
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2012

Translating PDDL into CSP# - The PAT approach Translating PDDL into CSP# - The PAT approach

Yi LI

Jing SUN

Jin Song DONG

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
LI, Yi; SUN, Jing; DONG, Jin Song; LIU, Yang; and SUN, Jun. Translating PDDL into CSP# - The PAT
approach. (2012). Proceedings of the 17th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2012, Paris, France, July 18-20. 240-249.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5019

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Translating PDDL into CSP# – the PAT Approach

Yi Li∗, Jing Sun†, Jin Song Dong‡, Yang Liu‡ and Jun Sun§
∗Department of Computer Science, University of Toronto, Canada

Email: liyi@cs.toronto.edu
†Department of Computer Science, The University of Auckland, New Zealand

Email: j.sun@cs.auckland.ac.nz
‡School of Computing, National University of Singapore, Singapore

Emails: {dongjs, liuyang}@comp.nus.edu.sg
§Singapore University of Technology and Design, Singapore

Email: sunjun@sutd.edu.sg

Abstract—Model checking provides a way to automatically
verify hardware and software systems, whereas the goal of
planning is to produce a sequence of actions that leads from
the initial state to the desired goal state. Recently research
indicates that there is a strong connection between model
checking and planning problem solving. In this paper, we
investigate the feasibility of using a newly developed model
checking framework, Process Analysis Toolkit (PAT), to serve
as a planning solution provider for upper layer applications. We
first carried out a number of experiments on different planning
tools in order to compare their performance and capabilities.
Our experimental results showed that the performance of
the PAT model checker is comparable to that of state-of-art
planners for certain categories of problems. We further propose
a set of translation rules for mapping from a commonly used
planning notation – PDDL into the CSP# modeling language
of PAT. Finally, we provide evaluations on the translated
models against other approaches in the planning domain to
demonstrate the effectiveness of using the PAT model checker
for planning.

Keywords-Formal Verification; Model Checking; Planning.

I. INTRODUCTION

Model checking [1] is an automatic technique for veri-

fying models of software or hardware systems against their

specification. The system model is exhaustively explored and

checked by model checkers to ensure that desired properties

are guaranteed in all cases. In general, what we care the

most about the system model is whether some safety or

liveness properties, usually described in temporal logics such

as Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL), are satisfied. Given a system model M, an initial

state s, and a formula ϕ which specifies the property, the

model checking process can be viewed as computing an

answer to the question of whetherM, s |= ϕ holds. Invariant

which can be expressed using LTL formula (G¬p) is an

example of safety properties, where G reads as always.

Typically, a counterexample is given by model checkers

when the property is found to be violated.
Model checking has emerged as a promising and powerful

approach to automatically verify software and hardware

systems. Recently, research indicates that model checking

can also be applied to the AI planning domain. Berardi

and Giacomo [2] compared the performance of two well-

known model checkers, Spin [3] and SMV [4], with some

state-of-the-art planners (IPP [5], which was one of the

best performers in AIPS’98 competition; FF [6], which was

among the best performers in AIPS’00; and TLPLAN [7],

which accepts temporally extended goals used as control

knowledge to prune the search space). The experiment

results suggest that the two model checkers are comparable

to IPP in terms of performance, instead that FF performs

much better than both. In other words, Spin and SMV

used as planners are competitive with the best performing

planners at the AIPS’98 competition. There is still large

space for improvement in solving planning problems using

model checkers. Spin can indeed improve its performance

by exploiting additional control knowledge, which consists

of suitable constraints on state transitions and thus can be

used to reduce the state space explored during searching.

Hörne and Poll [8] investigated the feasibility of using two

different model checking techniques for solving a number of

classical AI planning problems. The two model checkers use

different reasoning techniques. ProB is based on mathemati-

cal set theory and first-order logic. It is specifically designed

for the verification of program specifications written in the

B specification language. The other model checker used is

NuSMV [9], an extension of the symbolic model checker

SMV. With NuSMV the problem is represented using Binary

Decision Diagrams (BDDs) [10]. For both model checkers,

the state space is explored exhaustively: if there exists a

plan, it will be found, and they always terminate. However,

they do not provide all possible plans but terminate after

one is found, if it exists. The experiment results suggest

that several options were found suitable to solve the type

of planning problems considered in the paper. These are the

Constraint Logic Programming (CLP) based ProB, running

in either temporal model checking mode or performing a

breadth-first search, and the tableaux-based NuSMV using

an invariant.

Another source of interest for this topic is that with the

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-0-7695-4700-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.41

240

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-0-7695-4700-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.41

240

2012 IEEE 17th International Conference on Engineering of Complex Computer Systems

978-2-9541-8100-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICECCS.2012.41

240

capability of solving planning problems, model checkers

can be used as an underlying service provider to provide

planning solutions for upper layer applications. Newly de-

veloped model checkers usually have more sophisticated

techniques for handling large state spaces, which is critical

in the real world setting. Therefore, using model checking as

service should work well for real world planning problems,

such as trip planning, scheduling, etc. In this paper, we

further explore the synergy between the two separate do-

mains, namely model checking and planning. They are both

important techniques used in system designs. For example,

one can obtain a workable design under the environment and

resource constraints via planning and verify that the required

properties are all satisfied by model checking. Our goal is to

find a way to connect them together such that the tools that

support model checking can also be used to find solutions

for planning problems.

In this paper, we consider classical planning problems

that have only deterministic actions and assume complete

information about the planning states. Essentially follow-

ing [11], we define a classical planning problem to be a

three-tuple (S0,G,A) where S0 represents the initial state,

G represents the set of goal states and A represents a

finite set of deterministic actions. Each state is represented

as a conjunction of fluents that are ground, functionless

atoms. Each action a ∈ A itself is described by a tuple

(pre(a), add(a), del(a)) where pre(a) represents the precon-

dition to be satisfied before the action can be executed,

add(a) and del(a) represent the positive and negative effects

after the action is executed. Therefore the state resulting

from executing action a in state s can be expressed as

Result(s, a) = (s − del(a))
⋃

add(a). Finally, the goal G
is a set of planning states satisfying a propositional property

specifying the final states of a plan. Therefore, a plan p
is a finite sequence of actions 〈a0, a1, ..., an〉, such that the

execution of p yields a state s ∈ G.

The Planning Domain Definition Language (PDDL) [12]

is currently the standard language for representing classical

planning problems and is widely used by many planners.

Actions are grouped as a set of action schemas in PDDL.

The schema consists of the action name, a list of all the

variables used in the schema, a precondition and an effect.

(:action TakeBus
:parameters (?p ?b ?from ?to)
:precondition (and At(b,from)

At(p,from) Bus(b) Passenger(p)
Stop(from) Stop(to))

:effect (and
(not At(p,from) At(b,from))
At(b,to) At(p,to)))

The PDDL code above is an example of an action schema

for taking a bus from a bus stop from to another bus stop to.

The precondition for the action schema is that both the bus

and the passenger are at from and the effect is that they are

transferred to a new location to. In the later extensions of

PDDL, such as PDDL 2.1 where typing system is added, the

type predicates like Bus(b) is not needed anymore. PDDL

2.1 also allows for optimization criteria to be specified. The

optimization criterion, also called plan metric, consists of

numerical expressions to be maximized or minimized.

Clearly, a classical planning problem can be easily con-

verted into a model checking problem. The fact that this

approach is feasible and supported by [13], which states that,

planning should be done by semantically checking the truth

of a formula, planning as model checking is conceptually

similar to planning as propositional satisfiability. Given a

planning problem (S0,G,A), one can construct a system

model M by translating every action a ∈ A into a corre-

sponding state transition function first. The initial state S0

can also be mapped to the initial state s of model M by

assigning value to each variable accordingly. Then for the

goal state G, which can be expressed using a propositional

formula ϕ, we can construct a safety property G¬ϕ that

requires the formula ϕ never to hold, such that the model

checker is able to search for a counterexample path that

leads to a state where ϕ holds. The resulting plan is optimal

in terms of make-span when the counterexample path is the

shortest. We shall discuss the detailed translation process in

section 3.

This research is divided into two stages, corresponding

to the two closely related problems that we considered, i.e.,

planning via model checking and PAT as planning service.

We first conducted a number of experiments on different

planning domains in order to compare the performance

and capabilities of various tools. Our experimental results

indicate that the performance of some model checkers is

comparable to that of state-of-the-art planners for certain cat-

egories of problems and the performance of model checking

can even be further improved by exploiting domain-specific

knowledge. In particular, a newly developed model checking

framework - Process Analysis Toolkit (PAT) out-performs

most of the existing tools in the problem domain. We further

investigated the possibility of developing a new planning

module with specifically designed searching algorithm on

top of the PAT framework, to serve as a planning solution

provider for upper layer applications. We present a set

translation rules that maps the commonly used planning

notation – PDDL into its corresponding models in the CSP#

language of PAT, where evaluations have been conducted on

the translated models.

The rest of the paper is organized as follows. Section 2

presents the review on performance of different planning

tools. In Section 3, we introduce the idea of using the PAT

model checker for planning by translating the PDDL domain

descriptions into system models in CSP# which is supported

by the tool. Section 4 presents the evaluation on performance

of the translated model in comparison to those of other

241241241

planning tools. Section 5 concludes the paper and outlooks

the future directions.

II. REVIEW ON MODEL CHECKING TOOLS FOR PLANNING

In this section, we conduct a performance review on

three commonly used model checkers together with two

well-known planners as benchmarks in solving planning

problems. A background description of the tools investigated

are listed as follows.

A. NuSMV

NuSMV is an extension of the symbolic model checker

SMV [4] developed at the Carnegie Mellon University

known as CMU SMV. Like CMU SMV, NuSMV uses

the CUDD-based BDD package, a state-of-the-art BDD

package developed at Colorado University. During model

construction, NuSMV builds a clusterised BDD-based Finite

State Machine (FSM) using the transition relation. A model

is described in terms of a hierarchy of modules. Module

instantiations are semantically similar to call-by-reference.

NuSMV allows for Boolean, integer and enumerated types

for state variables [9]. However, array indices in NuSMV

must be statically evaluated to integer constants. This con-

straint largely limits the expressiveness of the model. The

modelling for common operations on a list of state variables

is sometimes cumbersome in NuSMV. In general, such

operations have to be manually coded by enumerating all

the possible cases.

The descriptions of transition relations between the cur-

rent and next state pairs can be done by either using the

ASSIGN constraint where a system of equations labelled

as next(identifier):=expression describing how

the FSM evolves over time, or the TRANS constraint [9].

Specifications can be expressed in both CTL and LTL.

NuSMV supports several kinds of model checking modes,

namely CTL checking, LTL checking, invariant checking

and bounded model checking. We will compare the perfor-

mance of using different model checking modes for planning

in the later section.

B. Spin

Spin is an established explicit state model checker devel-

oped at Bell Labs in the original Unix group of the Comput-

ing Sciences Research Center, starting in 1980. Spin models

are described in a modelling language called “Promela”

(Process Meta Language). The language allows for the

dynamic creation of concurrent processes. Communication

via message channels can be defined to be synchronous or

asynchronous [3]. Promela loosely follows CSP and hence

our models in CSP# can be converted to it with minimal

efforts. Guarded expressions are well supported, so that

preconditions for actions can be easily enforced in the

model. Promela also allows C-style macro definitions, which

reduces the code length and facilitates the generalization of

the model.
Spin has a number of runtime options for simulation as

well as verification that can be explored. The maximum

search depth can be adjusted according to the size of the

model. Spin also allows users to prune the search space using

“never-claims” which are equivalent to safety properties.

With this method it becomes possible to verify quickly

whether a given safety property holds in the context of the

model, even when a complete verification is considered to be

infeasible [3]. After verification is finished, Spin is able to

perform a simulation guided by the error trail. In simulation

mode, step-by-step display of the counterexample trace is

better supported by its user interface compared with that of

NuSMV.
The specifications of properties can also be written in

LTL and Spin will translate the formulas into “never-claims”

and perform the verification. However, the counterexamples

produced by Spin are not guaranteed to be in the minimum

size, so we are not able to produce shortest plans using Spin.

C. PAT
Process Analysis Toolkit (PAT) [14] is a self-contained

framework for specification, simulation and verification of

concurrent and real-time systems developed in School of

Computing, National University of Singapore. It supports

efficient trace refinement checking, LTL model checking

with various fairness assumptions. PAT is designed to

verify event-based compositional models specified using

CSP# [15], which is an extension to Communicating Se-

quential Process (CSP) [16] by embedding data operations.

CSP# combines high-level compositional operators from

process algebra with program-like codes, which makes the

language much more expressive.
One of the unique features of PAT is that it allows users

to define static functions and data types as C# libraries.

These user defined C# libraries are built as DLL files and

are loaded during execution. This makes up for the common

deficiencies of model checkers on complex data operations

and data types. For instance, priority queue and set can be

implemented to meet the need of models that deal with

special algorithms.
PAT is designed as an flexible and modularized frame-

work. It allows users to build customized model checking

modules easily. The language syntax, semantics, model

checking algorithms, reduction techniques, and abstraction

techniques can all be tailored for a specific domain. We shall

explore this feature later in section 4 to customize searching

algorithms for planning purpose. PAT also has a more user-

friendly user interface both for verification and simulation

compared with other tools that we have experimented on.

D. Metric-FF
Metric-FF [17] is a domain independent planning system

developed by Jörg Hoffmann. It is an extension of FF that

242242242

supports numerical plan metrics. The system has participated

in the numerical domains of the 3rd International Planning

Competition, demonstrating very competitive performance.

Two input files, namely the domain file and problem file

are needed to run Metric-FF. Metric-FF accepts domain and

problem specifications written in PDDL 2.1 level 2. As

mentioned, PDDL 2.1 allows numerical plan metrics. The

following shows an example of plan metrics used in domain

descriptions.

(:action TakeBus
:parameters (?p - passenger ?b - bus
?from - stop ?to - stop)

:precondition (and (at ?x south)
(at ?y south))

:effect (and (not (at ?p from))
(not (at ?b from)) (at ?p to)
(at ?b to) (increase (time-cost) 10)
(increase (money-cost) 2))))

Now the parameters have their own types, specified right

behind the variable identifiers. We also add in updates of

plan metrics time-cost and money-cost within the effect state-

ment. When the action TakeBus is executed, a time cost of 10

and a money cost of 2 will be incurred. Optimization criteria

can be identified inside the problem file, with the statement

(: metric minimize(cost)) that means the value of the

state variable cost should be minimized. Note that the cost
here can also be a linear combination of several variables.

We are able to modify the two searching parameters g and h
to assign weights to plan metrics optimization and heuristic

functions respectively. By increasing the value of g, the

system will assign a higher priority to the minimization of

the given plan metrics, despite that the returned solutions

are not guaranteed optimal.

E. SatPlan

SatPlan [18] is an award winning planner for optimal

planning created by Henry Kautz, Jörg Hoffmann and Shane

Neph. SatPlan2004 took the first place for optimal determin-

istic planning at the International Planning Competition at

the 14th International Conference on Automated Planning &

Scheduling. SatPlan accepts the STRIPS subset of Planning

Domain Definition Language (PDDL) and finds plans with

the shortest make-span. It encodes the planning problem into

a SAT formulation with length k and checks the satisfiability

using SAT solvers. If the searching times out, then k is

increased by one and the process is repeated.

In SatPlan, the optimality of plan is restricted to its

length or make-span. However, in many cases, especially

real life applications, the length of the solution is not the

only criterion to be considered. The quality of the plan

also depends on other factors. For instance, the quality of

the suggested routes produced by a route planning system

should be judged by the users’ preferences, the total distance

of the trip, the total cost of time and money, etc. This kind

of problems are often solved by adding non-negative cost

to actions, and the goal becomes to find a plan with the

minimum total action cost.

F. Performance Comparison

In this subsection, we compare the performance of

NuSMV (pre-compiled version 2.5.2), Spin (pre-compiled

version 6.0.1) and PAT (3.3.0 academic version) on solving

a classic planning problem – the sliding game problem.

SatPlan2006 and Metric-FF are also used as benchmarks in

the experiments. The optimal solution of this puzzle solving

problem is not trivial. The descriptions of the problems are

as follows.

The sliding game problem, is sometimes also referred as

the eight-tiles problem. We have eight tiles, numbered from

1 to 8, that are arranged in a 3 × 3 matrix. The first tile,

which is at the top-left corner is empty and marked by 0.

A tile can only be shifted horizontally or vertically into the

empty space. The goal of the puzzle is to arrange the eight

tiles into the setting shown in Figure 1.

Figure 1: Initial setting of the sliding game problem

Optimal AI planning is a PSPACE-complete problem

in general. For many problems studied in the planning

literature, the plan optimisation problem has been shown to

be NP-hard [19]. The eight-tiles game is the largest puzzle

of its type that can be completely solved. It is simple,

and yet obeys a combinatorially large problem space of

9!/2 states. The N × N extension of the eight-tiles game
is NP-hard [20]. The difficulties of the problem instances

are measured by the lengths of their optimal solutions.

There is also an approximated measurement named the

Manhattan distance or Manhattan length, which is defined

as | x1 − x2 | + | y1 − y2 | where (x1, y1) and (x2, y2) are

two points on a plane. We have experimented on 6 problem

instances in total. Two of them (“Hard1” and “Hard2”) are

the hardest with an optimal solution of 31 steps. Two of them

(“Most1” and “Most2”) have the most optimal solutions

and a slightly shorter solution length of 30 steps. The last

two problem instances (“Rand1” and “Rand2”) are randomly

generated with optimal solutions of length 24 and 20 steps

respectively. The initial configurations of all the six problem

instances are shown in Figure 2.

This set of experiments are designed to show how dif-

ferent model checkers perform on optimal deterministic

planning problems. To collect the execution time data more

243243243

Table I: Experimental results for the sliding game problem

Problem L* H SatPlan PAT NuSMV Spin

BFS INVAR CTL LTL suboptimal
Hard1 31 21 444.42 9.60 45.2 > 600 > 600 2.25
Hard2 31 21 438.34 10.05 41.6 > 600 > 600 2.06
Most1 30 20 152.76 9.84 42.8 > 600 > 600 1.99
Most2 30 20 152.24 10.01 42.0 > 600 > 600 2.47
Rand1 24 12 33.70 7.00 30.0 > 600 > 600 2.63
Rand2 20 16 2.89 3.54 16.8 505.6 > 600 2.13

(a) Hard1 (b) Hard2 (c) Most1

(d) Most2 (e) Rand1 (f) Rand2

Figure 2: Initial configurations of the sliding game problem
instances

accurately, we performed each experiment three times and

calculated the average to avoid possible fluctuations caused

by the overhead imposed by operating systems. To run

Spin, we used the Unix simulator Cygwin. Spin displays

the execution time in a separate window using an embed-

ded Tcl/Tk environment. PAT and NuSMV were tested in

Windows XP SP3, while SatPlan and Metric-FF were tested

in Ubuntu 10.04 environment. Except for NuSMV, all other

tools provide accurate statistics including the execution time

at the end of each session. For NuSMV, we made use of

the source command to invoke the time command right

before and after the model checking sessions to record the

execution time. Unfortunately, the time command in NuSMV

provides time data that is accurate to only one decimal place.

On contrast, execution time data got from other tools was

rounded to two decimal places.

All the experimental results were collected on an Dell

desktop with an Intel Core 2 Duo E6550 2.33GHz pro-

cessor and 3.25GB RAM. The experimental results are

presented in Table I, where INVAR denotes using invari-

ant mode of NuSMV, LTL/CTL denotes using LTL/CTL

model checking mode of NuSMV, WITH denotes PAT under

“reachability-with” mode, and DFS/BFS denotes PAT using

depth-first/breadth-first search. Time is in seconds unless

otherwise indicated. The results got from SatPlan are used

for reference. Inside the table, “> 600” indicates that no

solution was found after 10 minutes. The column “L*”

records the length of the optimal solutions and the column

“H” shows the Manhattan distance of the problem. Also

note that the solutions found by Spin are not optimal.

The CTL and LTL checking mode of NuSMV can hardly

find a solution within 10 minutes. The invariant checking

mode performs much better compared to the other two

modes. From Figure 3, we can conclude that the execu-

tion time of SatPlan for different problem instances varies

greatly. The performance of SatPlan depends largely on the

length of the optimal plans. “Hard1” and “Hard2” which take

only 1 step more than “Most1” and “Most2”, spend nearly 3

times longer to find a solution. For simpler instances, SatPlan

performs the best among the three tools. However, when

the length of the optimal plans increases, the size of the

SAT instances created by SatPlan grows fast. The resulting

execution time increases quickly as well.

Figure 3: Execution time comparison of PAT, NuSMV and

SatPlan on the sliding game problem, shown on a logarithm

scale

The performance of PAT and NuSMV is relatively stable.

PAT using breadth-first search mode takes shorter time for

all the problems. This comparison indicates that PAT that

belongs to the category of explicit state model checkers

performs better than symbolic model checker NuSMV and

SAT based planner SatPlan on plan optimization problems.

Although we cannot generalize the argument without fur-

244244244

ther experiments and justifications, this empirical finding

still proves the feasibility of applying PAT to the optimal

deterministic planning domain.

III. PAT FOR PLANNING – TRANSLATING PDDL INTO

CSP#

When performing the experiments in Section 2, we re-

alised that the generalization of the problems should be a

priority because the encoding of the planning problems in

the respective model description languages is cumbersome.

This gives rise to the idea of using model checkers as

service. Considering planning problems in more realistic

environment, the variables and parameters in the model

descriptions are usually subject to change over time. In some

cases, the goals and cost/reward functions could also be

different when the environment variables vary. This is where

the concept of replan comes into play. Using model check-

ers as service enables real-time replanning by generating

problem descriptions dynamically at runtime, and modifying

models with the most updated parameters. However, some

modifications to the model checking algorithms are neces-

sary to finally realize this goal. As a newly developed model

checking framework, PAT out-performed most of the tools

in previous section on the proposed problem domain. Using

PAT as a planning service has several advantages over other

alternatives.

• The searching algorithms of PAT is highly efficient and

ready to be used, as is proved in the comparisons with

other tools. Therefore, the performance of planning is

ensured with no extra effort. It also saves the time of

implementing a different planning algorithm for every

new problem.

• CSP# is a highly expressive language for modelling

various kind of systems. The tools we experimented

on, including SatPlan and Metric-FF, are all restricted

to a certain area of problems. For instance, SatPlan is

not able to solve planning problems with numerical

plan metrics and Metric-FF lacks support for plan

optimization problems. With a number of sophisticated

model checking options, such as “reachability-with”

and “BFS/DFS”, PAT is ready to solve all kinds of

planning problems.

• PAT is constructed in a modularized fashion. Modules

for specific purposes can be built to give better support

for the domains that are considered. For example,

using “Probability CSP Module”, it is even possible

to solve nondeterministic planning problems with PAT.

Of course, we can also build our own planning modules

with customized searching algorithms. We shall further

discuss this in section 4.

To make the PAT model checker effectively working

for general planning problems, it is essential to establish

translation mechanism between a commonly used planning

description language into the one that PAT understands. In

the following section, we describe a source-to-source transla-

tion from PDDL to CSP#. Our goal is to formulate mapping

rules that can act as a guide when performing the translation.

The translation is based on two basic assumptions:

• The PDDL domain descriptions are written in the sub-

set of PDDL 2.1 that includes STRIPS-like operators

with literals having typed arguments and numerical plan

metrics. The typing can be easily done by hand or a tool

such as TIM [21] when the original model is written

without typed arguments.

• The translation should keep, as far as possible, the

naming as well as the structures of the original PDDL

domain descriptions.

In the following subsections, we shall explain the trans-

lation process using a classic planning problem as the

running example. The bridge crossing problem is described

as follows. Four wounded soldiers find themselves behind

enemy lines and try to flee to their home land. The enemy

is chasing them and in the middle of the night, they arrive

at a bridge that spans a river which is the border between

the two countries at war. The bridge has been damaged and

can only carry two soldiers at a time. Furthermore, several

landmines have been placed on the bridge and a torch is

needed to sidestep all the mines. The enemy is on their tail,

so the soldiers know that they have only 60 minutes to cross

the bridge. The soldiers only have a single torch and they

are not equally injured. The extent of their wounds have an

effect on the time it takes to get across. So the time needed

for each soldier are 5, 10, 20, 25 minutes respectively. The

goal is to find a solution to get all the soldiers to cross the

bridge to safety in 60 minutes or less.

A. Types and Objects

A PDDL model consists of two types of files for a

problem description, i.e., the domain file and the problem

file. The former gives the domain description of the problem

such as the types, predicates and behavioral actions involved

in the model; the latter simply defines the problem to be

solved in terms of the objects used, initial states and the

final goal states.

PDDL domain description has a special syntax for

declaring parameter types. If types are to be used in

a domain, the domain file should include a declaration:

(: types NAME1 ... NAME N). For example, the following

shows the typing declaration for the bridge crossing prob-

lem.

(:types place locatable - object
soldier torch - locatable)

Note that it uses a hierarchical typing system, where place
and locatable are of primitive type object, while soldier and

torch belong to locatable.

After the declaration of types in the domain definition file,

objects can be defined with types in the problem description

245245245

file. The following shows the object definitions for the bridge
crossing problem.

(:objects
soldier0 soldier1 soldier2
soldier3 - soldier

torch - locatable
north south - place)

Object torch and soldier0...3 are of locatable type, while

north and south are of place type. To translate PDDL type

and object declarations into CSP#, we declare a constant

enumeration in CSP# for every group of objects of the same

type. For example, the above type and object declaration in

PDDL can be mapped to CSP# as follows.

enum {north, south};
enum {soldier0, soldier1, soldier2, soldier3, torch};

B. Predicates

In PDDL, preconditions and effects are expressed as logic

expressions of predicates. To represent predicates in CSP#,

we construct a self-defined data-type 〈Predicate〉 in PAT.

〈Predicate〉 has three methods that can be directly called

from CSP# models, including:

1) void setPredicate(predicateName, x, y, value);
2) bool tryPredicate(predicateName, x, y);
3) int snapShot();
The example above only shows the methods for predicates

with an arity of two. setPredicate is used to set the value

of a predicate with its name specified as the first parameter.

tryPredicate returns the value of a predicate and snapShot
returns an integer that represents the current snapshot of the

predicate database. To use the self-defined data-type, the C#

library has to be imported and instantiated first. For each

predicate declared in the domain definition, we also need

a corresponding enumeration type in CSP#. For example,

the following PDDL predicate can be mapped to CSP# as

shown below.

(:predicates
(at ?x - locatable ?y - place))

#import “Predicate”;
var < Predicate > pre = new Predicate();

enum {At};
...
pre.setPredicate(At, x, y, true);

C. Actions

In a PDDL domain description, actions are defined to

specify the behavioral aspects of the model in terms of

preconditions and effects. With object types and predicates

ready, the translation of actions into CSP# is straightforward.

The preconditions are translated as guard conditions of

processes. The effects are translated as statement blocks after

event names. Conditional effects can also be easily converted

into conditional branches that are well supported in CSP#.

The updates for plan metrics can be mapped into simple data

operations. The followings show the semantically equivalent

action definitions for “south to north” in PDDL and its

translation in CSP# respectively.

(:action StoN
:parameters (?x - soldier
?y - soldier)

:precondition (and (at ?x south)
(at ?y south) (at torch south))

:effect (and (not (at ?x south))
(not (at torch south))
(not (at ?y south)) (at ?x north)
(at ?y north) (at torch north)
(when (>= (time ?x) (time ?y))
(increase (time-cost)(time ?x)))

(when (< (time ?x) (time ?y))
(increase (time-cost)(time ?y)))))

StoN(x, y) = [x! = y
&& pre.tryPredicate(At, x, south)
&& pre.tryPredicate(At, y, south)
&& pre.tryPredicate(At, torch, south)]
s.x.y{pre.setPredicate(At, x, north, true);

pre.setPredicate(At, x, south, false);
pre.setPredicate(At, y, north, true);
pre.setPredicate(At, y, south, false);
pre.setPredicate(At, torch, north, true);
pre.setPredicate(At, torch, south, false);
if (time[x] > time[y])
{time cost = time cost + time[x]; }

else{time cost = time cost + time[y]; }
} → Trans();

In the above example, the predicates inside the square

brackets represents a guard condition for the process, which

are translated from the precondition in the PDDL action

definition. The x!=y in the guard condition is to ensure

the two parameters x and y are distinct, which is implicitly

enforced in PDDL. Furthermore, the predicates in the effect

part of a PDDL action definition can be easily mapped to

their corresponding predicate definitions in a CSP# process

definition with time constraints as shown above.

More importantly, to establish a state transition system on

the model, we also need another process to choose among

different actions. As shown in the following, the process

Trans() first makes a snapshot of the current predicate

database, then nondeterministically chooses one action, i.e.,

either StoN or NtoS, and proceeds. The parameters for

the actions are also nondeterministically chosen among the

available objects that are of the suitable types. This is done

246246246

by using the syntax sugar “indexed event list” that takes in

parameters within the corresponding enumeration range.

Trans() = τ{snap = pre.snapshot()} →
(� z : {0..3}@(� y : {0..3}@StoN(z, y)))
� (� x : {0..3}@NtoS(x));

D. Initial State

In PDDL, the initial state of a model description is

captured by the problem file, where the objects and goal

states are also defined. To translate the initial state definition

in PDDL into CSP#, a corresponding initial process can be

constructed. The following shows the translation of initial

state specifications from PDDL to CSP# of the bridge
crossing problem.

(:init
(at soldier0 south)
(at soldier1 south)
(at soldier2 south)
(at soldier3 south)
(at torch south)
(= (time soldier0) 5)
(= (time soldier1) 10)
(= (time soldier2) 20)
(= (time soldier3) 25)
(= (time-cost) 0))

var time[4] = [5, 10, 20, 25];
var time cost = 0;

ini() = initial{
pre.setPredicate(At, soldier0, south, true);
pre.setPredicate(At, soldier1, south, true);
pre.setPredicate(At, soldier2, south, true);
pre.setPredicate(At, soldier3, south, true);
pre.setPredicate(At, torch, south, true)}
→ Skip;

Note that for the functions time and time-cost in

PDDL, we simply use an integer array and an integer

variable in CSP# to represent them respectively. The ini-

tialization of predicates are done within the process ini().

Plan = ini(); Trans();

With the initial state and actions translated into CSP#, the

complete state transitions (behaviors) of the bridge crossing
model can be defined as the initial state followed by the

Trans process as defined in the above Plan process.

E. Goal

The goal of a PDDL problem description contains logic

formulas of predicates and possibly also specifies the plan

optimization criteria. The translation of optimization criteria

can be achieved by using the keyword “reaches ... with ...”.

The following shows the corresponding goal states defini-

tions of PDDL and CSP# in the bridge crossing problem.

(:goal (and
(at soldier0 north)
(at soldier1 north)
(at soldier2 north)
(at soldier3 north)))

(:metric minimize (time-cost)))

#define goal (pre.tryPredicate(At, soldier0, north)
&& pre.tryPredicate(At, soldier1, north)
&& pre.tryPredicate(At, soldier2, north)
&& pre.tryPredicate(At, soldier3, north));

#assert Plan reaches goal with min(time cost);

Note that the above assertion defines process Plan can reach

the goal within a certain time restriction. The PAT model

checker will search its state transition paths to explore a pos-

sible trace of the model that satisfies this condition, which

is essentially a solution to the planning problem. Clearly,

using the newly defined 〈Predicate〉 type, the translation

from PDDL to CSP# is a straightforward mapping as it can

be shown in the above example. Translation tools can even

be developed to automate the entire process.

IV. PERFORMANCE EVALUATION

In this section, we exam the performance side of the

translation. We conducted similar experiments as in section

2, which executes the translated bridge crossing model in

PAT against those of other planning tools and compared

their performance. The bridge crossing problem is a plan

existence problem with a constraint on the total time. A

workable plan that can be finished within 60 minutes is

already good enough. There is no need to literally “cal-

culate” an optimal solution. PAT can find the “Shortest

Witness Trace” by using the breadth-first search in the state

space, i.e., the returned counterexample trace is guaranteed

to be the shortest one. Otherwise, a depth-first search is

performed and the first counterexample trace encountered is

displayed. Therefore, for the bridge crossing problem where

shortest witness trace is not needed, we used the depth-

first search mode; for the sliding game problem, for which

an optimal solution is expected, we enabled the “Shortest

Witness Trace” option instead. The counterexample provided

by NuSMV is always shortest, so it can also be used to

generate optimal solutions for the sliding game problem.

Unfortunately, as mentioned, the counterexample produced

by Spin is not always shortest. However, we still collected

the performance data for reference.

To generalize the problem and get the experimental re-

sults in a broader range, we expanded the original bridge
crossing problem to versions with up to 9 soldiers. Except

the breadth-first and depth-first search, PAT also supports

247247247

Table II: Experimental results for the bridge crossing problem

Soldiers Time Metric-FF PAT NuSMV Spin

WITH DFS INVAR CTL LTL
4 60 0.00 0.05 0.04 0.0 0.1 0.1 0.02
5 90 0.00 0.19 0.04 0.1 0.9 0.4 0.02
6 130 0.03 1.12 0.22 0.2 14.4 2.5 0.06
7 175 0.16 6.18 0.25 0.5 330.8 71.3 0.11
8 235 0.94 33.19 10.26 m m m 10.50
9 300 5.30 145.51 16.40 m m m 19.50

“reachability-with” checking which is a reachability test

with some state variables reaching their maximum/minimum

values. Hence PAT can be used to find the minimum amount

of time needed to finish the bridge crossing. The time limits

were first calculated by PAT using the “reachability-with”

mode. Other model checkers were then tested taken the time

limits as given. Of course, to be fair, PAT was also run one

more time using the depth-first search mode. We also ran

Metric-FF on the bridge crossing problem with parameters

g = 100 and h = 1, which emphasises the plan quality

over the performance to increase the possibility of getting

an solution within the time limit.

Table III: Time cost of each soldier

Soldier 1 2 3 4 5 6 7 8 9

Time Cost 5 10 20 25 30 45 60 80 100

This set of experiments are tailored to show how the

model checkers compete on plan existence problems that

deal with time constraints. The results are summarized in

Table II. Inside the table, the column “Soldiers” indicates the

number of soldiers in the problem instance and the column

“Time” indicates the time limit used in that test. A symbol m
is there to show that the system ran out of memory and did

not get a solution. Although the configurations for Metric-FF

(g = 100 and h = 1) have put a much higher weight on plan

quality, the optimality of the results got form Metric-FF is

still not guaranteed. So the data is only used as a benchmark

for comparisons. The time cost of each soldier is listed in

Table III above.

When the number of soldiers reaches 8, NuSMV is not

able to build a model according to the model descriptions

due to memory shortage. The invariant checking mode

performs generally better than CTL and LTL checking

mode because CTL and LTL model checking algorithms’

searching space involves both the model and the property,

but reachability checking only explore the model’s space1.

With regard to Temporal model checking in NuSMV, the

performance is better using LTL than CTL.

1PAT will automatically detect the safety LTL properties and convert
them into reachability problems. Hence, we do not include the LTL
checking model for PAT in this experiment.

Figure 4: Execution time comparison of PAT, Spin and

Metric-FF on the bridge crossing problem

Figure 4 shows that the time needed for the bridge cross-
ing problem increases rapidly when the number of soldiers

increases. For example, the execution time for Spin increases

by nearly 100 times when the number of soldiers increases

from 7 to 8. It is clear that the state space expands in a

very fast speed. Planners such as Metric-FF handle this kind

of problem in a very different way from model checkers.

Metric-FF performs a standard weighted A* search which

exploits the power of heuristics and sacrifices the optimality

to speed up the searching. That is the reason why Metric-FF

performs much better than the other two. The performance

of PAT and Spin is similar on this problem domain. For

smaller instances, for example, when the number of soldiers

ranges from 4 to 7, Spin performs better than PAT, although

the difference is relatively small. For larger instances like the

problem with 8 or 9 soldiers, PAT starts to perform better

that Spin.

V. CONCLUSION

In this paper, we focused on exploring the use of model

checking techniques on the AI planning domain. We believe

our work established a good start point in this direction

towards more practical applications. We first examined the

feasibility of using different model checkers on solving

classic planning problems. In our experiments, we compared

the performance and capabilities of different tools including

PAT, NuSMV and Spin. PAT is proved to be the most

248248248

suitable one for solving various kind of planning problems.

The experimental results also indicate that some model

checkers, e.g. PAT, can even compete with sophisticated

planners in certain domains.

Based on the performance evaluation, we further sug-

gested the approach of developing PAT as a planning service.

We presented translation guidelines from PDDL to CSP#,

which could serve as a basis for facilitating the verification.

We defined mapping rules on different constructs of a PDDL

model and presented them through a running example of the

bridge crossing problem. Finally, we compared the perfor-

mance of the translated model with that of other planning

tools, which are attempted based on their execution time

and memory efficiency as well as their planning quality. The

results showed that our approach provides a good solution

towards the problem.

Although experiments have been carried out on three

model checkers and two planners so far, we would like to

extend the comparisons to a larger range of model checking

as well as planning tools to get a more general view of the

subject. We also observe that, in some of the models, there

is a lot of room for improvement. By either fine tuning the

way of modelling or exploiting domain specific knowledge,

we could further optimize the models. In addition, we are

interested in implementing an automated translator for the

translation from PDDL to CSP#. Large amount of work

has to be done to ensure the correctness and efficiency of

the translation. Last but not least, we recommend that more

research should be done on applying PAT as a planning ser-

vice. The applications of this technique should be extended

to a larger range on real problems in various fields.

REFERENCES

[1] D. Peled, P. Pelliccione, and P. Spoletini, Wiley Encyclopedia
of Computer Science and Engineering. John Wiley & Sons,
2009, ch. Model Checking.

[2] D. Berardi and G. D. Giacomo, “Planning via
model checking: Some experimental results,” 2000,
unpublished. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.144.1377

[3] G. J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley Professional, Sep. 2003.

[4] K. L. McMillan, “Symbolic model checking: an approach
to the state explosion problem,” Ph.D. dissertation, Carnegie
Mellon University, 1992.

[5] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos,
“Extending planning graphs to an ADL subset.” Springer-
Verlag, 1997, pp. 273–285.

[6] J. Hoffmann and B. Nebel, “The FF planning system: Fast
plan generation through heuristic search,” Journal of Artificial
Intelligence Research, vol. 14, pp. 253–302, 2001.

[7] F. Bacchus, F. Kabanza, and U. D. Sherbrooke, “Using tempo-
ral logics to express search control knowledge for planning,”
Artificial Intelligence, vol. 16, pp. 123–191, 2000.

[8] T. Hörne and J. A. van der Poll, “Planning as model checking:
the performance of ProB vs NuSMV,” in Proceedings of the
2008 annual research conference of the South African In-
stitute of Computer Scientists and Information Technologists
on IT research in developing countries: riding the wave of
technology, ser. NY, USA: ACM, 2008, pp. 114–123.

[9] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti,
M. Pistore, M. Roveri, and A. Tchaltsev, NuSMV 2.5 User
Manual, CMU and ITC-irst, 2005.

[10] R. E. Bryant, “Symbolic boolean manipulation with ordered
binary-decision diagrams,” ACM Computing Surveys, vol. 24,
pp. 293–318, 1992.

[11] S. Russell and P. Norvig, Artificial Intelligence. Pearson,
2010, ch. Classical Planning.

[12] D. V. McDermott, PDDL - The Planning Domain Definition
Language, Yale Center for Computational Vision and Control,
1998.

[13] F. Giunchiglia and P. Traverso, “Planning as model checking,”
in Recent Advances in AI Planning, ser. Lecture Notes in
Computer Science, S. Biundo and M. Fox, Eds. Springer
Berlin / Heidelberg, 2000, vol. 1809, pp. 1–20.

[14] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards
flexible verification under fairness,” in The 21th International
Conference on Computer Aided Verification (CAV 2009).
Grenoble: Springer, 2009, pp. 709–714.

[15] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating speci-
fication and programs for system modeling and verification,”
in Proceedings of the third IEEE International Symposium
on Theoretical Aspects of Software Engineering (TASE’09),
W.-N. Chin and S. Qin, Eds. IEEE Press, 2009, pp. 127–135.

[16] C. A. R. Hoare, “Communicating Sequential Processes,”
Communications of ACM, vol. 21(8), pp. 666–677, Aug. 1978.

[17] J. Hoffmann, “Extending FF to numerical state variables,”
in Proceedings of the 15th European Conference on Artificial
Intelligence (ECAI-02), Lyon, France, Jul. 2002, pp. 571–575.

[18] H. A. Kautz, B. Selman, and J. Hoffmann, “SatPlan: Plan-
ning as satisfiability,” in Abstracts of the 5th International
Planning Competition, 2006.

[19] P. Gregory, D. Long, and M. Fox, “A meta-CSP model for
optimal planning,” in Proceedings of the 7th International
conference on Abstraction, reformulation, and approximation,
ser. Berlin, Heidelberg: Springer, 2007, pp. 200–214.

[20] A. Reinefeld, “Complete solution of the eight-puzzle and
the benefit of node ordering in IDA*,” in Proceedings of the
13th international joint conference on Artificial intelligence
- Volume 1. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1993, pp. 248–253.

[21] M. Fox and D. Long, “The automatic inference of
state invariants in TIM,” Journal of Artificial Intelligence
Research, vol. 9, pp. 367–421, 1998.

249249249

	Translating PDDL into CSP# - The PAT approach
	Citation

	Translating PDDL into CSP# - The PAT Approach

