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Abstract. Refinement checking plays an important role in system verification. It
establishes properties of an implementation by showing a refinement relationship
between the implementation and a specification. Recently, it has been shown that
anti-chain based approaches increase the efficiency of trace refinement check-
ing significantly. In this work, we study the problem of adopting anti-chain for
stable failures refinement checking, failures-divergence refinement checking and
probabilistic refine checking (i.e., a probabilistic implementation against a non-
probabilistic specification). We show that the first two problems can be signifi-
cantly improved, because the state space of the product model may be reduced
dramatically. Though applying anti-chain for probabilistic refinement checking is
more complicated, we manage to show improvements in some cases. We have in-
tegrated these techniques into the PAT model checking framework. Experiments
are conducted to demonstrate the efficiency of our approach.

1 Introduction

Model checking has established itself as an effective technique for system verification.
It works by exhaustively searching through the state space in order to show that an im-
plementation model, in certain modeling language, satisfies a property. Properties are
often specified using temporal logic formulae such as CTL or LTL, in other words, a
language different from the modeling language. An alternative approach is called re-
finement checking. Different from temporal-logic based model checking, refinement
checking shows a refinement relationship between two models in the same language,
one modeling an implementation and one modeling a specification. If the specifica-
tion satisfies certain property and the refinement relationship is strong enough to pre-
serve the property, we imply that the property is satisfied by the implementation. A
variety of refinement relationships have been defined, which preserve different classes
of properties. For instance, safety can be verified by showing a trace refinement rela-
tionship. Combination of safety and liveness is verified by showing a stable failures
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refinement relationship if the system is divergence-free or otherwise by showing a
failures-divergence refinement relationship. The readers are refer to [12] for a discus-
sion on the expressiveness of different refinement.

Refinement checking has been traditionally used to verify CSP [11]. The success of
the FDR refinement checker [1], which supports fully automatic checking of the above-
mentioned refinement relationships, evidences the usefulness of refinement checking.
Recently, Sun et al. extended the idea of automated trace refinement checking to prob-
abilistic systems [14], which we refer to as probabilistic refinement checking in this
work1. The idea is that, given a probabilistic implementation model (which has the se-
mantics of a Markov Decision Process) and a non-probabilistic specification model,
probabilistic refinement checking calculates the probability of the implementation ex-
hibiting traces of the specification model. This is useful as, for instance, if the spec-
ification model captures desired system behaviors, the result is the probability of the
implementation behaving ‘well’.

Due to the non-determinism in the specification, refinement checking often relies
on the classic subset construction approach. The subset construction is used to build a
deterministic finite-state automaton (DFA) from the specification, which is in general
a non-deterministic finite-state automaton (NFA). Next, refinement checking works by
computing the synchronous product of the implementation and transforming the prob-
lem into a reachability analysis problem in the product. In the worst case, the resultant
DFA could have exponentially more states than the original NFA. As a result, refine-
ment checking suffers from state space explosion. Recently, Wulf et al. proposed an
approach (for solving the language universality problem and trace refinement checking)
named anti-chain [16]. It has been shown that this approach outperforms the previous
ones significantly. The key point of anti-chain based approaches is that the complete
subset construction and computing the complete state space of the product are avoided.
Given that the existing approaches for checking other refinement relationships are all
based on the subset construction, it is only naturally to investigate whether anti-chain
can be used for better performance as it did for trace refinement checking.

In this work, we study three kinds of refinement checking, in particular, stable fail-
ures refinement, failures-divergence refinement and probabilistic refinement checking.
The problem is non-trivial as we need to formally prove that anti-chain works with sta-
ble failures semantics and failures-divergence semantics. Furthermore, it is complicated
for probabilistic refinement checking as omitting parts of the product would affect the
probability. We make the following technical contribution. Firstly, we show that anti-
chain can be readily used to improve stable failures refinement and failures-divergence
refinement. Secondly, we show that anti-chain can be used to improve probabilistic re-
finement checking in some particular cases, using an iterative probability calculation
method. Lastly, we implement the technique in the PAT model checker [13] and show
improvement over existing approaches (significant for stable failures refinement and
failures-divergence refinement).

Related Works. This work is related to research on anti-chain based model checking.
Wulf et al. proposed the anti-chain based approach for checking the language univer-
sality and trace refinement of NFA [16]. It has been shown that the anti-chain based

1 Probabilistic refinement has been used by different researchers to mean different things.
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approach may outperform the standard ones by several orders of magnitude. Their fol-
lowing works show that significant improvements can also be brought to the model
checking problem of LTL by using anti-chain based algorithms [8, 17]. Later Abdulla
et al. improved the approach through exploiting a simulation relation on the states of
NFA [2]. Remotely related are anti-chain based methods for solving other problems,
e.g., the LTL realizability and synthesis problem [7, 10] and the universality and lan-
guage inclusion problem of tree automata [2, 6]. In our work, we focus on stable failures
refinement, failures-divergence refinement and probabilistic refinement checking.

Organization. Section 2 reviews trace refinement and anti-chain based trace refinement
checking. Section 3 presents algorithms for anti-chain based stable failures refinement
checking and failures-divergence refinement checking. Section 4 shows that anti-chain
can be used to improve probabilistic refinement checking (with a non-probabilistic
specification model). Lastly, Section 5 concludes the paper.

2 Background

In this section, we review previous work on anti-chain based trace refinement checking.

2.1 Trace Refinement

Let Σ be a set of event names; τ denote an invisible event; and Στ denote Σ ∪ {τ}.

Definition 1 (LTS). A labeled transition system (LTS) is a tuple L = (S , init ,Act ,T )
where S is a set of states; init ∈ S is an initial state; Act ⊆ Στ is a set of events and
T : S ×Act × S is a labeled transition relation.

For simplicity, (s , e, s ′) ∈ T is sometimes written as s
e→ s ′. An LTS is deterministic

if and only if for all s ∈ S and s ∈ Στ , if s
e→ u and s

e→ v , then u = v . We
write enable(s) to denote the set {e | ∃ s ′. s e→ s ′}. We write u � v if there exists
a finite sequence of states 〈s0, s1, · · · , sn〉 such that si

τ→ si+1 for all i and u = s0
and v = sn . We write u

e� v if u � u ′ and u ′ e→ v ′ and v ′ � v . A finite sequence
of events 〈e0, e1, · · · , en〉 is a trace of L if and only if there exists a sequence of state
〈s0, s1, · · · , sn〉 such that si

ei� si+1 for all i and s0 = init . The traces of L are denoted
as traces(L).

Definition 2 (LTS Synchronous Product). Let Li = (Si , initi ,Acti ,Ti) where i ∈
{1, 2} be two LTSs such that τ �∈ Act2. The synchronous product of L1 and L2, writ-
ten as L1 × L2, is an LTS L = (S , init ,Act ,T ) such that S = S1 × S2; init =
(init1, init2); Act = Act1 ∪ Act2; and T is the minimum labeled transition relation
satisfying the following conditions.

– If (s1, τ, s ′1) ∈ T1, ((s1, s2), τ, (s ′1, s2)) ∈ T for all s2 ∈ S2;
– If (s1, e, s ′1) ∈ T1 and (s2, e, s

′
2) ∈ T2 and e �∈ τ , ((s1, s2), e, (s ′1, s ′2)) ∈ T .

Notice that all events except τ are to be synchronized by the two LTSs.



More Anti-chain Based Refinement Checking 367

Definition 3 (Trace Refinement). Let Li where i ∈ {1, 2} be two LTSs. L1 trace-
refines L2 if and only if traces(L1) ⊆ traces(L2).

The standard approach for trace refinement is based on the subset construction. That is,
the specification LTS2 is transformed into trace-equivalent deterministic LTS without
τ -transitions through the process of determinization. Let L = (S , init ,Act ,T ) be an
LTS. The determinized LTS of L is det(L) = (S ′, init ′,Act ′,T ′) where S ′ ⊆ 2S is a
set of sets of states, init ′ = {s | init � s}; Act ′ = Act \ {τ} and T ′ is a transition
relation satisfying the following condition: (N , e,N ′) ∈ T ′ if and only if N ′ = {s ′ |
∃ s : N . s

e� s ′}. Notice that states which can be reached via the same trace are
grouped together in det(L).

Given an implementation L1 and a specification L2, the standard trace refinement
checking is to construct (often on-the-fly) the product L1 × det(L2) and then try to
construct a state of the product (s1, s2) (where s1 is a state of L1 and s2 is a set of states
in L2) such that s2 is an empty set. Such a ‘co-witness’ state is called a TR-witness
state. In the worst case, this algorithm has a complexity exponential in the number of
states of L2.

2.2 Trace Refinement Checking with Anti-chain

It has been shown that trace refinement checking based on anti-chain offers significantly
better performance [16]. Given two LTSs L1 and L2, the anti-chain method explores a
‘simulation’ relation in L1 × det(L2). Given any two states (s1, s2) and (s ′1, s

′
2) of

L1 × det(L2), let (s ′1, s ′2) ≤ (s1, s2) denote s1 = s ′1 and s2 ⊆ s ′2.

Proposition 1. If (s ′1, s
′
2) ≤ (s1, s2) and (s1, s2)

e→ (u, v), then there exists (u ′, v ′)
such that (s ′1, s

′
2)

e→ (u ′, v ′) and u ′ = u and v ⊆ v ′. �

By the above proposition, it can be readily shown that a TR-witness state is reachable
from (s ′1, s ′2) implies that a TR-witness state must be reachable from (s1, s2). As a
result, if (s1, s2) has been explored, we can skip (s ′1, s

′
2).

Formally, an anti-chain is a set A of sets such that x �⊆ y and y �⊆ x for all x ∈ A
and y ∈ A, i.e., any pair of sets in A are incomparable. An anti-chain supports two
operations. One is to check whether it contains a subset of a given set. let x be the given
set, we denote x 	 A if and only if there exists y ∈ A such that y ⊆ x . The other is to
add a given set x in A. A 
 x is defined as {y | y ∈ A ∧ x �⊆ y} ∪ {x}, i.e., A 
 x
contains x and all sets in A which is not a superset of x . Obviously, an empty set is an
anti-chain by definition.

Algorithm 1 shows the anti-chain based algorithm. In an abuse of notation, we
write (s ,X ) 	 A to denote that the set ({s} ∪ X ) 	 A; and A 
 (s ,X ) to denote
A
 ({s}∪X ). The algorithm works as follows. After initialization, the algorithm pops
one state (impl , spec) fromworking and adds it to the set antichain , and then generates
all successors of the state and adds them to working unless (impl ′, spec′) 	 antichain
is true, till the stack working is empty or a TR-witness state is found. We remark that
antichain keeps to be an anti-chain during this algorithm, because line 5 and line
13 guarantee there are no subsets or supersets of the new added state in the updated
antichain . Soundness of the algorithm can be referred to in [2] [16].
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Algorithm 1 Trace Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 � s});
2: let antichain := ∅;
3: while working 
= ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain 
 (impl , spec);
6: for all (impl , e, impl ′) ∈ T1 do
7: if e = τ then
8: spec′ := spec;
9: else

10: spec′ := {s ′ | ∃ s ∈ spec. s
e� s ′};

11: if spec′ = ∅ then
12: return false;
13: if (impl ′, spec′) 	 antichain is not true then
14: push (impl ′, spec′) into working ;
15: return true;

s1’s1’

s2’s2’ s3’s3’

s4’s4’

s5’s5’

s6’s6’

s7’s7’

s8’s8’

s9’s9’

s10’s10’

[get.0.1] [get.1.0]

[get.0.1]
[get.1.1]

eat.1

[put.1.0]
[put.1.1]

[get.1.0]
[get.0.0]

eat.0

[put.0.1]
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eeat.1eat.1

(a) LTS L1(a)  LTS L1
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s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}s1, {s1’, s2’, s3’, s4’, s5’, s8’, s9’, s10’}

s1, {s1’, s2’, s3’, s4’, s5’, s6’, s7’, s8’}s1, {s1’, s2’, s3’, s4’, s5’, s6’, s7’, s8’}

Anti-ChainAnti-Chain
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eat.0eat.0

eat.0eat.0

eat.11eat.1

eeaat.11eat.1

eat.1eat.1 eat.0eat.0

Fig. 1. Trace Refinement Checking Algorithm with Anti-Chain

Theorem 1. [16] Algorithm 1 returns true if and only if traces(L1) ⊆ traces(L2). �

Example 1. Figure 1 shows a simple example of dining philosopher [11] to demon-
strate how Algorithm 1 works. The problem is summarized as N philosophers sit-
ting around a round table with a single fork between each pair, and each philoso-
pher requiring both neighboring forks to eat. The LTS L2 in Figure 1 (b) shows the
complete state graph of the system with two philosophers. The invisible events is de-
noted as [event ], i.e., [get .0.1] means that the hidden event is philosopher 0 getting
the right fork which is represented as 1. Note that checking traces(L1) ⊆ traces(L2)
is to confirm whether every philosopher can eat. From Figure 1 (c) we can see that
the search does not continue from the state (s1, {s ′1, s ′2, s ′3, s ′4, s ′5, s ′8, s ′9, s ′10}) because
{s ′1, s ′2, s ′3, s ′4, s ′5, s ′8} ⊆ {s ′1, s ′2, s ′3, s ′4, s ′5, s ′8, s ′9, s ′10}. In this case, Algorithm 1 gener-
ates 3 states which are labeled with Anti–Chain , while the classical algorithm based
on subset construction generates 7 states. �
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Algorithm 2 Stable Failures Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 � s});
2: let antichain := ∅;
3: while working 
= ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain 
 (impl , spec);
6: if refusals(impl) 
⊆ refusals(spec) then
7: return false;
8: for all (impl , e, impl ′) ∈ T1 do
9: if e = τ then

10: spec′ := spec;
11: else
12: spec′ := {s ′ | ∃ s ∈ spec. s

e� s ′};
13: if spec′ = ∅ then
14: return false;
15: if (impl ′, spec′) 	 antichain is not true then
16: push (impl ′, spec′) into working ;
17: return true;

3 Failures/Divergence Refinement Checking with Anti-chain

In this section, we demonstrate that anti-chain can be used to improve stable failures
refinement checking and failures-divergence refinement checking.

3.1 Stable Failures Refinement Checking

Let L = (S , init ,Act ,T ) be an LTS. Given a state s ∈ S , s is stable if τ �∈ enable(s).
Given a stable state s , the refusals of s , written as refusals(s), is defined as {X |
∃ s ′. s � s ′ ∧ τ �∈ enable(s ′) ∧ X ⊆ Σ \ enable(s ′)}. The failures of L, written as

failures(L), is defined as {(tr ,X ) : Σ∗ × 2Σ | ∃ s . init tr� s ∧ X ∈ refusals(s)}
where init

tr� s denotes that there exists a run 〈s0, e0, s1, e1, · · · , en , sn+1〉 such that
s0 = init and sn+1 = s and tr = 〈e0, e1, · · · , en〉.

Definition 4 (Stable Failures Refinement). Let Li where i ∈ {1, 2} be two LTSs. L1
refines L2 in stable failures semantics if and only if failures(L1) ⊆ failures(L2).

The existing stable failures refinement checking algorithm [1] works by searching for
a state (x , y) of L1 × det(L2) such that y = ∅ or refusals(x ) �⊆ refusals(y). Such a
state is called a SFR-witness state. In the following, we extend Algorithm 1 for stable
failures refinement checking. Given a set states x , we write refusals(x ) to denote {r |
∃ s ∈ x . r ∈ refusals(s)}. The algorithm is shown in Algorithm 2.

Lemma 1. For every state (s1, s2) of L1 × det(L2), for all (s1, s ′2) in the product, if
s ′2 ⊆ s2, then a SFR-witness state is reachable from (s1, s2) implies a SFR-witness state
is reachable from (s1, s

′
2).
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Fig. 2. Stable Failures Refinement Checking Algorithm with Anti-Chain

Proof: By induction. The base case is that (s1, s2) is a SFR-witness state, then s2 =
∅ or refusals(s1) �⊆ refusals(s2). Because s ′2 ⊆ s2 by assumption, refusals(s ′2) ⊆
refusals(s2). Then we have s ′2 = ∅, or refusals(s1) �⊆ refusals(s ′2). Thus, (s1, s ′2) is a
SFR-witness state. Next, we prove the induction step. Assume that (s1, s2) satisfies the
condition, i.e., for any state (s1, s

′
2) such that s ′2 ⊆ s2, a SFR-witness state is reachable

from (s1, s2) implies a SFR-witness state is reachable from (s1, s
′
2). Let (x , y) be a state

of the product such that (x , y)
e→ (s1, s2). For all (x , y ′) such that y ′ ⊆ y , we can get

(x , y ′) e→ (s1, s
′
2) such that s ′2 ⊆ s2. Therefore, the induction step holds by induction

hypothesis. Thus, the lemma is true. �

Theorem 2. Algorithm 2 returns true if and only if failures(L1) ⊆ failures(L2).

Proof For a state S of L1 × det(L2), define Dist(S ) ∈ N ∪ {∞} as the length of
the shortest SFR-witness trace from S (if a SFR-witness state is not reachable from
S , Dist(S ) = ∞). For a set of states States , if States = ∅, Dist(States) = ∞,
otherwise, Dist(States) = minS∈States Dist(S ). The predicate SFR(States) is true
if and only if all the states in States are not SFR-witness states. Then the correctness of
Algorithm 2 can be proved using the two invariants below. The invariants can be proved
in a very similar way to [2].

1. ¬SFR(antichain ∪ working)⇒ ¬SFR({(i , {s | init2 � s}) | i ∈ init1}).
2. ¬SFR({(i , {s | init2 � s}) | i ∈ init1})⇒ Dist(antichain) > Dist(working).

Because the number of state is finite and all states are only visited once, Algorithm 2
eventually terminates. Algorithm 2 returns false only if the state spec′ is an empty set
on line 13, or (impl , spec) satisfies the condition refusals(impl) � refusals(spec) on
line 6. The former case has been proved in Algorithm 1. In the latter case, (impl , spec)
is a SFR-witness state, and hence SFR(antichain ∪ working) is false. By invariant 1,
L1 cannot refine L2 in stable failures semantics. Algorithm 2 returns true only when
working is empty, which implies that Dist(antichain) > Dist(working) is not true.
By invariant 2, L1 refines L2 in stable failures semantics. �

Example 2. If Algorithm 2 is applied to the example presented in Figure 1, the re-
duction remains the same as for trace refinement checking (from 7 states to 3 states).
We show another example with some counterexamples, as shown in Figure 2. Notice
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that the refusal set of s2 is {b}, and s1, s
′
1, s

′
2 do not refuse any event. Then the two

states with bold circles are SFR-witness states. Since {s ′1} ⊆ {s ′1, s ′2}, the search does
not continue from the state (s1, {s ′1, s ′2}). We can see that a SFR-witness state which
is reachable from (s1, {s ′1, s ′2}) is also reachable from (s1, {s ′1}) after the pruning of
states. In this case, Algorithm 2 generates 3 states which are labelled with Anti–Chain ,
while the classical algorithm may generate 4 states before finding a SFR-witness state.
Moreover, Algorithm 2 may find a shorter witness trace than the classical algorithm. �

3.2 Failures-Divergence Refinement Checking

In the following, we show how to adopt anti-chain for failures-divergence refinement
checking. Let L = (S , init ,Act ,T ) be an LTS. Given a state s , s diverges if and only
if s can performance an infinite number of τ -transitions. A trace tr is divergent, written
as div(tr), if and only if there exists a prefix pre of tr or tr itself such that init

pre� s
and s diverges. We write divergences(L) to be {tr | div(tr)}.
Definition 5 (Failures-Divergence Refinement). Let Li where i ∈ {1, 2} be two
LTSs. L1 refines L2 in failures-divergence semantics if and only if divergences(L1) ⊆
divergences(L2) and failures(L1) ⊆ failures(L2).
In the following, we extend Algorithm 2 for failures-divergence refinement checking.
The algorithm is shown in Algorithm 3. Given a set of state x , we say that x diverges
if there exists s ∈ x such that s diverges. Like in the existing failures-divergence re-
finement checking algorithm [1], the idea is to search for a FDR-witness state (x , y) of
L1 × det(L2) such that y = ∅ or refusals(x ) �⊆ refusals(y) or x diverges but not y .

Lemma 2. For every state (s1, s2) of L1 × det(L2), for all (s1, s ′2) in the product, if
s ′2 ⊆ s2, then a FDR-witness state is reachable from (s1, s2) implies a FDR-witness
state is reachable from (s1, s

′
2).

Proof: By induction. The base case is that (s1, s2) is a FDR-witness state, then s2 = ∅
or refusals(s1) �⊆ refusals(s2) or s1 diverges and s2 does not. Because s ′2 ⊆ s2 by
assumption, refusals(s ′2) ⊆ refusals(s2) and if s ′2 diverges, so does s2. Thus, (s1, s ′2) is
a SFR-witness state since s2 = ∅ implies s ′2 = ∅; refusals(s1) �⊆ refusals(s2) implies
refusals(s1) �⊆ refusals(s ′2); and s2 not divergent implies that s ′2 does not diverge
either. Next, we prove the induction step. Assume that (s1, s2) satisfies the condition.
Let (x , y) be a state of the product such that (x , y)

e→ (s1, s2). For all (x , y ′) such that
y ′ ⊆ y , we can get (x , y ′) e→ (s1, s

′
2) such that s ′2 ⊆ s2. Therefore, the induction step

holds by induction hypothesis. Thus, the lemma is true. �

Theorem 3. Algorithm 3 returns true if and only if divergences(L1) ⊆ divergences(L2)
and failures(L1) ⊆ failures(L2).
Proof Define Dist(S ) ∈ N ∪{∞} as the length of the shortest FDR-witness trace from
a state S of L1 × det(L2)(if a FDR-witness state is not reachable from S , Dist(S ) =
∞). Given a set of states States , if States = ∅, Dist(States) = ∞, otherwise,
Dist(States) = minS∈States Dist(S ). The predicate FDR(States) is true if and only
if all the states in States are not FDR-witness states. The correctness of Algorithm 3
can be proved similarly as for Algorithm 2, using the following two invariants.
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Algorithm 3 Failures-Divergence Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 � s});
2: let antichain := ∅;
3: while working 
= ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain 
 (impl , spec);
6: if impl diverges then
7: if spec does not diverge then
8: return false;
9: else

10: if refusals(impl) 
⊆ refusals(spec) then
11: return false;
12: for all (impl , e, impl ′) ∈ T1 do
13: if e = τ then
14: spec′ := spec;
15: else
16: spec′ := {s ′ | ∃ s ∈ spec. s

e� s ′};
17: if spec′ = ∅ then
18: return false;
19: if (impl ′, spec′) 	 antichain is not true then
20: push (impl ′, spec′) into working ;
21: return true;

1. ¬FDR(antichain ∪ working)⇒ ¬FDR({(i , {s | init2 � s}) | i ∈ init1}).
2. ¬FDR({(i , {s | init2 � s}) | i ∈ init1})⇒ Dist(antichain) > Dist(working).

�

Example 3. We use the example shown in Figure 3 to demonstrate how algorithm 3
works. The state s2 in LTS L1 has a self-loop labeled with τ . The two states with bold
circles are FDR-witness states now. Since {s ′1} ⊆ {s ′1, s ′2}, the search does not continue
from the state (s1, {s ′1, s ′2}). We can see that a FDR-witness state which is reachable
from (s1, {s ′1, s ′2}) is also reachable from (s1, {s ′1}) after pruning the states. �

3.3 Implementation and Evaluation

The proposed algorithms have been adopted in the Process Analysis Toolkit (PAT) [13].
PAT is designed for systematic validation of distributed/concurrent systems using state-
of-the-art model checking techniques. In the following, we evaluate the performance
of the algorithms using a range of real-life parameterized systems. All the systems are
embedded in the PAT package and available online. The data is obtained with Intel(R)
Core(TM) i7-2640M CPU at 2.80GHz and 8GB RAM.

The pairs of LTSs (one as implementation and one as specification) are generated
from different systems or same systems with different parameters. The systems include
a multi-valued register simulation system with one reader or multiple readers [4], an
implementation of concurrent stack with or without linearization point [15], a mail-
box system [3], a system of scalable nonzero indicator [9] and the dining philosopher
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Fig. 3. Failures-Divergence Refinement Checking Algorithm with Anti-Chain
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Fig. 4. Refinement Checking Results of Concurrent Stack Implementation

problem [11]. In total about 300 pairs of LTS were generated to compare the anti-chain
algorithms and the classical ones for all three kinds of refinement checking.

Figure 4 shows the statistics of a typical example, i.e., the concurrent stack, from
which we can see significant performance improvement. In the figure, the horizontal
axis is the sum of the sizes of the two LTSs for refinement checking, and the verti-
cal axis is the execution time (in seconds) of the corresponding algorithm. Each point
shows the checking time for a pair of LTSs. We can see that for all three kinds of refine-
ment checking, anti-chain based algorithms offer significantly better performance. The
complete experimental results, with the refinement checking assertions always being
valid, are summarized in Table 1. Notice that if the pair of LTSs are equivalent in terms
of traces or failures or failures-divergence, we can perform the refinement checking in
both directions. This is shown in the table using two columns⊆ and ⊇. A few cases are
marked as ‘––’ as the result is false, which are discussed later. Furthermore, ‘unknown’
means either out of memory or running for more than 30 minutes. It can be observed
that the speedup differs for different systems. In most cases, the anti-chain approach
has a much better performance than the classical one, e.g., in the concurrent stack lin-
earization point implementation, it is 30.28 times faster for stable failures refinement
checking and 12.16 times faster for failures-divergence refinement checking. Moreover,
the larger the system is, the larger the speedup is. In some cases, anti-chain can not re-
duce the number of states at all simply because the specifications are deterministic. In
some cases (e.g., SNZI), although anti-chain reduces the number of states, the bene-
fit is not significant enough to overcome the computational overhead of the anti-chain
operations defined in section 2.2.
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Table 1. Testing on Refinement Checking Assertions which are valid

System Size

Trace Stable Failures Failures-Divergence
(Speedup) (Speedup) (Speedup)

⊆ ⊇ ⊆ ⊇ ⊆ ⊇
Multi-valued Register 0-10000 2.21 1.42 2.32 1.63 3.48 1.46

Simulation with 10000-100000 4.54 2.14 4.45 2.09 6.61 1.73
1 Reader and 1 Writer 100000-700000 6.74 2.88 6.64 2.92 unknown 2.59
Multi-valued Register 0-10000 2.17 1.49 1.99 1.45 3.33 1.43

Simulation with 10000-100000 3.32 2.05 3.32 2.11 3.55 1.70
Multiple Readers 100000-700000 6.45 2.68 6.14 2.72 unknown 3.16

Concurrent 0-10000 1.48 1.85 1.63 1.72 2.26 1.60
Stack 10000-100000 1.70 3.72 1.71 3.71 2.71 3.22

Implementation 100000-200000 1.62 5.90 1.56 6.44 2.85 4.96
Concurrent Stack 0-10000 0.75 5.33 –– 5.99 –– 2.70

Linearization Point 10000-30000 0.84 13.94 –– 14.11 –– 5.00
Implementation 30000-60000 0.91 30.37 –– 30.28 –– 12.16

Mailbox 0-700000 1.13 1.54 1.11 1.61 1.39 1.01
SNZI 0-50000 0.89 2.45 0.93 2.42 1.03 1.14

Dining Philosopher 0-50000 0.99 1.14 –– 1.02 –– 1.17

Table 2. Testing on Refinement Checking Assertions which are invalid

System Size
Trace Trace Stable Failures Stable Failures Failures-Divergence Failures-Divergence

With AC(s) W/o AC(s) With AC(s) W/o AC(s) With AC(s) W/o AC(s)
Multi-valued 3175 0.10 0.42 0.09 0.43 0.44 2.88

Register 24655 1.52 12.12 1.71 12.02 9.78 146.95
Simulation with 117288 3.92 136.37 3.57 138.50 48.52 985.24
Multiple Readers 194455 22.11 294.71 21.51 299.21 180.91 unknown

In presence of counterexamples, anti-chain based algorithms may find the counterex-
ample more quickly. The verification results with the register example (with multiple
readers), shown in Table 2 (‘Anti-Chain’ and ‘Without’ are denoted as AC and W/o
for short), evidences that anti-chain finds the counterexample more quickly in all three
kinds of refinement checking. Nonetheless, we remark that because the algorithms are
on-the-fly, whether the counterexample is found earlier depends on the searching order
and sometimes anti-chain based algorithms may be slower if a ‘wrong’ order is taken.

4 Probabilistic Refinement Checking with Anti-chain

In this section, we show that anti-chain can be used to improve a particular kind of
probabilistic refinement checking, i.e., the implementation is given as an MDP and the
specification is given as an NFA.

4.1 MDP and Probabilistic Model Checking

Given a set of states S , a distribution is a function μ : S → [0, 1] such thatΣs∈S μ(s) =
1. Let Distr(S ) be the set of all distributions over S . A Markov Chain is a tupleM =
(S , init ,Act ,Pr) where S is a countable set of states; init ∈ S is an initial state; Act
is a set of events; and Pr : S × Act × S → [0, 1] is a labeled transition probability
function such that for all state s ∈ S , ∃ e ∈ Act , Σs′∈SPr(s , e, s

′) = 1, and ∀ e ′ �=
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e, Σs′∈SPr(s , e, s
′) = 0. Notice that Markov Chains are deterministic as there is only

one event (and one distribution) at each state.
A sequence of alternating states and events π = 〈s0, e0, s1, e1, · · · , en , sn+1〉 is a

path of M if Pr(si , ei , si+1) > 0 for all i . The probability of executing π from s0,
written as Pr(M, π), is Pr(s0, e0, s1) × Pr(s1, e1, s2)× · · · × Pr(sn , en , sn+1). It is
often also interesting to find out the probability of reaching a certain set of states (e.g.,
what is the probability of reaching the state of system failure?). Given a set of target
states G , the probability of reaching any state in G from a starting state s0, written as
Pr(M, s0,G), is the accumulated probability of all paths from s0 to any state in G ,
which can be calculated systematically [5]. Given a path π, we define trace(π) to be
the sequence of visible events in π. We write Pr(M, s0, tr) to denote the probability of
exhibiting a trace tr from state s0, which is the accumulated probability of all paths π
from s0 such that trace(π) = tr . Given a set of traces Tr , the probability ofM exhibit-
ing any trace in Tr from state s0 is the accumulated probabilityΣtr∈TrPr(M, s0, tr).

Different from Markov Chains, an MDP can express both probabilistic choices and
non-determinism. An MDP is a tuple D = (S , init ,Act ,Pr) where S is a set of
system states; init ∈ S is the initial system configuration2; Act is a set of actions;
Pr : (S × Act)→ Distr(S ) is a transition probability function such that for all states
s ∈ S and a ∈ Act : Σs′∈SPr(s , a, s

′) ∈ {0, 1}. Notice that there could be multi-
ple events at any state. A transition of the system is written as s

e→ μ where μ is a
distribution. A path of M is a sequence of alternating states, events and distributions
π = 〈s0, e0, μ0, s1, e1, μ1, · · ·〉 such that s0 = init and si

ei→ μi and μi(si+1) > 0 for
all i . Given a path π, we define trace(π) to be the sequence of visible events in π.

Intuitively speaking, given a system configuration, firstly an event and a distribution
is selected non-deterministically by the scheduler, and then one of successor states is
reached according to the probability distribution. A scheduler is a function deciding
which event and distribution to choose based on the execution history. With a scheduler
δ, we effectively obtain a Markov Chain fromD, written asDδ. Note that with different
scheduling, the probability of reaching a state or exhibiting a trace may be different.
The measurement of interest is thus the maximum and minimum probability. Given
a set of target states G and an MDP D, the maximum probability of reaching any
state in G from state s0 is defined as Pmax (D, s0,G) = supδ Pr(Dδ, s0,G). Note that
the supremum ranges over all, potentially infinitely many, schedulers. Accordingly, the
minimum is written as Pmin(D, s0,G). Similarly, we define the maximum probability
of exhibiting a trace in a set Tr by D from s0.

Pmax (D, s0,Tr) = supδ(Σtr∈TrPr(Dδ, s0, tr))

Accordingly, the minimum is written as Pmin(Dδ, s0,Tr).

Example 4. The following shows a simple example MDP.

2 This is a simplified definition. In general, there can be an initial distribution.
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s0start s1

s2

s3
α, 1

α, 0.5

α, 0.5

β, 1

where s0 is the initial state and s2 is a target state. For simplicity, we omit the self-
loop of s2 and s3. s1 has two distributions, following two actions α and β. If s1 non-
deterministically chooses α, then it has equal probability to transfer to s2 or stay in s1;
and if β is chosen, it will transfer to s3 with probability 1. �

Definition 6 (Refinement Probability). Let D = (S , init ,Act ,Pr) be an MDP; L be
an LTS. The maximum probability of D trace-refining L is Pmax (D, init , traces(L)).
The minimum is Pmin(D, init , traces(L)).

Intuitively, the probability ofD refines L is the probability ofD exhibiting a trace of L.
As we mention earlier, the probability may vary due to different scheduling.

Definition 7 (MDP and LTS Synchronous Product). LetD = (Sd , initd ,Actd ,Prd)
be an MDP; L = (Sl , initl ,Actl ,T ) be an LTS such that τ �∈ Actl . The synchronous
product of D and L, written as D × L, is an MDP (S , init ,Act ,Pr) such that S =
Sd × Sl ; init = (initd , initl ); Act = Actd ∪ Actl ; and Pr is defined as follows.

– If (s1, τ, μ) ∈ Prd , then ((s1, s2), τ, μ
′
) ∈ Pr for all s2 ∈ Sl such that for all

s ′1 ∈ Sd , μ′
((s ′1, s2)) = μ(s ′1);

– If (s1, e, μ) ∈ Prd and (s2, e, s
′
2) ∈ T , then ((s1, s2), e, μ

′
) ∈ Pr such that for all

s ′1 ∈ Sd , μ′
((s ′1, s

′
2)) = μ(s ′1).

A state (s1, s2) of the productD×L is a TR-witness state if and only if s2 = ∅. In [14],
we show that the refinement probability can be calculated systematically by (1) building
the deterministic LTS det(L); (2) computing the synchronous product ofD and det(L);
(3) calculating the maximum/minimum probability of reaching any TR-witness state.

Theorem 4. Let D = (Sd , initd ,Actd ,Prd ) be an MDP; L = (Sl , initl ,Actl ,T ). Let
G be the set of TR-witness states of D × det(L).

– Pmax (D, initd , traces(L)) = Pmax (D × det(L), (initd , initl ),G)
– Pmin(D, initd , traces(L)) = Pmin(D × det(L), (initd , initl ),G) �

Based on the above theorem, the probabilistic refinement checking problem is reduced
to a probabilistic reachability problem, which can be solved by two standard methods.
One is by solving a linear program. That is, we firstly associate a variable xs to each
state s in P to represent the probability of reaching any target state from s ; then we
construct a linear program which constraints the value of every xs using a set of linear
inequalities, based on the probability transition function; and lastly, we solve the lin-
ear program to get the maximum/minimum value of each xs . Notice that the solution
of state (initd , initl ) is the refinement probability. The other is to iteratively approxi-
mate the probability through graph traversing. Notice that for systems having large state
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space, it is impractical to store the entire linear program and solve it directly, therefore
the iterative calculation approach is more widely used in probabilistic verification. As a
result, in this paper we just focus on this approach.

Example 5. In the following, we show how the iterative calculation method works using
the simple example shown in Example 4. That is, the maximal probability from initial
state s0 to accepting state s2 is calculated step by step. Assume pk

i is the maximal
probability of si after the k -th iteration. Starting from the target state s2, in k -th iteration
we update the probability of states which could reach s2 in exact k steps. Obviously,
p0
0 = p0

1 = 0. As pk
2 = 1 and pk

3 = 0 for any k , k is ignored in these two states. In the
1st iteration, only p1 can be updated, and p1

1 = max{0.5 × p0
1 + 0.5 × p0

2 , 1 × p0
3} =

max{0.5, 0} = 0.5.; in the 2nd iteration, both p0 and p1 can be updated. It is trivial to
show p2

0 = p1
1 = 0.5, and p2

1 = max{0.5×p1
1+0.5×p1

2 , 1×p1
3} = max{0.75, 0} = 0.75.

Iteratively, p0 and p1 in the long run can be calculated. A user-defined threshold is
usually necessary to terminate the calculation, according to the desired precision. �

4.2 Anti-chain Based Approach

Now we introduce how anti-chain can be used to speed up the iterative calculation
approach, by first introducing a lemma.

Lemma 3. Let D = (Sd , initd ,Actd ,Prd ) be an MDP; L = (Sl , initl ,Actl ,T ). Let
P be D × det(L). Let G be the set of TR-witness states of P . For all state (u1, v1) and
(u2, v2) of P s.t. (u2, v2) ≤ (u1, v1), Prmax (P , (u1, v1),G) ≥ Prmax (P , (u2, v2),G)
and Prmin(P , (u1, v1),G) ≥ Prmin(P , (u2, v2),G).

Proof The above can be proved with an induction. The base case is that (u2, v2) is in
G . By definition, (u1, v1) must be in G and therefore the lemma holds. Next, we show
the induction step. Assume that (u ′

2, v
′
2) satisfies the lemma above. For every distribu-

tion μ2 from (u2, v2), by Definition 7, there must exist a distribution μ1 from (u1, v1)
and for every state (u ′

2, v
′
2), there exists (u ′

1, v
′
1) such that μ2((u

′
2, v

′
2)) = μ1((u

′
1, v

′
1))

and (u ′
2, v

′
2) ≤ (u ′

1, v
′
1). By induction hypothesis, we have Prmax (P , (u ′

1, v
′
1),G) ≥

Prmax (P , (u ′
2, v

′
2),G) and Prmin(P , (u ′

1, v
′
1),G) ≥ Prmin(P , (u ′

2, v
′
2),G). Thus we

have Prmax (P , (u1, v1),G) ≥ Prmax (P , (u2, v2),G) and Prmin(P , (u1, v1),G) ≥
Prmin(P , (u2, v2),G). Therefore, we conclude that the lemma holds. �

Compared to probabilistic reachability calculation for a general MDP, the above lemma
gives us additional information, which can be potentially useful in speeding up the
calculation. In the following, we discuss how we can make use of the information so as
to improve the probabilistic refinement checking using the iterative calculation method.

The first step is building the product MDP meanwhile finding the target states, which
is shown in Algorithm 4. The implementation and specification are defined in Defini-
tion 7. Different from the non-probabilistic cases, the state space cannot be reduced in
the probabilistic models; instead, we define a function sub of the product state s satis-
fying s .sub = {t | t ∈ S ∧ s ≤ t}, where S is the state space of the product MDP.
Then the refinement checking is reduced to probabilistic reachability of a set of target
states, denoted by Target . During the iterative calculation, whenever the probability of
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Algorithm 4 Building MDP in Probabilistic Refinement Checking with Anti-chain
1: let working be a stack containing a pair (initd , {s | initl � s});
2: let visited := {(initd , {s | initl � s})}; let Target = ∅; ;
3: while working 
= ∅ do
4: pop (impl , spec) from working ;
5: for all (impl , e, μ) ∈ Prd do
6: if e = τ then
7: spec′ := spec;
8: else
9: spec′ := {s ′ | ∃ s ∈ spec. s

e� s ′};
10: for all impl ′ ∈ Sd do
11: if μ(impl ′) > 0 ∧ (impl ′, spec′) 
∈ visited then
12: push (impl ′, spec′) into working ;
13: visited := visited ∪ (impl ′, spec′);
14: if spec′ = ∅ then
15: Target := Target ∪ (impl ′, spec′);
16: for all (impl ′, spec′′) ∈ visited do
17: if (impl ′, spec′′) ≤ (impl ′, spec′) then
18: (impl ′, spec′′).sub.Add(impl ′, spec′);
19: else if (impl ′, spec′) ≤ (impl ′, spec′′) then
20: (impl ′, spec′).sub.Add(impl ′, spec′′);
21: return true;

state s is updated, e.g., to p, according to lemma 3, all states in s .sub whose proba-
bility is less than p could be set to p directly. This could speed up each iteration and
potentially improve probabilistic refinement checking.

Now we evaluate whether the above method is indeed beneficial. The proposed prob-
abilistic refinement checking algorithm has also been implemented in PAT. We evaluate
it using a modified system based on the implementation of a distributed concurrent
stack example [15]. Probabilistic choices are used to model a concurrent stack model
composed by two processes, so as to capture the situation in which the communication
between different processes fails from time to time. Failures do exist in real world cases
and the experiments results are summarized in Table 3.

Table 3. Experiments: Probabilistic Concurrent Stack Implementation

System Size
Verification Time (s) #States Involved in Iterations

W/o AC With AC Gain W/o AC With AC Gain
K = 2 20600 2.74 2.21 19.3% 4.2M 3M 28.6%
K = 3 45584 15.98 12.04 24.6% 18.6M 11.7M 37.1%
K = 4 86704 48.72 37.50 22.6% 55.5M 36.2M 34.8%
K = 5 117408 123.9 80.83 34.9% 130.7M 76.3M 41.6%
K = 6 231440 271.2 182.6 32.7% 272.1M 160.7M 40.9%
K = 7 342544 511.1 340.3 33.5% 515.2M 298.8M 42.0%
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We compare the efficiency of the implementation with and without (W/o) Anti-chain
(AC) using several cases. K means length of the stack; Size indicates the number of
states in the whole system; #States Involved in Iterations represents the total number of
states involved in the iterative calculation. For example, a state s updates its probability
in two iterations, then #States should increase two. From the experiments, we can see
that the anti-chain approach could reduce the total number of states accumulated during
the calculation, through dynamically updating states’ probability based on the subset
relation sub. This speeds up the verification around 29%. We remark that the gains here
are not as significant as the non-probabilistic cases, because the state space cannot be
reduced; however, in some cases, it does shorten the verification time.

5 Conclusion

In this work, we proposed to adopt anti-chain approach to improve stable failures re-
finement, failures-divergence refinement and probabilistic refinement checking. These
algorithms have been implemented in model checking framework PAT, and some ex-
periments based on benchmark systems demonstrated the dramatic improvement of the
verification efficiency of our method. To our best of knowledge, we are the first to in-
vestigate anti-chain approaches for these refinement checking.

As for future work, we are trying to extend anti-chain based refinement checking
approach in real-time system; meanwhile, we are exploring the refinement relation be-
tween probabilistic models, which may also benefit from anti-chain based method.
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