
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2011

Verification of orchestration systems using compositional partial Verification of orchestration systems using compositional partial

order reduction order reduction

Tian Huat TAN

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
TAN, Tian Huat; LIU, Yang; SUN, Jun; and DONG, Jin Song. Verification of orchestration systems using
compositional partial order reduction. (2011). Proceedings of the 13th International Conference on
Formal Engineering Methods, ICFEM 2011, Durham, UK, October 26-28. 98-114.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5028

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5028&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Verification of Orchestration Systems
Using Compositional Partial Order Reduction�

Tian Huat Tan1, Yang Liu2, Jun Sun3, and Jin Song Dong2

1 NUS Graduate School for Integrative Sciences and Engineering
tianhuat@comp.nus.edu.sg

2 School of Computing, National University of Singapore
{liuyang,dongjs}@comp.nus.edu.sg

3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Orc is a computation orchestration language which is designed to
specify computational services, such as distributed communication and data ma-
nipulation, in a concise and elegant way. Four concurrency primitives allow pro-
grammers to orchestrate site calls to achieve a goal, while managing timeouts,
priorities, and failures. To guarantee the correctness of Orc model, effective ver-
ification support is desirable. Orc has a highly concurrent semantics which in-
troduces the problem of state-explosion to search-based verification methods like
model checking. In this paper, we present a new method, called Compositional
Partial Order Reduction (CPOR), which aims to provide greater state-space re-
duction than classic partial order reduction methods in the context of hierarchical
concurrent processes. Evaluation shows that CPOR is more effective in reducing
the state space than classic partial order reduction methods.

1 Introduction

The advent of multi-core and multi-CPU systems has resulted in the widespread use of
concurrent systems. It is not a simple task for programmers to utilize concurrency, as
programmers are often burdened with handling threads and locks explicitly. Processes
can be composed at different levels of granularity, from simple processes to complete
workflows. The Orc calculus [17] is designed to specify orchestrations and wide-area
computations in a concise and structured manner. It has four concurrency combinators,
which can be used to manage timeouts, priorities, and failures effectively [17]. The
standard operational semantics [29] of Orc supports highly concurrent executions of
Orc sub-expressions. Concurrency errors are difficult to discover by testing. Hence, it
is desirable to verify Orc formally. The highly concurrent semantics of Orc can lead to
state space explosion and thus pose a challenge to model checking methods.

In the literature, various state reduction techniques have been proposed to tackle the
state space explosion problem, including on-the-fly verification [15], symmetry reduc-
tion [7,11], partial order reduction (POR) [8,22,12,28,5,23], etc. POR works by ex-
ploiting the independency of concurrently executing transitions in order to reduce the
� This research is supported in part by Research Grant IDD11100102 of Singapore University of

Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 98–114, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Verification of Orchestration Systems 99

s1
t1

t2

t2

t1

s21s12

s2

s1
t1

t2

s12

s2

Before PO R After PO R

Fig. 1. Partial Order Reduction

P

P 2P 1
…

…
P 1 2P 1 1

…

… …

Fig. 2. Hierarchical Concurrent Processes

number of possible interleavings. For example, consider the transition system in Fig-
ure 1 where t1 and t2 are independent transitions. This means that executing either t1t2
or t2t1 from state s1 will always lead to state s2. POR will detect such independency,
and choose only t1t2 for execution, thus reducing the explored state space. Classic POR
algorithms, such as [28,12,8,22,5], work by identifying a subset of outgoing transitions
of a state which are sufficient for verification. In this paper, we denote such subsets as
ample sets – see [8,5].

Many concurrent systems are designed using a top-down architecture, and concur-
rent processes are structured in a hierarchical way. In Figure 2, process P contains
subprocesses Pi (i = 1, 2, etc.) that are running concurrently. Moreover, each process
Pi also contains subprocesses Pij (j = 1, 2, etc.) that are running concurrently. We refer
to concurrent processes of this kind as hierarchical concurrent processes (HCP). There
are many real-life examples of HCP. Consider a browser that supports tabbed brows-
ing. Multiple browser windows could be opened at the same time, each browser window
could contain multiple opened tabs, and each opened tab could download several HTML
elements in parallel. Orc processes provide another example of HCP.

Classic POR algorithms, such as [28,12,8,22,5], assume that local transitions within
the participated processes are dependent. In the context of HCP (Figure 2), if POR is
applied on process P, transitions within processes P1, P2, etc. will be considered as
local transitions, and be assumed to be dependent. Nevertheless, many local transitions
may be independent. In this work, we propose a method called Compositional Partial
Order Reduction (CPOR), which extends POR to the context of HCP. CPOR exploits
the independency within local transitions. It applies POR recursively for the hierarchical
concurrent processes, and several possible ample sets are composed in a bottom-up
manner. In order to apply CPOR to Orc, we first define the HCP structure of an Orc
process. Subsequently, based on the HCP structure, we established some local criteria
that could be easily checked by CPOR algorithm. Experimental results show that CPOR
can greatly reduce the explored state space when verifying Orc models.

Paper Outline. Section 2 introduces Orc language. Section 3 elaborates on CPOR and
shows how it can be applied to Orc models. Section 4 gives several experimental results.
Section 5 surveys the related work. Finally, Section 6 discusses the extensibility of
CPOR with possible future work and concludes the paper.

100 T.H. Tan et al.

2 Orchestration Language Orc

2.1 Syntax

Orc is a computation orchestration language in which multiple services are invoked to
achieve a goal while managing time-outs, priorities, and failures of services or commu-
nication. Following is the syntax of Orc:

Variable x ::= variable name
Value m ::= value
Parameter p ::= x | m
Expression E ::= M(p) – site call

| E | E – parallel
| E > x > E – sequential
| E < x < E – pruning
| E ; E – otherwise

Site. The simplest Orc expression is a site call M(p), where M is the service’s name
and p is a list of parameters. Sites are the basic units of Orc language. A site can be an
external service (e.g. Google site) which resides on a different machine. For example,
Google(“Orc”) is an external site call that calls the external service provided by Google
and its response is the search results for keyword “Orc” by the Google search engine.
A site can also be a local service (e.g. plus site) which resides on the same machine. For
example, a site call plus(1, 1) calls the local plus service and its response is the sum-
mation of the two arguments. Since a site in Orc is essentially a service, henceforth, we
would use the term site and service interchangeably. Some services maintain a state,
those services are denoted as stateful services. An example is Buffer site, which pro-
vides the service of First-In-First-Out (FIFO) queue. We denote the data structure that
constitutes the state of a stateful service as state object of the stateful service. A site call
(e.g. a dequeue operation on Buffer site) for a certain stateful service may change the
corresponding state object (e.g. a FIFO queue). Thus, multiple site calls with the same
arguments to the same stateful service might result in different responses. Services that
do not have any state are called stateless services. An example is plus site, which takes
two numbers as input and returns their summation. Multiple calls with the same argu-
ments to a stateless service will always result in the same response.

Combinators. There are four combinators: parallel, sequential, pruning, and otherwise
combinators. The parallel combinator F | G defines a parallel expression, where ex-
pressions F and G execute independently, and its published value can be the value
published either by F or by G or both of them. The sequential combinator F > x > G
defines a sequential expression, where each value published by F initiates a separate
execution of G wherein x is bound to the published value. The execution of F is then
continued in parallel with all these executions of G. The values published by the se-
quential expression are the values published by the executions of G. For example,
(Google(“Orc”) | Yahoo(“Orc”)) > x > Email(addr, x) will call Google and Ya-
hoo sites simultaneously. For each returned value, an instance of x will be bound to it,
and an email will be sent to addr for each instance of x. Thus, up to two emails will
be sent. If x is not used in G, F � G can be used as a shorthand for F > x > G.

Verification of Orchestration Systems 101

The pruning combinator F < x < G defines a pruning expression, where initially F
and G execute in parallel. However, when F needs the value of x, it will be blocked
until G publishes a value to bind x and G terminates immediately after that. For ex-
ample, Email(addr, x) < x < (Google(“Orc”) | Yahoo(“Orc”)) will get the fastest
searching result for the email sending to addr. If x is not used in F, F � G can
be used as a shorthand for F < x < G. The otherwise combinator F ; G defines
an otherwise expression, where F executes first. The execution of F is replaced by G
if F halts without any published value, otherwise G is ignored. For example, in the
expression (Google(“Orc”) ; Yahoo(“Orc”)) > x > Email(addr, x), Yahoo site is
used as a backup service for searching “Orc” and it will be called only if the site call
Google(“Orc”) halts without any result for “Orc”.

Functional Core Language (Cor). Orc is enhanced with functional core language
(Cor) to support various data types, mathematical operators, conditional expressions,
function calls, etc. Cor structures such as conditional expressions and functions are
translated into site calls and four combinators [17]. For example, conditional expres-
sion if E then F else G, where E, F, and G are Orc expressions would be translated into
expression (if (b) � F | if (∼ b) � G) < b < E before evaluation.

Example - Metronome. Timer is explicitly supported in Orc by introducing time-
related sites that delay a given amount of time. One of such sites is Rtimer. For exam-
ple, Rtimer (5000) � “Orc” will publish “Orc” at exactly 5 seconds. Functional core
(Cor) defines functions using the keyword def . Following is a function that defines a
metronome [17], which will publish a signal value every t seconds. signal is a value in
Orc that carries no information. Note that the function is defined recursively.

def metronome(t) = (signal | Rtimer(t) � metronome(t))

The following example publishes “tick” once per second, and publishes “tock” once per
second after an initial half-second delay.

(metronome(1000) � “tick”) | (Rtimer(500) � metronome(1000) � “tock”)

Thus the publications are “tick tock tick · · ·” where “tick” and “tock” alternate each
other. One of the properties that we are interested is whether the system could publish
two consecutive “tick”s or two consecutive “tock”s which is an undesirable situation.
In order to easily assert a global property that holds throughout the execution of an Orc
program, we extend Orc with auxiliary variables. The value of an auxiliary variable
could be accessed and updated throughout the Orc program. Henceforth, we will sim-
ply refer to the extended auxiliary variables as global variables. A global variable is
declared with the keyword globalvar and a special site, $GUpdate, is used to update a
global variable. We augment the metronome example with a global variable tickNum,
which is initialized to zero. tickNum is increased by one when a “tick” is published, and
is decreased by one when a “tock” is published.

globalvar tickNum = 0
def metronome(t) = (signal | Rtimer(t) � metronome(t))
(metronome(1000) � $GUpdate({tickNum = tickNum + 1}) � “tick”)
| (Rtimer(500) � metronome(1000) � $GUpdate({tickNum = tickNum − 1})
� “tock”)

102 T.H. Tan et al.

With this, we are allowed to verify whether the system could publish two consecutive
“tick”s or two consecutive “tock”s by checking the temporal property such that whether
the system is able to reach an undesirable state that satisfying the condition (tickNum <
0∨ tickNum > 1).

2.2 Semantics

This section presents the semantic model of Orc based on Label Transition System
(LTS). In the following, we introduce some definitions required in the semantic model.

Definition 1 (System Configuration). A system configuration contains two compo-
nents (Proc,Val), where Proc is a Orc expression, and Val is a (partial) variable valua-
tion function, which maps the variables to their values.

A variable in the system could be an Orc’s variable, or the global variable which is
introduced for capturing global properties. The value of a variable could be a primitive
value, a reference to a site, or a state object. The three primitive types supported by
Orc are boolean, integer, and string. All variables are assumed to have finite domain.
Two configurations are equivalent iff they have the same process expression Proc and
same valuation function Val. Proc component of system configuration is assumed to
have finitely many values.

Definition 2 (System Model). A system model is a 3-tuple S = (Var, initG, P), where
Var is a finite set of global variables, initG is the initial (partial) variable valuation
function and P is the Orc expression.

Definition 3 (System Action). A system action contains four components (Event, Time,
EnableSiteType, EnableSiteId). Event is either publication event, written !m or internal
event, written τ . EnableSiteType, EnableSiteId are the type and unique identity of the
site that initiates the system action. Time is the total delay time in system configuration
before the system action is triggered.

Every system action is initiated by a site call, and we extend the system action defined
in [29] with two additional components, EnableSiteType and EnableSiteId, to provide
information for CPOR. A publication event !m communicates with the environment
with value m, while an internal event τ is invisible to the environment. There are three
groups of site calls. The first two groups are site calls for stateless and stateful services
respectively. And the third are the site calls for $GUpdate which update global vari-
ables. These three groups are denoted as stateless, stateful, and GUpdate respectively,
and those are the possible values for EnableSiteType. Every site in the system model is
assigned a unique identity which ranges over non-negative integer value. Discrete time
semantics [29] is assumed in the system. Time ranges over non-negative integer value
and is assumed to have finite domains.

Definition 4 (Labeled Transition System (LTS)). Given a model S = (Var, initG, P),
let Σ denote the set of system actions in P. The LTS corresponding to S is a 3-tuple
(C, init,→), where C is the set of all configurations, init ∈ C is the initial system
configuration (P, initG), and → ⊆ C × Σ × C is a labeled transition relation, and its
definition is according to the operational semantics of Orc [29].

Verification of Orchestration Systems 103

To improve readability, we write c
a→ c′ for (c, a, c′) ∈ →. An action a ∈ Σ is enabled

in a configuration c ∈ C, denoted as c
a→, iff there exists a configuration c′ ∈ C, such

that c
a→ c′. An action a ∈ Σ is disabled in a configuration c = (P, V), where c ∈ C, iff

the action a is not enabled in the configuration c, but it is enabled in some configurations
(P, V ′), where V ′ 	= V . Act(c) is used to denote the set of enabled actions of a configu-
ration c ∈ C, formally, for any c ∈ C, Act(c) = {a ∈ Σ | c

a→}. Enable(c, a) is used to
denote the set of reachable configurations through an action a ∈ Σ from a configuration
c ∈ C, that is, for any c ∈ C and a ∈ Σ, Enable(c, a) = {c′ ∈ C | c

a→ c′}. Enable(c)
is used to denote the set of reachable configurations from a configuration c ∈ C, that is,
for any c ∈ C, Enable(c) = {c′ ∈ Enable(c, a) | a ∈ Σ}. Ample(c) is used to denote
the ample set (refer to Section 3) of a configuration c ∈ C. AmpleAct(c) is defined as
the set of actions that caused a configuration c ∈ C transit into the configurations in
Ample(c), that is, for any c ∈ C, AmpleAct(c) = {a ∈ Σ | c

a→ c′, c′ ∈ Ample(c)}.
PAct(c) is used to denote the set of enabled and disabled actions of a configuration c,
and Act(c) ⊆ PAct(c). We use TS to represent the original LTS before POR is applied
and ̂TS to represent the reduced LTS after POR is applied. TSc is used to represent
the LTS (before any reduction) that starts from c, where c is a configuration in TS. An
execution fragment l = c0

a1→ c1
a2→ . . . of LTS is an alternating sequence of configu-

rations and actions. A finite execution fragment is an execution fragment ending with a
configuration.

We are interested in checking the system against two kinds of properties. The first
kind is deadlock-freeness, which is to check whether there does not exist a configura-
tion c ∈ C in TS such that Enable(c) = ∅. The second kind is temporal properties that
are expressible with LTL without Next Operator (LTL-X) [5]. For any LTL-X formula
φ, prop(φ) denotes the set of atomic propositions used in φ. In the metronome example
which augmented with a global variable tickNum, prop(φ)={(tickNum < 0), (tickNum >
1)}. An action a ∈ Σ is φ-invisible iff the action does not change the values of propo-
sitions in prop(φ) for all c ∈ C in TS.

2.3 Hierarchical Concurrent Processes (HCP)

The general structure of a hierarchical concurrent process P is shown graphically using
a tree structure in Figure 3. Henceforth, we denote such a graph as a HCP graph, or
simply HCP if it does not lead to ambiguity.

P0

P2P1
…

…
P12P11

…

…

Pn-1

Pn
…

Level 0

Level 1

Level 2

Level n-1

Level n

……

Fig. 3. The general structure of HCP

104 T.H. Tan et al.

Figure 3 shows that process P0 contains subprocesses P1, P2, etc that are running
concurrently. Process P1 in turn contains subprocesses P11, P12, etc that are running
concurrently. This goes repeatedly until reaching a process Pn which has no subpro-
cesses. Each process P in the hierarchy will have its associated level, starting from level
0. A process without any subprocess (e.g. process Pn) is denoted as terminal process,
otherwise the process is denoted as non-terminal process. Furthermore, process P0 at
level 0 is denoted as global process, while processes at level i, where i > 0, are denoted
as local processes. The parent process of a local process P′ is a unique process P such
that there is a directed edge from P to P′ in the HCP graph. When P is the parent process
of P′, P′ is called the child process of P. Ancestor processes of a local process P′ are
the processes in the path from global process to P′. Descendant processes of process P
are those local processes that have P as an ancestor process.

An Orc expression P could be viewed as a process that is composed by HCP. This
could be formalized by constructing the HCP according to syntax of P, assigning pro-
cess identity to each sub-expression of P, and defining how the defined processes evolve
during the execution of expression P. In the following, we illustrate this in detail. An
Orc expression can be either a site call or one of the four combinators and their cor-
responding HCPs are shown in Figure 4. A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure 4. For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. p0, p1, etc.). In Figure 5, an expres-
sion (S1 � S2) | (S3 � S4), where S1, S2, S3, and S4 are site calls, could be viewed as
a process composed by HCP of three levels.

P 0 : S P 0 :A | B P 0 :A < x < B P 0 : A > x > B

S i t e C a l l P a r a l le l P r u n in g S e q u e n t i a l

P 0 : A ; B

O th e r w is e

P 1 : A P 2 :BP 2 : B P 1 :AP 1 : A P 1 : A

Fig. 4. HCP of general Orc Expressions

P 0 : (S 1 < < S 2) | (S 3 < < S 4)

P 1 : S 1 < < S 2 P 2 : S 3 < < S 4

(S 1 < < S 2) | (S 3 < < S 4)

P 3 : S 1 P 4 : S 2 P 5 : S 3 P 6 : S 4

Fig. 5. An example

Consider a transition (P, V) a→ (P′, V ′), where a is some action. We abuse the no-
tation by using P and P′ to denote the HCPs before and after the transition. In fact, P′

could have different tree structures from P, and processes could be added or deleted in
P′. In order to have a clear relation of processes between P and P′, we define the relation
of processes between P and P′ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure 6 for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1V, the transition of f to f ′ produces an

Verification of Orchestration Systems 105

P0:f | g P0:f'|g

P2:gP1:f P2:gP1:f'

SYM1

P0:f > x > g P2:f' > x > g | [m/x].g

P1:f

SEQ1V

P1:f'

P0:f' > x > g P3:[m/x].g

P0:f < x < g P1: [m/x].f

P1:f

ASYM2V

P2:g

P0:E(p) P1: [p/x].f

DEF

Fig. 6. Relation of Processes between P and P’

A = (userdb.put(“user1”) | userdb.put(“user2”)) < userdb < Buffer()
B = (flightdb.put(“CX510”) | flightdb.put(“CX511”)) < flightdb < Buffer()

Fig. 7. Execution of Orc process P = A | B

output value m, and notation [m/x].g is used to denote that all the instances of variable
x in g are replaced with value m.

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P1 and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in P1[c], if for any configuration c′ = (P′, V ′) that is reachable by c, if P′ has P1 as its
descendant process, site S must be private in process P1[P′].

The example in Figure 7 shows an Orc process P = A | B. Variables userdb and
flightdb will be initialized to different instances of site Buffer, which provides the ser-
vice of FIFO queue. In process A, two string values user1 and user2 are enqueued in
the buffer referenced by userdb concurrently. Buffer site that is referenced by userdb
is private in A[P], since userdb could only be accessed by process A. Now consider
at some level j of HCP graph of global process P, where j > 1, we have processes
Pj1 = userdb.put(“user1”) and Pj2 = userdb.put(“user2”). Buffer site that is refer-
enced by userdb is shared in Pj1 [P], since userdb could be accessed by Pj2 which is not
a descendant process of Pj1 .

3 Compositional Partial Order Reduction (CPOR)

The aim of Partial Order Reduction (POR) is to reduce the number of possible orderings
of transitions by fixing the order of independent transitions as shown in Figure 1. The
notion of indepedency plays a central role in POR, which is defined below by follow-
ing [13].

Definition 5 (Independency). Two actions a1 and a2 in an LTS are independent if for
any configuration c such that a1, a2 ∈ Act(c):
1. a2 ∈ Act(c1) where c1 ∈ Enable(c, a1) and a1 ∈ Act(c2) where c2 ∈ Enable(c, a2),
2. Starting from c, any configuration reachable by executing a1 followed by a2, can also
be reached by executing a2 followed by a1.
Two actions are dependent iff they are not independent.

Given a configuration, an ample set is a subset of outgoing transitions of the configura-
tion which are sufficient for verification, and it is formally defined as follow:

106 T.H. Tan et al.

Definition 6 (Ample Set). Given an LTL-X property φ, and a configuration c ∈ C in
TS, an ample set is a subset of the enable set which must satisfy the following condi-
tions [5]:
(A1) Nonemptiness condition: Ample(c) = ∅ iff Enable(c) = ∅.
(A2) Dependency condition: Let c0

a1→ c1
a2→ . . .

an→ cn
a→ t be a finite execution frag-

ment in TS. If a depends on some actions in AmpleAct(c0), then ai ∈ AmpleAct(c0) for
some 0 < i ≤ n.
(A3) Stutter condition: If Ample(c) 	= Enable(c), then any α ∈ AmpleAct(c) is φ-
invisible.
(A4) Strong Cycle condition: Any cycle in ̂TS contains at least one configuration c with
Ample(c)=Enable(c).

To be specific, reduced LTS generated by the ample set approach needs to satisfy con-
ditions A1 to A4 in order to preserve the checking of LTL-X properties. However, for
the checking of deadlock-freeness, only conditions A1 and A2 are needed [12]. Hence-
forth, our discussion will be focused on the checking of LTL-X property, but the reader
could adjust accordingly for the checking of deadlock-freeness.

Conditions A1, A3, and A4 are relatively easy to check, while condition A2 is the
most challenging condition. It is known that checking condition A2 is equivalent to
checking the reachablity of a condition in the full transition system TS [8]. It is desirable
that we could have an alternative condition A2’ that only imposes requirements on the
current configuration instead of all traces in TS, and satisfaction of condition A2’ would
guarantee the satisfaction of condition A2. Given a configuration cg = (Pg, Vg), and Pd

as a descendant process of Pg, with associated configuration cd = (Pd, Vd), we define a
condition A2’ that based solely on cd, and its soundness will be proved in Section 3.3.

(A2’)Local Criteria of A2. For all configurations ca ∈ Ample(cd) and ca = (pa, va)
the following two conditions must be satisfied:
(1) The enable site for the action a that enable ca must be either stateless site, or stateful
site private in pa[Pg];
(2) pa is not a descendant process of the RHS process of some pruning combinators or
the LHS process of some sequential combinators.

Notice that we define an ample set as a set of enabled configurations rather than a set of
enabled actions like [5]. The reason is due to in references like [5], action-deterministic
system is assumed. This entails that for any configuration c ∈ C and any action a ∈ Σ, c
has at most one outgoing transition with action a, formally, c

a→ c′ and c
a→ c′′ implies

c′ = c′′. Therefore, the enabled configurations could be deduced by the enabled actions.
Nonetheless, an Orc system is not action-deterministic, the main reason is because some
events in Orc are internal events that are invisible to the environment. By defining ample
set as a set of configurations, with their associated enabled actions, the requirement of
action-deterministic system is no longer needed.

3.1 Classic POR and CPOR

Classic POR methods assume that local transitions of a process are dependent, and
in the context of HCP, it means that actions within individual processes from level 1

Verification of Orchestration Systems 107

P1 | P2

(1 << 3) | P2

P1 | P2

(1 << 3) | P2 (2 << 3) | P2 (1 | 2) | P2

CPORClassic POR

!2!2 !1

P1 | P2

(1 << 3) | P2 (2 << 3) | P2 (1 | 2) | P2

!2 !1

P1 | (stop << 6) P1 | 4

!4

No POR

Fig. 8. LTS of Orc Process P = (P1 | P2), P1 = ((1 | 2) � 3), P2 = (4 � 6)

onwards are simply assumed to be dependent. In Figure 8, three LTSs of the process
P are given. No POR shows the set of all initial transitions of process P; classic POR
shows how the state-space of a parallel composition can be reduced when its component
processes are independent; and CPOR reduces the initial actions further by examining
internal process structure. For simplicity, system configuration is represented only by
process expression. When no POR is applied, all interleavings of transitions are con-
sidered, and there are five branches after the initial state. When the classic POR is
applied, since P1 and P2 are active processes, assume that it checks process P1 first.
All transitions of P1 are assumed to be dependent by the classic POR. For this reason
the resulting ample set of P is {((1 � 3) | P2), ((2 � 3) | P2), ((1 | 2) | P2)},
which is a valid ample set after checking for conditions A1-A4. Therefore, there are
three branches from initial state when classic POR is applied. Different from clas-
sic POR, when CPOR is applied, POR is again applied to process (1 | 2). We de-
fine Amples(P) as a set of ample sets of process P that satisfy conditions A1 and A2,
but yet to be checked for conditions A3 and A4. Amples((1 | 2)) = {{1}, {2}} and
Amples(P1) is Amples((1 | 2)) after restructuring by the semantics of P1, which is
{{1 � 3}, {2 � 3}}. Amples(P) is Amples(P1) after restructuring by the semantics of
P, which is {{1 � 3 | P2}, {2 � 3 | P2}}. Each ample set in Amples(P) will then be
checked for conditions A3 and A4, and both ample sets turn up to be valid, therefore
the ample set {1 � 3 | P2} is chosen nondeterministically to be the returned value.
Thus there is only a single branch after the initial state when CPOR is applied. There
are a total of 31, 14 and 5 states for LTS of process P in the situations where no POR,
classic POR and CPOR are applied respectively.

3.2 CPOR Algorithm

In this section, we discuss the procedures for CPOR as given in Algorithm 1. CAmple
returns an ample set which is a subset of enabled configurations from the configura-
tion c = (P, V), and Visited is the stack of previously visited configurations. Each
configuration ca in the ample set, where ca = (Proc, Val), is associated with an ac-
tion aa = (Event, Time, EnableSiteType, EnableSiteId), which caused the transition
from c to ca, that is c

aa→ ca. Henceforth, we use the dot-notation such as ca.Proc,
ca.Event, etc to denote the component values of ca as well as the component values
of its associated action aa. P.Amples (line 2) is a set that stores ample set candidates
that satisfy conditions A1 and A2, but yet to check for conditions A3 and A4. Proce-
dure enableSubProcs(P) (line 3) returns the set of enabled child processes according
to HCP graph of Orc expressions P as shown in Figure 4, with an exception that for
sequential process Ps = A > x > B, it returns an empty set {} instead of {A}, and
for pruning process Pp = A < x < B, it returns {A} instead of {A, B}. This exception

108 T.H. Tan et al.

is applied in order to satisfy the condition A2’(2). Procedure fillAmpleRec(P, V) (line
17) retrieves the ample set candidates under valuation V and assigns it to P.Amples.
In line 18, Enable(c) where c = (P, V) gives the set of all enabled configurations
from the configuration c. Procedure checkA2Local(config) checks whether configu-
ration config satisfies A2’(1). Procedure isPrivate (line 32) checks whether the site
with config.EnableSiteId as unique identity is private in Proc[PG] where Proc is the
process component of config and PG is the argument P of procedure CAmple pro-
vided by user, which is the global process that has Proc as descendant process. The
checking is done by syntax analysis. In Orc, P is a terminal process (line 20) iff it
is a site call. Procedure composeAmples(P, sP, V) (line 26) combines sP.Amples back
into P.Amples under valuation V . Procedure reformAmples (sP.Amples, P) (line 27) re-
structures configurations within sp.Amples by operational semantics of Orc. For ex-
ample, consider P = (1 + x < x < 2), and sP = 2. After making a transition,
sP.Amples = {{c}}, where c is the configuration (stop, ∅) with c.Event = !2 . After
restructuring by reformAmples(sP.Amples, P), c becomes (1 + 2, ∅), and c.Event = τ ,
according to rule ASYM2V as stated below.

(2, ∅) !2→ (stop, ∅) [ASYM2V]
(1 + x < x < 2, ∅) τ→ (1 + 2, ∅)

When P = sP, reformAmples(sP.Amples, P) will simply return sP.Amples. Subse-
quently, ample sets that are empty sets are filtered away (line 28). We continue on
the discussion of procedure CAmple. To analyze whether an ample set ample is valid,
the algorithm checks whether all configurations within satisfy conditions A3 and A4
(line 9, 10). If it turns out to be true, a valid ample set is found, and it will be returned
immediately (line 14, 15). If no valid ample set has been found in line 3-15, all the
enabled configurations from current configuration c = (P, V) will be returned (line
16). Regarding checking of condition A3 (line 9), there are two kind of actions that
might not be φ-invisible, which are actions that contain publication events or actions
that involved the update of global variables. Consider the metronome example, if we
are checking property like whether !tick event can be executed infinitely often, an ac-
tion a with a.Event =!tick is not φ-invisible. Another example is when we are checking
whether tickNum < 0 is true in all situations, where tickNum is a global variable, an
action a with a.EnableSiteType = GUpdate is not φ-invisible.

3.3 Soundness

Lemma 1. Given any two actions a1 and a2 in the system, and let s1 and s2 be the
enable sites of actions a1 and a2 respectively. If sites s1 and s2 are not descendant
processes of the RHS process of some pruning combinators and state objects of sites s1
and s2 are disjoint, then action a1 is independent of action a2.

Proof. Actions a1 and a2 are dependent only when (a) action a1 could disable ac-
tion a2 or vice versa or (b) starting from the same configuration, transitions a1a2 and
a2a1 could result in different configurations. Situation (a) could happen if site s1 could
possibly modify the state object of site s2 or vice versa, or when sites s1 and s2 are the
descendant processes of the RHS process of some pruning combinators. For the latter

Verification of Orchestration Systems 109

1 procedure CAmple(P, V, Visited)
2 P.Amples := ∅;
3 foreach sP ∈ enableSubProcs(P) do // A2’(2)
4 fillAmpleRec(sP, V);
5 composeAmples(P, sP, V);
6 foreach ample ∈ P.Amples do
7 validAmple := true;
8 foreach config ∈ ample do
9 if ¬ config satisfies A3 // A3

10 ∨ config ∈ Visited // A4
11 then
12 validAmple := false;
13 break;

14 if validAmple then
15 return ample;

16 return Enable((P, V));

17 procedure fillAmpleRec(P, V)
18 P.Amples := {{config : Enable((P, V))
19 | checkA2Local(config)}}; // A2’(1)

20 if P is terminal process then
21 composeAmples(P, P, V);

22 else
23 foreach sP ∈ enableSubProcs(P) do
24 fillAmpleRec(sP, V);
25 composeAmples(P, sP, V);

26 procedure composeAmples(P, sP, V)
27 P.Amples := P.Amples ∪ reformAmples(sP.Amples, P);
28 P.Amples := P.Amples \ {∅}; // A1

29 procedure checkA2Local(config)
30 return(config.EnableSiteType is stateless ∨
31 config.EnableSiteType is stateful ∧
32 isPrivate(config.EnableSiteId)) ;

Algorithm 1: CAmple

case, consider x < x < (s1 | s2), if site s1 published a value, site s2 will be disabled
immediately. Nevertheless, this case is ruled out by the assumption. Condition (b) could
happen when sites s1 and s2 contain a common state object which they may modify and
depend on. Therefore, conditions (a) and (b) are the results of having a common state
object between sites s1 and s2. This implies that if sites s1 and s2 have disjoint state
objects, actions a1 and a2 are independent to each other. �end.

110 T.H. Tan et al.

Lemma 2. Given a configuration c = (P, V), and process P1 as a descendant process
of P. If P1 is not a descendant process of the LHS process of some sequential combina-
tors, then a site S that is private in P1[P], is permanently private in P1[c] as well.

Proof. We prove by inspecting each rule in the operational semantics of Orc [29]. Only
rule SEQ1V of operational semantics of Orc is possible to transfer the site reference
from a process p to other processes, while retaining process p. Consider HCPs under
rule SEQ1V in Figure 6, a site S that is private in P1[P0] may not be private in P1[P2],
since P3 might have the access to the reference of site S. Therefore, if we exclude
this situation by assuming P1 is not a descendant process of the LHS process of some
sequential combinators, we prove the lemma. � end.

We define several notions here. Given a configuration cg = (Pg, Vg), and Pd as a descen-
dant process of Pg, with associated configuration cd = (Pd, Vd). Ccg is defined as the set
of configurations reachable by cg in LTS; Pcg is defined as {P | c = (P, V) ∧ c ∈ Ccg};
HCP(Pcg) is defined as the HCPs for each global process in Pcg ; Hcg is defined as the
union of processes within each HCP in HCP(Pcg); Hcg [Pd] is the set of processes that
contain process Pd and its corresponding descendant processes in respective HCPs in
HCP(Pcg), and Hcg [Pd] ⊆ Hcg .

Lemma 3. If an action a ∈ Act(cd) satisfies A2’ then the action is independent of any
action b ∈ Act(c′), where c′ = (P′, V ′), such that P′ = Hcg/Hcg [Pd], and V ′ is any
valuation.

Proof. Assume an action a ∈ Act(cd) satisfies A2’, and assume the action is dependent
to an action b ∈ Act(c′). Let sites sa and sb be the enable sites of actions a and b
respectively. By A2’(1), site sa is a stateless site or stateful site that is private in pa[Pg].
Site sa could not be a stateless site since a stateless site does not have a state object,
and thus action a is trivially independent to any actions in the system by Lemma 1
and A2’(2). Therefore, site sa is a stateful site that is private in pa[Pg]. By Lemma 2
and A2’(2), site sa is also permanently private in pa[cg] . By definition, state objects of
site sa and sb are disjoint. By Lemma 1 and A2’(2), actions a and b are independent, a
contradiction. � end.

Theorem 1. If any action a ∈ Act(cd) satisfies A2’, then AmpleAct(cg) = Act(cd) sat-
isfies A2 for all traces in TScg .

Proof. Assume any action a ∈ Act(cd) satisfies A2’, and AmpleAct(cg) = Act(cd) does
not satisfies A2 for some traces in TScg . This means that there exists a finite execution

fragment l = c
a1→ c1

a2→ . . .
an→ cn

an+1→ . . . ,where actions a1, . . . , an 	∈ Act(cd)
and action an+1 depends on some actions in AmpleAct(cg) = Act(cd). Since Lemma 3
holds, action an+1 must be from PAct(cd)/Act(cd), we denote the enable site of action
an+1 as Sn+1. Since site Sn+1 is disabled initially in cd, it means that it is enabled later
by a site call from a process p′ ∈ Hcg/Hcg [Pd]. For sites in process Pd, site calls from a
process p′ ∈ Hcg/Hcg [Pd] could only enable the sites that are shared in pd[P′

g], where P′
g

is the global process of p′. We denote the set of state objects of the sites that are shared
in pd[P′

g] as Dshare, and state object of Sn+1 is in Dshare. On the other hand, by Lemma
2 and A2’(2), any action a ∈ Act(cd) is enabled by a site that is permanently private in

Verification of Orchestration Systems 111

pa[cg]. By definition, state object of the enable site of any action a ∈ Act(cd) must not
be found in Dshare. Therefore, action an+1 is independent to all actions in Act(cd) by
Lemma 1 and A2’(2), a contradiction. � end.

Theorem 2. Algorithm CAmple is sound.

Proof. To show the soundness of the algorithm, we need to show that the returned am-
ple set satisfies conditions A1-A4. Checking of condition A1 is done at line 28. Con-
ditions A3 and A4 are checked at the global process level (line 9, 10) at CAmple since
they are only concerned with the property of global process configurations, i.e. whether
their actions are φ-invisible and whether they have been visited before. By Theorem 1,
satisfaction of condition A2’ leads to satisfaction of condition A2. Condition A2’(1)
is checked at line 19. Condition A2’(2) is guaranteed by constraining the procedure
enableSubProcs(P) (line 3) not to return LHS process of a sequential process and RHS
process of a pruning process. � end.

4 Evaluation

Our approach has been realized in the ORC Module of Process Analysis Toolkit (PAT)
[1]. PAT is designed for systematic validation of distributed/concurrent systems using
state-of-the-art model checking techniques [25,26]. It can be considered as a frame-
work for manufacturing model-checkers. The data are obtained with Intel Core 2 Quad
9550 CPU at 2.83GHz and 4GB RAM. ORC module supports verification of deadlock-
freeness and Linear Temporal Logic (LTL) [24] property base on [21]. In Table 1 (A),
three situations are compared: CPOR is the scenario where Compositional POR ap-
proach as described in Section 3 is applied; POR is the scenario where the classic ap-
proach of POR that only considered the concurrency of processes at level 1 is applied;
No POR/CPOR is the scenario where neither POR nor CPOR is applied. In the table, �
and ✗ means the property is satisfied and violated respectively. The results are omitted
(shown as “-”) for states and times, if it takes more than eight hours for verification.

Model Concurrent Quicksort is a variant of the classic quicksort algorithm and em-
phasizes its concurrent perspective, as described in [18]. For model Concurrent Quick-
sort, size denotes the number of elements in the array to be sorted. Property (1.1) is used
to verify whether elements in the array will eventually be sorted, and once sorted, it will
remain sorted. Model Readers-Writers Problem is a famous computer science problem
as described in [9], for which size denotes the number of readers. Property (2.1) ver-
ifies whether the model is possible to reach a state that violates the mutual exclusion
condition. Model Auction Management is the case study in [2] which includes the use
of external services. Please refer to [27] for the details of modeling external services in
our work. Property (3.1) is used to verify that if an item has a bid on it, it will eventu-
ally be sold; Property (3.2) is used to verify that every item is always sold to a unique
winner. Part (B) is the comparison of the effectiveness of our model checker for Orc
and that of the model checker Maude [3,4]. Figures for number of rewrites and time
usage for Maude model checker are from [4], which was run under 2.0GHz dual-core
node with 4GB of memory. The experiments show that CPOR provides greater-scale
reduction than classic POR for HCPs. In addition, our implementation with CPOR is
more efficient than Maude [3,4].

112 T.H. Tan et al.

Table 1. Performance evaluation on model checking Orc’s model

(A) Comparing difference POR methods
States Time(s)

Model Property Size CPOR POR No POR/CPOR CPOR POR No POR/CPOR

Concurrent
(1.1)

2 � 58 1532 10594 0.08 1.13 5

Quicksort
3 � 69 3611 36794 0.11 8.48 74
5 � 237 - - 0.68 - -

Readers-Writers (2.1)
2 ✗ 106 1645 7620 0.07 1.12 4

Problem
3 ✗ 152 18247 142540 0.11 14.86 101
10 ✗ 472 - - 0.49 - -

Auction (3.1) N.A. � 869 - - 0.6 - -
Management (3.2) N.A. � 883 - - 0.75 - -

(B) Comparing Our Model Checker and Maude
States/Rewrites Time(s)

Model Property Our Maude Our Maude

Auction Management
(3.1) � 869 7052663 0.6 14.4
(3.2) � 883 8613539 0.75 19.8

5 Related Work

This work is related to research on applying POR to hierarchical concurrent systems.
Lang et al. [20], proposed a variant of POR using compositional confluence detec-
tion. The proposed method works by analyzing the transitions of the individual process
graphs as well as the synchronization structure to identify the confluent transitions in
the system graph. Transitions within the individual process graphs (at level 1) are as-
sumed to be dependent, thus all possible transitions will be generated for individual
process graphs. While in our work, we further exploit the independency within each
process recursively. Basten et al. [6], proposed an approach to enhance POR via pro-
cess clustering. The proposed method combines processes (at level 1) in clusters, and
applies partial order reduction at proper cluster-level to achieve more reduction. Krimm
et al. [19], proposed an approach to compose the processes (at level 1) of an asyn-
chronous communicating system incrementally, and at the same time apply POR for
the generated LTS. Both approaches of [6] and [19] have the assumption that the local
transitions of each process (at level 1) are dependent. To the best of the author’s knowl-
edge, there is no existing work that applies POR in the context for HCP. The reason
for not including orthogonal approaches such as [20,6,19] for comparisons in Section 4
is because they optimized POR by restructuring or leveraging the information of pro-
cesses at level 1, while CPOR is aimed to extend POR for HCP. This means that they
could be similarly used to optimize CPOR, in the same way they are used to optimize
classic POR.

This work is also related to research on verifying Orc. Liu et al. [10], proposed an
approach to translate the Orc language to Timed Automata, and use model checker
like UPPAAL for verification. However, no reduction is considered. Alturki et al. [2,3],
proposed an approach to translate the Orc language to rewriting logic for verification.
An operational semantics of Orc in rewriting logic is defined, which is proved to be

Verification of Orchestration Systems 113

semantically equivalent to the operational semantics of Orc. To make the formal anal-
ysis more efficient, a reduction semantics of Orc in rewriting logic is further defined,
which is proved to be semantically equivalent to the operational semantics of Orc in
rewriting logic. We have compared the efficiency of our model checker with theirs in
Section 4.

6 Conclusion

In this paper, we proposed a new method, called Compositional Partial Order Reduction
(CPOR), which aims to provide the reduction with a greater scale than current partial
order reduction methods in the context of hierarchical concurrent processes. It has been
used in model checking Orc programs. Experiment results show that CPOR provide
significant state-reduction for Orc programs. There are many languages other than Orc
that could have the structure of HCP such as process algebra languages (e.g. CSP [14])
or service orchestration languages (e.g. BPEL [16]). Similar to classic POR method, the
main challenge of applying CPOR for a language is to find an appropriate local criteria
of A2 for that language. In addition, Algorithm 1 in the paper needs to be adjusted
according to the semantics of the specific language. As for future works, we would
further evaluate CPOR by applying it for verifying programs in other languages.

References

1. PAT: Process Analysis Toolkit, http://www.comp.nus.edu.sg/˜pat/research/
2. AlTurki, M., Meseguer, J.: Real-time rewriting semantics of orc. In: PPDP, pp. 131–142

(2007)
3. AlTurki, M., Meseguer, J.: Reduction semantics and formal analysis of orc programs. Electr.

Notes Theor. Comput. Sci. 200(3), 25–41 (2008)
4. AlTurki, M., Meseguer, J.: Dist-Orc: A Rewriting-based Distributed Implementation of Orc

with Formal Analysis. Technical report, The University of Illinois at Urbana-Champaign
(April 2010), https://www.ideals.illinois.edu/handle/2142/15414

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2007)
6. Basten, T., Bosnacki, D.: Enhancing partial-order reduction via process clustering. In: ASE,

pp. 245–253 (2001)
7. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry In Temporal Logic Model Checking.

In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462. Springer, Heidelberg
(1993)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(2000)

9. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and “writers”.
Commun. ACM 14(10), 667–668 (1971)

10. Dong, J.S., Liu, Y., Sun, J., Zhang, X.: Verification of computation orchestration via timed
automata. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 226–245.
Springer, Heidelberg (2006)

11. Emerson, E.A., Sistla, A.P.: Utilizing Symmetry when Model-Checking under Fairness As-
sumptions: An Automata-Theoretic Approach. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 19(4), 617–638 (1997)

http://www.comp.nus.edu.sg/~pat/research/
 https://www.ideals.illinois.edu/handle/2142/15414

114 T.H. Tan et al.

12. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

13. Håkansson, J., Pettersson, P.: Partial order reduction for verification of real-time components.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 211–226.
Springer, Heidelberg (2007)

14. Hoare, C.A.R.: Communicating Sequential Processes. International Series on Computer Sci-
ence. Prentice-Hall, Englewood Cliffs (1985)

15. Holzmann, G.J.: On-the-fly model checking. ACM Comput. Surv. 28(4es), 120 (1996)
16. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Version 2.0.

(April 2007), http://www.oasis-open.org/specs/#wsbpelv2.0
17. Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In: Lee, D.,

Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 1–25. Springer,
Heidelberg (2009)

18. Kitchin, D., Quark, A., Misra, J.: Quicksort: Combining concurrency, recursion, and mutable
data structures. Technical report, The University of Texas at Austin, Department of Computer
Sciences

19. Krimm, J.-P., Mounier, L.: Compositional state space generation with partial order reductions
for asynchronous communicating systems. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785,
pp. 266–282. Springer, Heidelberg (2000)

20. Lang, F., Mateescu, R.: Partial order reductions using compositional confluence detection.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 157–172. Springer,
Heidelberg (2009)

21. Liu, Y.: Model Checking Concurrent and Real-time Systems: the PAT Approach. PhD thesis,
National University of Singapore (2010)

22. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)

23. Peled, D.: Ten years of partial order reduction. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

24. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J.
ACM 32(3), 733–749 (1985)

25. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

26. Sun, J., Liu, Y., Roychoudhury, A., Liu, S., Dong, J.S.: Fair model checking with process
counter abstraction. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp.
123–139. Springer, Heidelberg (2009)

27. Tan, T.H., Liu, Y., Sun, J., Dong, J.S.: Compositional Partial Order Reduction for Model
Checking Concurrent Systems. Technical report, National Univ. of Singapore (April 2011),
http://www.comp.nus.edu.sg/pat/fm/cpor/CPORTR.pdf

28. Valmari, A.: The state explosion problem. In: Petri Nets, pp. 429–528 (1996)
29. Wehrman, I., Kitchin, D., Cook, W., Misra, J.: A timed semantics of orc. Theoretical Com-

puter Science 402(2-3), 234–248 (2008)

http://www.oasis-open.org/specs/#wsbpelv2.0
 http://www.comp.nus.edu.sg/pat/fm/cpor/CPORTR.pdf

	Verification of orchestration systems using compositional partial order reduction
	Citation

	Verification of Orchestration Systems Using Compositional Partial Order Reduction
	Introduction
	Orchestration Language Orc
	Syntax
	Semantics
	Hierarchical Concurrent Processes (HCP)

	Compositional Partial Order Reduction (CPOR)
	Classic POR and CPOR
	CPOR Algorithm
	Soundness

	Evaluation
	Related Work
	Conclusion
	References

