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A formal framework for modeling
and validating Simulink diagrams
Chunqing Chen, Jin Song Dong, Jun Sun
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Abstract. Simulink has been widely used in industry to model and simulate embedded systems. With the increas-
ing usage of embedded systems in real-time safety-critical situations, Simulink becomes deficient to analyze
(timing) requirements with high-level assurance. In this article, we apply Timed Interval Calculus (TIC), a real-
time specification language, to complement Simulink with TIC formal verification capability. We elaborately
construct TIC library functions to model Simulink library blocks which are used to compose Simulink diagrams.
Next, Simulink diagrams are automatically transformed into TIC models which preserve functional and timing
aspects. Important requirements such as timing bounded liveness can be precisely specified in TIC for whole
diagrams or some components. Lastly, validation of TIC models can be rigorously conducted with a high degree
of automation using a generic theorem prover. Our framework can enlarge the design space by representing
environment properties to open systems, and handle complex diagrams as the analysis of continuous and discrete
behavior is supported.

Keywords: Simulink, Real-Time Specification, Z Language, Formal Verification

1. Introduction

Simulink [Mat08b] is a graphical environment used widely to model and simulate embedded systems. A Simulink
diagram is formed by connecting blocks with wires, and represents a set of mathematical relationships which
model system behavior over time. Simulink adopts continuous-time semantics [JS05] to support dynamic sys-
tems such as hybrid control systems. Its simulation facility allows system behavior to be visually observed for
specific parameter values over specific simulation periods. However, simulations are deficient in checking sys-
tem behavior for infinite parameter values or over infinite simulation periods. In addition, open systems whose
exact input functions are usually unknown are unanalyzable in Simulink because simulations are inapplicable to
these systems. Moreover, Simulink lacks timing analysis which becomes necessary due to an increasing usage of
embedded systems in real-time safety-critical situations [Pnu02].

Recently, formal methods have received more attention for improving the development of embedded real-
time systems by their rigorous semantics and formal verification capability [Wan04, HS06]. In this article, we
apply a real-time specification notation, Timed Interval Calculus (TIC) [MH92, FHMW98], to complement
Simulink: functional and timing aspects of Simulink diagrams are formally captured in TIC; important (timing)
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requirements are rigorously validated by well-defined TIC reasoning rules and the strong support of mathemat-
ical analysis in TIC. The significant and novel point of our approach is the use of TIC modeling and reasoning
features to support validation beyond Simulink.

The first contribution is that we formally model Simulink diagrams in TIC. Existing work [ACOS00, AC05,
CCO05, TSCC05, MBR06] that interprets Simulink diagrams in other formal notations or programming lan-
guages usually focuses on discrete behavior. TIC is different from those notations and languages in that it is based
on a continuous-time domain [MH92], and can concisely express properties at an interval level [FHMW98].
Furthermore, TIC supports calculus (for example, integral calculus [FHM98]) which is often used in control
engineering. To the best of our knowledge, our work is the first attempt to model Simulink diagrams in terms
of continuous time. Currently we support a wide range of Simulink library blocks which are frequently used to
compose Simulink diagrams, specifically, 51 library blocks of 10 categories covering continuous, discontinuous,
signal routing and so on. By elaborately constructing and rigorously validating TIC library functions which model
these library blocks, we have discovered incomplete semantics and a bug in the original description [Mat08a] of
these library blocks.

The second contribution is that we develop a strategy to automatically transform Simulink diagrams into
TIC models. The transformation preserves functional and timing aspects of Simulink elementary blocks and the
hierarchical structure of diagrams. Moreover, it can deal with unspecified sample times in (complex) diagrams.
We also consider two important types of conditionally executed subsystems whose execution depends on their
control inputs, particularly, enabled subsystems and triggered subsystems. Their conditional behavior is captured
by carefully modeling the way of assigning values to their inputs under different circumstances, such as an enabled
subsystem with a discrete control input and continuous inputs.

The third contribution is that we extend our previous work [CDS08], which developed a generic verification
system based on Prototype Verification System (PVS) [ORS92] for TIC, to automatically translate axiomatic
definitions [WD96] which are the type of the TIC library functions into PVS functions. Furthermore, we define
supplementary rules dedicated to Simulink modeling features. With the extended verification system, we can
rigorously validate Simulink diagrams against important requirements beyond Simulink with a high degree of
automation, for example, checking bounded timing response requirements.

In summary, we aim to construct a formal framework to model and validate Simulink diagrams. We take
a step-by-step approach. Firstly, a set of TIC library functions are defined to model Simulink library blocks
in terms of intervals. Unfortunately, library blocks are informally and sometimes partially described in their
original documentation [Mat08a]. We hence focus on their denotational semantics, the time-dependent math-
ematical relationships between their inputs and outputs. Secondly, a translator has been implemented in Java
to automatically transform Simulink diagrams into TIC models in a bottom-up order. Last but not least, we
specify important requirements based on the transformed TIC models which represent whole diagrams or some
components. Moreover, properties of open systems, such as the bounds of an environment variable, can be pre-
cisely specified using TIC. We can rigorously verify whether the TIC models of Simulink diagrams fulfill the TIC
models of requirements, by applying TIC reasoning rules, mathematical laws and common proof methods.

1.1. Related works

Recently, there have been a number of works on transforming Simulink into other formal notations or program-
ming languages. Arthan et al. [ACOS00], Adams and Clayton [AC05] transformed Simulink diagrams to the Z
notation [WD96] by capturing the functional behavior of one cycle. Cavalcanti et al. [CCO05] extended that work
by applying Circus [CSW03] to model the functionality and concurrency of diagrams. Their approaches aim to
verify that Simulink diagrams are correctly implemented in the programming language Ada, which is different
from ours. We aim to validate that Simulink diagrams fulfill various requirements. Moreover, they consider only
single-rate discrete systems, and timing information is missing. In contrast, we can handle multi-rate discrete and
hybrid systems, and the timing information is retained as well.1

Meenakshi et al. [MBR06] used the model checker NuSMV to analyze single-rate discrete Simulink diagrams.
Tripakis et al. [TSCC05] applied the synchronous programming language Lustre to support multi-rate discrete
Simulink diagrams. Tiwari et al. [TSR03] converted differential equations denoted in Simulink to difference

1 Initially, we tried to apply TCOZ [MD98, MD00] to Simulink. The attempt was abandoned as TCOZ faced the drawback of lacking
support of the continuous-time semantics which is used by Simulink.



A formal framework for modeling and validating Simulink diagrams 453

equations for constructing discrete transition systems. However, discretization of infinite transition systems can
decrease accuracy when checking properties of continuous dynamics [MCDB03]. Our approach is different in
that we can directly represent and analyze continuous Simulink diagrams.

There are also approaches [SCBR01, GKR04] which take into account Simulink/Stateflow2 Models (SSMs).
Sims et al. [SCBR01] verified SSMs using an invariant checker, and the transformation from SSMs to the input
language of the checker was performed by hand. Gupta et al. [GKR04] developed a tool which increased Sim-
ulink modeling capability by defining some customized Simulink. That tool was designed to check functional
behavior, and it lacked support of timing analysis. Jersak et al. [JCZE00] transformed Simulink diagrams into
the SPI models for timing analysis, while the transformation abstracted functional behavior. On the other hand,
we support the validation for both functional and timing behavior.

There are other formal notations of real-time systems. One is Duration Calculus (DC) [ZHR91] which accu-
mulates Boolean-valued states over closed intervals to specify critical duration constraints. One of its extensions,
Mean Value Calculus [ZL94] adopts the mean value of states to express properties at point intervals, and the
other is Extended Duration Calculus [ZRH93] which defines two functions to represent the state values at inter-
val endpoints. Since DC and its extensions model system behavior in terms of intervals only, they are limited to
specify the constraints which are relevant to specific values of interval endpoints. For example, the behavior of
the Simulink library block Unit Delay as presented in Sect. 3.2 relies on particular interval endpoints.

1.2. Structure

This article is a revised and extended version of our preliminary work [CD06, CDS07b], which has investigated the
feasibility and benefit of applying TIC to complement Simulink with machine-assisted proof support. Besides the
presentation of the TIC library functions and transformation has been improved significantly, the article extends
[CD06] in several aspects: Sect. 3.3 discusses the way of constructing and validating the TIC library functions
with the demonstration of discoveries; Sect. 4.4 presents an algorithm to compute unspecified sample times in
Simulink diagrams; Sect. 4.5 illustrates more deeply the way to analyze conditionally executed subsystems in
different conditions. Supporting more Simulink library blocks (from 32 to 51) using TIC enables our frame-
work to handle more complex systems. Moreover, the article improves [CDS07b] by automatically translating
the axiomatic definitions which are the type of the TIC library functions to PVS functions in Sect. 5.1. Note that
our previous work [CDS08] has not considered the axiomatic definitions. We also apply our framework to new
complex Simulink diagrams.

The remainder of this article is organized as follows: Sect. 2 briefly introduces the relevant features of Simu-
link, TIC, and PVS. Section 3 defines a set of TIC library functions to model Simulink library blocks. Section 4
presents a systematic way of transforming Simulink diagrams to TIC models. Section 5 describes how to enhance
the verification system to ease the validation of Simulink diagrams. Section 6 illustrates an application of our
framework with a hybrid control system. Section 7 concludes the article.

2. Background

In this section, we introduce Simulink [Mat08b], Timed Interval Calculus (TIC) [FHMW98], and Prototype Ver-
ification System (PVS) [ORS92]. We highlight their relevant features which are used in this article, and readers
who are interested to know more may refer to their respective references.

2.1. Simulink

A Simulink diagram made up of blocks and wires represents a set of time-dependent mathematical relationships
which model a dynamic system. A block can be an elementary block, which is the basic structure unit of Simulink
diagrams and denotes a primitive mathematical relationship between its inputs and outputs, such as output-
ting the sum of two inputs. An elementary block is created by assigning specific values to the parameters of a
Simulink library block. This parameterization technique enables a library block to create elementary blocks with

2 Stateflow combines flow diagrams and statecharts to specify control logic and can be integrated with Simulink.
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Fig. 1. A system calculation in Simulink graphical and textual formats

different functionalities. A block can also be a diagram composed of other sub-diagrams and elementary blocks.
A wire is a directed edge which indicates a dependent relationship between two connected blocks; the input of
the destination block depends on the output of the source block.

Every elementary block in a diagram is considered to have a sample time as its execution rate. A sample time
of an elementary block can be explicitly specified via the SampleTime block parameter, determined by the block
type (for example, elementary blocks generated by the Integrator library block have continuous sample time),
or derived from the blocks which connect to the block inputs. Simulink adopts continuous-time semantics, and
discrete systems are treated to be a special case of continuous systems: their behavior is piecewise constantly con-
tinuous. Moreover, Simulink supports conditionally executed subsystems whose behavior depends on their control
input values instead of time. For example, an enabled subsystem is active when its control input is positive.

A Simulink diagram is represented textually in a model file [Mat08a], which denotes diagrams by keywords
and parameter-value pairs. Parameter-value pairs describe the contents of diagrams such as block sample times
by associating particular values with relevant parameters. Keywords followed by a pair of brackets models com-
ponents at the same hierarchical layer of diagrams. Taking Fig. 1 as an example, the left part graphically depicts
a simple system which outputs speed as the integration of the acceleration from input port Acc to output port
Speed, and the right part shows the corresponding textual representation. Note that in the context (from lines 4
to 6) of elementary block Integrator, its mathematical function integration is not explicitly specified but indicated
by the value of the BlockType block parameter. Moreover, the initial value 4 of Integrator is not visually available
in the diagram. In other words, model files contain all information of systems modeled in Simulink, and they
are the source of our approach which captures the (mathematical) functional and timing (namely, sample times)
aspects and the structure of Simulink diagrams.

2.2. Timed interval calculus

Timed Interval Calculus (TIC) is based on the set theory and reuses the Z notation [WD96]. It adopts total func-
tions of continuous time to model system behavior [MH92], and defines interval brackets for concisely expressing
properties in terms of intervals [FHMW98]. Interval endpoints can be explicitly accessed. In the following, we
present the essential modeling features of TIC and special symbols used in this article.

The time domain T is the set of all non-negative real numbers. An interval is a range of continuous time
points. Intervals are classified into four basic types based on the inclusion of interval endpoints. For example,
the operator [ . . . ) defined below denotes a left-closed, right-open interval, where the expression P T denotes a
set of time points. Other three operators, ( . . . ), ( . . . ], and [ . . . ] for left and right-open intervals, left-open,
right-closed intervals, and left and right-closed intervals are defined similarly.

[ . . . ) : T× T→ P T

∀x, y : R | x < y • [x . . . y) � {z : T | x ≤ z < y}
There are three types of elements which compose TIC specifications as shown below.

• Constants. For example, a maximum water volume MaxV is a real number, namely, MaxV : R.
• Timed traces. They represent variables which are functions of time. Specifically, a timed trace is a total function

from the time domain to the type of a variable, and the type can be either continuous or discrete. For instance,
water volume in a tank can be modeled by a timed trace V with real numbers R (V : T→ R), while an alarm
signal can be depicted by a timed trace alarm whose range consists of two values, 0 and 1 (alarm : T→ {0, 1}).
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• Interval operators. These are functions of intervals. In TIC, α, ω, and δ are the primitive interval operators,
and they return the starting point, ending point, and length of a given interval respectively.

A key construction of TIC is interval brackets. A pair of interval brackets with a predicate enclosed by the
pair forms a TIC expression which denotes a set of intervals where the predicate holds everywhere. A predicate
usually contains timed traces and interval operators, and the references to the time domain and intervals can be
elided. For example, the TIC expression, �V (α) ≤ V � where � � is a pair of interval brackets,3 represents a set of
left-closed, right-open intervals, and in each interval the water volume V is not less than its value at the starting
point of the interval. Without using � �, we need to explicitly associate the timed trace V and the interval operator
α with their corresponding domains, as shown in the following expanded set construction of the TIC expression.

�V (α) ≤ V � � {x, y : T | ∀t : [x . . . y) • V (α([x . . . y))) ≤ V (t) • [x . . . y)}
Conventional set operators such as ∪ and ∩ can be applied to compose new TIC expressions. To depict

sequential behavior over intervals, the concatenation operator � is defined below to connect intervals end-to-
end, where the symbol I represents the set of all non-empty intervals. Specifically, � takes two sets of intervals X
and Y as arguments, and returns a set of intervals each of which is composed by an interval x from the left-hand
set X and an interval y from the right-hand set Y , provided (1) x occurs strictly before y and (2) x and y meet
exactly, no overlap and no gap. Note that this operator is a partial function indicated by the symbol �→ as the
concatenation of any two sets of intervals may return the empty set.

� : P I× P I �→ P I

∀X , Y : P I • X � Y � {z : I | (∃x : X ; y : Y | ω(x) � α(y) ∧ (∀t1 : x; t2 : y • t1 < t2) • z � x ∪ y)}
TIC predicates model system properties and requirements at the interval level by imposing constraints on

TIC expressions. For instance, the TIC predicate �V > MaxV� ⊆ �alarm � 1�, where the interval brackets
� � are the union of the four basic types of interval brackets,4 specifies a response property that for an interval
during which V exceeds MaxV , an alarm is on as indicated by the value 1 during that interval. To manage TIC
specifications in a structural manner, the Z schema structure is adopted to define variables in the declaration
part and group constraints over these variables in the predicate part. Taking the following schema Detector as an
example, it contains the response property mentioned earlier and the variables used in the predicate. In addition,
the declaration V : T� R captures the continuity feature that V is continuous in any non-empty interval by the
symbol� from [FHM98].

Detector
V : T� R; alarm : T→ {0, 1}; MaxV : R [declaration]

�V > MaxV� ⊆ �alarm � 1� [predicate]

TIC defines a collection of reasoning rules for capturing timing properties of sets of intervals and their con-
catenations. For example, given a predicate which is independent on interval operators, the following rule can
decompose a non-point interval in which the predicate holds into two concatenated intervals, which both satisfy
the predicate. Note that an implicitly necessary condition is that the time domain is continuous, as intervals over
the discrete-time domain, such as an interval whose endpoints are a pair of consecutive discrete time points,
cannot be decomposed.

if a predicate P is independent on α, ω, and δ, then �P ∧ δ > 0� � �P�� �P�

Specifying both system designs and requirements in TIC, we can rigorously prove that designs imply require-
ments by deduction. In general, a proof is divided into several sub-proofs, and each sub-proof concentrates on
a simple requirement of a subsystem. Each deductive step in a proof is reached by applying a hypothesis, a TIC
reasoning rule, a mathematic law, or a pre-proved requirement.

In our approach, we take advantage of the expressive power of TIC to model Simulink diagrams. System
designs denoted in Simulink and (timing) requirements are represented at the interval level. The formal verifica-

3 Other three basic types of interval brackets are � �, � �, and � � for left and right-open intervals, left-open, right-closed intervals, and left and
right-closed intervals.
4 �P� �� �P� ∪ �P� ∪ �P� ∪ �P� where P is a predicate.



456 C. Chen et al.

tion capability of TIC can increase the design confidence by rigorously validating designs against requirements,
and some validations are beyond Simulink.

2.3. Prototype verification system

Prototype Verification System (PVS) is an integrated environment for formal specification and rigorous verifi-
cation. An important feature of PVS is its synergistic integration of an expressive specification language and
powerful theorem-proving capabilities. A recently developed NASA PVS library [But04] supports the analysis of
differential and integral calculus. Previously, we developed a verification system based on PVS for TIC [CDS08].
The system encoded TIC symbols such as the interval brackets and concatenation operator in PVS, formalized
and validated the TIC reasoning rules, and supported the analysis of continuous dynamics. In our framework, the
verification system is used for the machine-assisted proofs of Simulink diagrams. As we emphasize our extended
work (in Sect. 5), in particular representing TIC axiomatic definitions in PVS, we introduce below relevant
modeling features of PVS.

The specification language of PVS is based on a classic typed, higher-order logic. Built-in types include Bool-
ean (bool), real numbers (real), natural numbers (nat) and so on. Common logic and arithmetic operators such
as conjunction (AND), implication (=>), and addition (+) are also defined.

Entities of PVS are introduced by means of declarations, which are the main constituent of PVS specifications.
Declarations are used to define variables, constants, formulas, and so on. Variable declarations introduce new
variables with their associated types. In addition, variables are local when they are defined in binding expres-
sions which may involve keywords including FORALL for the universal quantifier ∀ or LAMBDA for the symbol λ in
lambda expressions. Constant declarations introduce new constants which can be functions, relations or the usual
(0-ary) constants. For example, the declaration f: [nat -> nat] defines a total function f (by the symbol ->)
whose domain and range are natural numbers. Formula declarations can introduce axioms using the keyword
AXIOM and theorems using the keyword LEMMA. Axioms can be referenced by the command lemma during proofs.
Moreover, PVS supports the name overloading technique which allows declaration identifiers to have the same
names, even the declarations are of different types. For instance, we can declare a function g and an axiom g
although constants and formulas are of different types.

In PVS, new types can be defined from the built-in types using type constructors. Three frequently used con-
structors are subtypes, function types and record types. For example, a record type r that consists of a Boolean
variable x and a real number y can be specified in the expression [# x: bool, y: real #]. A component of a
record type can be accessed by the accessor name; the x-component is accessed by r‘x.

PVS contains many built-in theories about logics, sets, numbers, etc. These theories support specifications and
verification of various systems. For instance, the PVS set theory provides common definitions such as emptyset
denoting ∅ and subset? meaning a subset relation.

3. Constructing TIC library functions for Simulink library blocks

Simulink library blocks are templates to produce elementary blocks of Simulink diagrams. These library blocks are
classified into various categories: continuous, discrete, discontinuous, mathematical functions and so on. Unfor-
tunately, their semantics is informally, and even partially, described in the original documentation [Mat08a]. It is
thus necessary and important to formally model these blocks using TIC.

In this section, we firstly present the basic structure of TIC schemas that denote elementary blocks. The
structure captures the time-dependent relationships of elementary blocks. Next, we construct TIC library func-
tions and highlight their features with examples. Lastly, we extend our prior work [CD06] by discussing the
construction of the TIC library functions and their validation. These TIC functions can accompany the original
documentation [Mat08a] as they model accurate and thorough semantics of the library blocks.

3.1. TIC schemas for Simulink elementary blocks

An elementary block denotes a time-dependent mathematical relationship between its inputs and outputs. In
Simulink, inputs and outputs always have values at any time point. Namely, they are total functions of time. We
consider here a common type of elementary blocks which have multiple inputs and single output. Other types such
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as multiple inputs and outputs can be handled similarly. Furthermore, each elementary block has its sample time
as its execution rate.

An elementary block is modeled by a TIC schema: essential attributes including the block inputs, output,
parameters and sample time are captured in the declaration part, and the block behavior is specified in terms of
intervals in the predicate part. As sample times can be either continuous or discrete, we classify TIC schemas of
elementary blocks in two groups according to their sample times.

When the sample time of an elementary block is equal to the value 0, the block executes continuously. Its
output at a time point relies on inputs either at the same time point (for example, a summation) or through an
interval (for example, an integral operation). We specify continuous behavior at the interval level rather than the
time point level.

Definition 1 (Continuous basic block) A TIC schema for a continuous elementary block is a 6-tuple (Ins, Out,
Ps, st,F ,V), where Ins denotes a set of inputs and each input is a timed trace of the type T→ R, Out is the output
which is also a timed trace, Ps denotes a set of block parameters of the type R, st is the sample time, F denotes the
mathematical relationship which depends on the inputs and block parameters, namely, F : Ins×Ps→ Out, and
V is a mapping assigning real numbers to block parameters. These elements satisfy two constraints which capture
continuous behavior of the block: one is I � �F(Ins, Ps) � Out� for indicating that F holds for all non-empty
intervals; the other is st � 0 to limit the sample time value.

When the sample time of an elementary block is positive, the block executes discretely. To be specific, the block
changes its output at sample time hits which are integer multiples of the sample time, and keeps its output constant
between any two consecutive sample time hits. This discrete behavior is captured by modeling the behavior for
each sample time interval which is left-closed, right-open and whose endpoints are a pair of consecutive sample
time hits.

Definition 2 (Discrete basic block) A TIC schema for a discrete elementary block is also a 6-tuple (Ins, Out,
Ps, st,F ,V), where the types of the elements are the same as those in Definition 1. However, the constraints that
these elements satisfy are different from Definition 1 as the behavior is discrete here. Specifically, st > 0 restricts
the value of the sample time, and the other constraint specifies the discrete behavior for all sample time intervals
which are denoted by �∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� where N represents the set of all natural numbers.

For many discrete elementary blocks in practice, predicates that model their behavior can be expressed in
the form: �∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆ �F(Ins(α), Ps) � Out�. Namely, the output Out during a
sample time interval is dependent on the input(s) Ins at the starting point of the sample time interval, such as
elementary blocks of the Sum library block with a discrete sample time as mentioned in Sect. 3.2. Nevertheless,
the predicates may be in a variant form for certain types of elementary blocks, for instance, elementary blocks of
the Unit Delay library block as illustrated in the following section.

The above two types of general structure of TIC schemas ( Definitions 1 and 2) serve as a guideline to con-
struct TIC library functions, where the mathematical relationship F will be explicitly specified with respect to a
particular Simulink library block. Note that the range of the above timed traces is real numbers for representing
the data type double in Simulink. This is acceptable since different data types in Simulink only affect simulation
efficiency. Our approach can be extended to support multi-dimensional values. For example, vectors of values
can be represented as sequences of values in TIC.

3.2. TIC library functions for Simulink library blocks

In Simulink, an elementary block is generated by assigning particular values to the parameters of a library block.
This parameterization technique is also adopted by our TIC library functions which model Simulink library
blocks. Specifically, these library functions return TIC schemas which represent elementary blocks.

As we focus on the mathematical relationships denoted by elementary blocks, irrelevant block parameters are
ignored such as parameters for the graphical appearance of blocks. We divide the remainder of block parameters
into three groups, operands, sample times and operators, according to their effects on the mathematical relation-
ships. We present below the general structure of TIC library functions which involve the first two groups of block
parameters. In the end, the way to handle the last group is given.

A continuous library block always produces continuous elementary blocks whose sample times are 0, and we
thus consider only its operand parameters.
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Definition 3 (Continuous library block) A TIC library function for a continuous library block takes a set of
arguments which denote the operand parameters of the library block and returns a TIC schema which conforms
to Definition 1 with respect to its elements and the constraints over the elements.

For example, the Integrator library block is a continuous library block, and its output value at the ending
point of an arbitrary interval is equal to the sum of its output value at the starting point of the interval and
the integration of its input over the interval. In addition, the output value at the time point 0 is stored via the
InitialCondition block parameter, which is represented by the variable IniVal in the following TIC library function
for the Integrator library block.

Integrator : R→ P[In1 : T→ R; Out : T� R; IniVal : R; st : T]

∀init : R • Integrator(init) � [In1 : T→ R; Out : T� R; IniVal : R; st : T |
st � 0 ∧ IniVal � init ∧ Out(0) � IniVal ∧ I � �Out(ω) � Out(α) +

∫ ω

α
In1� ]

In a schema returned by the function Integrator, namely, Integrator(init), the predicate IniVal � init which
associates the argument init with IniVal corresponds to the mapping V in Definition 1. Moreover, the predicate
I � �Out(ω) � Out(α) +

∫ ω

α
In1�, which explicitly specifies the mathematical relationship F in terms of intervals,

conforms to the first constraint in Definition 1. Note that we indicate the continuity feature of the block output
Out by�.

A discrete library block always creates discrete elementary blocks whose sample times are positive, and we
take into account its sample time and operand parameters.

Definition 4 (Discrete library block) A TIC library function for a discrete library block takes a set of arguments
denoting the sample time and operand parameters, and returns a TIC schema which conforms to Definition 2
with respect to its elements and the constraints over the elements.

For instance, the Unit Delay library block is a discrete library block, and its output values during a sample
time interval are equal to the input value which is sampled at the most recent sample time hit of the sample time
interval. The initially output value is specified via the X0 block parameter, and the sample time is determined
from the SampleTime block parameter. These parameters are denoted by variables IniVal and st in the following
TIC library function for the Unit Delay library block.

UnitDelay : T× R→ P[In1, Out : T→ R; IniVal : R; st : T]

∀t : T; init : R • UnitDelay(t, init) � [In1, Out : T→ R; IniVal : R; st : T |
st � t ∧ st > 0 ∧ IniVal � init ∧ �α � 0 ∧ ω � st� ⊆ �Out � IniVal� ∧
�∃k : N1 • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆ �Out � In1(α − st)�]

In a schema returned by UnitDelay, predicates st � t and IniVal � init correspond to V in Definition 2.
Moreover, the delay behavior as the discrete behavior of an elementary block of the Unit Delay library block is
modeled for all sample time intervals, particularly, by the last two predicates. One predicate is �α � 0 ∧ ω �
st� ⊆ �Out � IniVal� constraining the output values through the initial sample time interval which starts with
the time point 0. The other predicate restricts the output values during a non-initial sample time interval i, where
i ∈ �∃k : N1 • α � k∗st ∧ ω � (k +1)∗st� and N1 represents the set of all positive natural numbers. To be specific,
the output values are equal to the input value at the last sample time hit before i, namely, i ∈ �Out � In1(α− st)�.

Other library blocks can generate either continuous or discrete elementary blocks. A TIC library function for
such a library block captures both type of behavior by returning different TIC schemas according to the sample
time assigned to the library block. Namely, the structure of a returned schema conforms to Definition 1 when
the sample time is 0, and conforms to Definition 2 otherwise.

Taking the Sum library block as an example, it adds two inputs by default. If its sample time is specified by the
value 0, it continuously outputs the sum. Otherwise, the addition is discrete: the output values during a sample
time interval depend on the input values at the starting point of the sample time interval. The above relation
between the types of behavior and the sample time is modeled by two conjunctive implications in the following
TIC library function.
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Sum PP : T→ P[In1, In2, Out : T→ R; st : T]

∀t : T • (t � 0⇒ Sum PP(t) � [In1, In2, Out : T→ R; st : T | st � 0 ∧ I � �Out � In1 + In2�])
∧ (t > 0⇒ Sum PP(t) � [In1, In2, Out : T→ R; st : T | st � t ∧ st > 0 ∧

�∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆ �Out � In1(α) + In2(α)�])

So far we have presented the general structure of TIC library functions which involves the sample times and
operand parameters of library blocks. Ideally, we shall establish a one-to-one mapping from block types to TIC
library functions, such as the function Integrator for the Integrator library block. However, this kind of mapping
is inapplicable to operator parameters, because these parameters can cause a library block to produce elementary
blocks with different functionalities. We thus construct multiple TIC library functions for one library block which
has operator parameters; each library function represents a particular functionality.

Reusing the Sum library block as an instance, its Inputs block parameter is an operator parameter. The default
value of Inputs is “++” which indicates the default functionality of generated elementary blocks, a summation
of two inputs (as modeled by Sum PP). However, when the value of Inputs is “+−”, the functionality becomes
a subtraction of two inputs. This subtraction behavior is modeled by another TIC library function Sum PM as
shown below.

Sum PM : T→ P[In1, In2, Out : T→ R; st : T]

∀t : T • (t � 0⇒ Sum PM(t) � [In1, In2, Out : T→ R; st : T | st � 0 ∧ I � �Out � In1 − In2�])
∧ (t > 0⇒ Sum PM(t) � [In1, In2, Out : T→ R; st : T | st � t ∧ st > 0 ∧

�∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆ �Out � In1(α)− In2(α)�])

3.3. Discussions and discoveries

Up to now we have described the structure of TIC library functions which capture various behavior of Simulink
library block at the interval level. In this section, we discuss the way of constructing and validating these library
functions with some discoveries.5

We aim to capture the time-dependent mathematical relationships denoted by library blocks as their intrinsic
semantics. Unfortunately, the original Simulink documentation [Mat08a] specifies library blocks in a narrative
and sometimes partial manner. This can cause ambiguous interpretation of library blocks and further obstruct
the proper usage of Simulink.

For example, the Relay library block switches its output according to its relay status, either on or off. Its
original description states that: when the relay is on, the block remains on until its input drops below the value
of the Switch off point block parameter; when the relay is off, it remains off until its input exceeds the value of
the Switch on point block parameter. In addition, the Switch on point value must be greater than or equal to the
Switch off point value. However, the description misses the specification of the initial behavior, namely, the relay
status at the time point 0. It is thus necessary to clearly capture this initial behavior to avoid confusion of the
initial relay state.

To formally model a library block based on its informal and particularly incomplete description, we inves-
tigate the behavior by means of simulations under all possible circumstances where the library block may be
used in practice. Specifically, we assign different values to the operand parameters of a library block and feed
its inputs with various types, continuous or discrete, to simulate all possible situations in which the block may
be applied. Reusing the Relay library block as an example, we consider the relationship of two parameters and
the relationship between the initial input value and two parameters. As shown in Table 1, there are eight cases to
observe the initial relay state, where OnV denotes the Switch on point value, OffV denotes the Switch off point
value, and InV denotes the input value at the time point 0.

We also exploit simulations to validate TIC library functions. Namely, we check if the simulation results
of a library block conform to the TIC library function of that library block. When an inconsistency occurs, we
carefully analyze the original description of the block again and consult with our partners of Simulink, to identify
the problem and refine the library function if needed. This not only elevates the confidence of our TIC library
functions but also leads to the discovery of a bug of a library block as shown below.

5 These discoveries have been confirmed by senior application engineers of the MathWorks.
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Table 1. The initial relay state of the Relay library block in different cases

Case Relation Relay

1 OnV > OffV ∧ InV � OffV Off
2 OnV > OffV ∧ OnV > InV > OffV Off
3 OnV > OffV ∧ InV � OnV On
4 OnV > OffV ∧ InV < OffV Off
5 OnV > OffV ∧ InV > OnV On
6 OnV � OffV ∧ InV � OffV On
7 OnV � OffV ∧ InV < OffV Off
8 OnV � OffV ∧ InV > OffV On

Fig. 2. An incorrect simulation result of the Dead Zone library block

The output of the Dead Zone library block depends on the relation between its input and a region constrained
by a lower limit and an upper limit: (1) the output is zero if the input is within the region, (2) the output is the
input minus the upper limit if the input is greater than or equal to the upper limit, (3) the output is the input
minus the lower limit if the input is less than or equal to the lower limit.

Unfortunately, the above original description from [Mat08a] is inconsistent with the case where the input
is continuous and the upper limit equals the lower limit. Figure 2 depicts a particular simulation result of an
elementary block of the Dead Zone library block: its output is identical to its input, where both limits are equal
to the value 0.5 and the input is a sine wave. However, the input and output should be different according to the
description, as the input is greater than or less than 0.5 most of the time.

In this section, we have presented the general structure of TIC library functions which formally model the
time-dependent mathematical relationships denoted by Simulink library blocks. We have further discussed the
way to elaborately construct and validate TIC library functions. These functions can serve as an accurate and
thorough documentation to accompany the original Simulink reference [Mat08a] for the library blocks, and form
the foundation used for the automatic transformation from Simulink diagrams to TIC models.

Currently, we have modeled 44 Simulink library blocks of 9 categories including continuous, logic operations,
math operations, and so on. These block names are given in Appendix A.1 (where names in the italic format are
new from our previous work [CD06]), and their TIC library functions are available online [CDS07a]. The main
reason for modeling these library blocks is their frequent usage in practice. For example, all 22 library blocks of
the Commonly Used category defined in [Mat08a] are supported. Moreover, these library blocks have been used
in 17 Simulink demos which cover areas of aerospace and automobile. Note that the library blocks of the Ports
and Subsystems category are improper to be captured here, because their functionalities are usually unpredictable
until they are instantiated in specific Simulink diagrams. We will present how to handle the library blocks of this
category in the next section.
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4. Transforming Simulink diagrams into TIC models

A Simulink diagram is a connected block diagram and is constructed as a tree. We present a strategy in this section
to transform Simulink diagrams into TIC models. The transformation is in a bottom-up order, from elementary
blocks and wires to diagrams. The transformed TIC models capture the functional and timing aspects of each
elementary block, and retain the hierarchical structure of diagrams. At the end of this section, we extend our
previous work [CD06] to deal with blocks whose sample times are unspecified, and to handle blocks from the
Ports and Subsystems category including conditionally executed subsystems. The transformation strategy has
been implemented in Java for automation.

4.1. Transforming elementary blocks

A Simulink elementary block is produced by a library block by using the parameterization technique. Similarly,
a TIC schema which represents an elementary block is produced by applying relevant argument values to a TIC
library function which models the corresponding library block. During the transformation, two aspects are taken
into account.

One is the criteria for selecting an appropriate TIC library function for an elementary block. The primary cri-
terion is the BlockType block parameter which indicates the functionality of a block. Nevertheless, this parameter
is inadequate to distinguish special library blocks which contain operator parameters and can produce elemen-
tary blocks with different functionalities. Thus, operator parameters are also considered as additional criteria.
Recalling the Sum library block in Sect. 3.2, it has an operator parameter Inputs which determines the function-
ality of its produced elementary blocks. Hence, the criteria for choosing a TIC library function for Sum consist
of two block parameters, BlockType and Inputs.

The other aspect is about sample times. A sample time of an elementary block is determined by one of the
following ways: by the SampleTime block parameter, by the library block type (for example, elementary blocks of
a continuous library block always have continuous sample times), or by blocks which connect to the block inputs.
In addition, the last way relies on the assumption that all sample times of the blocks are specified. We formalize
below the last way based on the rules from [Mat08b]. We will also present a simple but effective algorithm in
Sect. 4.4 to deal with the case when the assumption is invalid.

Let Blk In denote the blocks connecting to the inputs of an elementary block, and InST be a function of the
type InST : Blk In→ T which returns the sample time of a block in Blk In.

• We firstly check whether sample times of all blocks in Blk In are identical. If so, we assign the identical value
to be the sample time of the elementary block. Otherwise, we return the value−1 as modeled by the following
function AllEq to indicate that the sample time is unspecified.

AllEq : P Blk In→ (T ∪ {−1})
∀ ins : P Blk In • ∃res : T • AllEq(ins) � If ∀ in : ins • InST (in) � res Then res Else − 1

• Next, we check whether there is a sample time of a block in Blk In which is the greatest common integer
divisor (GCD) of the sample times of other blocks in Blk In. If so, we assign the GCD to be the sample time
of the elementary block. Otherwise, we return the value −1 as modeled by the following function ExiFast to
indicate that the sample time is unspecified.

ExiFast : P Blk In→ (T ∪ {−1})
∀ ins : P Blk In • ∃res : T • ExiFast(ins) �

If ∃ in 1 : ins • ∀ in 2 : ins | in1 �� in2 •
∃k : N | k > 1 • InST (in2) � InST (in1) ∗ k ∧ InST (in1) � res

Then res Else − 1

• Lastly, when AllEq and ExiFast return the value −1, we derive the sample time according to the solver6

used in the diagram which contains the elementary block. As modeled by the following function STP, if a

6 There are two types of solvers for simulations in Simulink: variable-step solvers vary the simulation step size, while fixed-step solvers keep
the simulation step size constant. Solver �� {Variable Step, Fixed Step}.
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variable-step solver is used, the sample time is continuous, namely, equaling the value 0. Otherwise, the sample
time is the result of function CalGCD which returns the GCD of sample times of Blk In if such a GCD exists
or the value 0 otherwise.

STP : P Blk In× Solver→ T

∀ ins : P Blk In; s : Solver • STP(ins, s) �
If AllEq(ins) < 0 Then AllEq(ins) Else (If ExiFast(ins) < 0 Then ExiFast(ins)

Else (If s � Variable Step Then 0 Else CalGCD(ins)))

The above two aspects are important to capture the functional and timing properties of an elementary block.
We here reuse the elementary block Integrator in Fig. 1 as an example: (1) the selection criterion is the BlockType
block parameter whose value is Integrator, and hence the TIC library function Integrator in Sect. 3.2 is chosen,
(2) the sample time is 0 since the type of the Integrator library block is continuous. This elementary block is
modeled by the following schema calculation Integrator which is the result of assigning the value 4 as the initial
value to the library function. The expanded form of the schema is also given.

calculation Integrator �̂ Integrator(4)

calculation Integrator
In1 : T→ R; Out : T� R; IniVal : R; st : T

st � 0 ∧ IniVal � 4 ∧ Out(0) � IniVal ∧ I � �Out(ω) � Out(α) +
∫ ω

α
In1�

To preserve the hierarchical structure of a Simulink diagram, a transformed TIC schema is named in a
conventional manner which composes the name of the path in the diagram. For example, the schema name
calculation Integrator is formed by appending the block name Integrator to the system name calculation with the
symbol “ ”. This naming manner is also adopted by other approaches [ACOS00, CCO05, TSCC05].

4.2. Transforming wires

In Simulink, wires represent input and output relations between connected blocks, and the communication is
infinitely fast. Namely, a destination block can receive a value which is produced by a source block at the same
time point. As Simulink adopts the continuous-time domain, wires have values at all time points. In other words,
a source (or destination) block can write (or read) value to (or from) a wire according to its own execution rate, its
sample time. This feature hence enables Simulink to support multi-rate discrete systems as well as hybrid systems
which contain blocks with different sample times.

Each wire is converted into an equation at the interval level. The equation consists of two timed traces src
and dst, where src denotes the output of a source block (src : T→ R) and dst denotes the input of a destination
block (dst : T → R). The equivalence of these timed traces is valid for all non-empty intervals, specifically,
I � �src � dst�. We remark that the way as depicted here is applicable to normal (sub)systems. However, a
different way for handling conditionally executed subsystems will be demonstrated in Sect. 4.5.

4.3. Transforming diagrams

A Simulink diagram is made up by linking blocks with wires. It is thus necessary to retain the components
and connections of diagrams in transformed TIC models. Our method is similar to Arthan et al’s [ACOS00]:
the transformation of a diagram is performed after the components of the diagram are transformed into TIC
schemas. A diagram is modeled by a TIC schema in the following way.

• Each component is denoted by a schema variable. If a component is a block, the type of the variable is the
TIC schema which models the block. Otherwise, the component is an interface such as an input port, and the
variable is declared to be a total function from time to real numbers (more details are in Sect. 4.5).

• Each wire is represented by a TIC predicate in the way described in Sect. 4.2, where the variables used in a
predicate are the schema variables from the schema declaration.
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Fig. 3. A Simulink diagram where only blocks Delay and IC have specified sample times

A Simulink block can be either an elementary block or a diagram itself representing a subsystem. The way
to handle elementary blocks is illustrated in Sects. 4.1 and 4.5 shows how to deal with subsystems.

4.4. Computing unspecified sample times

In Sect. 4.1, we described the way to determine sample times of elementary blocks. However, this way is often
inapplicable in practice, as users usually assign explicitly sample times to some blocks and leave other blocks with
unspecified sample times which are equal to the value −1.

Taking Fig. 3 as a running example in this section, the diagram consists of six elementary blocks, one input
port (In1) and one output port (Out1), and only the sample times of blocks Delay and IC are specified with
values 1 and 2 respectively. We remark that in the beginning the sample time of the elementary block Switch is
unknown by using the method in Sect. 4.1 since its block type is not continuous and the sample times of blocks
Sum, Comparator and Gain which connect to its inputs are unspecified.

It is thus necessary to develop an algorithm to handle the unspecified sample times which cannot be directly
computed in the previous way. Our algorithm can automatically compute derivable sample times which are a
subset of unspecified sample times. The unspecified sample time of an elementary block is derivable provided one
of the following conditions holds.

1. One of the blocks connecting to the elementary block has continuous sample time;
2. All sample times of the blocks connecting to the elementary block are specified;
3. All sample times of the blocks connecting to the elementary block are either specified or derivable.

When the elementary block fulfills condition 1, its sample time is equal to the value 0 [Mat08b]. When con-
dition 2 is satisfied, the sample time can be computed by applying the function STP defined in Sect. 4.1. When
condition 3 holds, the sample time can be derived after finishing the computation of the derivable sample times
of the blocks connecting to the elementary block.

According to the above conditions, we can deduce that the sample times of Sum, Gain and Comparator in
Fig. 3 are derivable by condition 2 and the sample time of Switch is also derivable by condition 3.

Based on the computability property of derivable sample times, we have developed a simple and effective
algorithm as shown below to handle unspecified sample times. The algorithm starts with a non-empty list BLKS
of elementary blocks whose sample times are unspecified, and repeatedly modifies the list until its termination
condition at line 15 holds. To be specific, the algorithm terminates when either all sample times are specified or
none of the unspecified sample times is derivable. The first case is examined by method Empty which checks if
the list is empty, and the second case is examined by method CheckEq which checks if there is a change of the list
after executing the for loop from lines 3 to 14 once.

An element b in BLKS is analyzed with respect to three cases (lines 5–12).

• Lines 5–7 correspond to condition 1. Method ExistsContinuous checks whether there exists a block whose
sample time is continuous and the block connects to b (namely, the block is in the result returned by method
GetInBLKSST ). If ExistsContinuous returns true, the sample time of b is equal to the value 0, and then b is
deleted from BLKS by method Delete.

• Lines 8–10 handle condition 2. Method AllSTKnown checks if all sample times of the blocks connecting to b
are specified. If AllSTKnown returns true, we apply method CallSTP which implements the function STP as
defined in Sect. 4.1 to compute the sample time of b, and then delete b from BLKS.

• Line 11 indicates that there is inadequate information to calculate the sample time of b. We simply do nothing
to finish the analysis of b.
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Algorithm 1: Deal with all unspecified sample times

Require: A non-empty list of elementary blocks BLKS whose sample times are unspecified
1: repeat
2: iniBLKS ← BLKS
3: for all i � 1 to BLKS.length do
4: b← BLKS[i]
5: if ExistsContinuous(b.GetInBLKSST ()) then
6: b.st← 0
7: BLKS ← Delete(BLKS, b)
8: else if AllSTKnown(b.GetInBLKSST ()) then
9: b.st← CallSTP(BLKS, b)

10: BLKS ← Delete(BLKS, b)
11: else skip
12: end if
13: i← i + 1
14: end for
15: until Empty(BLKS) or CheckEq(BLKS, iniBLKS)

We illustrate how the algorithm can systematically compute the unspecified sample times in Fig. 3. Initially,
BLKS consists of four blocks, Sum, Gain, Switch and Comparator. After the first time the for loop is executed,
Gain, Sum and Comparator are deleted from BLKS with specified sample times which are 1, 1 and 2 respectively.
After the second execution of the for loop, Switch is deleted with its sample time which is 1. The algorithm hence
terminates since BLKS becomes empty.

We remark that Fig. 3 contains two loops. One is formed by Sum, Switch and IC, and the other comprises
Switch, IC and Comparator. Loops are frequently used in Simulink to graphically model differential equations
or feedback control systems. Our algorithm can calculate derivable sample times of blocks which are in loops,
and can thus transform diagrams containing loop structures with the preservation of timing information. On the
other hand, [TSCC05] lacks the support for deriving block sample times in loops.

4.5. Dealing with the Ports and Subsystems category

The transformation presented in Sect. 4.1 handles the elementary blocks whose library blocks are modeled by the
TIC library functions defined in Sect. 3. However, it is difficult and impracticable to define TIC library functions
to model the library blocks of the Ports and Subsystems category, because the behavior of their instances as pro-
duced elementary blocks in particular diagrams is usually unpredictable. We hence directly model their instances
in TIC during the transformation. We demonstrate below how to deal with these library blocks based on their
usage, specifically, either denoting interfaces or creating subsystems. Appendix A.2 lists the library block names
of this category supported so far.

• Library blocks Inport, Outport, Enable, and Trigger are designed to create (sub)system interfaces. For exam-
ple, instances of the Outport library block represent outputs of (sub)systems. An instance of one of these four
library blocks in a (sub)system is transformed to a total function of time in a TIC schema which models the
(sub)system. Furthermore, an instance of the Inport or Outport library block in a plain or enabled subsystem
(which will be explained more in the following context) is declared to be continuous provided the block which
connects to it is continuous.
Reusing the system calculation in Fig. 1 as an example: its input port Acc is an instance of the Inport library
block, and its output port Speed is an instance of the Outport library block. These ports are represented by
two functions declared in the following schema calculation which models the system. These functions are
in turn used in the predicates of calculation. Moreover, Speed is continuous as indicated by � because the
elementary block Integrator outputs continuously. Note that the schema calculation Integrator which models
Integrator is presented in Sect. 4.1.
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Fig. 4. A triggered subsystem with a continuous control input

calculation
Acc : T→ R; Integrator : calculation Integrator; Speed : T� R

I � �Acc � Integrator.In1� ∧ I � �Integrator.Out � Speed�

• The Subsystem library block is applied to form plain subsystems which virtually reduce the number of blocks
displayed in Simulink diagrams and form the hierarchical structure of Simulink diagrams. The way to translate
plain subsystems is the same as the one for diagrams described in Sect. 4.3.
Library blocks Enabled Subsystem and Triggered Subsystem are used to construct enabled subsystems and
triggered subsystems respectively which are conditionally executed subsystems. Here we expand our previously
primitive work in [CD06] by deeply analyzing these subsystems and illustrating our solutions with examples
in the following two subsections.

4.5.1. Triggered subsystems

A triggered subsystem executes each time a trigger event occurs. A trigger event is determined by a control input
which is an instance of the Trigger library block. There are three types of trigger events, rising, falling, and either,
according to the direction the control input crosses the value 0. For instance, a rising trigger event occurs, when
the control input rises from a negative or zero value to a positive value.

When no events occur, triggered subsystems always hold their outputs at the last value between trigger events
[Mat08b]. In addition, Simulink constrains the sample times of components in a triggered subsystem in the fol-
lowing way: all blocks and interface ports such as an input have the same sample times of its control input. To
model a triggered subsystem, we focus on modeling the way which assigns values to system inputs under different
circumstances of the system control input, whether a trigger event occurs or not. This is because the subsystem
outputs and the behavior of its components are dependent on the subsystem inputs.

Triggered subsystem can be classified into two groups in terms of their control inputs, which can be either
continuous or discrete. We present here how to handle triggered subsystems whose control inputs are continuous.
Appendix C.1 shows the way to support the other group where control inputs are discrete.

When the control input of a triggered subsystem is continuous, a trigger event occurs only at a point-interval
where the starting point equals the ending point. We specify the subsystem behavior in three situations: the pres-
ence of trigger events, the absence of trigger events in non-initial intervals which start with positive time points,
and the absence of trigger events in initial intervals which start with the time point 0. We remark that the last
situation is not documented in [Mat08b, Mat08a].

For a better illustration, we use the simple system in Fig. 4 as an example. Triggered subsystem trigsys outputs
the moments when its continuous control input Trigger rises from a negative or zero value to a positive value. In
the following schema sys trigsys, which denotes the triggered subsystem, Trigger is defined by a total function
whose range consists of two values, 1 and 0, where the value 1 indicates the presence of a trigger event and the
value 0 indicates the absence. Since we aim to model the behavior of triggered subsystems with respect to trigger
events, we represent control inputs at the above abstract level without specifying how to detect trigger events. In
addition, sys trigsys captures a timing feature that trigger events occur only at point-intervals by the predicate
�Trigger � 1� ⊆ �α � ω� where � � indicates a set of left and right-closed intervals.

sys trigsys
Trigger : T→ {0, 1}; In1, Out1 : T→ R

�Trigger � 1� ⊆ �α � ω� ∧ I � �In1 � Out1�
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sys
clock : sys clock; trigsys : sys trigsys; . . .

. . .
�trigsys.Trigger � 1� ⊆ �clock.Out � trigsys.In1� [Predicate1]
�trigsys.Trigger � 0 ∧ α > 0� ⊆ �trigsys.In1(α) � trigsys.In1� [Predicate2]
�trigsys.Trigger � 0 ∧ α � 0� ⊆ �trigsys.In1 � 0� [Predicate3]

In the above schema sys which includes the subsystem trigsys by the declaration trigsys : sys trigsys, the
conditionally executed behavior of trigsys is modeled by three predicates which constrain the wire between the
elementary block clock and the subsystem input trigsys.In1. Predicate1 states that trigsys.In1 equals the output
of clock when a trigger event happens. Predicate2 constrains that the values of trigsys.In1 in a non-initial interval
(indicated by α > 0) are equal to the trigsys.In1 value at the starting point of the non-initial interval when no
trigger event occurs. Predicate3 depicts that when no trigger event happens in an initial interval (by α � 0), the
values of trigsys.In1 over the initial interval are 0 by default. Note that the default value 0 is obtained from our
experiments, although it is unspecified in the Simulink documentation.

We informally explain below the reason to represent the last value between trigger events by using α in Predi-
cate2. When a trigger event occurs at a time point t, we have clock.Out(t) � trigsys.In1(t) according to Predicate1.
Based on Predicate2, we can deduce that the set of intervals as denoted by �trigsys.Trigger � 0 ∧ α > 0� contains
a left-open interval i such that (1) its starting point is t, namely, α(i) � t, and (2) the values of trigsys.In1 in i are
equal to trigsys.In1(α(i)), namely, trigsys.In1(t). Furthermore, we can imply that in any interval which starts at t
and ends before a time point t′ at which the next trigger event happens, the values of trigsys.In1 are the same as
trigsys.In1(t). For instance, for a point-interval [x . . . x] where t < x < t′, we can find a left-open, right-closed inter-
val (t . . . x] such that trigsys.In1(t) � trigsys.In1(x) because of the TIC expression �trigsys.In1(α) � trigsys.In1�.

4.5.2. Enabled subsystems

An enabled subsystem executes when the value of its control input which is an instance of the Enabled library
block is positive. Namely, an enabled subsystem starts its execution from the moment when its control input value
crosses zero from a negative value and continues its execution in the interval in which the control input values
remain positive. When an enabled subsystem is disabled, it can output either its last values or its initial output
values. We demonstrate here how to model the enabled subsystems which output their last values when they are
disabled. Nevertheless, the enabled subsystems which output their initial output values can be handled similarly
with auxiliary variables for storing the initial output values.

We concentrate on specifying the behavior which associates the subsystem inputs with their control inputs.
Unlike triggered subsystems which restrict all components of a triggered subsystem to have the same sample
time, enabled subsystems in Simulink can include components with different sample times [Mat08b]. This loose
restriction results in the difficulty of representing the last values of enabled subsystems, especially when their
control inputs are discrete. We present below our solution to model the enabled subsystems whose control inputs
are discrete. Appendix C.2 shows how to support the enabled subsystems whose control inputs are continuous.

When the control input of an enabled subsystem is discrete, we can represent the behavior of its control input
by specifying its value at every sample time hits. Nevertheless, the logic that Simulink uses to update enabled sub-
systems with different sample times of their components is complicated to be identified, as discussed by Tripakis
et al. [TSCC05]. Currently, we restrict ourselves to cope with a subset of enabled subsystems: all sample times of
components within an enabled subsystem are inherited by the inputs of the subsystem, and all subsystem inputs
have the same sample times. These restrictions are weaker than those of Tripakis et al., as we allow the sample
time of the control input to be different from other sample times.

Taking the enabled subsystem open in Fig. 5 as an example, the enabled subsystem (used in our case study in
Sect. 6.1) multiplies its continuous input volumeIn by the constant −0.1 when it is enabled; otherwise, it outputs
the last value. The control input Enable is linked by elementary block inverse whose sample time is 1. In the
following TIC schemas, tank plant open K represents block K and tank plant open represents open. The input
volumeIn of open is connected by a continuous block (refer to Sect. 6.1 for the connection), so it is declared to
be a continuous function in tank plant open. Therefore, the sample time of K is 0, and the output flow is also
continuous based on the discussion at the beginning of Sect. 4.5.
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Fig. 5. An enable subsystem open in a subsystem plant of a system tank

tank plant open K �̂ Gain(0,−0.1)

tank plant open
Enable : T→ R; volumeIn, flow : T� R; K : tank plant open K

I � �volumeIn � K .In1� ∧ I � �K .Out � flow�

Note that tank plant open captures the components and wires in the enabled subsystem open. The condition-
ally executed behavior of open is specified in the following schema tank plant which represents the subsystem plant
that contains open. To be specific, we model the relation between the assignment of the open input open.volumeIn
and the open control input open.Enable in every sample time interval. We remark that a sample time interval
is left-closed, right-open (in Definition 2). Moreover, discrete systems in Simulink execute only at sample time
hits; particularly, elementary block inverse outputs values to open.Enable every 1 time unit. As open can be either
enabled or disabled at two endpoints of a sample time interval, there are four cases about the open status at
the endpoints. The sample time intervals during which open is disabled need to be further distinguished in two
groups based on their starting points, because when an enabled subsystem is disabled in the initial sample time
interval, its last value is 0 by default. The default value is known from our experiments, although it is missed in
the Simulink documentation [Mat08b].

tank plant
volumeIn : T� R; open : tank plant open; . . .

. . .
�open.Enable ≤ 0 ∧ open.Enable(ω) > 0 ∧ α � 0 ∧ ω � 1� ⊆ �open.volumeIn � 0� [Predicate1]
�open.Enable ≤ 0 ∧ open.Enable(ω) ≤ 0 ∧ α � 0 ∧ ω � 1�
⊆ �open.volumeIn � 0 ∧ open.volumeIn(ω) � 0� [Predicate2]

�open.Enable ≤ 0 ∧ open.Enable(ω) > 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �open.volumeIn(α) � open.volumeIn� [Predicate3]

�open.Enable ≤ 0 ∧ open.Enable(ω) ≤ 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �open.volumeIn(α) � open.volumeIn ∧ open.volumeIn(α) � open.volumeIn(ω)� [Predicate4]

�open.Enable > 0 ∧ open.Enable(ω) > 0 ∧ ∃k : N • α � k ∧ ω � k + 1�
⊆ �volumeIn � open.volumeIn� [Predicate5]

�open.Enable > 0 ∧ open.Enable(ω) ≤ 0 ∧ ∃k : N • α � k ∧ ω � k + 1�
⊆ �volumeIn � open.volumeIn ∧ volumeIn(ω) � open.volumeIn(ω)� [Predicate6]

The first four predicates depict the behavior when open is disabled in a sample time interval, indicated by
the expression open.Enable ≤ 0. Predicate1 and Predicate2 are concerned with the initial sample time inter-
val which starts with the time point 0: the values of open.volumeIn are equal to 0 in the interval. In addition,
if open is still disabled at the ending point, namely, open.Enable(ω) ≤ 0, then the value of open.volumeIn is 0
at the ending point (in Predicate2). Predicate3 and Predicate4 deal with the non-initial sample time inter-
vals (�∃k : N1 • α � k ∧ ω � k + 1�), where the last value is the open.volumeIn value at the starting point
(open.volumeIn(α)). Furthermore, if open is still disabled at the ending point, we assign the last value to be the
open.volumeIn value at the ending point (in Predicate4). The above way for representing the last value is similar
to the one handling triggered subsystems in Sect. 4.5.1.

Predicate5 and Predicate6 model the behavior when open is enabled in a sample time interval. Specifically,
open.volumenIn equals the input volumeIn of plant at the same time point in the interval. Moreover, if open
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becomes disabled at the ending point, the volumeIn value at the ending point is the last value for open.volumeIn
(namely, volumeIn(ω) � open.volumeIn(ω) in Predicate6), based on mathematical theories about limits of con-
tinuous functions, volumeIn here. In the case that volumeIn is discrete, we can specify the last value as the value
of volumeIn at the most recent sample time hit when volumeIn updates its value before the ending point.

Up to now, we have described the way of transforming Simulink diagrams to TIC models, and the trans-
formation can preserve the functional and timing aspects as well as diagram structure. We have also presented
the algorithm to compute unspecified sample times in (complex) Simulink diagrams. We have further discussed
how to handle the library blocks of the Ports and Subsystems category, in particular enabled subsystems and
triggered subsystems. In this section, we support 7 library blocks of this category, and hence our approach covers
totally 51 library blocks of 10 categories (other 44 library blocks are modeled in Sect. 3). Based on transformed
TIC models, we can specify requirements over diagrams or some components, and rigorously reason about their
validity with a high grade of automation, as we will show in the following sections.

5. Machine-assisted proof support for TIC models of Simulink diagrams

We have described so far how TIC can formally model Simulink diagrams. The formal verification capability of
TIC can be exploited for rigorously validating Simulink diagrams against requirements. In addition, validation
is non-trivial as it usually involves continuous dynamics and arbitrary (infinite) intervals. When diagrams are
complex, manual proving is inadequate as it is difficult to ensure the correctness of each proof step and to manage
all proof details. It is thus necessary and important to develop the machine-assisted proof support for TIC models
of Simulink diagrams.

In the previous work [CDS08], we developed a generic verification system based on PVS for TIC. However,
we considered only the translation of two types of TIC models: TIC schemas which represent system properties
and TIC predicates which denote requirements. In another previous work [CDS07b], we constructed a set of PVS
library types for the TIC library functions. Nevertheless, the construction was manual. In this section, we extend
our previous work by supporting automatic transformation of axiomatic definitions which are the type of the
TIC library functions. We also compare the PVS functions transformed from the TIC library functions with our
previous work. At the end of this section, we define and validate a collection of supplementary rules dedicated
to Simulink modeling features.

5.1. Translating TIC library functions

In Sect. 3, we defined a set of TIC library functions to model Simulink library blocks. These library functions
return TIC schemas which capture the time-dependent relationships denoted by Simulink blocks.

Our previous work [CDS07b] represented a TIC library function by a PVS parameterized record type, which
returned a record type to denote a returned TIC schema of the library function. In addition, each schema predicate
was used to constrain the type of a record accessor which represented a schema variable.

However, this work possesses some disadvantages when translating TIC to PVS and conducting proofs in
PVS. Firstly, as a schema predicate may involve several schema variables, it is difficult to automatically and
correctly associate the predicate with the corresponding schema variable. Previously, we manually constructed
the association and in turn the parameterized record types for TIC library functions. Secondly, when applying
a property of an elementary block in a proof in PVS, users have to remember all record accessors of the record
type which models the schema of the elementary block. This is inconvenient. Last but not least, the work is only
suitable for TIC library functions, and is deficient to support axiomatic definitions [WD96] which are the type
of the library functions.

We start illustrating our current approach with the analysis of general axiomatic definitions, followed by an
application to a specific TIC library function. An axiomatic definition usually introduces a global variable and
specifies constraints of the declared variable. Such a definition is said to be axiomatic, as constraints are assumed
to hold whenever the variable is used. A general form can be depicted below, where Predicate denotes constraints
on a variable Decl Name, and Expression specifies the type of the variable. A specific axiomatic definition square
which returns a square of a natural number is also given below.

Decl Name : Expression

Predicate

square : N→ N

∀n : N • square(n) � n ∗ n
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In our approach, an axiomatic definition is translated to a PVS function which is a constant declaration. We
remark that PVS constant declarations introduce new constants such as functions (as explained in Sect. 2.3).
To be specific, for an axiomatic definition, Decl Name is used as the identifier of a PVS function, Expression is
converted into PVS specifications, and Predicate is translated to a PVS axiom whose identifier is also Decl Name.
These mappings are sketched below. We present the corresponding PVS function of the function square as well.

1 Decl_Name : Expression;
2 Decl_Name : AXIOM Predicate;

1 square : [nat -> nat];
2 square : AXIOM FORALL (n: nat):
3 square(n) = n * n;

We remark that the name overloading technique is applied to construct PVS specifications of axiomatic def-
initions. In the above PVS specifications of square, line 1 declares a constant named square which is a total
function from natural numbers to natural numbers, and lines 2 and 3 model the function property as an axiom
whose identifier is also named square.

A TIC library function is an axiomatic definition, and is thus translated to a PVS function which returns a
set of PVS records. Parameters of a translated PVS function correspond to the arguments of the corresponding
TIC library function, and the set of returned records represents a schema returned by the TIC library function.
Taking the TIC library function Integrator in Sect. 3.2 as an example, it is translated to the following PVS function
Integrator where keywords such as Trace, Time, AllS, ALPHA, OMEGA, and LIFT encode TIC semantics in PVS
(the detailed encoding of these keywords was available in [CDS08]).

Integrator : R→ P[In1 : T→ R; Out : T� R; IniVal : R; st : T]

∀init : R • Integrator(init) � [In1 : T→ R; Out : T� R; IniVal : R; st : T |
st � 0 ∧ IniVal � init ∧ Out(0) � IniVal ∧ I � �Out(ω) � Out(α) +

∫ ω

α
In1�]

1 Integrator: [real -> setof[[# In1: Trace, Out: Trace, IniVal: real, st: Time #]]];
2 Integrator: AXIOM FORALL (init: real): Integrator(init) =
3 { temp: [# In1: Trace, Out: Trace, IniVal: real, st: Time #] |
4 temp‘st = 0 AND temp‘IniVal = init AND temp‘Out(0) = temp‘IniVal AND
5 fullset = AllS((LIFT(temp‘Out) o LIFT(OMEGA)) = (LIFT(temp‘Out) o LIFT(ALPHA)) +
6 TICIntegral(LIFT(ALPHA), LIFT(OMEGA), temp‘In1)) AND
7 continuous(temp‘Out)};

• Line 1 declares the type of Integrator, namely, from real numbers to a set of records (denoted by setof[[#
... #]]). Each record comprises four accessors, and each accessor is associated with its corresponding type.
For example, the type of the accessor In1 is a timed trace encoded by Trace.

• The AXIOM specification from lines 2 to 7 models the properties of Integrator. An auxiliary variable temp
defined at line 3 is used for easily referring to record accessors by the PVS projection function (‘). For instance,
temp‘st indicates the accessor st. Line 4 captures the timing feature of the sample time, and relationships
between record accessors and PVS function parameters. The predicate at lines 5 and 6 represents the inte-
gration at the interval level in PVS, where the PVS keyword fullset denotes all non-empty intervals I, the
function AllS encodes the interval brackets � �, the PVS operator o is for the function composition, and the
function LIFT unifies different types of basic TIC elements to the same type of functions which take both
time points and intervals as parameters and return real numbers.
Note that continuous behavior is supported based on the NASA PVS library [But04]. The function TICIn-
tegral at line 6 encodes an integral operation of the timed trace In1. Furthermore, the continuity feature of
the output Out is captured at line 7 by the function continuous.

The above PVS function Integrator follows closely the TIC library function Integrator in terms of the struc-
ture. Schema predicates in Integrator are converted to the constraints in Integrator for all record accessors.
This is more straightforward than our previous work which had to identify the association between predicates
and record accessors. For example, both predicates IniVal � init and Out(0) � IniVal contain the variable IniVal,
and the former restricts the value of IniVal, while the latter restricts the value of the timed trace Out at the time
point 0.

Moreover, the structure of Integrator can facilitate the reasoning process in PVS, in particular, when apply-
ing the property of the Integrator library block. If using our previous approach, we have to enter the proof
command typepred with an accessor name four times because there are four accessors. In contrast, we only
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enter the proof command lemma with the function name once. It is also easier in practice for users to recall the
functions names which are identical to the library block types than the record accessors.

We have described the way of systematically handling axiomatic definitions. Comparison with our previous
work has been provided as well. We have implemented our approach using Java and hence extend our existing
work [CDS08] to automatically translate axiomatic definitions to PVS functions.

5.2. Facilitating TIC validation of Simulink diagrams in PVS

We define a collection of supplementary rules dedicated to Simulink modeling features to increase the efficiency of
TIC validation in PVS. We categorize these rules into two groups: one group deals with connections in Simulink
diagrams, and the other handles discrete systems modeled in Simulink.

Wires in Simulink diagrams are represented by equations in TIC (as shown in Sect. 4.2). Each equation
involves two timed traces which denote connected block ports. When reasoning about TIC models of Simulink
diagrams, we often need to substitute one timed trace for another provided they indicate a connection. In other
words, values of these two timed traces are equal in any interval. However, this kind of substitution is tedious in
PVS since we have to completely expand the detailed encoding of the TIC semantics to the low level of time points
to enable the PVS prover to automatically discharge proof goals. To simplify the substitution process, we define
a set of rewriting rules to replace one timed trace by another at the interval level under various circumstances.
For example, the following rule BB eq sub passes a constant value v between two equivalent timed traces tr1
and tr2, namely, from tr1 to tr2 and vice versa. This rule saves five proof steps such as expanding the function
AllS which encodes the interval brackets � � in PVS.

BB_eq_sub: LEMMA FORALL (tr1, tr2: Trace, v: real):
fullset = AllS(LIFT(tr1) = LIFT(tr2))

=> AllS(LIFT(tr1) = LIFT(v)) = AllS(LIFT(tr2) = LIFT(v));

Discrete systems with periodic execution are a common application domain of Simulink. The time domain of
these discrete systems in Simulink is decomposed into a sequence of sample time intervals as defined in Sect. 3.1,
and systems are updated at sample time hits. Based on these features, we define several domain-specific rules to
ease the analysis of this domain. For instance, to verify a safety requirement pl of a discrete system, we can apply
the following rule CO to All if pl is independent of interval operators (namely, α, ω, and δ). Note that a safety
requirement must be valid in every non-empty interval. The rule simplifies the checking of pl by considering
only all sample time intervals, which are expressed in PVS at lines 2 and 3, rather than all non-empty intervals.
In addition, the function No Term? at line 1 indicates that pl is not affected by any interval operator.

1 CO_to_All: LEMMA st > 0 AND No_Term?(pl) =>
2 subset?(COS(exNat( lambda(k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND
3 LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st))),
4 COS(pl))
5 => fullset = AllS(pl);

We have constructed 25 supplementary rules which have been validated in PVS. These rules facilitate the
validation of Simulink diagrams by elevating the automation grade in PVS. We will show the capability and
advantages of our formal framework by our experimental studies in the following section.

6. Experimental studies

To assist the usability of our approach, we apply the Java technology to implement the framework. The work flow
is shown in Fig. 6. Two translators automatically transform system designs. Specifically, Sim2TIC transforms
Simulink diagrams into TIC models, and TIC2PVS translates the TIC models of requirements and Simulink
library blocks and diagrams to PVS specifications. Moreover, supplementary rules are imported to simplify
proving processes in PVS.

Using this framework, we can rigorously validate various systems modeled in Simulink, such as multi-rate
discrete or hybrid systems. Open systems are also supported, as we can formally specify constraints of envi-
ronment variables in TIC based on the TIC models transformed from Simulink diagrams. With the powerful
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Fig. 6. Work flow of the formal framework on modeling and validating Simulink diagrams

verification capability, the framework can handle the analysis of continuous dynamics and validate important
timing requirements such as bounded liveness requirements.

We here apply our framework to an adapted tank control system from [KSF+99] for illustrating the benefits
of the framework. The system under consideration simplifies the mathematical functions of physical variables
for the sake of easier explanation. Nevertheless it possesses continuous and discrete behavior as well as discrete
logics. We firstly describe the system description, specifications and requirements. Next, we sketch the validation
of two requirements. One requirement is concerned with bounded liveness, and the other is a safety requirement.

6.1. Specifications of system design and requirements

The Simulink diagram of the tank control system is shown in Fig. 7, and mainly consists of two subsystems.
Subsystem plant describes the continuous behavior of water volume in a tank, and subsystem controller depicts
the control logic of a tank valve.

• In the subsystem plant: Input port volumeIn and output port volumeOut indicate the water volume. Input port
valve denotes commands from the subsystem controller, and its value is either 0 meaning that the valve must
be open, or 1 meaning that the valve must be closed. Enabled subsystems close and open model water flow
rate as their outputs flow for different commands. Elementary block inverse outputs the value 1 if its input
value is 0, and outputs the value 0 otherwise.

– The subsystem close is enabled when the valve is closed, and flow � (volumeIn− 6) ∗ −0.1.
– The subsystem open is enabled when the valve is open, and flow � volumeIn ∗ −0.1.

Elementary block switch outputs an appropriate flow rate according to valve. If the valve is open, switch
outputs its third input which is connected by open; otherwise, it outputs its first input which is connected by
close. Elementary block accumulate is an instance of the Integrator library block. Namely, it continuously
outputs the water volume by integrating the flow rate. Initially the water volume equals to the value 2, which
is specified via the InitialCondition block parameter of accumulate.

• In the subsystem controller: Input port volume indicates the water volume from the subsystem plant. Output
port valve denotes commands for the valve, which depend on volume. Specifically, when the volume value is
not smaller than a maximum value 3, valve outputs the value 0 to open the valve; and when the volume value
is not larger than a minimum value 1, valve outputs the value 1 to close the valve. Elementary block initial
outputs the value 1 at the time point 0, which indicates that the valve is initially closed. After that time point,
initial outputs values from switch. Elementary block max compares its input with the constant 3; its output
value is 1 when its input value is less than 3, and is 0 otherwise.

In practice, periods of communications are not negligible. Elementary block delay which is an instance of the
Unit Delay library block (defined in Sect. 3.2) models a delay from controller to plant; specifically, a command is
postponed for 1 time unit.

We apply the strategy presented in Sect. 4 to automatically transform the Simulink diagram to TIC schemas
based on the TIC library defined in Sect. 3. The transformation captures the timing aspect, namely, the sample
times of the diagram. In the diagram, only the sample time of delay is specified with the value 1, and the sample
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Fig. 7. A Simulink diagram models the water tank control system

times of other blocks are unspecified. Based on the method formalized in Sect. 4.1, the sample time of accumulate
is 0 due to its library block type. Using the algorithm presented in Sect. 4.4, we can derive all unspecified sample
times. For example, the elementary block switch in plant is connected by valve in plant and the enabled subsystems
open and close, and its sample time is 0. This is because the outputs of open and close are continuous. Note that
the sample time of valve in plant is 1 as valve inherits the sample time of delay. We present some transformed TIC
schemas below, which are used in the requirement specifications and proofs. The complete TIC schemas of the
Simulink diagram and the TIC library functions used are available in Appendix B.

• The following TIC schemas model wires in the subsystem plant and some of its components. For example,
schema tank plant inverse captures the sample time of inverse which equals 1 time unit as inherited from
delay, and schema tank plant accumulate stores the initial water volume as indicated by the value 2. We
ignore schemas tank plant close and tank plant open which respectively denote the enabled subsystems close
and open. Note that open was analyzed in Sect. 4.5.2. We also omit TIC predicates which specify the conditional
behavior of the enabled subsystems in schema tank plant below.

tank plant inverse �̂ Logic NOT (1)
tank plant switch �̂ Switch G(0, 0)

tank plant accumulate �̂ Integrator(2)

tank plant
volumeIn, volumeOut : T� R; valve : T→ R; inverse : tank plant inverse
switch : tank plant switch; accumulate : tank plant accumulate
close : tank plant close; open : tank plant open

. . .
I � �volumeIn � close.volumeIn� ∧ I � �volumeIn � open.volumeIn� ∧
I � �valve � close.Enable� ∧ I � �valve � inverse.In1� ∧ I � �close.flow � switch.In1� ∧
I � �valve � switch.In2� ∧ I � �inverse.Out � open.Enable� ∧ I � �open.flow � switch.In3� ∧
I � �switch.Out � accumulate.In1� ∧ I � �accumulate.Out � volumeOut�

• The elementary block delay is modeled by the following TIC schema tank delay, where the application
UnitDelay(1, 1) captures its sample time value and its initial output value. The connections among plant,
controller and delay are specified in the schema tank below.

tank delay �̂ UnitDelay(1, 1)
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tank
delay : tank delay; plant : tank plant; controller : tank controller

I � �delay.Out � plant.valve� ∧ I � �plant.volumeOut � plant.volumeIn� ∧
I � �plant.volumeOut � controller.volume� ∧ I � �controller.valve � delay.In1�

The tank control system is designed to satisfy several important requirements. For instance, the tank should
never be overflowed or empty. Moreover, real-time constraints are imposed on the control system such as a
response period of the valve. These requirements can be easily and precisely represented as TIC predicates based
on the transformed TIC schemas over the whole system or some components. We here introduce two requirements
which are used later to show how to formally conduct validation.

Requirement Response concerns the reaction time of the valve when the water volume is too high. Specifically,
when a left and right-closed interval (denoted by � �) during which the water volume is not lower than the value 3
(by sys.plant.volumeOut ≥ 3) lasts more than 2 time units (by δ > 2), plant should receive a command to open
the valve (by sys.plant.valve � 0) within 2 time units in the interval. The receiving of an open command in time
is captured by a left-closed, right-open interval, namely, �δ < 2�, with the concatenation operator � (introduced
in Sect. 2.2) which connects two sets of intervals end-to-end.

Response �� ∀ sys : tank • �sys.plant.volumeOut ≥ 3 ∧ δ > 2� ⊆ �δ < 2�� �sys.plant.valve � 0�

Requirement Safety is about the safety of the tank system. It states that the water volume shall be always less
than a maximal volume 4 in any non-empty interval.

Safety �� ∀ sys : tank • I � �sys.plant.volumeOut < 4�

6.2. Validating system design against requirements

Validating systems modeled in Simulink against requirements is non-trivial, because these systems usually con-
tain continuous dynamics and requirements often investigate behavior over arbitrary (infinite) intervals. After
transforming Simulink diagrams to TIC schemas, we can apply well-defined TIC reasoning rules and mathemat-
ical laws (of arithmetic and calculus) to rigorously prove whether the TIC schemas logically imply TIC predicates
which represent requirements.

To reduce the complexity of manual proofs in TIC, we exploit our existing verification system [CDS08] to
support machine-assisted proofs. We have extended the verification system in Sect. 5.1 to support the auto-
matic translation from axiomatic definitions to PVS functions, and to import the supplementary rules defined in
Sect. 5.2 to the PVS prover. Using our framework, the main objective of a proof is usually to assign proper values
to the quantified variables which represent intervals and time points where an assignment is often automatic, as
resulting (propositional) predicates usually can be automatically discharged.

We sketch below the validation of the tank control system against two requirements described early, in order
to demonstrate the capability of our framework on effectively conducting a formal analysis. Proof details are
available online [CDS07a].

6.2.1. Checking the requirement Response

This requirement concerns the timing relation between the water volume sent from plant and commands received
by plant. In other words, it involves only two components, namely, delay and controller. On one hand, delay
updates its output at sample time hits, namely, every 1 time unit. On the other hand, controller continuously
outputs a command to delay, and Response considers arbitrary left and right-closed intervals whose endpoints
may not be sample time hits. We adopt the proof by exhaustion method to divide all non-empty intervals into
finite cases to simplify the proof complexity.

We develop a theorem named Endpoints general form to classify any non-empty interval to one of four groups
in terms of their endpoints; whether they are sample time hits or not. This theorem is shown below where ST is
a sample time, and it has been validated in PVS.

Endpoints general form �� ∀i : I • ∃m, p : N; n, q : {0} ∪ R
+ | n < ST ∧ q < ST •

α(i) � m ∗ ST + n ∧ ω(i) � p ∗ ST + q
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In addition, for the sake of simplicity, we directly apply a pre-proved property of controller: controller outputs
the value 0 when the input water volume is not less than the value 3. Hence, based on the wires specified in the
schema tank and the substitution rule BB eq sub in Sect. 5.2, we can further narrow the checking of Simulink
components down to one, the elementary block delay only.

Response �� ∀sys : tank • �sys.delay.In1 � 0 ∧ δ > 2� ⊆ �δ < 2�� �sys.delay.Out � 0�

Next, we divide the checking of Response to four sub-proofs, and each sub-proof is concern with one group
of intervals. We outline here the sub-proof for the group where each interval starts with not a sample time hit,
namely, 1 > n > 0 since ST � 1, and ends with a sample time hit, namely, q � 0.

1. The skolemization technique in PVS replaces universal quantifiers in consequent formulas by arbitrary (Sko-
lem) constants. This technique is applied to Response to result in the following proof obligation, where the
identifiers with a suffix ! are Skolem constants which are automatically generated by the PVS prover. The
obligation is to construct two connected intervals i2 and i3, so i2 is left-closed, right-open and lasts less than
2 time units, while i3 is left and right-closed and delay outputs the value 0 in i3.

i1! ∈ �sys!.delay.In1 � 0 ∧ δ > 2� ∧ α(i1!) � m! + n! ∧ ω(i1!) � p!
⇒ ∃i2, i3 : I • i2 ∈ �δ < 2� ∧ i3 ∈ �sys!.delay.Out � 0� ∧ i1! � i2 ∪ i3

2. As i1! lasts longer than 2 time units, we instantiate i2 and i3 in the following way: i2 � [m! + n! . . . m! + 2)
and i3 � [m! + 2 . . . p!]. It is easy to see that i2 ∈ �δ < 2� and i1! � i2 ∪ i3.

3. To prove i3 ∈ �sys!.delay.Out � 0�, we need to show ∀t : [m! + 2 . . . p!] • sys!.delay.In1(� t
1�−1) � 0 where � �

represents a mathematical floor function, because of the discrete behavior of delay. Note that the functionality
of delay is also described in Sect. 3.2.

4. Using the mathematical laws of floor functions and real numbers, we can deduce the following relationship
between an arbitrary time point t and the endpoints of i1!, specifically, m! + n! and p!.

• � t
1 − 1� ≥ �m!+2

1 � − 1 � m! + 2− 1 � m! + 1 > m! + n!

• � t
1 − 1� ≤ � p!

1 � − 1 � p!− 1 ≤ p!

From the hypothesis of i1! at step 1, we can prove the proof goal at step 3 and hence complete the proof.

In the above procedure, it is difficult to automatically find out appropriate values for intervals i2 and i3 at
step 2, because the time domain here is continuous. Human heuristics is helpful at this step to guide the PVS
prover. On the other hand, the PVS prover facilitates the procedure by its support of the skolemization technique
(at step 1) and the mathematical laws (at step 4); in addition, the reasoning of i2 at step 2 and the proof at step 4
are automatic.

Note that the above validation involves only the subsystem controller and the elementary block delay, which
make up an open system excluding the subsystem plant that models the continuous behavior of the water volume.
Supporting the analysis of open systems is useful in practice, because in Simulink (1) continuous behavior is hard
to be depicted precisely and (2) open systems cannot be analyzed by means of simulations. We have investigated
in [CDS07b] the applicability of our approach on handling open systems by specifying environment constraints
in TIC.

6.2.2. Checking the requirement Safety

To simplify the checking process, we apply a refined TIC reasoning rule from our previous work [CDS08] to
check Safety for only left and right-closed intervals rather than all non-empty intervals. The reasoning rule
�¬ P� � ∅⇒ I � �P� states that a predicate P holds in all non-empty intervals provided there exists no left and
right-closed interval where the negation of P (namely, ¬ P) holds and P is irrelevant to interval operators. Thus,
we can have Safety �� ∀sys : tank • �sys.plant.volumeOut ≥ 4� � ∅.

Instead of checking the invalidity of Safety for all left and right-closed intervals, we exploit the proof by
contradiction method to reduce the number of intervals needed to be examined to one. We check if there is a
contradiction when we presume that the water volume is not less than the value 4 during a left and right-closed
interval i, namely, i ∈ �sys.plant.volumeOut ≥ 4�.

As volumeOut is continuous due to the continuous block accumulate, we can apply a theorem developed by
us. The theorem models a property of continuous functions at the interval level: for a continuous timed trace
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tr and a threshold TH , an interval j, where tr(α(j)) < TH and tr(ω(j)) > TH , can be decomposed into two
connected intervals j1 and j2, where j � j1 ∪ j2 ∧ tr(α(j2)) � TH ∧ ∀t : j2 • tr(t) ≥ TH . This theorem has also
been validated in PVS.

We assign sys.plant.volumeOut to tr and the value 3 to TH , and then infer that the interval [0 . . . α(i)] can be
decomposed to two connected intervals, where the latter interval i1 is left and right-closed and the water volume
equals 3 at its starting point and is not less than 3 elsewhere. Note that the initial water volume is 2. Namely,
i1 ∈ �sys.plant.volumeOut(α) � 3 ∧ sys.plant.volumeOut ≥ 3� ∧ ω(i1) � α(i)

We hence analyze the water volume volumeOut at the ending point of the interval i1 as ω(i1) � α(i). The
analysis is divided to two cases according to the length of i1.

• When δ(i1) ≤ 2: Based on the connections in plant, particularly blocks switch and accumulate and port
volumeOut, we can obtain the following integral equation for computing the water volume.

sys.plant.volumeOut(ω(i1)) � sys.plant.volumeOut(α(i1)) +
∫ ω(i1)

α(i1) sys.plant.switch.Out

� 3 +
∫ ω(i1)

α(i1) sys.plant.switch.Out

The output of switch depends on its second input which denotes the valve status as shown below.

– When the valve is opened at a time point t, switch outputs its third input connected by the subsystem open.
We can have sys.plant.switch.Out(t) � −0.1 ∗ sys.plant.volumeOut(t) ≤ 0, as the water volume is never
negative.

– When the valve is closed at a time point t, switch outputs its first input connected by the subsystem
close. We can have sys.plant.switch.Out(t) � −0.1 ∗ (sys.plant.volumeOut(t) − 6) ≤ 0.3, because i1 ∈
�sys.plant.volumeOut ≥ 3�.

By a mathematical law (from the NASA PVS library) which relates integration bounds of an integrated func-
tion and bounds of the integrated function, we can compute the upper limit of the water volume at the ending
point of i1. Note that δ(i1) � ω(i1)− α(i1).

sys.plant.volumeOut(ω(i1)) � 3 +
ω(i1)∫

α(i1)
sys.plant.switch.Out ≤ 3 + 2 ∗ 0.3 < 4

Therefore, we find out a contradiction that the values of the water volume at the same time point, ω(i1) and
α(i), are inconsistent, as sys.plan.volumeOut(α(i)) ≥ 4.

• When δ(i1) > 2: From the requirement Response, we can derive that there exist two intervals i2 and i3 which
compose i1 and satisfy the following properties.

i2 ∈ �sys.plant.volumeOut(α) � 3 ∧ sys.plant.volumeOut ≥ 3 ∧ δ < 2�
i3 ∈ �sys.plant.volumeOut ≥ 3 ∧ sys.plant.valve � 0� ∧ ω(i3) � ω(i1) � α(i)

Firstly, it is easy to prove that i2 ∈ �sys.plant.volumeOut < 4� from the proof of the first case where δ(i1) ≤ 2.
To be specific, we can replace the ending point ω(i1) in the previous proof by an arbitrary time point of i2
and follow similarly the reasoning process.
Next, to analyze the volumeOut value at the end of i3, we use a proved property of the subsystem plant, which
indicates that the water volume decreases in an interval in which the valve is open. Hence, we can deduce that
sys.plant.volumeOut(ω(i3)) ≤ sys.plant.volumeOut(α(i3)).
Since the water volume is less than the value 4 at the end of i2 from the first case, we can imply that
sys.plant.volumeOut(ω(i3)) < 4. That is to say, we find out another contradiction.

We therefore show that a contradiction exists in both cases. Namely, there is no left and right-closed interval
in which the water volume can be larger than or equals to 4. We hence complete the proof. We remark that the
analysis of continuous behavior (for instance, the water volume) is supported in our framework.

In this section, we illustrated an application of our framework to the tank control system whose behavior
includes continuous-time, discrete-time, and discrete logics. The framework can formally model various behaviors
of the control system, and assist rigorous validation of a bounded liveness requirement and a safe requirement.
The validation is beyond Simulink and is systematically conducted with a high degree of automation and the
support for analyzing continuous dynamics.
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7. Conclusion

In this article, we developed a framework to formally model and rigorously validate Simulink diagrams. This
framework captures the functional and timing aspects of Simulink diagrams, and supports the validation of the
systems denoted in Simulink against important requirements with a high grade of automation.

We elaborately constructed a set of TIC library functions to represent frequently used Simulink library blocks.
These library functions model the time-dependent mathematical relationships between block inputs and outputs,
and they were checked to conform to the behavior of those library blocks by thorough simulation. From the
rigorous procedure of constructing and validating these library functions, we discovered incomplete semantics
and a bug of those library blocks in the original Simulink documentation.

Based on the TIC library functions, we implemented a translator in Java to automatically transform Simulink
diagrams to TIC schemas in the bottom-up order. The transformation can calculate all derivable sample times
which are the timing information of elementary blocks in Simulink diagrams. Enabled subsystems and triggered
subsystems, are also supported. We presented our solution to systematically handle these conditionally executed
subsystems according to their control inputs and system inputs. After the transformation, we can precisely and
concisely specify in TIC various (timing) requirements of a system or some components, and specify environment
properties for open systems as well.

We enhanced our existing verification system used in the framework to automatically translate axiomatic
definitions to PVS functions, and to include the supplementary rules dedicated to Simulink modeling features.
Using this framework, we can hence rigorously carry out the validation of complex systems which may possess
continuous and discrete behavior, with a high level of automation (for instance, arithmetic reasoning is auto-
matic) and the support of analyzing continuous dynamics (for example, the mathematical laws of integration)
and common proof methods (such as proof by contradiction and proof by induction).

There are several directions on extending our framework. One is to support more Simulink library blocks.
Currently we support 51 library blocks from 10 categories including continuous, discrete, signal routing, etc, which
cover all library blocks of the Commonly Used category in Simulink [Mat08a]. Compared to other existing works,
our approach handles more library blocks and some of them are only supported by ours, in particular, library
blocks of the Continuous category. We are inspired by the TIC expressiveness and aim to model all mathemat-
ical relationships denoted by library blocks. Another direction is to improve the automation of the validation
of Simulink diagrams. Though verification of complex Simulink diagrams is challenging, we are developing
more supplementary rules dedicated to specific domains (such as hybrid control systems, the primary domain of
Simulink modeling) to simplify reasoning processes. We also plan to expand the framework to support formal
analysis of Stateflow diagrams by using PAT [LSD08, SLDW08], a toolkit supporting an expressive modeling
language and state-of-art model checking techniques. Applying our framework to industrial-scale case studies is
also one of our goals.
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Appendix A: Supported Simulink library blocks

A.1. Simulink library blocks modeled in TIC library functions

• Continuous Library: Integrator, Derivative.
• Discrete Library: Memory, Discrete-Time Integrator, Unit Delay, Zero-order Delay.
• Logic and Bits Operations Library: Combinational Logic, Comparator to Constant, Compare to Zero, Interval

Test, Logical Operator, Relational Operator.
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• Math Operations Library: Abs, Add, Bias, Divide, Dot Product, Fcn, Gain, Math Function, MinMax, Product,
Sign, Subtract, Sum, Unary Minus.

• Discontinuous Library: Dead Zone, Hit Crossing, Relay, Saturation.

• Signal Routing Library: Bus Creator, Bus Selector, Demux, Mux, Switch.

• Source Library: Constant, Clock, Digital Clock, Ground.

• Signal Attributes Library: Data Type Conversion, IC.

• Sinks: Display, Scope, Terminator.

A.2. Simulink library blocks handled in the transformation

• Ports and Subsystems: Enable, Enabled Subsystem, Inport, Outport, Subsystem, Trigger, Triggered
Subsystem.

Appendix B: TIC models of the tank control system

B.1. TIC library functions of the Simulink library blocks in the tank control system

Here we provide the TIC library functions which model the library blocks used in Fig. 7. Note that the TIC
library functions Integrator, UnitDelay and Sum PM for blocks accumulate, delay and diff have been specified
in Sect. 3.2.

Constant : R→ P[Out : T→ R; IniVal : R]

∀cv : R • Constant(cv) � [Out : T→ R; IniVal : R | cv � IniVal ∧ I � �Out � IniVal� ]

Comparator l : T× R→ P[In1 : T→ R; Out : T→ {0, 1}; st : T; TH : R]

∀t : T; p : R • (t � 0⇒ Comparator l(t, p) � [In1 : T→ R; Out : T→ {0, 1}; st : T; TH : R |
st � 0 ∧ p � TH ∧ �In1 < TH� � �Out � 1� ∧ �In1 ≥ TH� � �Out � 0� ])

∧ (t > 0⇒ Comparator l(t, p) � [In1 : T→ R; Out : T→ {0, 1}; st : T; TH : R |
t � st ∧ st > 0 ∧ p � TH ∧ �∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆

�(In1(α) < TH ⇒ Out � 1) ∧ (In1(α) ≥ TH ⇒ Out � 0)�])

Comparator g : T× R→ P[In1 : T→ R; Out : T→ {0, 1}; st : T; TH : R]

∀t : T; p : R • (t � 0⇒ Comparator g(t, p) � [In1 : T→ R; Out : T→ {0, 1}; st : T; TH : R |
st � 0 ∧ p � TH ∧ �In1 > TH� � �Out � 1� ∧ �In1 ≤ TH� � �Out � 0� ])

∧ (t > 0⇒ Comparator g(t, p) � [In1 : T→ R; Out : T→ {0, 1}; st : T; TH : R |
t � st ∧ st > 0 ∧ p � TH ∧ �∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆

�(In1(α) > TH ⇒ Out � 1) ∧ (In1(α) ≤ TH ⇒ Out � 0)�])

Switch G : T× R→ P[In1, In2, In3, Out : T→ R; TH : R; st : T]

∀t : T; th : R • (t � 0⇒ Switch G(t, th) � [In1, In2, In3, Out : T→ R; TH : R; st : T |
st � 0 ∧ th � TH ∧ �In2 > TH� � �Out � In1� ∧ �In2 ≤ TH� � �Out � In3� ])

∧ (t > 0⇒ Switch G(t, th) � [In1, In2, In3, Out : T→ R; TH : R; st : T |
t � st ∧ st > 0 ∧ th � TH ∧ �∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆

�(In2(α) > TH ⇒ Out � In1(α)) ∧ (In2(α) ≤ TH ⇒ Out � In3(α))� ])
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InitCond : T× R→ P[In1, Out : T→ R; IniVal : R; st : T]

∀t : T; init : R • (t � 0⇒ InitCond(t, init) � [In1, Out : T→ R; IniVal : R; st : T |
st � 0 ∧ init � IniVal ∧ �0 � α� ⊆ �Out(α) � IniVal� ∧ �0 < α� ⊆ �Out � In1� ])

∧ (t > 0⇒ InitCond(t, init) � [In1, Out : T→ R; IniVal : R; st : T |
t � st ∧ st > 0 ∧ init � IniVal ∧ �α � 0 ∧ ω � st� � �Out � IniVal� ∧
�∃k : N1 • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆ �Out � In1(α)� ])

Logic NOT : T→ P[In1 : T→ R; Out : T→ {0, 1}; st : T]

∀t : T • (t � 0⇒ Logic NOT (t) � [In1 : T→ R; Out : T→ {0, 1}; st : T |
st � 0 ∧ �In1 � 0� � �Out � 1� ∧ �In1 �� 0� � �Out � 0� ])

∧ (t > 0⇒ Logic NOT (t) � [In1 : T→ R; Out : T→ {0, 1}; st : T |
t � st ∧ st > 0 ∧ �∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆

�(In1(α) � 0⇒ Out � 1) ∧ (In1(α) �� 0⇒ Out � 0)� ])

Gain : T× R→ P[In1, Out : T→ R; GValue : R; st : T]

∀t : T; gv : R • (t � 0⇒ Gain(t, gv) � [In1, Out : T→ R; GValue : R; st : T |
st � 0 ∧ gv � GValue ∧ I � �Out � In1 ∗ GValue� ])

∧ (t > 0⇒ Gain(t, gv) � [In1, Out : T→ R; GValue : R; st : T |
t � st ∧ st > 0 ∧ gv � GValue ∧
�∃k : N • α � k ∗ st ∧ ω � (k + 1) ∗ st� ⊆ �Out � In1(α) ∗ GValue� ])

B.2. Transformed TIC schemas of the Simulink diagrams for the tank control system

The following TIC schemas model all subsystems of the tank control system. The schemas for the whole system
have been represented in Sect. 6.1.

B.2.1. Subsystem controller

tank controller max �̂ Comparator l(0, 3)
tank controller min �̂ Comparator g(0, 1)
tank controller constant �̂ Constant(1)

tank controller diff �̂ Sum PM(0)
tank controller switch �̂ Switch G(0, 0)
tank controller initial �̂ InitCond(0, 1)

tank controller
volume, valve : T� R; max : tank controller max; min : tank controller min
constant : tank controller constant; diff : tank controller diff
switch : tank controller switch; initial : tank controller initial

I � �volume � max.In1� ∧ I � �volume � min.In1� ∧ I � �initial.Out � valve� ∧
I � �max.Out � switch.In1� ∧ I � �min.Out � diff .In2� ∧
I � �constant.Out � diff .In1� ∧ I � �diff .Out � switch.In3� ∧
I � �initial.Out � switch.In2� ∧ I � �switch.Out � initial.In1�

B.2.2. Subsystem open

tank plant open K �̂ Gain(0,−0.1)

tank plant open
Enable : T→ R; volumeIn, flow : T� R; K : tank plant open K

I � �volumeIn � K .In1� ∧ I � �K .Out � flow�
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B.2.3. Subsystem close

tank plant close constant �̂ Constant(6)
tank plant close sum �̂ Sum PM(0)

tank plant close K �̂ Gain(0,−0.1)

tank plant close
Enable : T→ R; volumeIn, flow : T� R; K : tank plant close K
constant : tank plant close constant; sum : tank plant close sum

I � �volumeIn � sum.In1� ∧ I � �constant.Out � sum.In2�
I � �sum.Out � K .In1� ∧ I � �K .Out � flow�

B.2.4. Subsystem plant

tank plant inverse �̂ Logic NOT (1)
tank plant switch �̂ Switch G(0, 0)

tank plant accumulate �̂ Integrator(2)

tank plant
volumeIn, volumeOut : T� R; valve : T→ R; inverse : tank plant inverse
switch : tank plant switch; accumulate : tank plant accumulate
close : tank plant close; open : tank plant open

�open.Enable ≤ 0 ∧ open.Enable(ω) > 0 ∧ α � 0 ∧ ω � 1� ⊆ �open.volumeIn � 0�
�open.Enable ≤ 0 ∧ open.Enable(ω) ≤ 0 ∧ α � 0 ∧ ω � 1�
⊆ �open.volumeIn � 0 ∧ open.volumeIn(ω) � 0�

�open.Enable ≤ 0 ∧ open.Enable(ω) > 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �open.volumeIn(α) � open.volumeIn�

�open.Enable ≤ 0 ∧ open.Enable(ω) ≤ 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �open.volumeIn(α) � open.volumeIn ∧ open.volumeIn(α) � open.volumeIn(ω)�

�open.Enable > 0 ∧ open.Enable(ω) > 0 ∧ ∃k : N • α � k ∧ ω � k + 1�
⊆ �volumeIn � open.volumeIn�

�open.Enable > 0 ∧ open.Enable(ω) ≤ 0 ∧ ∃k : N • α � k ∧ ω � k + 1�
⊆ �volumeIn � open.volumeIn ∧ volumeIn(ω) � open.volumeIn(ω)�

�close.Enable ≤ 0 ∧ close.Enable(ω) > 0 ∧ α � 0 ∧ ω � 1� ⊆ �close.volumeIn � 0�
�close.Enable ≤ 0 ∧ close.Enable(ω) ≤ 0 ∧ α � 0 ∧ ω � 1�
⊆ �close.volumeIn � 0 ∧ close.volumeIn(ω) � 0�

�close.Enable ≤ 0 ∧ close.Enable(ω) > 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �close.volumeIn(α) � close.volumeIn�

�close.Enable ≤ 0 ∧ close.Enable(ω) ≤ 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �close.volumeIn(α) � close.volumeIn ∧ close.volumeIn(α) � close.volumeIn(ω)�

�close.Enable > 0 ∧ close.Enable(ω) > 0 ∧ ∃k : N • α � k ∧ ω � k + 1�
⊆ �volumeIn � close.volumeIn�

�close.Enable > 0 ∧ close.Enable(ω) ≤ 0 ∧ ∃k : N • α � k ∧ ω � k + 1�
⊆ �volumeIn � close.volumeIn ∧ volumeIn(ω) � close.volumeIn(ω)�

I � �volumeIn � close.volumeIn� ∧ I � �volumeIn � open.volumeIn�
I � �valve � close.Enable� ∧ I � �valve � inverse.In1�
I � �valve � switch.In2� ∧ I � �close.flow � switch.In1�
I � �inverse.Out � open.Enable� ∧ I � �open.flow � switch.In3�
I � �switch.Out � accumulate.In1� ∧ I � �accumulate.Out � volumeOut�
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Appendix C: Handling conditionally executed subsystems

This appendix is complementary to Sects. 4.5.1 and 4.5.2 to deal with two additional types of enabled subsystems
and triggered subsystems. One is for triggered subsystems with discrete control inputs, and the other is for enabled
subsystems with continuous control inputs.

C.1. Triggered subsystems of discrete control inputs

When the control input of a triggered subsystem is discrete, trigger events occurs only at sample time hits. In
addition, there is no trigger event at time point 0 as the input is constant in the initial sample time interval. Note
that discrete behavior in Simulink is piecewise-constantly continuous. We specify the behavior by constraining
the values of subsystem inputs in terms of sample time intervals, which are left-closed, right-open and formed by a
pair of consecutive sample time hits. We remark that triggered subsystems output the last value between any two
events. As subsystem outputs are determined by subsystem inputs, it is thus necessary and important to mode the
way of assigning subsystem inputs. Specifically the value of a subsystem input can come from the block which is
outside the subsystem and connects to the input or be the last value which is obtained at the time point when the
last event happens. Moreover, the type of trigger events varies the kinds of situations to be handled. Particularly,
according to the occurrences of trigger events at both endpoints of any sample time interval, if the type is either,
there are six kinds of situations relevant to the assignment of input values; else the type is either rising or falling,
and there are five kinds of situations since it is impossible that two events occur at a pair of sample time hits.

We take a simple system shown in Fig. 8 as an example. The control input of the triggered subsystem trigsys
is connected by a source which outputs discretely, every 1 time unit. The type of trigger events is either. Namely,
a trigger event occurs when the control input rises from a negative or zero value to a positive value or the control
input falls from a positive or a zero value to a negative value.

The schema sys trigsys shown below denotes the subsystem trigsys: the first predicate constrains that there
is no trigger event at the time point 0; the second predicate captures that the time points where trigger events can
occur are multiples of the sample time which is 1 in this example.

sys trigsys
Trigger : T→ {0, 1}; In1, Out1 : T→ R

�Trigger � 0� ⊆ �α � 0 ∧ ω � 0� ∧ �Trigger � 1� ⊆ �∃k : N1 • α � k ∧ α � ω� ∧ I � �In1 � Out1�

sys
In1 : T→ R; trigsys : sys trigsys; . . .

. . .
�trigsys.Trigger(ω) � 0 ∧ α � 0 ∧ ω � 1� ⊆ �trigsys.In1 � 0 ∧ trigsys.In1(ω) � 0� [Predicate1]
�trigsys.Trigger(ω) � 1 ∧ α � 0 ∧ ω � 1� ⊆ �trigsys.In1 � 0� [Predicate2]
�trigsys.Trigger(α) � 1 ∧ trigsys.Trigger(ω) � 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �In1(α) � trigsys.In1 ∧ In1(α) � trigsys.In1(ω)� [Predicate3]

�trigsys.Trigger(α) � 1 ∧ trigsys.Trigger(ω) � 1 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �In1(α) � trigsys.In1� [Predicate4]

�trigsys.Trigger(α) � 0 ∧ trigsys.Trigger(ω) � 0 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �trigsys.In1(α) � trigsys.In1 ∧ trigsys.In1(α) � trigsys.In1(ω)� [Predicate5]

�trigsys.Trigger(α) � 0 ∧ trigsys.Trigger(ω) � 1 ∧ ∃k : N1 • α � k ∧ ω � k + 1�
⊆ �trigsys.In1(α) � trigsys.In1� [Predicate6]

The above part of the schema sys represents the conditional execution of trigsys by six predicates. These
predicates model the way to assign the subsystem input trigsys.In1 based on whether an event occurs at any
ending points of every sample time interval, namely, checking trigsys.Trigger(α) and trigsys.Trigger(ω). Pred-
icate1 and Predicate2 are concerned with the initial sample time interval: the default value of trigsys.In1 is 0
during the interval; and if no event happens at the ending point, the value 0 is assigned to trigsys.In1 at the
ending point (expressed by Predicate1). The last four predicates deal with non-initial sample time intervals (by
�∃k : N1 • α � k ∧ ω � k + 1�). Predicate4 states that when events occur at both ending points, the value of the
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Fig. 8. A triggered subsystem trigsys controlled by a discrete input

Fig. 9. An enabled subsystem enablesys which is controlled by a continuous input

input port at the starting point (In1(α)) is the last value to trigsys.In1 in the interval; moreover, if no event occurs
at the ending point, one more constraint is added to assign the last value to trigsys.In1 at the ending point (by
Predicate3). When no event occurs at the starting point but one event at the ending point, the last value during
the interval is the input value at the starting point (by Predicate6); furthermore, if no event occurs at the ending
point, we need to also assign the last value to trigsys.In1 at the ending point (by Predicate5).

C.2. Enabled subsystems of continuous control inputs

When the control input of an enabled subsystem is continuous, the subsystem executes whenever the value of
the input is positive. Here we handle the case that enabled subsystems outputs the most recent values when it
is disabled. To model the conditional execution, we use a similar method which has been applied for triggered
subsystems to specify how to assign subsystem inputs appropriate values in two circumstances, namely, enabled
and disabled. We further restrict that the intervals during which the control input values are positive are left and
right-closed.

For example, Fig. 9 shows an enabled subsystem enablesys which is controlled by a continuous wave. This
continuity feature is captured in the schema sys enablesys which denotes the subsystem enablesys, specifically,
by the symbol� in the declaration of the control input Enable.

sys enablesys �̂ [Enable : T� R; In1, Out1 : T→ R | I � �In1 � Out1�]

Part of the following schema sys specifies the conditional behavior in three TIC predicates. Predicate1 indi-
cates that whenever the subsystem is enabled, the value of the subsystem input enablesys.In1 is assigned by the
input port In1 which connects the subsystem input. Predicate2 and Predicate3 are concerned with the situation
where the subsystem is enabled (enablesys.Enable > 0). Specifically, if the interval during which the subsystem
is disabled starts with time point 0, the value of enablesys.In1 is 0 by default (expressed by Predicate2); else the
interval starts with positive time point, and we assign the value of enablesys.In1 at the starting point as the last
value within the interval (by Predicate3). Note that the reason for choosing the last value is similar to the one
for handling triggered subsystems (as discussed in Sect. 4.5.1).

sys
In1 : T� R; enablesys : sys enablesys; . . .

. . .
�enablesys.Enable > 0� ⊆ �In1 � enablesys.In1� [Predicate1]
�enablesys.Enable ≤ 0 ∧ α � 0� ⊆ �enablesys.In1 � 0� [Predicate2]
�enablesys.Enable ≤ 0 ∧ α > 0� ⊆ �enablesys.In1(α) � enablesys.In1� [Predicate3]
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