
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

9-2010 

Developing model checkers using PAT Developing model checkers using PAT 

Yang LIU 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Jin Song DONG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
LIU, Yang; SUN, Jun; and DONG, Jin Song. Developing model checkers using PAT. (2010). Proceedings of 
the 8th International Symposium, ATVA 2010, Singapore, September 21-24. 371-377. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5034 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5034&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Developing Model Checkers Using PAT

Yang Liu, Jun Sun, and Jin Song Dong

School of Computing
National University of Singapore

{liuyang,sunj,dongjs}@comp.nus.edu.sg

Abstract. During the last two decades, model checking has emerged as an effec-
tive system analysis technique complementary to simulation and testing. Many
model checking algorithms and state space reduction techniques have been pro-
posed. Although it is desirable to have dedicated model checkers for every lan-
guage (or application domain), implementing one with effective reduction tech-
niques is rather challenging. In this work, we present a generic and extensible
framework PAT, which facilitates users to build customized model checkers. PAT
provides a library of state-of-art model checking algorithms as well as support
for customizing language syntax, semantics, state space reduction techniques,
graphic user interfaces, and even domain specific abstraction techniques. Based
on this design, model checkers for concurrent systems, real-time systems, prob-
abilistic systems and Web Services are developed inside the PAT framework,
which demonstrates the practicality and scalability of our approach.

1 Introduction

After two decades’ development, model checking has emerged as a promising and pow-
erful approach for automatic verification of hardware and software systems. It has been
used successfully in practice to verify complex circuit design [3], communication pro-
tocols [5] and driver software [2]. Till now, model checking has become a wide area
including many different model checking algorithms catering for different properties
(e.g., explicitly model checking, symbolic model checking, probabilistic model check-
ing, etc.) and state space reduction techniques (e.g., partial order reduction, binary de-
cision diagrams, abstraction, symmetry reduction, etc.).

Unfortunately, several reasons prevent many domain experts, who may not be ex-
perts in the area of model checking, from successfully applying model checking to
their application domains. Firstly, it is nontrivial for a domain expert to learn a gen-
eral purpose model checker (e.g., NuSMV [3], SPIN [5] and so on). Secondly, general
purpose model checkers may be inefficient (or insufficient) to model domain specific
applications, due to lack of language features, semantic models or data structures. For
example, multi-party barrier synchronization or broadcasting is difficult to achieve in
the SPIN model checker. Lastly, the level of knowledge and effort required to create a
model checker for a specific domain is even higher than applying existing ones.

To meet the challenges of applying model checking in new application domains, we
propose a generic and extensible framework called PAT (Process Analysis Toolkit) [1],
which facilitates effective incorporation of domain knowledge with formal verifica-
tion using model checking techniques. PAT is a self-contained environment to support

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 371–377, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



372 Y. Liu, J. Sun, and J.S. Dong

Fig. 1. PAT Architecture

composing, simulating and reasoning of system models. It comes with user friendly
interfaces, a featured model editor and an animated simulator. Most importantly, PAT
implements a library of model checking techniques catering for checking deadlock-
freeness, divergence-freeness, reachability, LTL properties with fairness assumptions
[13], refinement checking [11] and probabilistic model checking. Advanced optimiza-
tion techniques are implemented in PAT, e.g., partial order reduction, process counter
abstraction [16], bounded model checking [14], parallel model checking [8] and proba-
bilistic model checking. PAT supports both explicit state model checking and symbolic
model checking (based on BDD or SAT solver). We have used PAT to model and ver-
ify a variety of systems [6]. Previously unknown bugs have been discovered [7]. The
experiment results show that PAT is capable of verifying systems with large number of
states and outperforms the state-of-the-art model checkers in some cases.

2 Architecture Overview

PAT was initially designed to support a unified way of model checking under fair-
ness [13]. Since then, PAT has been extended significantly and completely re-designed.
We have adopted a layered design to support analysis of different systems/languages,
which can be implemented as plug-in modules. Fig. 1 shows the architecture design
of PAT. For each supported domain (e.g., distributed system, real-time system, service
oriented computing and so on), a dedicated module is created in PAT, which identifies
the (specialized) language syntax, well-formness rules as well as formal operational
semantics. For instance, the CSP module is developed for the analysis of concurrent
system modeled in CSP# [12]. The operational semantics of the target language trans-
lates the behavior of a model into LTS (Labeled Transition Systems)1 at runtime. LTS
serves as an implicitly shared internal representation of the input models, which can
be automatically explored by the verification algorithms or used for simulation. To per-
form model checking on LTSs, the number of states in the LTSs needs to be finite. For

1 To be precise, it is a Markov Decision Process when probabilistic choices are involved.



Developing Model Checkers Using PAT 373

systems with infinite behavior (e.g., real time clocks or infinite number of processes),
abstraction techniques are needed. Examples of abstraction techniques include data ab-
straction, process counter abstraction, clock zone abstraction, environment abstraction,
etc. The verification algorithms perform on-the-fly exploration of the LTSs. If a coun-
terexample is identified during the exploration, then it can be animated in the simulator.
This design allows new modules to easily be plugged in and out, without recompiling
the core system, and the developed model checking algorithms (mentioned in Section
1) to be shared by all modules. This design achieves extensible architecture as well as
module encapsulation. We have successfully applied this framework in development of
four different modules, each of which targets a different domain. 1). The concurrent sys-
tem module is designed for analyzing general concurrent systems using a rich modeling
language CSP# [12], which combines high-level modeling operators with programmer-
favored low-level features. 2). The real-time system module supports analysis of real-
time systems with compositional behavioral patterns (e.g. timeout, deadline) [15].
Instead of explicitly manipulating clock variables, time related constructs are designed
to build on implicit clocks and discretized using clock zone abstraction [15]. 3). The
Web Services (WS) module offers practical solutions to the conformance checking and
prototype synthesis between WS Choreography and WS Orchestration. 4). The proba-
bilistic module supports the modeling and verification of systems exhibiting random or
probabilistic behavior.

3 Manufacturing Model Checkers

In this section, we discuss how to create a customized model checker for a new domain
using the PAT framework with the help of its predefined APIs, examples and software
packages. A domain often has its specific model description language. It is desirable
that the domain experts can input their models using their own languages. There are
three different ways of supporting a new language in PAT.

– The easiest way is to create a syntax rewriter from the domain specific language
to an existing language. This is only recommended if the domain language is less
expressiveness than the existing languages. For example, we have developed trans-
lators from Promela/UML state diagram to CSP#. Comparing with other tools, pro-
gramming a translator is straightforward in PAT. Because PAT has open APIs for
its language constructs, users only need to generate the language constructs objects
using these APIs, which can guarantee that the generated syntax is correct. This ap-
proach is simple and requires little interaction with PAT codes. However, translation
may not be optimal if special domain specific language features are present. Fur-
thermore, reflecting analysis results back to the domain model is often non-trivial.

– The second way is to extend an existing module if the input languages are similar
and yet with a few specialized features. For example, the probabilistic module is
designed to extend the concurrent system module with one additional language
feature, i.e., probabilistic choices. Knowledge about existing modules is required
and a new parser may be created for the extended language features.



374 Y. Liu, J. Sun, and J.S. Dong

– The third way is to create a new module in PAT. In this case, users firstly need to
develop a parser according to the syntax. The parser should generate a model con-
sisting of ASTs of language construct classes, which encode their operational se-
mantics. Abstract classes2 for system states, language construct classes and system
model are pre-defined in PAT with (abstract) signature methods for communica-
tions with verification algorithms and user interface interactions. Users only need to
develop concrete classes in the new module by inheriting the abstract classes. This
approach is the most complicated compared with the first two. Nevertheless, this
approach gives the most flexibility and efficiency. It is difficult to quantify the ef-
fort required to build a high-quality module in PAT. Experiences suggest that a new
module can be developed in months or even weeks in our team. This approach is
feasible for domain experts who have only the basic knowledge on model checking.
This is because model checking algorithms and state space reduction techniques are
separated from the syntax and semantics of the modeling language.

It is possible that a domain may have its own specialized properties to verify and spec-
ified model checking algorithms. Our design allows seamless integration of new model
checking algorithm and optimization techniques by inheriting base assertion class and
implementing its API. Furthermore, supporting functions, like LTL to Büchi, Rabin,
Streett automata conversion, are provided in PAT to ease the development of new al-
gorithms. For instance, we have successfully developed the algorithms for divergence
checking, timed refinement checking in real-time system module and new deadlock
and probabilistic reachability checking. Furthermore, PAT facilitates customized state
encoding by defining the interfaces methods in system state class. Different verification
algorithms using different state encoding are developed. Currently, PAT supports ex-
plicitly state encoding using hash table and symbolic state representation using BDD.
The choice of the encoding is made by the users in the user interface at runtime.

4 Performance Evaluation

PAT is capable of verifying systems with large number of states and outperforms the
state-of-the-art model checkers in some cases. Experimental results for LTL verification
under fairness and refinement checking are presented in Fig. 2 as an indication of our
effort on optimizing the model checking algorithms.

The table on the left shows the verification results on recently developed leader elec-
tion protocols with different topologies, where the correctness (modeled using LTL
formula) of these protocols requires different notions of fairness. Firstly, PAT usually
finds counterexamples quickly. Secondly, verification under event-level strong fairness
(ESF) is more expensive than verification with no fair, event-level weak fairness (EWF)
or strong global fairness (SGF). Lastly, PAT outperforms SPIN for the fairness veri-
fications. SPIN increases the verification time under weak fairness by a factor that is
linear in the number of processes. SPIN has no support for strong fairness or SGF. PAT
offers comparably better performance on verification under weak fairness and makes it
feasible to verify under strong fairness or SGF.

2 Detailed explanation and usages of the abstract classes are available in PAT’s user manual.



Developing Model Checkers Using PAT 375

Model Size EWF ESF SGF
Res. PAT SPIN Res. PAT Res. PAT

LE C 5 Yes 4.7 35.7 Yes 4.7 Yes 4.1
LE C 6 Yes 26.7 229 Yes 26.7 Yes 23.5
LE C 7 Yes 152 1190 Yes 152 Yes 137
LE C 8 Yes 726 5720 Yes 739 Yes 673
LE T 7 Yes 1.4 7.6 Yes 1.4 Yes 1.4
LE T 9 Yes 10.2 62.3 Yes 10.2 Yes 9.6
LE T 11 Yes 68.1 440 Yes 68.7 Yes 65.1
LE T 13 Yes 548 3200 Yes 573 Yes 529

LE OR 3 No 0.2 0.3 No 0.2 Yes 11.8
LE OR 5 No 1.3 8.7 No 1.8 - -
LE OR 7 No 15.9 95 No 21.3 - -
LE R 4 No 0.3 <0.1 No 0.7 Yes 19.5
LE R 5 No 0.8 <0.1 No 2.7 Yes 299
LE R 6 No 1.8 0.2 No 4.6 - -
LE R 7 No 4.7 0.6 No 9.6 - -
LE R 8 No 11.7 1.7 No 28.3 - -
TC R 3 Yes <0.1 <0.1 Yes <0.1 Yes <0.1
TC R 5 No <0.1 <0.1 No <0.1 Yes 0.6
TC R 7 No 0.2 0.1 No 0.2 Yes 13.7
TC R 9 No 0.4 0.2 No 0.4 Yes 640

Models N Property Result PAT FDR
Dining Philosophers 6 P refines S true 0.86 0.07
Dining Philosophers 8 P refines S true 13.7 0.07
Dining Philosophers 10 P refines S true 430 0.11

Reader/Writers 12 P refines S true < 1 0.81
Reader/Writers 14 P refines S true < 1 6.91
Reader/Writers 16 P refines S true < 1 81.2
Reader/Writers 200 P refines S true 77.5 -

Milner’s Cyclic Scheduler 11 P refines S true < 1 89.4
Milner’s Cyclic Scheduler 12 P refines S true < 1 419
Milner’s Cyclic Scheduler 13 P refines S true < 1 -
Milner’s Cyclic Scheduler 200 P [T= S true 60.4 -

5-valued register 2 P refines S true 44.9 NA
6-valued register 2 P refines S true 297 NA
stack of size 14 2 P refines S true 99.4 NA
stack of size 2 3 P refines S true 4321 NA

buggy queue of size 10 2 P refines S false 6.87 NA
buggy queue of size 20 2 P refines S false 41.1 NA
mailbox of 3 operations 2 P refines S true 27.8 NA
mailbox of 4 operations 2 P refines S true 954 NA

SNZI of size 2 2 P refines S true 322 NA
SNZI of size 3 3 P refines S true 6214 NA

Fig. 2. Experiment results on LTL verification under fairness assumption and refinement checking

In addition to temporal logic verification, PAT offers capability of refinement check-
ing (i.e. language inclusion checking). The table on the right shows the performance
using benchmark systems as well as newly developed concurrent algorithms. In the
classic readers/writers problem, reduction in PAT is very effective so that PAT can han-
dle a few hundreds readers/writers. In the Milner’s cyclic scheduling algorithm, multiple
processes are scheduled in a cyclic fashion. PAT is effective for this model to handle
hundreds of processes. For models with complicated data variables (like scalable non-
zero indicator SNZI, see [6] for the details of the examples), PAT is able to show the
linearizability of these examples using refinement checking [6]. FDR [10] performs ex-
tremely well for Dining Philosophers because of the compression strategy developed
for some specialized models. For other examples, PAT is much faster than FDR. Lim-
ited by the modeling language, FDR is rather difficult to model distributed systems
like Stack, mailbox and SNZI. In addition, PAT supports timed refinement checking,
which is beyond existing refinement checkers. In summary, PAT offers a set of well-
optimized model checking languages as well as a framework for developing new model
checkers.

5 Discussion and Summary

As a temporal logic model checker, PAT is related to the tools like NuSMV [3] and
SPIN [5]. Compared to these tools, PAT serves a generic framework for manufacturing
model checkers. It complements existing model checkers with specialized algorithms
for (timed/untimed) refinement checking [11], verification under fairness constraints
(with counter abstraction [16]), etc. PAT has a comparative performance with existing
state-of-art tools, and even out-performs them on some cases. Bogor [4] and LTSA [9]
are two extensible model checker developed as a plug-in of Eclipse. Bogor allows users



376 Y. Liu, J. Sun, and J.S. Dong

to extend the base language to support new language features, but cannot be fully cus-
tomized with desired syntax and semantic models. LTSA compiles the input language
FSP (based on Process Algebra) into LTS, which is similar to PAT. However all the
modules in LTSA adopt the translation approach to convert the input model (e.g., Mes-
sage Sequence Chart and Web Service) into FSP models. Compared with these two, our
approach takes one step further to allow the development of fully customized model
checkers. Furthermore, the supported libraries in PAT offer user advanced model check-
ing techniques like real-time verification and probabilistic model checking, which are
absent in Bogor and LTSA.

Compared to [13], we redesigned the system to separate the GUI, verification algo-
rithms and modeling languages. Each modeling language is encapsulated into a stand-
alone package, which makes the system extensible. Furthermore, we have added the
support for real-time and probabilistic systems. The enhancement is dramatic. Starting
from 2007, PAT has come to a stable stage with solid testing and various applications.
More than 60 built-in examples and hundreds of test cases are embedded in PAT. PAT
has been used by a number of institutions as a research or educational tool. The main
objective of PAT is to bring sophisticated model checking techniques to a variety of
domains. The existing modules and on-going modules under development have shown
the usefulness and feasibility of this framework.

References

1. PAT: Process Analysis Toolkit, http://pat.comp.nus.edu.sg/
2. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier: Technology

Transfer of Formal Methods inside Microsoft. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.)
IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg (2004)

3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

4. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby: Building Your Own Software Model Checker
Using the Bogor Extensible Model Checking Framework. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 148–152. Springer, Heidelberg (2005)

5. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Wiley, Chichester
(2003)

6. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model Checking Lineariability via Refinement. In: Cav-
alcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337. Springer, Heidelberg
(2009)

7. Liu, Y., Pang, J., Sun, J., Zhao, J.: Efficient Verification of Population Ring Protocols in PAT.
In: TASE 2009, pp. 81–89 (2009)

8. Liu, Y., Sun, J., Dong, J.S.: Scalable Multi-Core Model Checking Fairness Enhanced Sys-
tems. In: ICFEM 2009, pp. 426–445 (December 2009)

9. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. Wiley, Chichester
(1999)

10. Roscoe, A.W.: Model-checking CSP. In: A Classical Mind: Essays in Honour of C.A.R.
Hoare, pp. 353–378 (1994)

http://pat.comp.nus.edu.sg/


Developing Model Checkers Using PAT 377

11. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Process Analysis
Toolkit. In: ISoLA 2008, pp. 307–322. Springer, Heidelberg (2008)

12. Sun, J., Liu, Y., Dong, J.S., Chen, C.Q.: Integrating Specification and Programs for Sys-
tem Modeling and Verification. In: TASE 2009, pp. 127–135. IEEE Computer Society, Los
Alamitos (2009)

13. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 702–708. Springer,
Heidelberg (2009)

14. Sun, J., Liu, Y., Dong, J.S., Sun, J.: Bounded Model Checking of Compositional Processes.
In: TASE 2008, pp. 23–30. IEEE Computer Society, Los Alamitos (2008)

15. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Verifying Stateful Timed CSP using Implicit Clocks
and Zone Abstraction. In: ICFEM 2009, pp. 581–600 (December 2009)

16. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair Model Checking of Parameter-
ized Systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 123–139.
Springer, Heidelberg (2009)


	Developing model checkers using PAT
	Citation

	Developing Model Checkers Using PAT
	Introduction
	Architecture Overview
	Manufacturing Model Checkers
	Performance Evaluation
	Discussion and Summary
	References


