while there are states which have not been visited
2. let scc := findSCC (S ,T );
3. pruned := prune(scc,T);
4. if pruned = scc then;
5. generate a feasible path; return true;
6. endif
7. if feasible(pruned ,T ) then return true; endif
8. endwhile
9. return false;

Let S and T be a set of states and transitions. The main loop is from line 1 to 8. Line
2 invokes Tarjan’s algorithm (implemented as findSCC ) to identify one SCC within S
and T . In order to perform on-the-fly verification, findSCC is designed in such a way
that if no S and T are given, it explores states and transitions on-the-fly until one SCC
is identified. Function prune (at line 5) is used to prune bad states from the SCC. Bad
states are the reasons why the SCC is not fair. The intuition is that there may be a fair
strongly connected subgraph in the remaining states. If the SCC satisfies the fairness
assumption, no state is pruned and a fair loop (which traverses all states/transitions in
the SCC) is generated and we conclude true at line 5. If some states have been pruned, a
recursive call is made to check whether a fair strongly connected subgraph exists within
the remaining states. The recursive call terminates in two ways, either a fair subgraph
is found (at line 5) or all states are pruned (at line 9). If the recursive call returns false,
there is no fair subgraph and we continue with another SCC until there is no state left.

By simply modifying function prune, the algorithm can be used to handle a variety
of fairness. For instance, the following defines the function for weak fairness.

prunewf (scc,T ) =
{

S if always(scc) ⊆ engaged(scc);
∅ otherwise.

where always(scc) is the set of events which are enabled at every state in scc and
engaged is the set of events labeling a transition between two states in scc. If there
exists an event e which is always enabled but never engaged, by definition scc does not
satisfy weak fairness. If scc does not satisfy weak fairness, none of its subgraphs does.
As a result, either all states are pruned or none of them are. The following defines the
function for strong local fairness.

pruneslf (scc,T ) = {s : scc | once(scc) ⊆ engaged(scc)}
where once(scc) contains events which are enabled at one or more states in scc. A state
is pruned if and only if there is an event enabled at this state but never engaged in scc.
By pruning the state, the event may become never enabled and therefore not required to
be engaged. The following defines the function for strong global fairness.

prunesgf (S ,T ) =
{

∅ if there exists s : scc such that s a→ s ′ and s ′ �∈ scc;
scc otherwise.

All states are pruned if there is a transition from a state in the SCC to a state not in the
SCC. If an SCC is not strong global fair, none of its subgraphs is (since the subgraph
must contain a step to a pruned state and thus can not be strong global fair).



PAT: Towards Flexible Verification under Fairness 713

Action Annotated Fairness. In PAT, we offer an alternative approach, which allows
users to associate fairness to only part of the systems or associate different parts with
different fairness constraints. The motivation is twofold. Firstly, previous approaches
treat every action or state equally, i.e., fairness is applied to every action/state. In veri-
fication practice, it may be that only certain actions are meant to be fair. Our remedy is
to allow users to associate fairness constraints with individual actions. The other moti-
vation of action annotated fairness is that for systems with action annotated fairness, it
remains possible to apply partial order reduction to actions which are irrelevant to the
fairness annotations.

A number of different fairness may be used to annotate actions. Unconditional action
fairness is written as f (a). An execution of the system is fair if and only if a occurs in-
finitely often. It may be used to annotate actions which are known to occur periodically.
For instance, a discrete clock may be modeled as: Clock() = f (tick){x = x + 1} →
Clock() where x is a discrete clock variable. By annotating tick with unconditional
fairness, we require that the clock must progress infinitely and the system disallows
unrealistic timelock, i.e., execution of infinite actions which takes finite time. Weak
(strong) action fairness is written as wf (a) (sf (a)). An execution of the system is fair
if and only if a occurs infinitely often given it is always (once) enabled. Unconditional
action fairness does not depend on whether the action is enabled or not, and therefore,
is stronger than weak/strong action fairness. The algorithm can then be applied to check
systems with action annotated fairness with small modifications.

Model Property Size Weak Fair Strong Local Fair Strong Global Fair
Result PAT SPIN Result PAT Result PAT

LE C ��oneleader 5 Yes 4.7 35.7 Yes 4.7 Yes 4.1

LE C ��oneleader 6 Yes 26.7 229 Yes 26.7 Yes 23.5

LE C ��oneleader 7 Yes 152.2 1190 Yes 152.4 Yes 137.9

LE C ��oneleader 8 Yes 726.6 5720 Yes 739.0 Yes 673.1

LE OR ��oneleader 3 No 0.2 0.3 No 0.2 Yes 11.8

LE OR ��oneleader 5 No 1.3 8.7 No 1.8 − −
LE R ��oneleader 4 No 0.3 < 0.1 No 0.7 Yes 19.5

LE R ��oneleader 5 No 0.8 < 0.1 No 2.7 Yes 299.0

LE R ��oneleader 6 No 1.8 0.2 No 4.6 − −
TC R ��onetoken 5 No < 0.1 < 0.1 No < 0.1 Yes 0.6

TC R ��onetoken 7 No 0.2 0.1 No 0.2 Yes 13.7

TC R ��onetoken 9 No 0.4 0.2 No 0.4 Yes 640.2

peterson bounded bypass 3 Yes 0.1 1.25 Yes 0.1 Yes 0.1

peterson bounded bypass 4 Yes 1.7 > 671 Yes 1.8 Yes 2.4

peterson bounded bypass 5 Yes 58.9 − Yes 63.7 Yes 75.4

Experiments. In the following, we show PAT’s capability and efficiency over a range
of systems where fairness is necessary. The following data are obtained by executing
SPIN 4.3 and PAT 2.2 with Core 2 CPU 6600 at 2.40GHz and 2GB RAM.

The models include recently proposed self-stabilizing leader election protocols [6],
e.g., for complete networks (LE C ), odd sized rings (LE OR), and network rings
(LE R), token circulation for network rings (TC R), and Peterson’s algorithm for
mutual exclusion. All models, with configurable parameters, are embedded in the PAT



714 J. Sun et al.

package. Because of the difference between process-level weak fairness and weak fair-
ness, the models are manually twisted in order to compare PAT with SPIN fairly (refer
to [10] for details). SPIN has no support for strong local or global fairness. The only
way to perform verification under strong local/global fairness in SPIN is to encode the
fairness constraints as part of the property. However, even for a network of 3 nodes,
SPIN needs significant amount of time to construct the (very large) Büchi automata,
which makes it infeasible for such purpose.

In summary, PAT complements existing model checkers with the improvement in
terms of the performance and ability to handle different forms of fairness. We remark
that fairness does play an important role in these models. All of the algorithms fail
to satisfy the property without fairness. Model LE C and peterson require at least
weak fairness, whereas the rest of the algorithms require strong global fairness. It is
thus important to be able to verify systems under strong local/global fairness. Notice
that TC R satisfies the property for a network of size 3 under weak fairness. There is,
however, a counterexample for a network with more nodes. The reason is that a partic-
ular sequence of message exchange which satisfies weak fairness but fails the property
needs the participation of at least 4 network nodes. This suggests that our approach has
its practical values. We highlight that previously unknown bugs in implementation of
LE OR [6] have been revealed using PAT. We translated the algorithms without know-
ing how it works and generated a counterexample within seconds. SPIN is infeasible
for this task because the algorithm requires strong global fairness [6].

References

1. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing Population Protocols. In:
Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp.
103–117. Springer, Heidelberg (2006)

2. Fischer, M.J., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-state Anony-
mous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–
409. Springer, Heidelberg (2006)

3. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tarjan’s algo-
rithm. Theoritical Computer Science 345(1), 60–82 (2005)

4. Henzinger, M.R., Telle, J.A.: Faster Algorithms for the Nonemptiness of Streett Automata
and for Communication Protocol Pruning. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996.
LNCS, vol. 1097, pp. 16–27. Springer, Heidelberg (1996)

5. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison Wesley,
Reading (2003)

6. Jiang, H.: Distributed Systems of Simple Interacting Agents. Ph.D thesis, Yale Univ. (2007)
7. Kesten, Y., Pnueli, A., Raviv, L., Shahar, E.: Model Checking with Strong Fairness. Formal

Methods and System Design 28(1), 57–84 (2006)
8. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transactions on Soft-

ware Engineering 3(2), 125–143 (1977)
9. Lehmann, D.J., Pnueli, A., Stavi, J.: Impartiality, Justice and Fairness: The Ethics of Concur-

rent Termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 264–277.
Springer, Heidelberg (1981)

10. Sun, J., Liu, Y., Dong, J.S., Pang, J.: Towards a Toolkit for Flexible and Efficient Verification
under Fairness. Technical Report TRB2/09, National Univ. of Singapore (December 2008)


	PAT: Towards flexible verification under fairness
	Citation

	PAT: Towards Flexible Verification under Fairness
	Introduction
	Background
	Verification under Fairness
	References


