
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2011

PRTS: An approach for model checking probabilistic real-time PRTS: An approach for model checking probabilistic real-time

hierarchical systems hierarchical systems

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Songzheng SONG

Jin Song DONG

Xiaohong LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
SUN, Jun; LIU, Yang; SONG, Songzheng; DONG, Jin Song; and LI, Xiaohong. PRTS: An approach for model
checking probabilistic real-time hierarchical systems. (2011). Proceedings of the 13th International
Conference on Formal Engineering Methods, ICFEM 2011, Durham, UK, October 26-28. 147-162.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5029

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5029&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5029&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

PRTS: An Approach for Model Checking Probabilistic
Real-Time Hierarchical Systems�

Jun Sun1, Yang Liu2, Songzheng Song3, Jin Song Dong2, and Xiaohong Li4

1 Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 National University of Singapore
{liuyang,dongjs}@comp.nus.edu.sg

3 NUS Graduate School for Integrative Sciences and Engineering
songsongzheng@nus.edu.sg

4 School of Computer Science and Technology, Tianjin University
xiaohongli@tju.edu.cn

Abstract. Model Checking real-life systems is always difficult since such sys-
tems usually have quantitative timing factors and work in unreliable environment.
The combination of real-time and probability in hierarchical systems presents
a unique challenge to system modeling and analysis. In this work, we develop
an automated approach for verifying probabilistic, real-time, hierarchical sys-
tems. Firstly, a modeling language called PRTS is defined, which combines data
structures, real-time and probability. Next, a zone-based method is used to build
a finite-state abstraction of PRTS models so that probabilistic model checking
could be used to calculate the probability of a system satisfying certain property.
We implemented our approach in the PAT model checker and conducted experi-
ments with real-life case studies.

1 Introduction

With the development of computing and sensing technology, information process and
control software are integrated into everyday objects and activities. Design and de-
velopment of control software for real-life systems are notoriously difficult problems,
because such systems often have complex data components or complicated hierarchical
control flows. Furthermore, control software often interacts with physical environment
and therefore depends on quantitative timing. In addition, probability exhibits itself
commonly in the form of statistical estimates regarding the environment in which con-
trol software is embedded. Requiring a system always to function perfectly within any
environment is often overwhelming. Standard model checking may produce ‘unlikely’
counterexamples which may not be helpful.

Example 1 (A motivating example). Multi-lift systems heavily rely on control software.
A multi-lift system consists of a hierarchy of components, e.g., the system contains
multiple lifts, floors, users, etc.; a lift contains a panel of buttons, a door and a lift

� This research was partially supported by research grant “SRG ISTD 2010 001” from Singapore
University of Technology and Design.

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 147–162, 2011.
© Springer-Verlag Berlin Heidelberg 2011

148 J. Sun et al.

controller; a lift controller may contain multiple control units. It is complex in control
logic as behavior of different components must be coordinated through a software con-
troller. Ideally, the system shall be formally verified to satisfy desirable properties. For
instance, one of the properties is: if a user has requested to travel in certain direction,
a lift should not pass by, i.e., traveling in the same direction without letting the user in.
However, this property is not satisfied. Typically, once a user presses a button on the
external panel at certain floor, the controller assigns the request to the ‘nearest’ lift. If
the ‘nearest’ lift is not the first reaching the floor in the same traveling direction, the
property is violated. One counterexample that could be returned by a standard model
checker is that the lift is held by some user for a long time so that other lifts pass by the
floor in the same direction first. Designing a multi-lift system which always satisfies the
property is extremely challenging. One way is to re-assign all external requests every
time a lift travels to a different floor. Due to high complexity, many existing lift systems
do not support re-assigning requests. The question is then: what is the probability of
violating the property, with typical randomized arrival of user requests from different
floors or from the button panels inside the lifts? If the probability is sufficiently low,
then the design may be considered as acceptable. Further, can we prove that choosing
the ‘nearest’ lift is actually better than assigning an external request to a random lift?

The above example illustrates two challenges for applying model checking in real-
life systems. Firstly, an expressive modeling language supporting features like real-
time, hierarchy, concurrency, data structures as well as probability, may be required
to model complex systems. Secondly, the models should be efficiently model check-
able for widely used properties, such as reachability checking and Linear Temporal
Logic(LTL) checking. One line of work on modeling complicated systems is based on
integrated formal specification languages [10,23]. These proposals suffer from one limi-
tation, i.e., there are few supporting tools for system simulation or verification. Existing
model checkers are limited because they do not support one or many of the required
system features. For instance, SPIN [17] supports complex data operations and concur-
rency, but not real-time or probability. UPPAAL [7] supports real-time, concurrency and
recently data operations as well as probability (in the extension named UPPAAL-PRO),
but lacks support for hierarchical control flow and is limited to maximal probabilistic
reachability checking. PRISM [15] is popular in verifying systems having concurrency,
probability and the combination of real-time and probability in its latest version [19].
However, it does not support hierarchical systems, but rather networks of flat finite state
systems. In addition, most of the tools support only simple data operations, which could
be insufficient in modeling systems which have complicated structures and complex
data operations, such as the multi-lift system.

Contribution. Compared to our previous work [28,27], the contributions of this work
are threefold. First, we develop an expressive modeling language called PRTS, combin-
ing language features from [28,27]. PRTS is a combination of data structures, hierarchy,
real-time, probability, concurrency, etc, and it is carefully designed in order to be ex-
pressive and also model checkable for different properties. Second, a fully automated
method is used to generate abstractions from PRTS models. We show that the infinite
states caused by real-time transitions could be reduced to finitely zones, which are then
subject to probabilistic model checking. The abstraction technique proposed in [27]

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 149

is extended to PRTS and shown to be probability preserving. Third, we implement a
dedicated model checker as a part of the PAT model checker [26], which supports edit-
ing, simulating and verifying PRTS models. The tool has been applied to the multi-lift
system and benchmark systems.

Organization. The paper is structured as follows. Section 2 recalls background.
Section 3 introduces the proposed modeling language PRTS. Section 4 defines its op-
erational semantics. Section 5 describes zone-based abstraction technique, which leads
to the model checking approach in Section 6. The evaluation is reported in Section 7.
Section 8 surveys related work. Section 9 concludes the paper and discusses future
work.

2 Basic Concepts

In this section, we recall some basic concepts and definitions of model checking tech-
niques [5] that will be used throughout the rest of the paper. When modeling probabilis-
tic systems (particularly, discrete-time stochastic control processes), MDP is one of the
most widely used models. An MDP is a directed graph whose transitions are labeled
with events or probabilities. The following notations are used to denote different transi-
tion labels. R+ denotes the set of non-negative real numbers; ε ∈ R+ denotes the event
of idling for exactly ε time units; τ denotes an unobservable event; Act denotes the set
of observable events such that τ �∈ Act ; Actτ denotes Act ∪ {τ}. Given a countable
set of states S , a distribution is a function μ : S → [0, 1] such that Σs∈S μ(s) = 1.
μ is a trivial distribution or is trivial if and only if there exists a state s ∈ S such that
μ(s) = 1. Let Distr(S) be the set of all distributions over S . Formally,

Definition 1. An MDP is a tuple D = (S , init ,Act ,Pr) where S is a set of states;
init ∈ S is the initial state; Pr : S × (Actτ ∪ R+)×Distr(S) is a transition relation.

An MDP D is finite if and only if S and Distr(S) are finite. For simplicity, a transition is
written as: s x→ μ such that s ∈ S ; x ∈ Actτ ∪R+ and μ ∈ Distr(S). If μ is trivial, i.e.,
μ(s ′) = 1, then we write s x→ s ′. There are three kinds of transitions. A time-transition
is labeled with a real-valued constant ε ∈ R+. An observable transition is labeled with
an event in Act . An un-observable transition is labeled with τ . Throughout the paper,
MDPs are assumed to be deadlock-free following the standard practice. A deadlocking
MDP can be made deadlock-free by adding self loops labeled with τ and probability 1
to the deadlocking states, without affecting the result of probabilistic verification.

A state of D may have multiple outgoing distributions, possibly associated with dif-
ferent events. A scheduler is a function deciding which event and distribution to choose.
A Markov Chain [5] can be defined given an MDP D and a scheduler δ, which is de-
noted as Dδ . A Markov Chain is an MDP where only one event and distribution is
available at every state. Intuitively speaking, given a state s , firstly an enabled event
and a distribution are selected by the scheduler, and then one of the successor states
is reached according to the probability distribution. A rooted run of Dδ is an alternat-
ing sequence of states and events π = 〈s0, x0, s1, x1, · · ·〉 such that s0 = init . The
sequence 〈x0, x1, · · ·〉, denoted as trace(π), is a trace of Dδ . Let runs(Dδ) denote the

150 J. Sun et al.

set of rooted runs of D. Let traces(Dδ) denote the set of traces of Dδ . Given Dδ and
si ∈ D , let μi be the (only) distribution at si . The probability of exhibiting π in Dδ ,
denoted as PDδ(π), is μ0(s1) ∗ μ1(s2) ∗ · · ·.

It is often useful to find out the probability of D satisfying a property φ. Note that
with different schedulers, the result may be different. For instance, if φ is reachability of
a state s , then s may be reached by different scheduling with different probability. The
measurement of interest is thus the maximum and minimum probability of satisfying φ.
The maximum probability is defined as follows.

Pmax
D (φ) = supδ PD({π ∈ runs(Dδ) | π satisfies φ})

Note that the supremum ranges over all, potentially infinitely many, schedulers. Intu-
itively, it is the maximum of probability of satisfying φ with any scheduler. The mini-
mum is defined as: Pmin

D (φ) = infδ PD({π ∈ runs(Dδ) | π satisfies φ}) which yields
the best lower bound that can be guaranteed for the probability of satisfying φ. For
different classes of properties, there are different methods to calculate the maximum
and minimum probability, e.g., reachability by solving a linear program or graph-based
iterative methods; LTL checking by identifying end components and then calculating
reachability probability [5].

3 Syntax of PRTS

The choice of modeling language is an important factor in the success of the entire
system analysis or development. The language should cover several facets of the re-
quirements and the model should reflect exactly (up to abstraction of irrelevant details)
a system. In this work, we draw upon existing approaches [16,21,2,27] and create the
single notation PRTS. In the following, we briefly introduce the syntax of a core sub-
set of PRTS. Interested readers can refer to PAT user manual for a complete list of
constructs and detailed explanation.

A PRTS model (hereafter model) is a 3-tuple (Var , σi ,P) where Var is a finite
set of finite-domain global variables; σi is the initial valuation of Var and P is a pro-
cess which captures the control logic of the system. A process is defined in form of
Proc(para) = PExpr where Proc is a process name; para is a vector of parameters
and PExpr is a process expression. A rich set of process constructs are defined to cap-
ture different features of various systems, as shown in the following.

P = Stop | Skip | e → P | P � Q | P 	 Q | P ; Q | P ‖ Q | P ||| Q
| P \ {X } | if b then P else Q | a{program} → P | Wait [d]
| P timeout [d] Q | P interrupt [d] Q | P deadline[d] | P within[d]
| pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk} | ref (Q)

Hierarchical Control Flow. A number of the constructs are adapted from the clas-
sic CSP [16] to support modeling of hierarchical systems. Process Stop and Skip are
process primitives, which denote inaction and termination respectively. Process e → P
engages in an abstract event e first and then behaves as process P . Event e may serve as
a multi-party synchronization barrier if combined with parallel composition ‖. A variety

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 151

of choices are supported, e.g., P � Q for unconditional choice; and if b then P else Q
for conditional branching in which b is a boolean expression composed by process pa-
rameters and variables in Var . Process P ; Q behaves as P until P terminates and
then behaves as Q . Parallel composition of two processes is written as P ‖ Q , where
P and Q may communicate via multi-party event synchronization. If P and Q only
communicate through variables1, then it is written as P ||| Q . Process P \ {X } hides
occurrence of any event in {X }. Recursion is supported by referencing a process name
with concrete parameters. The semantics of the constructs is defined in [29].

Data Structures and Operations. Different from CSP, a PRTS model is equipped with
a set of variables Var . Variables can be of simple types like Boolean or integer or arrays
of simple types. In order to support arbitrary complex data structures and operations,
user-defined data types are allowed. A user-defined data type must be defined externally
(e.g., as a C# library), and imported in a model. The detailed explanation of the interface
methods and examples of creating/using C# library can be found in PAT user manual.
Note that in order to guarantee that model checking is terminating, each data object must
have only finitely many different values and all data operations must be terminating,
both of which are users’ responsibility. Furthermore, users are recommended to apply
standard programming techniques like using assertions to ensure correctness of the data
operations. Data operations are invoked through process expression a{program} → P ,
which generates an event a and atomically executes program program at the same time,
and then behaves as P . In other words, program is a transaction. Variable updates are
allowed in program. In order to prevent data race, event a with an attached program
will not to be synchronized by multiple processes.

Real-Time. A number of timed process constructs are supported in PRTS to cover com-
mon timed behavioral patterns. Process Wait [d] idles for exactly d time units, where
d an integer constant. In process P timeout [d] Q , the first observable event of P shall
occur before d time units elapse (since the process is activated). Otherwise, Q takes
over control after exactly d time units. Process P interrupt [d] Q behaves exactly as P
(which may engage in multiple observable events) until d time units elapse, and then Q
takes over control. PRTS extends Timed CSP [25] with additional timed process con-
structs. Process P deadline[d] constrains P to terminate before d time units. Process
P within[d] requires that P must perform an observable event within d time units.
Constant d associated with the timed process constructs are referred as the parameter
of the timed process construct. Note that real-time systems modeled in PRTS can be
fully hierarchical, whereas Timed Automata based languages (e.g., the one supported
by Uppaal) often have the form of a network of flat Timed Automata.

Probability. In order to randomized behaviors (i.e., unreliable environment or cognitive
aspects of user behaviors), probabilistic choices are introduced as follows.

pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk}
where pri is a positive integer constant to express the probability weight. Intuitively,
it means that with pri

pr0+pr1+···+prk
probability, the system behaves as Pi . Note that the

1 Or synchronous/asynchronous channels. The details are skipped for simplicity.

152 J. Sun et al.

1. #define NoOfFloors 2;
2. #define NoOfLifts 2;
3. #import "PAT.Lib.Lift";
4. var<LiftControl> ctrl = new LiftControl(NoOfFloors,NoOfLifts);
5. Users() = pcase {
6. 1 : extreq.0.1{ctrl.Assign_External_Up_Request(0)} -> Skip
7. 1 : intreq.0.0.1{ctrl.Add_Internal_Request(0,0)} -> Skip
8. 1 : intreq.1.0.1{ctrl.Add_Internal_Request(1,0)} -> Skip
9. 1 : extreq.1.0{ctrl.Assign_External_Down_Request(1)} -> Skip
10. 1 : intreq.0.1.1{ctrl.Add_Internal_Request(0,1)} -> Skip
11. 1 : intreq.1.1.1{ctrl.Add_Internal_Request(1,1)} -> Skip
12. } within[1]; Users();
13. Lift(i, level, direction) = ...;
14. System = (||| x:{0..NoOfLifts-1} @ Lift(x, 0, 1)) ||| Users();

Fig. 1. A lift system model

public void Assign_External_Up_Request(int level) {
1. ...
2. int minimumDistance = int.MaxValue;
3. int chosenLift = -1;
4. for (int i = 0; i < LiftStatus.Length; i++) {
5. int distance;
6. if (LiftStatus[i] >= 0) {
7. if (LiftStatus[i] <= level) {
8. distance = level - LiftStatus[i];
9. } else {
10. distance = NoOfFloors - LiftStatus[i] + NoOfFloors - level;
11. }
12. } else {
13. distance = LiftStatus[i] * -1 + level;
14. }
15. if (distance < minimumDistance) {
16. chosenLift = i;
17. minimumDistance = distance;
18. }
19. }
20. ExternalRequestsUp[level] = chosenLift;
}

Fig. 2. A data operation example

sum of all the probabilities in one pcase is guaranteed to be 1. Process Pi can be any
process and thus PRTS supports fully hierarchical probabilistic systems.

Example 2. We use the lift system example to illustrate modeling with PRTS. The model
(in ASCII format as supported in PAT) is shown in Figure 1. Line 1 and 2 define two
constants which denote the number of floors and lifts respectively. Line 3 imports a
C# library, which defines a data type LiftControl encapsulating all data components
and operations of the lift system. Note that it is a design decision whether to main-
tain the data externally in the C# library or in the model itself. A LiftControl object
contains multiple data structures, e.g., an integer array for user requests from exter-
nal button panels, a two dimensional array for requests for internal button panels, etc.
Interested readers can refer to PAT (version 3.0 or later, open with PAT’s C# editor
and compiler) for its details. The LiftControl class also defines multiple data oper-
ations. For instance, one of them is shown in Figure 2 which assigns an external re-
quest for traveling upwards to a lift. The idea is to assign a request to a lift which can
reach the requesting floor by traveling the minimum number of floors (without changing

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 153

direction except at the top or bottom floor). Note that level denotes the requesting floor
and LiftStatus is an array maintaining status of the lifts, i.e., ListStatus[i] = −2 means
that i-th lift is at level 2 traveling downwards. In Figure 1, line 4 of the lift model creates
a LiftControl object named ctrl . Line 5 to 12 defines a process Users(), which models
behavior of the users. In this (overly) simplified model, user requests are assumed to ar-
rive periodically with uniform probabilistic distribution2. There are 6 different requests
with 2 floors and 2 lifts (two of which are external requests). Each is given 1

6 proba-
bility, as modeled using pcase at line 5-12 in Figure 1. For instance, event extreq.0.1
models an external request at 0-floor for traveling upwards. The event is associated with
a program which invokes the method for assigning requests to lifts through object ctrl .
Note that user behaviors are subject to real-time constraint, i.e., a request is requested
within 1 second, modeled using within[1]. At line 13, process Lift which is composed
of sub-processes models an individual lift. We skip its details for the sake of space. At
the top level, the system is the interleaving of users and lifts at line 14.

4 Operational Semantics

The semantics of a PRTS model is an MDP, due to its mixture of nondeterminism and
probabilistic choices. In order to define the operational semantics, we define the notion
of a configuration to capture the global system state during the execution, referred as
concrete configurations. This terminology distinguishes the notion from the abstract
configurations which will be introduced in Section 5.

Definition 2. A concrete system configuration is a tuple c = (σ,P) where σ is a vari-
able valuation and P is a process.

Given a model, the probabilistic transition relation of its MDP semantics can be defined
by associating a set of firing rules with every process construct, which are also known as
concrete firing rules. In the following, the rules for process Wait [d], P timeout [d] Q
and pcase are exemplified in Figure 3. The rest are similarly defined (available in [29]).
The top two rules capture behaviors of process Wait [d]. The first rule states that through
a time-transition, a process may idle for any amount of time as long as it is less than or
equal to d time units. Note that no variable update is not possible in time-transitions.
The second rule states that the process terminates immediately after d becomes 0. The
next four rules capture semantics of process P timeout [d] Q . If an observable event e
can be performed by P , then P timeout [d] Q becomes P ′ (the first rule). That is, once
an observable event is engaged before d time units, time-out never occurs. If d is 0, Q
may take over control and the whole process becomes Q via a τ -transition (the second
rule). Note that it is possible that an observable event occurs when d is 0. Only that
when d is 0, time-transition is not allowed before the τ -transition. If an unobservable
transition is generated by P , the timeout operator remains (the third rule). If P may
idle for less than or equal to d time units, so is P timeout [d] Q . All above transitions
result in trivial distributions. The resultant distribution of the pcase process is defined
such that the probability of becoming Pi is pri . Note that neither variable valuation

2 A realistic user model can be obtained by mining data of actual lift systems.

154 J. Sun et al.

ε ≤ d

(σ,Wait [d])
ε→ (σ,Wait [d − ε]) (σ, Wait [0])

τ→ (σ,Skip)

(σ,P)
e→ (σ′,P ′), e ∈ Act

(σ,P timeout [d] Q)
e→ (σ′,P ′) (σ, P timeout [0] Q)

τ→ (σ,Q)

(σ,P)
τ→ (σ′,P ′)

(σ,P timeout [d] Q)
τ→ (σ′,P ′ timeout [d] Q)

(σ,P)
ε→ (σ,P ′), ε ≤ d

(σ,P timeout [d] Q)
ε→ (σ,P ′ timeout [d − ε] Q)

[pcase]
(σ, pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk}) τ→ μ

s.t. μ((σ,Pi)) = pri
pr0+pr1+···+prk

for all i ∈ [0, k]

Fig. 3. Concrete firing rules

nor time change. Rule pcase is the only rule which produces a nontrivial distribution.
We remark that different from Probabilistic Timed Automata(PTA) [14,21], probability
and time are separated in PRTS, i.e., a transition can be either time-consuming or has
trivial probability but never both.

Definition 3. Let M = (Var , σinit ,P) be a model. DM is an MDP (S , init ,Act ,Pr)
such that S is a set of concrete system configurations; init = (σinit ,P); and Pr :
S × (Actτ ∪ R+) × Distr(S) is defined by the firing rules.

DM is referred to as the concrete semantics of M . Because PRTS has a dense-time
semantics, DM has infinitely many states. In order to apply model checking techniques,
a finite-state abstract MDP is required.

5 Abstraction

In this section, we present a fully automated approach to generate a finite-state abstract
MDP from a model. Without loss of generality, we assume that every process reach-
able from the initial configuration is finite-state (as defined in [24]). As a result, in a
process which has finitely many process constructs, the only source of infinity is tim-
ing, or equivalently, the infinitely many possible values for parameters of timed process
constructs. For instance, given process Wait [1], there are infinitely many processes that
can be reached by a time-transition, e.g., Wait [0.9], Wait [0.99], Wait [0.999], etc. One
observation is that for certain properties, the exact value of the parameters is not impor-
tant, i.e., they can be grouped into equivalent classes. This leads to the idea of using a

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 155

constraint to capture the value of the parameters. In the following, we summarize dy-
namic zone abstraction [27] and prove that it can be applied to PRTS models without
changing the results of probabilistic properties.

In order to distinguish parameters associated with different process constructs, the
first step of the abstraction is to associate timed process constructs with clocks. Con-
straints on the clocks are then used to capture values of the respective parameters. For
simplicity of presentation, we assume that each process construct is associated with a
unique clock3. For instance, let P timeout [d]c Q denote that process P timeout [d] Q
is associated with clock c. P timeout [d]c Q with a constraint c ≤ 5 represents any
process P timeout [d ′] Q with d ′ ≤ 5. This gives the notion of abstract system config-
urations, which compose the abstract MDP.

Definition 4. Given a concrete system configuration (σ,P), the corresponding abstract
system configuration is a triple (σ,PT ,D) such that PT is a process obtained by asso-
ciating P with a set of clocks; and D is a zone over the clocks.

There are usually multiple timed process constructs in a process P . Nonetheless, at one
moment not all of the timed constructs are activated, i.e., only some of them are ready
to take over control and perform a transition. We write cl(P) to denote the set of clocks
activated in P and X = 0 where X is a set of clocks to denote the conjunction of c = 0
for all c ∈ X .

A zone D is the conjunction of multiple primitive constraints over a set of clocks.
A primitive constraint is of the form t ∼ d or ti − tj ∼ d where t , ti , tj are clocks,
d is a constant and ∼ is either, ≥, = or ≤4. Intuitively, a zone is the maximal set of
clock valuations satisfying the constraint. A zone is empty if and only if the constraint
is unsatisfiable. An abstraction configuration (σ,PT ,D) is valid if and only if D is not
empty. The following zone operations are relevant. Let D denote a zone. D↑ denotes
the zone obtained by delaying arbitrary amount of time. Note that all clocks proceed at
the same rate. For instance, let c be a clock, (c ≤ 5)↑ is c ≤ ∞. Given a set of clocks
X , D [X] denotes the set of valuations of clocks in X which satisfy D . Zones can be
equivalently represented as Difference Bound Matrices(DBMs) and zone operations can
be translated into DBMs manipulation [12,8].

In order to define the abstract MDP, we define abstract firing rules. To distinguish
from concrete transitions, an abstract transition is written in the form: (σ,PT ,D) e�
(σ′,P ′

T ,D ′). Figure 4 shows the abstract rules for process Wait [d], P timeout [d] Q
and pcase as examples. Given process P which is associated with clocks, idle(P) is
defined to be the maximum zone such that P can idle before performing an event-
transition. For instance, idle(P deadline[5]c) = idle(P) ∧ c ≤ 5, i.e., P deadline[5]c
can idle as long as P can idle and the reading of c is no bigger than 5. Refer to [29]
for the detailed definition of idle(P) and the rest of the abstract firing rules. Rule ade
in Figure 4 states that process Wait [d] idles for exactly d time units and then engages
in event τ and the process transforms to Skip. Note that the zone of the target con-
figuration is D↑ ∧ c = d . Intuitively, it means that the transition occurs sometime in

3 For practice, clocks are renamed dynamically so that they are shared by processes which are
activated at the same time. Refer to details in [27].

4 In our setting, the clock constraints are always closed.

156 J. Sun et al.

the future (captured by D↑) when c reads d (captured by c = d). It should be clear
that this is ‘equivalent’ to the concrete firing rules. Rule ato1, ato2 and ato3 capture
the abstract semantics of P timeout [d] Q . Depending on when the first event of P
takes place and whether it is observable, process P timeout [d] Q behaves differently
in three ways. Rule ato1 states that if P generates a τ -transition, the timeout construct
remains. Furthermore, the target zone D ′ ∧ c ≤ d constrains that the transition must
take place no later than d time units. In contrast, rule ato2 states that if P generates an
observable transition, then the timeout construct is removed. Similarly, it is constrained
that the transition must occur no later than d time units. Rule ato3 captures the case
when timeout occurs. Namely, timeout occurs if and only if the reading of c is exactly
d and, further, P must be able to idle until c reads d . Rule apcase captures the abstract
semantics of pcase. Note that this τ -transition is instantaneous.

Definition 5. Let M = (Var , σinit ,Proc) be a model. Da
M = (Sa , inita ,Act ,Pra) is

the abstract MDP such that Sa is a set of valid abstract system configurations; inita =
(σinit ,Proc,Dinit) is the initial abstract configuration where Dinit is cl(Proc) = 0;
and Pra is the smallest transition relation such that: for all s ∈ Sa , if s a� μ, then
(s , a, μ′) ∈ Pra such that: if μ((σ,P ,D)) > 0, then μ′((σ,P ,D ′)) = μ((σ,P ,D))
where D ′ = D [cl(Q)] ∧ cl(Q) − cl(P) = 0.

Informally, for any (σ,PT ,D) obtained by applying an abstract firing rule, D ′ is ob-
tained by firstly pruning all clocks which are not in cl(Q) and then setting clocks as-
sociated with newly activated processes (i.e., cl(Q) − cl(P)) to be 0. The construct of
Da

M is illustrated in the following example.

Example 3. Assume a model M = (∅, ∅,P) such that process P is defined as follows.

P = (pcase {1 : Wait [2]c0 ; 3 : Wait [5]c1}) timeout [3]c2 exit → P

The abstract MDP is shown as follows.

A transition is labeled with an event (with a skipped probability 1) or a probabil-
ity less than 1 (with a skipped event τ). Note that all transitions with resulting in a
non-trivial distribution is labeled with τ , whereas all transitions labeled with an event
other than τ has probability 1. The initial configuration state 0 is (∅,P , c2 = 0)
where clock c2 is associated with timeout [3] in P . Applying rule ato3, we get the
transition from state 0 to state 3. Note that clock c2 is pruned after the transition be-
cause it is no longer associated with any process constructs. Applying rule apcase, we
get the transitions from state 0 to state 1 and 4, which belong to the same distribu-
tion. Note that clock c2 is not pruned during both transitions. State 4 is as follows:
(∅,Wait [5]c1 timeout [3]c2 exit → P , c2 = 0 ∧ c1 = 0). By rule apcase, the τ -
transition is instantaneous and thus c2 = 0. Note that c2 = c1 since c1 starts when

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 157

[ade]
(σ,Wait [d]c ,D)

τ� (σ,Skip,D↑ ∧ c = d)

(σ,P ,D)
τ� (σ′,P ′,D ′)

[ato1]
(σ,P timeout [d]c Q ,D)

τ� (σ′,P ′ timeout [d]c Q ,D ′ ∧ c ≤ d)

(σ,P ,D)
e� (σ′,P ′,D ′), e �= τ

[ato2]
(σ,P timeout [d]c Q ,D)

e� (σ′,P ′, D ′ ∧ c ≤ d)

[ato3]
(σ,P timeout [d]c Q ,D)

τ� (σ, Q , c = d ∧ idle(P))

[apcase]
(σ, pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk}, D)

τ� μ
s.t. μ((σ,Pi ,D)) = pri

pr0+pr1+···+prk
for i ∈ [0, k]

Fig. 4. Abstract firing rules

c2 = 0. Two rules can be applied to state 4, i.e., ato3 so that timeout occurs or other-
wise ato2. Applying rule ato3, we obtain the transition from state 4 to state 3. Applying
rule ato2, we obtain the following zone: c1 = 5 ∧ c2 ≤ 3 ∧ c1 = c2. It can be shown
that the zone is empty and hence the transition is infeasible. Other transitions are simi-
larly obtained. Note that the event terminate is generated by the process Skip which is
in term generated from Wait [2] (rule ade). �

6 Verification

We show that the abstraction model can be verified with standard probabilistic model
checking techniques. Given a model M , Da

M must be finite so as to be model checkable.

Theorem 1. Da
M is finite for any model M . �

A proof sketch is as follows. The number of states in Da
M is bounded by the number

of 1) variable valuations, 2) process expressions and 3) zones. By assumption, 1) is
finite. Because clocks are associated with timed process constructs and we assume that
every reachable process P is finite, cl(P) is finite. It can be shown that by reusing
clocks, finitely many clocks are sufficient. Combined with our assumption, 2) is finite.
By previous work on zone abstraction [9], 3) is finite5.

Furthermore, the abstract semantics Da
M must be ‘sufficiently’ equivalent to the con-

crete semantics DM so that verification results based on Da
M apply to DM . In the

following, we show that our abstraction is probability preserving with respect to one
popular class of properties: (untimed) LTL-X (i.e., LTL without the ‘next’ operator)6.

5 Zone normalization is not necessary as all clocks are bounded from above. Refer to [29].
6 The next operator is omitted because its semantics for real-times systems can be confusing.

158 J. Sun et al.

Assume that φ is an LTL-X formula, constituted by temporal operators, logic operators
and atomic propositions on variables. Given a run π of an MDP and φ, satisfaction of
φ by π is defined in the standard way. Let Pmax

D (φ) be the maximum probability of
MDP D satisfying φ; Pmin

D (φ) be the minimum probability satisfying φ. The following
establishes that it is sound and complete to model-check LTL-X against Da

M .

Theorem 2. Let M be a model. Pmax
Da

M
(φ) = Pmax

DM
(φ) and Pmin

Da
M

(φ) = Pmin
DM

(φ). �

A proof sketch is as follows. Refer to [29] for a complete proof. This theorem is proved
by showing that: for every run ex of DM , there is a run ex ′ of Da

M (and vice versa)
such that (1) ex and ex ′ are stutter equivalent in terms of variable valuations; (2) ex
and ex ′ have the same probability. Intuitively, (1) is true because variable valuations do
not change through time transitions and all that our abstract does is to encapsulate time
transitions (while preserving event transitions). (2) is true because time-transitions al-
ways have probability 1. We remark that it is known that forward analysis of PTA [21] is
not accurate (e.g., the maximum probability returned is an over-approximation) because
zone graphes generated from Timed Automata do not satisfy (pre)-stability. We show
in [29] that dynamic zone abstraction (for Stateful Timed CSP [27] and ergo PRTS) gen-
erates zone graphes which are time-abstract bi-similar to the concrete transition systems
and satisfy (pre-)stability. As a result, forward analysis of Da

M is accurate.
We adopt the automata-based approach [5] to check LTL-X properties. Firstly, a de-

terministic Rabin automaton equivalent to a given LTL-X formula is built. The product
of the automaton and the abstract MDP is then computed. Thirdly, end components
in the product which satisfy the Rabin acceptance condition are identified. Lastly, the
probability of reaching any state of the end components is calculated, which equals the
probability of satisfying the property.

7 Implementation and Evaluation

System modeling, simulation and verification in PRTS have been supported (as a
module) in PAT7. PAT has user-friendly editor, simulator and verifier and works un-
der different operating systems. After inputting PRTS model in the editor, users could
simulate the system behaviors step by step or generate the whole state space if the num-
ber of states is under some constraint. For verification, besides the LTL-X checking,
PRTS also supports reachability checking, and refinement checking (i.e., calculating the
probability of a probabilistic system exhibiting any behaviors of a non-probabilistic
specification).

To answer the question on our motivating example, we verify the lift model and
compare two ways of assigning external requests. One is to assign the request to a ran-
dom lift. The other is that an external request is always assigned to the ‘nearest’ lift.
For simplicity, we assume external requests are never re-assigned. A lift works as fol-
lows. It firstly checks whether it should serve the current floor. If positive, it opens its
door and then repeats from the beginning later. If negative, it checks whether it should
continue traveling in the same direction (if there are internal requests or assigned exter-
nal requests on the way) or change direction (if there are internal or assigned external

7 http://www.patroot.com

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 159

Table 1. Experiments: Lift System

System
Random Nearest

Result(pmax) Time(s) Result(pmax) Time(s)
lift=2; floor=2; user=2 0.21875 3.262 0.13889 2.385
lift=2; floor=2; user=3 0.47656 38.785 0.34722 18.061
lift=2; floor=2; user=4 0.6792 224.708 0.53781 78.484
lift=2; floor=2; user=5 0.81372 945.853 0.68403 223.036
lift=2; floor=3; user=2 0.2551 12.172 0.18 6.757
lift=2; floor=3; user=3 0.54009 364.588 0.427 119.810
lift=2; floor=3; user=4 0.74396 11479.966 0.6335 1956.041
lift=2; floor=4; user=2 0.27 27.888 0.19898 13.693
lift=3; floor=2; user=2 0.22917 208.481 0.10938 88.549
lift=3; floor=2; user=3 OOM OOM 0.27344 3093.969

requests on the other direction) or simply idle (otherwise). Note that it is constrained
(using within) to react regularly. The property that a lift should not pass by without
serving a user’s external request is verified through probabilistic reachability analysis,
i.e., what is the maximal probability of reaching a state such that a lift is passing by a
requested floor in the requested direction. Table 1 summarizes the experiment results,
where OOM means out of memory. The experiment testbed is a PC running Windows
Server 2008 64 Bit with Intel Xeon 4-Core CPU×2 and 32 GB memory. Details about
our experiments are available at http : //www .comp.nus .edu.sg/˜pat/icfem/prts .

The parameters of the model denote the number of lifts, the number of floors and
number of user requests respectively. We limit the number of user requests so as to
check how the probability varies as well as to avoid state space explosion. It is inf
when there is no limit. Column Random and Nearest shows the maximum probability
of violating the property with random assignment and ’nearest ’ assignment respec-
tively. Note that it can be shown that the minimum probability is always 0 (i.e., there
exists a scheduler which guarantees satisfaction of the property). The following con-
clusion can be made. Firstly, it takes at least two external requests, two lifts and two
floors to constitute a bad behavior, e.g., one lift is at top floor (and later going down
to serve a request), while a request for going down at the top floor is assigned to the
other lift. Secondly, the more user requests, the higher the probability is. Intuitively, this
means that with more requests, it is more likely that the bad behavior occurs. Similarly,
the probability is higher with more floors. Lastly, ‘nearest’ assignment performs better
than random assignment as expected, i.e., the maximum probability of exhibiting a bad
behavior with the former is always lower than with the latter in all cases.

The statistics on memory consumption is skipped as PAT only generates an estimated
memory usage for each verification run because memory usage is managed by .NET
framework. In average, our current implementation processes 11K states per second
(or millions in one hour) in these experiments, which is less than other explicit-state
model checkers like SPIN. This is expected given the complexity in handling PRTS.
State space explosion occurs when there are more than 3 lifts and more than 4 floors.
This, however, should not be taken as the limit of PAT, as many optimization techniques
are yet to incorporated.

160 J. Sun et al.

Table 2. Experiments: PAT vs PRISM

System Property Result PAT(s) PRISM(s)
ME (N=5) LTL 1 9.031 7.413
ME (N=8) LTL 1 185.051 149.448

RC (N=4,K=4) LTL 0.99935 4.287 33.091
RC (N=6,K=6) LTL 1 146.089 2311.388
CS (N=2, K=4) LTL 0.99902 9.362 1.014
CS (N=3, K=2) LTL 0.85962 212.712 7.628

Next, the PRTS checker is compared with state-of-the-art probabilistic model checker
PRISM on verifying benchmark systems based on MDP. The results are summarized
in Table 2. We use existing PRISM models; re-model them using PRTS and verify
them. The models are a mutual exclusion protocol (ME), a randomized consensus algo-
rithm(RC), and the CSMA/CD protocol (CS). We use the iterative method in calculat-
ing the probability and set termination threshold as relative difference 1.0E-6 (same as
PRISM). Our implementation is better for CS, slightly slower than ME and significantly
slower for RC. The main reason that PAT could outperform PRISM in some cases is that
models in the PRTS have much fewer states than their respective in PRISM - due to dif-
ference in modeling language design. In general, PRISM handles more states per time
unit than PAT. The main reason is the complexity in handling hierarchical models. Note
that though these models have simple structures, there is overhead for maintaining un-
derlying data structures designed for hierarchical systems. PRISM is based on MTBDD
or sparse matrix or a hybrid approach, whereas PAT is based on explicit state representa-
tion currently. Symbolic methods like BDD are known to handle more states. Applying
BDD techniques to hierarchical complex languages like PRTS is highly non-trivial. It
remains as one of our ongoing work.

8 Related Work

There are several modeling methods and model checking algorithms for real-time prob-
abilistic systems. Alur, Courcoubetis and Dill presented a model-checking algorithm
for probabilistic real-time systems to verify TCTL formulae of probabilistic real-time
systems [1]. Their specification is limited to deterministic Timed Automata, and its use
of continuous probability distributions (a highly expressive modeling mechanism) does
not permit the model to be automatically verified against logics which include bounds
on probability. Remotely related is the line of work on Continuous-Time Markov Chains
(CTMC) [4]. Different from CTMC, our work is based on discrete probability distribu-
tions. A method based on MTBDD for analyzing the stochastic and timing properties of
systems was proposed in [3]. Properties are expressed in a subset of PCTL. The method
was not based on real-time but in the realm of discrete time. Similar work using discrete
time includes [13,20].

Research on combining quantitative timing and probability has been mostly based
on Probabilistic Timed Automata (PTA) [14,21]. PTA extends Timed Automata [2]
with nondeterministic choices, and discrete probability distributions which are defined
over a finite set of edges. It is a modeling formalism for describing formally both non-
deterministic and probabilistic aspects of real-time systems. Based on PTA, symbolic

An Approach for Model Checking Probabilistic Real-Time Hierarchical Systems 161

verification techniques [22] are developed using MTBDDs. In [6], Beauquier proposed
another model of probabilistic Timed Automata. The model in [6] differs from PTA
in that it allows different enabling conditions for edges related to a certain action and
it uses Büchi conditions as accepting conditions. In [18], probabilistic timed program
(PTP) is proposed to model real-time probabilistic software (e.g., SystemC). PTP is an
extension of PTA with discrete variables. PTA and PTP are closely related to PRTS
with some noticeable differences. Firstly, time transitions and probabilistic transitions
are separated in PRTS. Secondly, (Stateful) Timed CSP is equivalent to closed Timed
Automata (with τ -transitions) [24] and therefore strictly less expressive, which implies
that PRTS is less expressive than PTA. Lastly, different from PRTS, models based on
PTA or PTP often have a simple structure, e.g., a network of automata with no hierarchy.

Verification of real-time probabilistic systems often uses a combined approach, i.e.,
combination of real-time verifiers with probabilistic verifiers [11]. Our approach is a
combination of real-time zone abstraction with MDP, which has no extra cost of linking
different model checkers. This work is related to our previous works [27,28] with the
following new contribution: the two languages proposed in [27,28] are combined to
form PRTS and dynamic zone abstraction is seamlessly combined with probabilistic
model checking to verify PRTS models.

9 Conclusion

We proposed a modeling language PRTS which is capable of specifying hierarchical
complex systems with quantitative real-time features as well as probabilistic compo-
nents. We show that dynamic zone abstraction results in probabilistic preserving finite-
state abstractions, which are then subject to probabilistic model checking. In addition,
we have extended our PAT model checker to support this kind of systems so that the
techniques are easily accessible. As for future work, we are investigating state space re-
duction techniques such as symmetry reduction, bi-simulation reduction in the setting
of PRTS. We are also exploring other classes of properties such as timed property.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for Probabilistic Real-time Sys-
tems. In: Leach Albert, J., Monien, B., Rodrı́guez-Artalejo, M. (eds.) ICALP 1991. LNCS,
vol. 510, pp. 115–126. Springer, Heidelberg (1991)

2. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–
235 (1994)

3. Baier, C., Clarke, E.M., Garmhausen, V.H., Kwiatkowska, M.Z., Rya, M.: Symbolic Model
Checking for Probabilistic Processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A.
(eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-Checking Algorithms for
Continuous-Time Markov Chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)

5. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press, Cambridge (2008)
6. Beauquier, D.: On Probabilistic Timed Automata. Theor. Comput. Sci. 292(1), 65–84 (2003)
7. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.:

UPPAAL 4.0. In: QEST, pp. 125–126. IEEE, Los Alamitos (2006)

162 J. Sun et al.

8. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability
analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

9. Bengtsson, J., Yi., W.: Timed Automata: Semantics, Algorithms and Tools. In: Lectures on
Concurrency and Petri Nets, pp. 87–124 (2003)

10. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: Davies, J., Gibbons, J. (eds.)
IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007)

11. Daws, C., Kwiatkowska, M., Norman, G.: Automatic Verification of the IEEE 1394 Root
Contention Protocol with KRONOS and PRISM. International Journal on Software Tools for
Technology Transfer 5(2-3), 221–236 (2004)

12. Dill, D.L.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In:
Automatic Verification Methods for Finite State Systems, pp. 197–212 (1989)

13. Garmhausen, V.H., Aguiar Campos, S.V., Clarke, E.M.: ProbVerus: Probabilistic Symbolic
Model Checking. In: ARTS, pp. 96–110 (1999)

14. Gregersen, H., Jensen, H.E.: Formal Design of Reliable Real Time Systems. PhD thesis
(1995)

15. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920,
pp. 441–444. Springer, Heidelberg (2006)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

17. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. on Software Engineering 23(5),
279–295 (1997)

18. Kwiatkowska, M., Norman, G., Parker, D.: A Framework for Verification of Software with
Time and Probabilities. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS,
vol. 6246, pp. 25–45. Springer, Heidelberg (2010)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

20. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance Analysis of Probabilis-
tic Timed Automata using Digital Clocks. In: FMSD, vol. 29, pp. 33–78 (2006)

21. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic Verification of Real-time
Systems with Discrete Probability Distributions. Theoretical Computer Science 282(1), 101–
150 (2002)

22. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic Model Checking for Prob-
abilistic Timed Automata. Information and Computation 205(7), 1027–1077 (2007)

23. Mahony, B.P., Dong, J.S.: Blending Object-Z and Timed CSP: An Introduction to TCOZ. In:
ICSE, pp. 95–104 (1998)

24. Ouaknine, J., Worrell, J.: Timed CSP = Closed Timed Safety Automata. Electrical Notes
Theoretical Computer Science 68(2) (2002)

25. Schneider, S.: Concurrent and Real-time Systems. John Wiley and Sons, Chichester (2000)
26. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness.

In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer,
Heidelberg (2009)

27. Sun, J., Liu, Y., Dong, J.S., Zhang, X.: Verifying Stateful Timed CSP Using Implicit Clocks
and Zone Abstraction. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 581–600. Springer, Heidelberg (2009)

28. Sun, J., Song, S.Z., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In: Dong,
J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer, Heidelberg (2010)

29. Sun, J., Song, S.Z., Liu, Y., Dong, J.S.: PRTS: Specification and Model Checking. Technical
report (2010), http://www.comp.nus.edu.sg/pat/preport.pdf

	PRTS: An approach for model checking probabilistic real-time hierarchical systems
	Citation

	tmp.1584002366.pdf.bsk85

