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Abstract—In recent years, many Web service composition
languages have been proposed. Web service choreography
describes collaboration protocols of cooperating Web service
participants from a global view. Web service orchestration
describes collaboration of the Web services in predefined
patterns based on local decision about their interactions with
one another at the message/execution level. In this work,
we present model-based methods to close the gap between
the two views. Building on the strength of model checking
techniques, Web service choreography and orchestration are
verified against temporal properties or against each other
(to show that they are consistent). Specialized optimization
techniques are developed to handle large Web service models.
Furthermore, we propose a method to mechanically synthesize
a prototype Web service orchestration from choreography, by
repairing the choreography if necessary and projecting relevant
behaviors to each service provider.

I. OVERVIEW

The Web services paradigm promises to enable rich, dy-
namic, and flexible interoperability of highly heterogeneous
and distributed Web-based platforms. In recent years, many
Web service composition languages have been proposed.
There are two different viewpoints, and correspondingly two
terms, in the area of Web service composition. Web service
choreography is usually referred to Web service specifica-
tion which describes collaboration protocols of cooperating
Web service participants from a global point of view. An
example is WS-CDL (short for Web Service Choreography
Description Language [8]). Web service orchestration refers
to Web service descriptions which take a local point of view.
That is, an orchestration describes collaborations of the Web
services in predefined patterns based on local decision about
their interactions with one another at the message/execution
level. A representative is WS-BPEL (short for Web Service
Business Process Execution Language [19]), which models
business processes by specifying the work flows of carrying
out business transactions.

Informally, a choreography may be viewed as a contract
among multiple corporations, i.e., a specification of require-
ments (which may not be executable). An orchestration is
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the composition of concrete services provided by each cor-
poration who realizes the contract. The distinction between
choreography and orchestration resembles the well studied
distinction between sequence diagrams (which describes
inter-object system interactions, taking a global view) and
state machines (which may be used to describe intra-object
state transitions, taking a local view). Likewise, there are two
important problems to be addressed. One is the verification
problem, i.e., to verify whether a choreography or an orches-
tration is correct with respect to critical system properties or
whether they are consistent with each other. The latter means
that the orchestration faithfully implements all and only what
the contract states. The other one is the synthesis problem,
i.e., to decide whether a choreography can be realized by any
orchestration (refereed as implementable) and synthesize a
prototype orchestration if possible.

The solutions to both problems are important in the
development of Web services. Solving either problem is
however highly non-trivial. Firstly and most importantly,
choreography and orchestration are generally modeled in
different languages/formalisms, and choreography models
are even not executable, Hence, there is natural gap between
the two views. To perform effective analysis on the two
views, we need to bridge the gap. Secondly, ideally it is
sufficient to verify a single Web service invocation which
is independent of other service invocations. In reality, this
is often not true because of physical constraints (see [11],
like the number of Web service instances are bounded by
the thread pool size of the underlying operating system).
As a result, multiple service invocations must be verified
as a whole. Because Web services are designed for poten-
tially large number of users (who may invoke the services
simultaneously), verifying Web services based on model
checking techniques must cope with state space explosion
due to concurrent service invocations. Lastly, synthesizing
orchestration from choreography resembles the distributed
synthesis problem (e.g., in the setting of sequence diagrams),
which has been shown to be undecidable in general and in
many restrictive settings [22]. Worse, synthesizing a distrib-
uted object system with the exact behaviors is impossible if
there are implied scenarios [2]. Both results apply to Web

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.28

166

2010 Asia Pacific Software Engineering Conference

1530-1362/10 $26.00 © 2010 IEEE

DOI 10.1109/APSEC.2010.28

166



service choreography (see examples later).
In this work, we offer practical solutions to both problems

using a model based approach. First of all, we propose for-
mal languages for modeling choreography and orchestration
respectively with formal operational semantics. This creates
a unified semantics model for the two views, which allows
communications between choreography and orchestration
models. To make them practical, these languages cover
many language constructs for Web service compositions
(i.e., behavioral aspects of WS-CDL and WS-BPEL).

In order to verify Web services under physical con-
straints, on-the-fly model checking techniques are adopted
and extended specially to handle multiple concurrent service
invocations. Consistency between choreography and orches-
tration is verified by showing conformance relationship
(i.e., trace inclusion) between the choreography and the
orchestration. Based on the refinement checking [25], we
develop a verification algorithm to support data communica-
tions between choreography and orchestration, which allows
orchestration to drive the execution of (non-executable)
choreography. It is further optimized for Web services.

In order to deal with undecidability of the synthesis
problem, we adopt a scalable lightweight approach. We
do not claim to solve the problem completely, instead, we
present a practical way to avoid undecidability. That is,
instead of semantically checking whether a choreography is
distributively implementable or not, we apply static analysis
(based on the syntax) to check whether the choreography
satisfies certain sufficient condition for being implementable.
If positive, a synthesis procedure is invoked to automat-
ically generate an orchestration prototype. Otherwise, we
go further by using a repairing process to generate an
implementable choreography by inserting communications
between service providers. The repaired choreography may
provide hints on how to correct the original one. Lastly, our
engineering efforts have realized the methods in a toolkit
named WS@PAT (available at http://pat.comp.nus.edu.sg),
which is a self-contained framework for Web service mod-
eling, simulation, verification and synthesis.

The work is related to research on verifying or synthesiz-
ing Web services [14], [5], [4], particularly, the line of work
by Foster et al presented in [12], [13], [11]. They proposed
to apply model-based verification for Web services. Their
approach is to build Finite State Processes (FSP) model from
Web services and then apply verification techniques based
on FSP to verify Web services. For instance, conformance
between choreography and orchestration is verified by show-
ing a bi-simulation relationship between the respective FSP
models. In particular, they identified the model of resource
constraint in Web service verification [11] and proposed to
perform verification under resource constraints. In addition,
they developed a tool named LTSA-WS [13] (and later WS-
Engineer). Our work can also be categorized as model-based
verification, and is similar to theirs. Our approach comple-

ments their works in a number of aspects. Firstly, our model
is based on a modeling language which is specially designed
for Web service composition with features like channel pass-
ing, shared variables/arrays, service invocation with service
replication, etc. Secondly, our verification algorithms employ
specialized optimizations for Web services verification, e.g.,
model reduction based on algebraic properties of the models,
partial order reduction for orchestration with multiple local
computational steps, etc. These optimizations allow us to
handle large state space and potentially large Web services.
Lastly, we study the synthesis problem and offer a light-
weight and practical solution, which is related to the work
presented in [7]. The synthesis approach in [4] generates
high level behavior patterns from WSDL description, while
our approach synthesizes implementation from WS-CDL
design.

The conformance checking is also discussed in [21], [3],
[1]. In [21], formalizations are provided for the two views
and symbolic model checking is used for the conformance
checking. In [3] the notion of conformance is defined by
means of automata and is restricted only to compositions
of two services. The work of [1] concentrates on checking
that the choreography specification is respected by the im-
plementing services at run time. The formalization is given
in terms of Petri Nets. Compared with these approaches,
we provide a unified semantic model for Web service
composition with efficient verification algorithm.

This work is related to works on verifying WS-BPEL [9],
[20] and WS-CDL [23] by translating to other formalisms
and verifying using existing model checkers like Uppaal [9],
Java Path Finder [23] or NuSMV [20]. Compared to them,
we provide direct verification and dedicated optimizations
for the Web services specification languages. Our approach
follows the formalization of Web service and the discussion
on Web service generation in [8] and [24]. Our modeling
languages are inspired from the simple Web service lan-
guages used in [8], [24] (which are sufficient for theoretical
discussion). However, in order to develop a useful tool,
we extend the we extend them to cover larger subset of
the language constructs for Web service compositions. For
example, variables and channel messages are supported in
our languages but abstracted out in [24], which makes the
modeling of real-world systems much easier. One could
argue that it is possible to model Web services using other
process algebra like modeling language, like Promela, or
MSC for choreography and FSM for orchestration. These
proposals suffer from the disadvantages of the translation ap-
proach. For example, the translation from Web service model
to target process algebra may not be optimal, and the reflec-
tion of the counterexample is also non-trivial. Additionally,
specific verification may not supported is the existing tool.
For instance, the SPIN model checker for Promela does
not support refinement checking, hence it is not possible to
check the Web service conformance. WS@PAT as a verifier
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is related to tools on equivalence/refinement checking (or
language containment checking), e.g., FDR. Motivated by
the features of Web services, we extend the algorithms to
check conformance relations with specialized optimizations.

II. MODELING

In this section, we present modeling languages which are
expressive enough to capture all core features of Web service
choreography and orchestration. There are two reasons for
introducing intermediate modeling languages for Web ser-
vices. First, heavy languages like WS-CDL or WS-BPEL
are designed for machine consumption and therefore are
lengthy and complicated in structure. Moreover, there are
mismatches between WS-CDL and WS-BPEL. For instance,
WS-CDL allows channel passing whereas WS-BPEL does
not. The intermediate languages focus on the interactive
behavioral aspect. The languages are developed based on
previous works of formal models for WS-CDL and WS-
BPEL [8], [24], [23]. Second, based on the intermediate lan-
guages and their semantic models (namely, labeled transition
systems), our verification and synthesis approaches is not
bound to one particular Web service language. For instance,
newly proposed orchestration languages like Orc [18] is also
supported in our tool. This is important because Web ser-
vice languages evolve rapidly. Being based on intermediate
languages allows us to quickly cope with new syntaxes or
features (e.g., by tuning the preprocessing component).

A. Choreography: Syntax and Semantics

The following is the core syntax for modeling interactive
behaviors of Web service choreography, e.g., in WS-CDL.

I ::= Stop | Skip – inaction and termination
| svr(A, B, c̃h) → I – service invocation
| ch(A, B, exp) → I – channel commmunication
| x := exp; I – assignment
| if b I else J – conditional
| I 2 J – choice
| I ||| J – service interleaving
| I; J – sequential

In WS@PAT, we support user-defined data types and
dynamic invocation of C# library and hence modeling data
components of Web services are feasible. For simplicity,
we skip details on data variables in this paper. Let I
(short of interaction), J be terms of choreography. Let A, B
range over Web service roles; ch range over communication
channels; svr range over a set of pre-setup service invocation
channels (refer to discussion later); c̃h denote a sequence of
channels; x range over variables; exp be an expression and
b be a predicate over only the variables.

We assume that each role is associated with a set of
local variables and there are no globally shared variables
among roles. This is a reasonable assumption as each role
(which is a service) may be realized in a remote computing

device. Informally, svr(A, B, c̃h), where svr is pre-defined
service invocation channel, states that role A invokes a
service provided by role B through channel svr. A service
invocation channel is the one that is registered with a service
repository so that the service is subject for invocation. c̃h
is a sequence of session channels which are created for
this service invocation only. Notice that because the same
service shall be available all the time, service channel svr
is reserved for service invocation only. ch(A, B, exp) where
ch is a session channel states that role A sends the message
exp to role B through channel ch.

x := exp assigns the value of exp to variable x. Without
loss of generality, we always require that the variables con-
stituting exp and x must be associated with the same role. If
b evaluates to true, if b I else J behaves as I, otherwise J .
Given a variable x (a condition b), we write role(x) (role(b))
to denote the associated role. I 2 J is an unconditional
choice (i.e., choice of two unguarded working units in WS-
CDL) between I and J , depending on whichever executes
first. I ||| J denotes two interactions running in parallel.
Notice that there are no message communications between
I and J . Two choreographies executing in a sequential order
is written as I; J . We remark that recursion is supported
by referencing a choreography name.

The syntax above is expressive enough to capture the core
Web service choreography features. For instance, channel
passing is supported as we are allowed to transfer a sequence
of channels on service invocation. Fig. 1 presents a chore-
ography of an online store. The choreography coordinates
three roles (i.e., Buyer, Seller and Shipper) to complete a
business transaction among two pre-defined services channel
B2S and S2H. At line 1, the Buyer communicates with the
Seller through service channel B2S to invoke its service.
Channel Bch which is sent along the service invocation is
to be used as a session channel for the session only. In the
Session, the Buyer firstly sends a message QuoteRequest to
the Seller through channel Bch. At line 2, the Seller responds
with some quotation value x, which is a variable. Notice that
in choreography, the value of x may be left unspecified at
this point. At line 5, the Seller sends a message through the
service channel S2H to invoke a shipping service. Notice
that the channel Bch is passed onto the Shipper so that the
shipper may contact the Buyer directly. At line 6, the Shipper
sends delivery details to the Buyer and Seller through the
respective channels. The rest is self-explanatory.

In this work, we focus on the operational semantics. Given
a choreography model, a system configuration is a 2-tuple
(I, V), where I is a choreography and V is a mapping from
the variables to their values, i.e., from data variables to their
valuations or from channel variables to channel instances. A
transition is expressed in the form of (I, V) e→ (I ′, V ′). The
transition rules are presented in Fig. 2. Rule inv1 captures
service invocation, where event svr!c̃h occurs. Afterwards,
rule inv2 becomes applicable so that the service invoking
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1. BuySell() = B2S(Buyer, Seller, {Bch}) → Session();

2. Session() = Bch(Buyer, Seller, QuoteRequest) → Bch(Seller, Buyer, QuoteResponse.x) →
3. if (x <= 1000) {
4. Bch(Buyer, Seller, QuoteAccept) → Bch(Seller, Buyer, OrderConfirmation) →
5. S2H(Seller, Shipper, {Bch, Sch}) →
6. (Sch(Shipper, Seller, DeliveryDetails.y) → Stop ||| Bch(Shipper, Buyer, DeliveryDetails.y) → Stop)

7. } else { Bch(Buyer, Seller, QuoteReject) → Session() 2 Bch(Buyer, Seller, Terminate) → Stop };

Figure 1. A sample choreography

[ inv1 ]

(svr(A, B, c̃h) → I, V)
svr!c̃h→ (svr?(B, c̃h) → I ||| svr(A, B, c̃h) → I, V)

[ inv2 ]

(svr?(B, c̃h) → I, V)
svr?c̃h→ (I, V)

[ ch1 ]

(ch(A, B, exp) → I, V)
ch!v→ (ch?(B, v) → I, V)

[ ch2 ]

(ch?(B, v) → I, V)
ch?v→ (I, V)

eval(exp, V) = v
[ assign ]

(x := exp; I, V)
τ→ (I, V ′ ⊕ x 7→ v)

(I, V)
e→ (I′, V ′), eval(b, V) = true

[ b1 ]
(if b I else J , V)

e→ (I, V ′)

(J , V)
e→ (J ′, V ′), eval(b, V) = false

[ b2 ]
(if b I else J , V)

e→ (J , V ′)

(I, V)
e→ (I′, V ′)

[ choice1 ]
(I 2 J , V)

e→ (I′, V ′)

(J , V)
e→ (J ′, V ′)

[ choice2 ]
(I 2 J , V)

e→ (J ′, V ′)

(I, V)
e→ (I′, V ′)

[ inter1 ]
(I ||| J , V)

e→ (I′ ||| J , V ′)

(I, V)
e→ (I′, V ′)

[ inter2 ]
(I ||| J , V)

e→ (I′ ||| J , V ′)

(I, V)
e→ (I′, V ′), e 6= X

[ seq1 ]
(I; J , V)

e→ (I′; J , V ′)

(J , V)
X→ (J ′, V ′)

[ seq2 ]
(I; J , V)

τ→ (J , V ′)

Figure 2. Choreography structural operational semantics: where X is the special event of termination

request is ready to be received. At the same time, a copy of
the choreography is forked. This is because a service may be
invoked multiple times, possibly simultaneously, by different
service users and all service invocations must conform to
the choreography. In fact, in the standard practice of Web
services, a service is embodied by a shared channel in the
form of URLs or URIs through which many users can throw
their requests at any time. For instance, different processes
acting as Buyers may invoke the service provided by the
Seller. All Buyers must follow the communication sequence.
Furthermore, in order to match the reality, we assume that
both service invocation and channel communication are
asynchronous in this work. As a result, service invocation
(or channel communication) is divided into two events, i.e,
the event of issuing a service invocation (or channel output)
and the event of receiving a service invocation (or channel
input). This is captured by rules inv1, inv2, ch1 and ch2.
For simplicity, we assume that a function eval returns the
value of an expression exp given the valuation of variables
V . Rule assign updates variable valuations. The rest of the

rules resembles those for the classic CSP [15]. Notice that
an assignment results in a invisible transition (written as τ ).
Only communication are visible.

Given a choreography I, we build a Labeled Transition
System (LTS) (S, init, T) where S is the set of reachable
configurations, init is the initial state (i.e., the initial chore-
ography and the initial valuation of the variables) and T
is a labeled transition relation defined by the semantics
rules. A run of the LTS is a finite sequence of alternating
configurations/events 〈s0, e0, s1, e1, · · · , en−1, sn〉 such that
s0 is init and (si, ei, si+1) ∈ T for all i : 0. .n. A trace of I is a
finite sequence of events 〈e0, e1, · · · , ek〉 if and only if there
is a run of the LTS 〈s0, x0, s1, x1, · · · , xn−1, sn〉 such that
〈x0, · · · , xn−1〉 ¹ {τ} = 〈e0, · · · , ek〉 where ¹ is the filtering
operation to remove all τ transitions (i.e., invisible events).
The set of all finite traces of I is denoted as traces(I).

In order to verify properties about the choreography, we
use model checking techniques to explore all traces of the
transition system. One complication is that the choreogra-
phy’s behavior may depend on environmental input which
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is only known during runtime with the execution of an
orchestration. For instance, the price quote provided by the
Seller is unknown given only the choreography in Fig. 1.
We discuss this issue in Section III.

B. Orchestration: Syntax and Semantics

P ::= Stop | Skip – primitives
| inv!c̃h → P – service invoking
| inv?x̃ → P – service being invoked
| ch!exp → P – channel output
| ch?x → P – channel input
| x := exp; P – assignment
| if b P else Q – conditional branching
| P 2 Q – orchestration choice
| P 4 Q – interrupt
| P ||| Q – interleaving
| P; Q – sequential

A Web service orchestration O is composed of multiple
roles, each of which is specified as an individual process
defined using the syntax above. A slightly different syntax
is used to build orchestration models. The reason is that
orchestration takes a local view and therefore all primitive
actions are associated with a single role. Let P and Q be the
processes, which describe behaviors of a role.

Process inv!c̃h → P invokes a service (e.g., ¡invoke¿ in
BPEL) through service channel inv and then behaves as spec-
ified by P. Or a service can be invoked by inv?x̃ → P where
x̃ is a sequence of channel variables which store the received
channels. A process may send (receive) a message through
a channel ch by ch!exp → P (ch?x → P). Further, choice
2 and interrupt 4 can be used to model event/exception
handler in languages like BPEL, e.g. LoginProgram 4
LoginExceptionHandler. To match the reality, we always
assume that the communication channels between different
processes are asynchronous (and with a fixed buffer size) in
this work. The rest are similar to those of choreography.

Similarly, we define the operational semantics. Let VA be
the valuation of the variables associated with the role A.
Let C be a valuation function of the channels, which maps
a channel to the sequence of items in the buffer. C is a
set of tuples of the form c 7→ m̃sg. A configuration of the
process is a 3-tuple (P, VA, C). The firing rules are skipped
for the sake of space. We remark that as in choreography,
service invocation in orchestration forks a new copy of the
service and thus allows potentially many concurrent service
invocations. In reality, however, the number of overlapping
service invocations is bounded by the maximum number of
threads the underlying operating system allows [11]. In next
section, we discuss how to capture this constraint and at the
same time perform efficient verification.

Because an orchestration is the cooperation of multiple
roles or processes, behaviors of the processes must be
composed in order to obtain the global behavior. Assume

that P plays the role A in the orchestration is written as
P@A. Given two processes, e.g., P and Q, playing different
roles, e.g., A and B, the composition is P@A ‖ Q@B. The
semantic rules for process composition is straightforward,
i.e., a global step is constituted of a local step by either P or
Q. Following the rules, given an orchestration with multiple
roles, each of which is specified as a process defined above,
we may build a LTS. The executions of the orchestration
equal to the executions the LTS. Similarly, we define traces
of an orchestration as τ -filtered traces of the LTS. Given an
orchestration O, let traces(O) be the set of finite executions.

Fig. 3 presents an orchestration which implements the
choreography in Fig. 1. Each role is implemented as a
separate component. Each component contains variable dec-
larations (optional) and process definitions. We assume that
the process Main defines the computational logic of the
role after initialization. We remark that the orchestration
generally contains more details than the choreography, e.g.,
the variable counter in Buyer constraints the number of
attempts the buyer would try before giving up.

III. VERIFICATION

An orchestration can be verified against critical system
properties like temporal properties or a choreography. We
remark that service verification is performed under the
physical constraints (e.g., a service may be blocked after the
thread pool is full) in this work. In WS@PAT, we support full
LTL formulae composed of propositions on data variables
or events (e.g., a channel input/output, a local action, etc.).
We adapt the automata-based on-the-fly approach to verify
LTL formulae, i.e., by firstly translating a formula to a Büchi
automaton and then check emptiness of the product of the
system and the automaton. The details can be found in [26].

In the following, we define conformance between a chore-
ography and an orchestration based on trace refinement and
present an approach to verify it by showing refinement rela-
tionships. An orchestration O is valid w.r.t. a choreography
I if and only if O refines Ii.e., traces(O) ⊆ traces(I). As
discussed above, both choreography and orchestration can
be translated into LTSs. By the assumption that both the
ranges of the variables and sizes of channels are finite and
the number of concurrent service invocations are bounded,
the LTSs have finite number of states. As a result, we can
extend the refinement checking algorithm proposed in [25]
to do the conformance checking.

A main challenge for verifying practical Web services by
model checking is state space explosion. There are multiple
causes of state space explosion. Two of them are 1) the
numerous different interleaving of processes executing con-
currently in service orchestration and 2) the large number of
concurrent service invocations. In the following, we discuss
two optimization techniques which have been adopted to
cope with the above issues.
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Role Buyer {var counter = 0;

Main() = B2S!{bch} → Session();

Session() = bch!QuoteRequest → counter++; bch?QuoteResonse.x →
if (x <= 1000){ bch!QuoteAccept → bch?OrderConfirmation → bch?DeliveryDetails.y → Stop }
elseif (counter > 3) {bch!QuoteReject → Session()} else {Stop}; }

Role Seller {var x = 1200;

Main() = B2S?{ch} → Session();

Session() = ch?QuoteRequest → ch!QuoteResonse.x → (ch?QuoteAccept → ch!OrderConfirmation →
S2H!{ch, Sch} → Sch?DeliveryDetails.y → Stop 2 ch?QuoteReject → Session()); }

Role Shipper {var detail = “20/10/2009”;

Main() = S2H?{ch1, ch2} → (ch1!DelieryDetails.detail → Stop ||| ch2!DelieryDetails.detail → Stop); }

Figure 3. A simple orchestration

Firstly, the algorithm is improved with partial order reduc-
tion, to reduce the number of possible interleaving (particu-
larly for orchestration). Events performed by single service
role (e.g., local variable updates in service choreography
or orchestration) are often independent with the rest of the
system and hence are subject to reduction. During model
checking, if a local action which results in a τ -transition is
enabled (together with actions performed by other roles), we
only expand the system graph using this action and postpone
the rest. By this way, we build a smaller LTS and therefore
checks deadlock-freeness or LTL more efficiently. For refine-
ment checking, we apply this reduction in two ways. One is
to apply partial order reduction separately to invisible events
of either the choreography or the orchestration. Notice that
this reduction is trace preserving and therefore is sound for
refinement checking.

Secondly, by a simple argument, it can be shown that |||
is symmetric and associative. Naturally, different invocations
of the same Web service are similar or even identical. By
the above laws, the interleaving of multiple choreographes
can be sorted (in certain fixed ordering) without changing
the system behaviors. Therefore, if the choreography is in
the form of I ||| · · · ||| I ||| · · ·, it is equivalent whether the
first I makes a transition or the second does. For verification
of deadlock-freeness, safety or liveness properties, it is thus
sound to pick one of the transitions and ignore the others.
In general, this reduction could reduce the number of states
up to the factor of N! where N is the number of identical
components. This reduction is inspired by research on model
checking parameterized systems [17] and [10].

There are a number of other algebraic laws which may
help to reduce the number of states (e.g., I 2 J = J 2 I).
Nonetheless, it is a balance between the computational
overhead (for the additional checking) and gain in state
reduction. In our implementation (refer to Section V), a
set of specially chosen algebraic laws are used to detect
equivalence of system configurations.

IV. PROTOTYPE SYNTHESIS

Given a choreography as a contract among multiple
organizations, it is vital to guarantee that not only the
contract is implementable but also it can be implemented
in a non-ambiguous way. The synthesis problem of the
classic sequence diagrams has been studied extensively [2],
[6]. The negative results apply to the synthesis problem
of Web service choreography. For instance, the following
demonstrates the problem of implied scenarios in the setting
of choreography. Assume that ch is an asynchronous session
channel (with buffer size more than 2), A and B are two
participating roles and M1, M2 are two messages.

Iexa = (ch(A, B, M1) → ch(B, A, M2) → Stop)

2 (ch(B, A, M1) → ch(A, B, M2) → Stop)

The specification states that either A sends M1 to B first and
then B responds by M2, or the system works the other way
around. Exactly as in the setting of sequence diagram [2],
the above choreography I is not implementable because any
distributed implementation would allow the following trace,

〈ch!M1, ch!M2, ch?M2, ch?M1〉

where ch!M1 is the event of (A) sending message M1.
Exactly telling whether a choreography is implementable

or synthesizing a minimally restrictive prototype is expen-
sive. Therefore, we follow and extend the work presented
in [8], to check whether the choreography satisfies a suffi-
cient condition for implementability, by syntactic analysis.
We check whether the choreography is strongly connected
(or well threaded [8]), which intuitively means whether
there is sufficient communication between the service roles
so that the choreography is implementable. In general,
there are choreographies which are not strongly connected
but implementable. Nevertheless, strongly-connectedness re-
mains a desirable property. If a choreography is strongly
connected, a sound prototype orchestration may be generated
by projecting the relevant behaviors to the respective role.
If the choreography is not strongly connected, we then offer
to repair the choreography to make it strongly connected.
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Stop . X = Skip . X = Stop
(svr(A, B, c̃h) → I) . A = svr!(A, c̃h) → (I . A)

(svr(A, B, c̃h) → I) . B = svr?(B, c̃h) → (I . B)

(svr(A, B, c̃h) → I) . X = I . X − if X 6∈ {A, B}
(ch(A, B, exp) → I) . A = ch!(A, exp) → (I . A)

(ch(A, B, exp) → I) . B = ch?(B, exp) → (I . B)

(ch(A, B, exp) → I) . X = I . X − if X 6∈ {A, B}
(x := exp; I) . X = x := exp; (I . X) − if X = role(x)
(x := exp; I) . X = I . X − if X 6= role(x)
(if b I else J ) . X = if b (I . X) else (J . X)

− if X = role(b)

(if b I else J ) . X = (I . X) 2 (J . X) − if X 6= role(b)

(I 2 J ) . X = (I . X) 2 (J . X)

(I ||| J ) . X = (I . X) ||| (J . X)

(I; J ) . X = (I . X); (J . X)

Figure 4. Choreography to orchestration projection function

In the following, we present our approach in details.
Firstly, we define a projection function which extracts
relevant behaviors of a role from a choreography. Let I
be a choreography. The projection of I onto role X is
written as I . X, which is defined by the rules presented
in Fig. 4. We highlight that a conditional choice is projected
to an unconditional choice if the condition is independent
of variables associated with the role.

Ideally, given A, B, · · · , X as the roles I, I . A ‖ I . B ‖
· · · ‖ I .X shall be trace-equivalent to I. This is not true for
many reasons. For instance, assume that I is as follows,

svr(A, B, c̃h1) → svr(C, D, c̃h2) → Stop

It is easy to show that I . A ‖ I . B ‖ I . C ‖ I . D
allows more behaviors that I does. The reason is that the
two interactions involve different roles and therefore it is
impossible to ensure the global ordering without introducing
extra communication. Another example is Iexa, as shown
above. In order to handle all choreographes and keep the
synthesis algorithm simple, we take an alternative approach.
We firstly define the sufficient conditions which guarantee
the soundness of the projection and then discuss how to
solve the problem if the conditions are not met.

Initiating roles Let I be a choreography. The set of initi-
ating roles of I, written as init(I), is defined as follows.

init(Stop) = init(Skip) = ∅
init(svr(A, B, c̃h) → I) = {A}
init(ch(A, B, exp) → I) = {A}
init(x := exp; I) = {role(x)}
init(if b I else J ) = {role(b)}
init(I 2 J ) = init(I) ∪ init(J )

init(I ||| J ) = init(I) ∪ init(J )

init(I; J ) = init(I)

Similarly, we define the terminating roles of I, written as
term(I), i.e., the roles participating in the last event of I.

Strongly-connectedness Let I be a choreography. I is
strongly connected if and only if it can be inductively
deduced from the following rules,

• Stop and Skip are strongly connected.
• svr(A, B, c̃h) → I is strongly connected if and only if

init(I) = {B}, and I is strongly connected.
• ch(A, B, exp) → I is strongly connected if and only if

init(I) = {B}, and I is strongly connected.
• x := exp; I is strongly connected if and only if

{role(x)} = init(I), and I is strongly connected.
• if b I else J is strongly connected if and only if

both I and J are strongly connected, and {role(b)} =
init(I) = init(J ).

• I 2 J is strongly connected if and only if init(I) =
init(J ), and both I and J are strongly connected.

• I ||| J is strongly connected if and only if both I and
J are strongly connected.

• I; J is strongly connected if and only if both I and
J are strongly connected and there exists role A such
that {A} = term(I) = init(J ).

Intuitively, a choreography is strongly connected if there is
no “gap” between two consecutive statements. By definition,
strongly connectedness can be checked syntactically and the
complexity is linear in the size of the choreography. For
instance, it is straightforward to verify that the choreography
Iexa (presented above) is not strongly connected because the
two choices have different initiating roles. The choreography
presented in Fig. 1 is not strongly connected because of the
“gap” between the first two messages.

B2S(Buyer, Seller, {Bch})
Bch(Buyer, Seller, QuoteRequest)

The last role participated in the first message is Seller,
whereas the initiating role of the second message is Buyer.
We remark that if message sending/receiving is synchronous,
then this choreography becomes “strongly connected”. This
can be repaired by adding an acknowledge message from
Seller to Buyer in between.

Theorem 4.1: Let I be a choreography. Let A, B, · · · , X
be the roles participating in I. Let O be an orchestration
such that O = I . A ‖ I . B ‖ · · · ‖ I . X. If I is strongly
connected, then traces(O) = traces(I). 2

The theorem states that strongly-connectedness serves as
a sufficient condition for the correctness of the projection
function presented in Fig. 4. It can be proved by structural
induction. We skip the proof in this paper.

Strongly-connectedness allows to apply fully automated
synthesis in a straightforward way. Nonetheless, because it
requires all messages must be connected, e.g., a message
output must be followed by an acknowledgement. Chore-
ography drafts may not often be strongly connected. It is
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R(Stop, S, E) = Stop – if I is Stop;
R(Skip, S, E) = Skip – if S = E;
R(Skip, S, E) = ch1(S, E, ∗) → Skip – if S 6= E;
R(svr(A, B, c̃h) → I, S, E) = svr(A, B, c̃h) → R(I, B, E) – if S = A;
R(svr(A, B, c̃h) → I, S, E) = ch1(S, A, ∗) → svr(A, B, c̃h) → R(I, B, E) – if S 6= A;
R(ch(A, B, exp) → I, S, E) = ch(A, B, exp) → R(I, B, E) – if S = A;
R(ch(A, B, exp) → I, S, E) = ch1(S, A, ∗) → ch(A, B, exp) → R(I, B, E) – if S 6= A;
R(x := exp; I, S, E) = x := exp; R(I, S, E) – if S = role(x);
R(x := exp; I, S, E) = ch1(S, role(x), ∗) → x := exp; R(I, S, E) – if S 6= role(x);
R(if b I else J , S, E) = if b R(I, S, E) else R(J , S, E) – if S = role(b);
R(if b I else J , S, E) = ch1(S, role(b), ∗) → if b R(I, S, E) else R(J , S, E) – if S 6= role(b);
R(I 2 J , S, E) = R(I, S, E) 2 R(J , S, E) – if S ∈ init(I 2 J )

R(I 2 J , S, E) = ch1(S, X, ∗) → (R(I, S, E) 2 R(J , S, E)) – if S 6∈ init(I 2 J ) and X ∈ init(I 2 J )

R(I ||| J , S, E) = R(I, S, E) ||| R(J , S, E) – if S ∈ init(I ||| J )

R(I ||| J , S, E) = ch1(S, X, ∗) → (R(I, S, E) ||| R(J , S, E)) – if S 6∈ init(I ||| J ) and X ∈ init(I ||| J )

R(I; J , S, E) = R(I, S, X); R(J , X, E) – X ∈ init(J ).

Figure 5. Choreography repair function

not very helpful if we simply claim a choreography is
bad. Hence, we provide a method to automatically repair
choreographies which are not strongly connected. The idea
is to insert extra communications in order to fill the “gaps”.

Let S (for starting role), E (for ending role) be two
roles. Let R be the repairing function. Fig. 5 shows how
R calculates a refined choreography in a compositional way.
Notice that we assume ch1 is a channel between the sending
role and receiving role and * is any message.

Theorem 4.2: Let I be an arbitrary choreography. Let
start be a role in init(I). Let end be a role in term(I).
R(I, start, end) is strongly connected. 2

The proof of the theorem is straightforward. By theorem 4.2,
we may then apply the projection and generate a prototype
orchestration. For instance, choreography Iexa will be mod-
ified as follows,

(ch(B, A, ∗) → ch(A, B, M1) → ch(B, A, M2) → Stop)

2 (ch(B, A, M1) → ch(A, B, M2) → Stop)

The following orchestration can then be generated.

((ch!∗ → ch?M1 → ch!M2 → Stop)

2 (ch!M1 → ch?M2 → Stop))@B
‖ ((ch?∗ → ch!M1 → ch?M2 → Stop)

2 (ch?M1 → ch!M2 → Stop))@A

It can be shown that the generated orchestration above is
equivalent to the repaired choreography. We remark it is
wasteful to simply tell that a choreography is not imple-
mentable without telling how to correct it. Our method gives
the best effort to help users. By comparing the repaired
choreography and the original one, users are essentially
presented why the original one is not implementable, and
better, an easy way to correct it. In our toolkit, we offer other
syntactic analysis as well, e.g., all kinds of well-formness.
For instance, depending whether a channel is to be used

once or multiple times (which can be specified in WS-CDL
document), we can check whether a violation is possible
during runtime.

In our formalism and Web-service composition languages
such as WS-CDL, we may request the service channel prin-
ciple. That is, service channels are intended to be repeatedly
invocable and be always available to those who know the
port names. Syntactically, this requires that inv?x̃ shall not
be preceded in every processes. The synthesized service,
however, may not satisfy this principle. We perform a simple
checking and give a warming message if the generated
orchestration violates the principle. It is our future work
to identify the ways of generating orchestration which does
satisfy the principle from a maximum set of choreographes.

V. MAKING IT MECHANICAL

The methods discussed in previous sections have been
realized in a toolkit named WS@PAT. WS@PAT is devel-
oped as a self-contained module in the PAT (Process Analy-
sis Toolkit) framework, which is designed for supporting
multiple domain specific modeling languages. WS@PAT has
four main components, i.e., an editor with advanced editing
features, a simulator which can be used to simulate the Web
service models in different ways (e.g., interactive simulation,
automated random simulation, generation of state graph,
etc.), a verifier which integrates different model checking
algorithms for different properties and a synthesizer which
performs choreography repairing and orchestration genera-
tion.

WS@PAT has been applied to multiple case studies,
including ones from http://www.oracle.com/ and from [8],
[24]. We are currently applying WS@PAT to several large
WS-CDL and WS-BPEL models. Notice that our approach
for synthesis is based on syntactic analysis and therefore
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Figure 6. WS@PAT verification performance

scales up for large Web service models. We thus demon-
strate the scalability of our verification approach, using
two models. One is the online store example presented in
Fig. 1 and Fig. 3. Instead of one buyer and one service
invocation, we amend the model so that multiple users are
allowed to use the services multiple times. The other is
the service for travel arrangement. Its WS-BPEL model
is available at http://www.comp.nus.edu.sg/˜pat/cdl/. A WS-
CDL specification is created manually. A number of clients
invoke the business process, specifying the name of the
employee, the destination, the departure date, and the return
date. The BPEL process checks the employee travel status
(through a Web service). Then it checks the prices for the
flight ticket with multiple airlines (through Web services).
Finally, the BPEL process selects the lowest price and
returns the travel plan to each client.

Fig. 6 shows WS@PAT’s efficiency using the two exam-
ples, obtained on a PC with Intel Q9500 CPU at 2.83GHz
and 4GB RAM. Notice that in the experiments, we model the
physical constraints as in [11] and verify the whole system
instead of one service invocation. For both examples, we
verify whether the orchestration is deadlock-free or not, by
a reachability analysis searching for a deadlock state. In the
online store example, we allow buyers to invoke the service
repeatedly. As a result, the orchestration is deadlock-free.
In the travel arrangement example, one client invokes the
service only once. Because the number of concurrent service
invocations is bound by the maximum number of threads

allowed, the system reaches a deadlock state after exhausting
all threads. This is consistent with the finding in [11]. In such
case, WS@PAT is able to find a counterexample execution
reasonably quickly with 80 clients using the service at the
same time. We also verify that the orchestration conforms to
the choreography using the refinement checking algorithm,
as shown in Fig. 6. In both cases, the number of states and
the time increase rapidly. Yet, WS@PAT is able to confirm
that the orchestration conforms to the choreography with a
few buyers/clients using the service concurrently.

In a nutshell, WS@PAT explores 108 states in a few hours,
which suggests that WS@PAT is comparable to FDR [25]
and SPIN [16] in terms of efficiency. WS@PAT shares many
idea with WS-Engineer. To compare with WS-Engineer,
we use Police Enquiry Obligations case study inside WS-
Engineer. In the original example, the police officer will send
request to a officer device, and following that, the officer
device will enquire some items in sequence, e.g., nominal
record, vehicle record, insurance record, ANPR record, DNA
record, and then reply to the officer for the information.
In order to make the example more challenging, we let
the officer device enquire items in parallel. The size in the
table above denotes the number of items to be retrieved in
parallel. For each size, we provide two orchestrations, one
conforms to the choreography (Correct Police), while the
other one replies to the police officer before retrieving the
items (Wrong Police).

The experiments data in the table below show that
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WS@PAT is faster than WS-Engineer for Correct Police
cases. When the conformance does not hold, WS@PAT stops
immediately after the counterexample is detected, but not
for WS-Engineer. We conclude that WS@PAT complements
WS-Engineer for the orchestration synthesis, and still has
competitive performance. The result, however, should be
taken with a grain of salt, since both the input languages
and verification algorithms are different.

Example WS@PAT WS-Engineer
Name Size Time #States Time #States

Correct Police 6 0.25 734 0.3 731
Wrong Police 6 0.02 3 0.4 731
Correct Police 7 0.93 2192 1.1 2189
Wrong Police 7 0.02 3 1 2189
Correct Police 8 3.96 6566 6.2 6563
Wrong Police 8 0.02 3 6.2 6563
Correct Police 9 15.57 19688 51.3 19685
Wrong Police 9 0.02 3 50.7 19685

VI. CONCLUSION

In this work, we presented model-based methods for au-
tomatic analysis of Web service compositions, in particular,
linking two different views of Web services. Our methods
built on the strength of advanced model checking techniques.
We verified whether designs of Web services from two
different views are consistent or not, by refinement checking
with specialized optimizations. Furthermore, we offered a
lightweight approach to tackle the synthesis problem and a
toolkit to make the methods available.
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