
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2011 

Differencing labeled transition systems Differencing labeled transition systems 

Zhenchang XING 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Yang LIU 

Jin Song DONG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
XING, Zhenchang; SUN, Jun; LIU, Yang; and DONG, Jin Song. Differencing labeled transition systems. 
(2011). Proceedings of the 13th International Conference on Formal Engineering Methods, ICFEM 2011, 
Durham, UK, October 26-28. 537-552. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5031 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Differencing Labeled Transition Systems

Zhenchang Xing1, Jun Sun2, Yang Liu1, and Jin Song Dong1

1 National University of Singapore
{xingzc,liuyang,dongjs}@comp.nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Concurrent programs often use Labeled Transition Systems (LTSs) as
their operational semantic models, which provide the basis for automatic system
analysis and verification. System behaviors (generated from the operational se-
mantics) evolve as programs evolve for fixing bugs or implementing new user
requirements. Even when a program remains unchanged, its LTS models ex-
plored by a model checker or analyzer may be different due to the application
of different exploration methods. In this paper, we introduce a novel approach
(named SpecDiff) to computing the differences between two LTSs, represent-
ing the evolving behaviors of a concurrent program. SpecDiff considers LTSs
as Typed Attributed Graphs (TAGs), in which states and transitions are encoded
in finite dimensional vector spaces. It then computes a maximum common sub-
graph of two TAGs, which represents an optimal matching of states and transi-
tions between two evolving LTSs of the concurrent program. SpecDiff has been
implemented in our home grown model checker framework PAT. Our evaluation
demonstrates that SpecDiff can assist in debugging system faults, understanding
the impacts of state reduction techniques, and revealing system change patterns.

1 Introduction

Concurrent programs involve a collection of processes whose behaviors heavily depend
on their interactions with other processes and on their reactions to the environment
stimuli. The Labeled Transition System (LTS) provides a generic semantic model for
capturing the operational semantics of concurrent programs, and is widely used as a
basis for automatic software analysis like model based testing [10] or model check-
ing [4]. This semantic model evolves as the program evolves due to bug fixing or im-
plementing new user requirements. A minor syntactic change may lead to significantly
different semantic models. For example, a minor change to an atomic step in a con-
current stack program (see Section 3) can lead to very different system behaviors and
the violation of critical properties (e.g., linearizability [6]). Even when the program
remains syntactically unchanged, its LTS model explored by a model checker or an-
alyzer may be different due to the application of different exploration methods. For
example, a model checker may apply partial order reduction [27] or process counter
abstraction [21], which can result in a partial LTS compared with the original one.

Identifying the differences in system behaviors of evolving programs is important in
debugging and system understanding. Researchers have presented techniques to com-
pute and analyze the changing behavior of programs based on code statements [11],

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 537–552, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



538 Z. Xing et al.

control flow [2], data flow [14], and symbolic execution [20,22]. These program repre-
sentations are not effective in analyzing and verifying the interactions between concur-
rent processes. Pinpointing differences in the evolving LTSs of a concurrent program
can lead to effective analysis of the evolving behaviors of concurrent programs. The
underlying assumption is that the evolving LTSs of a program are structurally similar
and the structural differences in LTSs can reveal the behavioral changes of a program.

However, computing differences between LTSs is highly nontrivial. The main chal-
lenge is how to systematically quantify the similarity of states and transitions and the
overall quality of the matching. A state in an LTS can be rather complicated. For con-
current systems, the system configuration has a graph-based structure, in which there
are different active processes at different states. The structure of system configuration
varies significantly during system transitions. Furthermore, the graph structure of LTSs,
such as the incoming and outgoing transitions of states and the transition labels must
also be taken into account when comparing two LTSs.

In this paper, we present SpecDiff, an approach to compute and analyze the differ-
ences between two evolving LTSs of a concurrent program. The main idea is to repre-
sent an LTS as a TAG that encodes the states and transitions in finite dimensional vector
spaces, and then exploit the robust graph matching technique to compute an optimal
matching of states and transitions between two LTSs. We adopt a modeling language,
CSP# [24], for concise behavioral description of concurrent programs. The semantic
model of CSP# programs are LTSs. SpecDiff takes as inputs two LTSs of two versions
of a CSP# program or of the same program explored with different behavior exploration
techniques. It applies GenericDiff framework [28] to compute the differences between
two input LTSs. Based on the differences between two LTSs, SpecDiff merges them
into a unified model and supports the visualization and query-based analysis of the two
LTSs and their differences. Note that our approach is not limited to CSP#, but rather
a general method which is capable of identifying the behavioral changes of concurrent
programs with LTS-based operational semantic model.

We implement and integrate SpecDiff in our home grown model checker, PAT
(Process Analysis Toolkit) [13,25]. We evaluate the applicability of SpecDiff and its
potential benefits in debugging and understanding the evolving behaviors of real-life
concurrent programs using three scenarios, in which the LTS changes due to three dis-
tinct reasons: 1) the system evolution; 2) the application of partial order reduction;
and 3) the application of process counter abstraction. These scenarios demonstrate that
SpecDiff can assist in debugging system faults, understanding the impacts of state re-
duction techniques, and revealing system change patterns.

2 Related Work

One notion commonly used for comparison of system behaviors is refinement. Refine-
ment captures the behavioral relationship between an abstract model of a system (e.g.,
a specification) and a more detailed model (e.g., an implementation). The correctness
of the latter with respect to the former can be established by studying their refine-
ment relationship. Transition-system refinement is commonly defined as trace inclu-
sion or simulation [17]. This definition ensures that if the specification satisfies certain



Differencing Labeled Transition Systems 539

property, so does the implementation. This notion of refinement constitutes the founda-
tion of model-based testing [10] and model-based debugging [15].

A symmetric version of the simulation relation is known as bisimulation [16]. Our
SpecDiff approach is reminiscent of determining bisimilarity between transition sys-
tems. However, bisimilarity requires the behavior of two states to be identical. In
contrast, SpecDiff computes a quantitative correspondence value between states, repre-
senting how alike they behave. A pair of corresponding states may differ in their system
configurations and transitions. Similarly, Girard and Pappas [5] proposed the notion
of approximate bisimulation for metric transition systems, whose states and transitions
represent quantitative data and computation, such as temperature measurement. The
quantitative data constitutes a metric space for measuring the approximate bisimilarity
between two metric LTSs. Such approximate bisimilarity allows the possibility of data
errors in the analysis of control systems [5]. In our work, the LTSs to be compared
do not contain quantitative states and transitions. But SpecDiff encodes the states and
transitions of LTSs in finite dimensional vector spaces to quantify their similarities.

If a property is not satisfied, most model checkers will produce a counterexample,
which is important in debugging complex systems. For example, Konighofer et al. [12]
debugs incorrect specifications based on explaining unrealizability using counterexam-
ples. In contrast, SpecDiff analyzes the differences of the evolving LTSs of a concurrent
program. It offers more contextual information, since the whole LTSs are compared and
differences are highlighted. It can be complementary to counterexample analysis. Fur-
thermore, SpecDiff is also useful in other scenarios, such as assessing the impact of
various state space optimization techniques. In such scenarios, model checkers would
not provide any counterexamples. However, there is still a need to detect and understand
the differences of LTSs.

Program differencing methods [7,9,29] have long been used for identifying syntac-
tic and semantic differences between program versions. Person et al. [20] exploit the
over-approximating symbolic execution technique to characterize behavioral program
differences. Siegel et al. [23] apply model checking and symbolic execution to verify
the equivalence of sequential and parallel versions of a program. A recent work by Qi
et al. [22] presents a technique to debug evolving programs using symbolic execution
and SAT solver. In our work, SpecDiff exploits a robust model differencing framework
(i.e., GenericDiff [28]) to compare the evolving LTSs of a concurrent program.

One of the key steps of GenericDiff is to perform a random walk on graph to propa-
gate the correspondence values of node pairs based on graph structure. This process has
close connections to the Markov decision process used in [19,18]. Sokolsky et al. [19]
compare the LTSs of viruses to classify them into families. Nejati et al. [18] compute a
similarity measure between Statecharts specifications for finding their correspondences.
The goal of our SpecDiff is to detect and analyze the evolving behaviors of a concurrent
program, resulted from various reasons.

3 A Motivating Example

We motivate this work with a scenario for an evolving concurrent stack implementa-
tion. A concurrent stack is a data structure that provides push and pop operations with



540 Z. Xing et al.

1 # d e f i n e N 2 ; # d e f i n e SIZE 2 ; var H = 0 ; var HL[N ] ; Push ( i ) =
2 τ{HL[ i ]=H} →
3 i f a (HL[ i ]==H){ push . i . ( H+1){ i f (H<SIZE ){H++}} → Skip }
4 e l s e { τ → Push ( i ) } ;
5 Pop ( i ) = τ {HL[ i ]=H;} →
6 i f a (H==0){ pop . i . 0 → Skip }
7 e l s e {
8 τ → i f a (HL[ i ] �=H){τ → Pop ( i )}
9 e l s e { pop . i .H{ i f (H>0){H−−}} → Skip } } ;

10 P r o c e s s ( i ) = ( Push ( i ) � Pop ( i ) ) ; P r o c e s s ( i ) ;
11 S t a c k ( ) = ( | | | x : { 0 . . N−1}@Process ( x ) )

Listing 1.1. A concurrent stack in CSP# - atomic-ifa

the usual LIFO (Last In First Out) semantics for concurrent processes. Herlihy and
Wing proposed linearizability [6] as an important correctness criterion for implementa-
tions of concurrent data structures. For example, the concurrent stack is linearizable if
the projection of the operations in time can be matched to a sequence of operations of a
sequential stack. The goal of designing concurrent data structures is to achieve the max-
imum concurrency yet still preserve the linearizability. The critical design decision is
to use suitable locks or synchronization primitives, such as compare-and-swap (CAS),
load-linked (LL) or store-conditional (SC) to guarantee the exclusive access of concur-
rent data structures at the critical points (a.k.a. linearization points). If too many steps
are executed atomically, then the throughput of the concurrent data structure is low. If
too few steps are executed atomically, then linearizability may be violated.

Trieber [26] proposed a concurrent stack implementation using CAS operators. List-
ing 1.1 shows the algorithm in CSP#. H is the head pointer (being 0 initially) to the top
element of stack, HL[i ] is a (local) variable of process i to store the value read from the
head pointer. The head pointer H is shared by all processes. Each operation tries to up-
date the H until CAS operation succeeds. We will further explain the process definitions
in Section 4.2. Here it is important to understand that the CAS operator is implemented
using the variable HL[i ], which updates H if the value of H is the same as initially read
value in HL[i ]. The operational semantics of ifa (line 4 and 7 of Listing 1.1) is that the
condition checking and first event execution of true/false branch are done in one atomic
step, which gives the power to simulating the CAS operator.

When designing the algorithm, CAS operator should be used with care because it
requires additional hardware support and reduces the concurrency. In order to maxi-
mize concurrency, a modified implementation of the concurrent stack may decrease the
atomicity level by changing atomic conditional choice (ifa) at line 4 and 7 in Listing 1.1
into a regular conditional choice (if). Unfortunately, this change results in the violation
of the linearizability of concurrent stack. It is clear that the change of atomicity level of
conditional choice affects the correctness of linearizability. However, this minor change
results in significantly different system behavior. The LTS of the correct version con-
tains 438 states and 1120 transitions, while the LTS of the faulty version contains 1102
states and 2642 transitions. It is not obvious that why the change of atomicity of condi-
tional choice introduces the fault.



Differencing Labeled Transition Systems 541

τ
16/28

13/18

6/225/8 9

23

τ [if]

push.0.1 push.0.1

pop.1.0

Fig. 1. One incorrect interaction between two processes

Fig. 2. The architecture of SpecDiff

Our SpecDiff is able to compare the evolving LTSs of the two versions of the con-
current stack. Figure 1 shows one violation of the linearizability of the concurrent stack
due to the change of the program. The green states and transitions are reported to be
present only in the LTS of the correct version, whereas the red states and transitions
are only present in the LTS of the faulty version. SpecDiff reports that the state 61 of
the correct LTS corresponds to the state 22 of the faulty LTS but the two states behave
differently. The state 6 transits to the state 16 by firing a push.0.1 event in the correct
LTS. However, the corresponding state of the state 6, i.e., the state 22 of the faulty LTS
does not transit to the corresponding state of the state 16, i.e., the state 28 of the fault
LTS by firing a push.0.1 event. Instead, the state 22 of the faulty LTS transits to the
state 23 (a state that is only present in the faulty LTS), by firing a push.0.1, from which
the system can fire a pop.1.0 event, which violates the linearizability of the concurrent
stack. Essentially, the second process pops nothing after the first process has pushed
one item into the stack.

4 The SpecDiff Approach

We begin with an overview of SpecDiff. We then discuss the syntax and semantics of
CSP# language. Next, we present how SpecDiff compares the LTSs for detecting the
behavioral changes of a concurrent program. Finally, we discuss the visualization and
query-based analysis of SpecDiff for inspecting the LTSs and their differences.

4.1 Overview of SpecDiff

Figure 2 presents the architecture of SpecDiff. As a proof of concept, we have imple-
mented SpecDiff in PAT [13] model checker. We adopt CSP# [24] for describing the

1 The state index is only for illustration purpose.



542 Z. Xing et al.

Fig. 3. The architecture of GenericDiff

behavior of concurrent programs, which offers great flexibility in modeling concurrent
processes and their interactions.

Given two CSP# programs p1 and p2, CSP# parser parses them into two configu-
ration graphs CG1 and CG2. The configuration graph is a rooted directed graph, rep-
resenting the internal syntactic model of a CSP# program. The PAT’s simulator that
implements the operational semantics of CSP# performs a (bounded) depth-first explo-
ration of configuration graph to generate the LTS model. Given a CSP# program and
a particular simulator, the generated LTS is stable across simulations. In our work, the
program p1 and p2 represent the same program or the two versions of a program. When
p1 and p2 are the same, different LTSs can be obtained by adopting different simulators
that support different behavior exploration methods, such as partial order reduction [27].

The main challenge in comparing the LTSs is quantifying the similarity of states
and transitions and the overall quality of the matching. The key idea of SpecDiff is to
represent the LTSs as TAGs and exploit the graph matching techniques to determine
an optimal correspondence relation over the states and transitions of the input LTSs.
More specifically, SpecDiff exploits the GenericDiff framework [28] to compare the
evolving LTSs of a CSP# program. First, if the program p1 and p2 are different, it
applies GenericDiff to compare the configuration graphs (CG1 and CG2) of p1 and p2

to determine the correspondences between the processes defined in p1 and p2, which
in turn helps to determine the correspondences between states of two LTSs. Second, it
applies GenericDiff to compare the LTSs (LTS1 and LTS2) of p1 and p2 to determine
the correspondences between states and transitions. Based on the matching results of
two LTSs, SpecDiff merges the two LTSs into a unified model. It supports visualization
and query-based analysis of the two LTSs and their differences.

4.2 Syntax of CSP#

A CSP# [24] program contains the constant and variable definitions, channel defini-
tions and process definitions. Like any program, CSP# programs also evolve. Since the
processes are a key factor to determine the state similarity in the corresponding LTSs,
given two versions of a program p1 and p2, we must first find the syntactic differences
between p1 and p2. In our work, we compare the configuration graphs CG1 and CG2

of p1 and p2 to determine the correspondences between processes of p1 and p2.



Differencing Labeled Transition Systems 543

A process is defined as an equation in the following syntax P(x1, x2, . . . , xn) =
ProcessExp, where P is the process name, x1, x2, . . . , xn is an optional list of pro-
cess parameters and ProcessExp is a process expression. A named process may be
referenced by its name (with the valuation of the parameters). The process expression
defines the computational logic of the process. The following is a BNF description of
process expressions [24]. CSP# supports various types of process constructs, including
primitives, event prefixing, channel communication, hiding, and various process com-
positions. CSP# parser parses a CSP# program into a configuration graph CG(V ,E ),
where the vertex set V contains the processes defined in the program and the edge set
E contains the composition relations between processes.

P = Stop | Skip | e.x{prog} → P | ch!x → P | ch?x → P | P \ X
| P ; Q | P � Q | P � Q | [b]P | P ‖ Q | P ||| Q | P � Q
| if b {P} else {Q} | ifa b {P} else {Q} | ref (Q)

The concurrent stack program in Figure 1.1 implements Treiber’s lock-free concurrent
stack [26] in CSP#. It represents the concurrent stack as a singly-linked list with a head
pointer to the top element of the stack and uses CAS to modify the value of the head
pointer atomically. This program defines two constants (Line 1). N is the number of
processes and SIZE is the size bound of the stack. To make the state finite, we bound
the size of the stack and the number of processes. Line 2 defines a variable H that
records the stack head pointer and a variable HL that records the temporary head value
of each process. The process definitions Push(i), Pop(i), Process(i), and Stack()
specify the exact behaviors of the concurrent stack.

Figure 4 presents the partial configuration graph of this stack program. The Stack()
process is defined as the interleaving (|||) of N Process(i). The Process(i) is de-
fined as the sequential composition (; ) of a choice process ([]) and itself (self-loop).
The choice process ([]) is composed of two choices (Push(i)[]Pop(i)). The process
Push(i) is defined as a event prefixing process τ{HL[i ] = H } → . . .. τ is the event
name and the statement block attached to this event is a sequential program that is ex-
ecuted atomically together with the occurrence of the event. In this example, it update
HL[i ] to be H . The process Push(i) behaves like the atomic conditional choice pro-
cess ifa(HL[i ] == H ){. . .}else{. . .} after performing τ{HL[i ] = H }. If the boolean
expression HL[i ] == H evaluates to true, then Push(i) behaves like the event prefix-
ing process push.i .(H + 1){...} → Skip that performs push.i .(H + 1), updates H ,
and then terminate. If HL[i ] == H evaluates to false, Push(i) behaves like the event
prefixing process τ → Push(i). Similarly, process Pop(i) defines the behavior of pop
operation (details are omitted in Figure 4 for the sake of clarity).

4.3 Operational Semantic of CSP#

The operational semantics of CSP# programs is defined in the form of Structural Op-
erational Semantics (SOS) rules [24]. It extends the operational semantics for CSP [3].
These rules translate a CSP# program into an LTS.

An LTS is a 3-tuple (S , init ,→), which consists of a set of system configurations,
i.e., global states, the initial system configuration init ∈ S , and a set of labeled tran-
sition relations →. In CSP#, a state is composed of two components (V ,P) where V



544 Z. Xing et al.

Stack()

[]τ 

{HL[0]=H}τ 

ifa (HL[0]==H)

Skip

push.0.(H+1){...}τ 

(Push(0)[]Pop(0));Process(0)

||| Process(i)

Pop(0)

Fig. 4. Stack program configuration graph

{...}/  {...}τ τ

push.0.(H+1){...}/push.0.1{H+1}

ifa (HL[0]==H) if (HL[0]==H)

Fig. 5. Partial matching result

S1/S1´ 

pop.x.H

push.y.(H+1)

S3

S1/S1´ S1/S1´ S1/S1´ 

τ

pop.x.H

S2/S2´

S4/S4´

(B)

τ

push.x.(H+1)
push.x.(H+1)

S3 S2/S2´

S4/S4´

(A) (C)

τ

push.x.(H+1)

push.y.(H+1)

push.y.(H+1)

S3 S2/S2´

S4/S4´

τ

pop.x.Hpop.x.H

S3 S2/S2´

S4/S4´

(D) 

pop.y.H pop.y.H

Fig. 6. Four types of incorrect interactions

is a valuation function mapping a variable name (or a channel name) to its value (or a
sequence of items in the buffer) and P is the current process expression. A transition is
a labeled directed relation from a source state to a target state. The labeled transition re-
lation → conforms to the structural operational semantics of CSP# process constructs.
The transition label represents the engaged event. This event has a name and an ordered
list (possible empty) of parameter expressions, which captures the information such as
process id and the valuation of global variables or channel buffers.

For example, in the LTS of the correct version of the stack program in Figure 1.1,
the valuation of global variables H and HL at the state 6 is 0 and [0, 0] respectively.
The process expression at the state 6 is ifa(HL[0] == H ){push.0.(H + 1){. . .} →
Skip} . . . ; Process(0) ||| ifa(H == 0){pop.1.0 → Skip} . . .. Since HL[0] == H
evaluates to true at the state 6, the first process can perform the event prefixing process
push.0.(H + 1){. . .} → Skip. Consequently, the state 6 transits to the state 16 by a
push.0.1 transition. The first parameter 0 of the push.0.1 event is the id of the first
process and the second parameter is the updated head pointer of the shared stack. The
valuation of H and HL at the target state 16 is 1 and [0, 0]. The process expression at
the state 16 is Skip; Process(0) ||| ifa(H == 0){pop.1.0 → Skip} . . ..

4.4 Comparing Configuration Graphs and Labeled Transition Systems

SpecDiff applies GenericDiff [28] to compare the evolving configuration graphs and
LTSs. GenericDiff is a general framework for model comparison. Given two input mod-
els, GenericDiff casts the problem of comparing two models as the problem of recog-
nizing the Maximum Common Subgraph of two TAGs. The only step required to apply



Differencing Labeled Transition Systems 545

GenericDiff is to develop the necessary domain-specific inputs (see the architecture of
GenericDiff in Figure 3). The domain-specific types and properties specify the TAG
that GenericDiff builds when parsing the input model and the characteristic properties
of model elements and relations that discriminate their instances. The pairup feasibility
predicates specify rules that a pair of elements (relations) must satisfy so that they can
be paired-up as matching candidates. The random walk tendency functions specify the
parameters for the random walk process that propagates the correspondence values on
graph. GenericDiff reports a symmetric difference between two input models, i.e., a set
of corresponding model elements and relations in two models and two sets of model
elements and relations that are only present in one of the two input models respectively.
Due to the space limitation, interested readers are referred to [28] for the technical de-
tails about how SpecDiff configures GenericDiff framework.

Figure 5 presents the partially matching results of the configuration graphs of the two
versions of the stack program. In this example, the program suffers a minor syntactic
change. The atomic conditional choice (green) is only present in the configuration graph
of the correct stack program, while the regular conditional choice (red) is only present
in the faulty version. All other process constructs are matched.

However, this minor syntactic change to the stack program results in significant
semantics changes. Figure 1 presents a violation of linearizability of the concurrent
stack among these semantics changes as reported by SpecDiff. Due to the decrease of
the atomicity level of conditional choice in the faulty version, the condition checking
if (H == 0) will not be executed atomically together with either pop.i .0 → Skip (then
branch) or tau → ifa(HL[i ]! = h) . . . (else branch). Consequently, the second pro-
cess evaluates H == 0 at the state 9 (only present in the faulty LTS), the faulty LTS
transits to the state 22. However, at the state 22, before the second process executes
pop.1.0 → Skip, the first process executes push.0.(H + 1){. . .} → Skip, which up-
date the head pointer of the concurrent stack, i.e., H becomes 1 at the state 23. But the
second process is not aware of this update and erroneously execute pop.1.0 → Skip.

4.5 Analyzing the LTS Differences

Given the matching results of two LTSs, SpecDiff merges the two LTSs into a unified
model. The unified model is constructed by first creating the matched parts of two
LTSs (i.e., corresponding states and transitions) and then applies a sequence of insert
operations to create the unmatched states and transitions on the basis of the matched
parts of two LTSs. A pair of matched states and transitions appears only once in the
unified model. It is important to note that, in our formulation of the LTS similarity, two
states (one from each LTS) being matched only indicates that the two states are similar
in terms of their characteristic properties and graph structures. As shown in our running
example, two matched states (e.g. 6/22) may still differ in their system configurations
(i.e., the valuation of global variables and channels and/or the process expression) and
their incoming and outgoing transitions.

To enable an intuitive means of inspecting the differences between the two
LTSs, we have developed two types of visualizations for the unified model: normal
and fragmented. The normal view shows the unified model in a whole graph. The
fragmented view breaks the unified model into a set of disconnected matched and



546 Z. Xing et al.

unmatched fragments. A matched (unmatched) fragment is a maximally connected sub-
graph of matched (unmatched) states. That is, there are no matched (unmatched) states
and transitions in the unified model that could be added to the subgraph and still leave
it connected. A unmatched fragment also contains the duplicates of the matched states
neighboring with unmatched states. The matched fragments can be hidden in the frag-
mented view. The detailed state information, i.e., the valuation of global variables and
channels as well as the process expression at a state can be inspected in the State Info
view or a pop-up window. The visualization supports zooming-in/out and panning the
view.

Figure 1 shows partially a normal view of the unified model of the two evolving
LTSs of the stack program. The matched states and transitions of two LTSs are shown
in black, while the unmatched states and transitions of two LTSs are shown in green
and red respectively. In the visualization, the states are indexed with unique ids for
illustration purpose. A pair of matched states sid1 and sid2 (one from each LTS) is
shown in one node labeled sid1/sid2. For example, 6/22 represents that the state 6 of
the correct LTS correspondes to the state 22 of the faulty LTS. Note that the state indices
have nothing to do with the similarity between states. A pair of matched transitions
(one from each LTS) is shown as one edge labeled tl1/tl2, tl1 and tl2 being the labels
of two transitions. When tl1 and tl2 are the same, tl2 is omitted for the sake of clarity.

For example, the transition 6/22
pop.1.0→ 9/17 represents a pair of matched transitions

6
pop.1.0→ 9 and 22

pop.1.0→ 17.
In addition to the interactive visual inspection of two LTSs and their differences,

SpecDiff stores all the data of two LTSs and their differences in a database. We have
defined several queries for detecting behavioral change patterns based on the matching
results of two LTSs. For example, one query has been defined to search for pairs of

matched states with unmatched same-label transitions. The transitions 6/22
push.0.1→

16/28 and 6/22
push.0.1→ 23 shown in Figure 1 is an instance returned by this query.

The visual inspection and query-based analysis complement each other. The visu-
alization provides an intuitive means of inspecting the differences between two LTSs.
Query-based analysis scales up to large LTSs. It helps to identify the potentially inter-
esting states and transitions that are worth further investigation. The analysts can then
visually explore these states and transitions. In fact, we use the visualization and query-
based analysis interleavingly to incrementally build up the knowledge about the two
compared LTSs and their differences.

5 Evaluation

In this section, we present our preliminary evaluation of SpecDiff. We focus on the
general applicability and the potential benefits of SpecDiff in three scenarios, where the
LTS models of concurrent programs change due to three distinct reasons.

5.1 The Effectiveness of SpecDiff

We first report our experience in using SpecDiff for debugging and understanding
the evolving LTSs of concurrent programs. Three scenarios were illustrated: 1) the



Differencing Labeled Transition Systems 547

evolution of a concurrent stack that results in faulty behaviors; 2) the application of
partial order reduction; 3) the application of process counter abstraction. Note that the
programs remain unchanged in the second and third scenarios, but the LTS models actu-
ally explored are different due to the application of state space reduction or abstraction
techniques.

The Evolution of a Concurrent Stack. Concurrent programs are significantly more
difficult to design and verify than the sequential ones because process executing con-
currently may interleave their steps in many ways, each with a different and potentially
unexpected outcome. Our running example demonstrates such a case. A change to the
atomicity of conditional choices results in the violation of the linearizability of the con-
current stack. Detecting and analyzing the differences between the correct and faulty
LTSs help to debug and understand the evolving behavior of concurrent programs.

In Section 3, we discussed an incorrect interaction between two processes in the
faulty concurrent stack (see Figure 1). This incorrect behavior motivated us to define
a query searching for pairs of matched states with unmatched same-label transitions.
Figure 6 presents four types of incorrect interactions between two processes of the
concurrent stack that we have learned from inspecting the SpecDiff results.

Our running example illustrates the first type of incorrect interactions (Figure 6 (A)).
The process y pops nothing or an item from the invalid stack top after the process x has
pushed one item into the stack. In the second type of incorrect interactions (Figure 6
(B)), one process x executes a pop operation, which updates the head pointer and results
in HL[y] �= H , i.e., the temporary head value of the other process y is different from the
head pointer. Under this condition, the correct behavior of the process y should perform
τ → Push(y) and then update its temporary head value before any push operations.
However, due to the non-atomic execution of condition checking HL[y] == H and
push operation, the process y pushes one item into the invalid stack top.

In the third type shown in Figure 6 (C), the process x performs a push operation
between the condition check HL[y] == H and the push operation of the process y;
the process y overrides the item pushed by the process x . In the forth type, the process
x performs a pop operation between the condition check HL[y] == H and the pop
operation of the process y; the process y pops an item from the invalid stack top.

We also used the PAT model checker to verify the linearizibility of the faulty CSP#
concurrent stack program. PAT reports one counterexample . . . → pop.1.1 → pop.0.1,
which represents an instance of the forth type of incorrect interactions between the
two processes of concurrent stack. In this particular case, the process 1 pops an item
from the stack top (the head pointer H being 1 before the pop operation) such that the
stack becomes empty (H being 0). And then the process 0 attempts to pop from the
invalid stack top. This counterexample is important in debugging the incorrect program
behavior. But it reveals only one case of incorrect interactions. Furthermore, it is not
always straightforward to imagine what the corresponding correct behaviors are and
what the differences between the correct and incorrect behaviors are. As demonstrated
in this case study, our SpecDiff is able to reveal four types of incorrect interactions
(see Figure 6) and it is able to offer more contextual information for understanding the
evolving behaviors of concurrent programs.



548 Z. Xing et al.

63/133

57/27 56/50

55

get.3.0

get.2.3 get.3.3

eat.3 eat.1

put.1.2put.3.0

Fig. 7. The impact of partial order reduction

23/68

37/70

τ

ττ [if]

[if]

push.0.1

[else]

58

62 63

64

69
push.1.1push.0.1

push.1.2 push.0.2

push.0.1

Fig. 8. An example of false positive match

The Application of Partial Order Reduction. To enable a rigorous correctness proof
of a concurrent program, we need to accurately model a concurrent program, for ex-
ample using formal languages like CSP# [24]. Once the specification of a concurrent
program stabilizes, it is often optimized manually or mechanically in order to make
verification feasible or efficient [4]. For example, partial order reduction [27] is a tech-
nique for reducing the state space to be explored by a model checking algorithm. It
exploits the commutativity of concurrently executed independent transitions, which re-
sult in the same state when executed in different order. The application of such state
reduction techniques can result in the intricate differences in the partial LTS being ex-
plored. Identifying these differences helps developers better understand the impact of
state space reduction techniques.

In this scenario, we have implemented the classic dining philosophers problem in
CSP#, which demonstrates the multi-process synchronization problem in concurrent
computing. We simulated two LTSs of this dining philosophers CSP# program with and
without partial order reduction respectively. With four philosophers, the LTS obtained
without partial order reduction contains 1297 states and 4968 transitions, while the LTS
obtained with partial order reduction contains 1214 states and 3396 transitions.

We applied SpecDiff to compare these two LTSs. SpecDiff isolated the 83 states
and 1572 transitions that have not been explored when the partial order reduction is in
place. Figure 7 presents partially an unmatched LTS fragment. At the state 63 and the
state 133, the first philosopher P1 have grabbed two forks and the third P3 philosopher
have grabbed one fork. Without partial order reduction, there are three ways to proceed,
i.e., P1 eats (eat .1 transition, not shown in Figure 7), P3 grabs another fork (get .3.3
transition), or the second philosopher P2 grabs one fork (get .2.3 transition). With par-
tial order reduction, only one way (i.e., P1 eats) is possible. Consequently, the partial
LTS explored with partial order reduction will not consist of the transitions get .3.3 and
get .2.3; the system will not enter the state 55 in which both P1 and P3 have grabbed
two forks and can eat.

The Application of Process Counter Abstraction. A parameterized system has finite
types of processes, but the number of processes of each type can be very large or even
unbounded. Such systems frequently arise in concurrent algorithms and protocols, such



Differencing Labeled Transition Systems 549

as the classic readers-writers problem and the Java meta-lock algorithm [1]. Process
counter abstraction [21] is a common state abstraction technique for analyzing parame-
terized systems, which groups the processes based on which state of the local finite state
machine they reside in. To achieve a finite state abstract system, one can then adopt a
cutoff number, so that any counter greater than the cutoff number is abstracted to w
(unbounded number). This yields a sound but incomplete verification procedure - any
linear temporal logical property verified in the abstract system holds for all concrete
finite-state instances of the system, but not vice versa. In such cases, it is desirable to
find plausible change patterns of system behavior as the cutoff number changes, since
inspecting such change patterns may lead to effective abstraction acceleration and sys-
tem verification.

Let us start with the classic readers-writer problem. We implemented the readers-
writer lock pattern in a parameterized specification in CSP#. The readers-writer lock
allows concurrent read access to an object but requires exclusive access for write. It is a
synchronization primitive supported by Java version 5 or above and C#. We simulated
20 LTSs of this CSP# readers-writer lock program by setting the cutoff number to i(i =
1..20). We applied SpecDiff to compare the consecutive LTSs ltsi and ltsi+1 and then
inspected the differences between ltsi and ltsi+1 as the cutoff number increases.

Let N be the maximum number of readers that can read concurrently. SpecDiff
revealed that, as the cutoff number i increases by 1, there will be N − i − 1 addi-
tional fragments in the ltsi+1. An additional fragment links two pairs of matched states
SP1 and SP2 with i + 3 unmatched states in between. At SP1, an unbounded number
of readers do not hold the lock and one reader holds the lock, while at the other pair
of matched states SP2, one reader does not hold the lock and an unbounded number of
readers hold the lock. From SP1, the only reader that holds the lock releases the lock
(i.e., stopread); the ltsi+1 transits to an unmatched state where no readers hold the lock.
Then, the readers keep acquiring the lock (i.e., startread) until all the readers hold the
lock. Finally, one reader releases the lock and the ltsi+1 reaches to SP2 where only one
reader does not hold the lock. The transitions from SP2 to SP1 is in reverse.

We also implemented a parameterized abstract specification in CSP# for Java met-
alock algorithm [1]. Java metalock plays an essential role in allowing Java to offer
concurrent access to objects. Metalocking can be viewed as a two-tiered scheme. At the
metalock level, a thread waits until it can enqueue itself on an object’s monitor queue
in a mutually exclusive manner. We simulated 9 LTSs of this CSP# program by set-
ting the number of threads that can wait at waiting state to m(m = 2..10). We applied
SpecDiff to compare the consecutive LTSs ltsm and ltsm+1. SpecDiff revealed that, as
m increases by 1, ltsm+1 will have 40 more states and 90 more transitions. There are
10 pairs of matched states, from which ltsm+1 transits to unmatched states by getslow
transitions (i.e., obtaining an object lock by a slow path). From those unmatched states,
ltsm+1 then transits to other unmatched states until it finally transits back to the 10 pairs
of matched states by request transitions (i.e., signaling the request for an object).

5.2 The Robustness of SpecDiff

The quantitative similarities of states and transitions are heuristic estimates, based on
the characteristic properties of states and transitions as well as the graph structure of



550 Z. Xing et al.

LTSs (see Section 4.4). In this section, we evaluate how good the heuristics of SpecDiff
are in matching the corresponding states and transitions in two evolving LTSs.

In principle, the precision and recall metrics are used to evaluate the quality of such
matching tasks. Given the total number of matched states (Mactual ) and the number
of matched states reported by SpecDiff (Mreported ), precision is the percentage of the
correctly reported matches (Mactual ∩Mreported )/Mreported and recall is the percentage
of matches reported (Mactual ∩ Mreported )/Mactual . In this work, we have manually
examined two compared LTSs to establish the oracle (i.e., Mactual ) for the analysis.
Overall, the precision and recall of SpecDiff is fairly good. In the first scenario, the
precision and recall of SpecDiff is 95% and 95% respectively. SpecDiff achieves 100%
precision and 100% recall in the second and third scenarios. We attribute this to the rich
domain-specific properties and graph structure of the input LTSs.

Figure 8 presents an example of false positive (i.e., erroneous) match of states in the
first scenario. SpecDiff reports the state 23 of the correct LTS and the state 68 of the
faulty LTS as a pair of corresponding states. However, the state 23 should be matched
to the state 58 of the faulty LTS, as the state pair (23/58) can better reflect the violation
of the linearizibility of the concurrent stack. It will be an instance of the third type of
violations (see Figure 6).

However, as the set of active processes at the state 23 and the state 58 is “too” dif-
ferent, the state 23 and the state 58 are not paired-up as matching candidates. Conse-
quently, SpecDiff matches the state 23 to the state 68 which is one transition (if ) away
from the state 58. Since the matching of the state 23 and the state 68 is less intuitive for
understanding the violation of the linearizibility of concurrent stack, we consider it as
a false positive match. In the first scenario, such erroneous matches prevent the states
from being matched to their “real” counterparts, which consequently results in the false
negatives (i.e., missed matches).

6 Threats to Validity

In this work, we ground our discussion on CSP# for modeling the behavior of concur-
rent programs. We exploit the syntax and structural operational semantics of CSP# to
quantify the similarity between the LTSs of a concurrent program. However, the foun-
dational concept of SpecDiff is general, i.e., representing a labeled transition system
as a typed attributed graph, quantifying the states and transitions in finite dimensional
vector spaces, and exploiting the graph differencing framework to compare the LTSs.
Given a modeling language with different syntax and operational semantics, SpecDiff
should be applicable as long as the language has LTS-based operational semantics.

The SpecDiff is used to compare the evolving LTSs of two versions of a program
or the LTSs of a program explored by different behavior exploration techniques. The
underlying assumption is that the structural differences of syntactic models and LTSs
of a program can reveal the syntactic and behavioral changes of the program under
investigation. However, this assumption does not hold for two arbitrary programs. Two
different programs may have the same LTSs. On the other hand, the LTSs being different
does not indicate that the two programs must behave differently.

While our preliminary evaluations demonstrate the applicability and potential ben-
efits of SpecDiff, its practical utility still needs further assessments. Scalability is an



Differencing Labeled Transition Systems 551

important challenge to our SpecDiff approach. We are currently exploring a few ways
to mitigate the scalability issue. First, we may explore syntactic differences (which
could be easy to compute) to guide the comparison of large LTSs. While specification
remains unchanged, limiting the depth of search could be one solution. Alternatively,
we are considering integrating intuitive visualization technique that allows the user to
interactively explore the state space and select which part(s) of the LTSs to differenti-
ate. This would incorporate the human intelligence to guide an interactive differencing
process, because the user would have clues about which parts most likely go wrong.
Second, we are reviewing the current implementation that compares the LTSs rendered
in the GUI. Direct comparison of the internal data structures of LTSs could significantly
reduce the execution time and memory consumption. Last but not least, our experiment
suggests that often the important differences (e.g. faults) would be reflected in the differ-
ences of small sized models. Similar experience has been reported by other verification
tools like Alloy [8].

7 Conclusions and Future Work

In this paper, we present SpecDiff for identifying the behavioral changes of concurrent
programs with LTS-based semantic model. The main challenge in comparing LTSs lies
in how to systematically quantify the similarity of states and transitions of the LTSs and
the overall quality of the matching. Our solution is to represent the labeled transitions
systems as typed attributed graphs, encodes the states and transitions in finite dimen-
sional vector spaces, and exploits the robust graph matching techniques to determine an
optimal correspondence relation over the states and transitions of the input LTSs.

We have developed a proof-of-concept implementation of SpecDiff on the PAT model
checker. We evaluated the applicability and the potential benefits of SpecDiff in the evo-
lution and optimization of concurrent programs, written in CSP#, a modeling language
for concurrent systems. Our evaluation shows that SpecDiff is able to produce an accu-
rate matching results between the evolving LTSs of a concurrent program. The reported
differences are useful in debugging program faults and understanding the behavioral
change patterns of concurrent programs.

This work is the first step in exploiting the model differencing techniques to support
the development and verification of concurrent programs. Our future work will further
develop more types of analysis based on the SpecDiff results. We also plan to extend
SpecDiff to compare and analyze real-time systems and web services.

References

1. Agesen, O., Detlefs, D., Garthwaite, A., Knippel, R., Ramakrishna, Y., White, D.: An Ef-
ficient Meta-Lock for Implementing Ubiquitous Synchronization. In: OOPSLA 1999, pp.
207–222 (1999)

2. Agrawal, H., Horgan, J., London, S., Wong, W.: Fault localization using execution slices and
dataflow tests. In: ISSRE 1995, pp. 143–151 (1995)

3. Brookes, S.D., Roscoe, A.W., Walker, D.J.: An Operational Semantics for CSP. Technical
report (1986)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)



552 Z. Xing et al.

5. Girard, A., Pappas, G.: Approximation metrics for discrete and continuous systems. IEEE
Transactions on Automatic Control 52(5), 782–798 (2005)

6. Herlihy, M., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects.
ACM Trans. on Prog. Lang. and Syst (TOPLAS) 12(3), 463–492 (1990)

7. Horwitz, S.: Identifying the semantic and textual differences between two versions of a pro-
gram. SIGPLAN Not. 25(6), 234–245 (1990)

8. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
9. Jackson, D., Ladd, D.: Semantic diff: A tool for summarizing the effects of modifications.

In: ICSM 1994, pp. 243–252 (1994)
10. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing and Analy-

sis with C#. Cambridge University Press, Cambridge (2007)
11. Jones, J., Harrold, M.: Empirical evaluation of the tarantula automatic fault-localization tech-

nique. In: ASE 2005, pp. 273–282 (2005)
12. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using simple

counterstrategies. In: FMCAD 2009, pp. 152–159 (2009)
13. Liu, Y., Sun, J., Dong, J.S.: An Analyzer for Extended Compositional Process Algebras. In:

ICSE 2008 Companion, pp. 919–920 (2008)
14. Masri, W.: Fault localization based on information flow coverage. Technical report, AUB-

CMPS-07-10 (2007)
15. Mayer, W., Stumptner, M.: Model-based debugging – state of the art and future challenges.

Electron. Notes Theor. Comput. Sci. 174(4), 61–82 (2007)
16. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
17. Milner, R.: Operational and algebraic semantics of concurrent processes, pp. 1201–1242

(1990)
18. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and merging of

statecharts specifications. In: ICSE 2007, pp. 54–64 (2007)
19. Sokolsky, S.K.O., Lee, I.: Simulation-based graph similarity. In: Hermanns, H. (ed.)

TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Heidelberg (2006)
20. Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic execution. In:

Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 226–237. Springer, Heidelberg (2008)
21. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1,∞)-counter abstraction. In: Brinksma, E.,

Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)
22. Qi, D., Roychouhury, A., Liang, Z., Vaswani, K.: Darwin: an approach for debugging evolv-

ing programs. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 33–42. Springer,
Heidelberg (2009)

23. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using model checking with symbolic
execution to verify parallel numerical programs. In: ISSTA 2006, pp. 157–168 (2006)

24. Sun, J., Liu, Y., Dong, J.S., Chen, C.Q.: Integrating Specification and Programs for System
Modeling and Verification. In: TASE 2009, pp. 127–135 (2009)

25. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

26. Treiber, R.K.: Systems Programming: Coping with Parallelism. Technical Report RJ 5118,
IBM Almaden Research Center (1986)

27. Valmari, A.: Stubborn Set Methods for Process Algebras. In: PMIV 1996, pp. 213–231
(1996)

28. Xing, Z.: Genericdiff: A general framework for model comparison. Technical report, Na-
tional University of Singpore (2011),
http://www.comp.nus.edu.sg/˜pat/publications/gendiff.pdf

29. Yang, W.: Identifying syntactic differences between two programs. Softw. Pract.
Exper. 21(7), 739–755 (1991)

http://www.comp.nus.edu.sg/~pat/publications/gendiff.pdf

	Differencing labeled transition systems
	Citation

	Differencing Labeled Transition Systems
	Introduction
	Related Work
	A Motivating Example
	The SpecDiff Approach
	Overview of SpecDiff
	Syntax of CSP#
	Operational Semantic of CSP#
	Comparing Configuration Graphs and Labeled Transition Systems
	Analyzing the LTS Differences

	Evaluation
	The Effectiveness of SpecDiff
	The Robustness of SpecDiff

	Threats to Validity
	Conclusions and Future Work
	References


