
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2012

Model checking software architecture design Model checking software architecture design

Jiexin ZHANG

Yang LIU

Jing SUN

Jin Song DONG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons, and the Systems Architecture Commons

Citation Citation
ZHANG, Jiexin; LIU, Yang; SUN, Jing; DONG, Jin Song; and SUN, Jun. Model checking software
architecture design. (2012). Proceedings of the 14th International Symposium on High-Assurance
Systems Engineering, Omaha, NE, USA, 2012 October 25-27. 193-200.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5018

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5018&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Model Checking Software Architecture Design
Jiexin Zhang∗, Yang Liu†, Jing Sun‡, Jin Song Dong∗ and Jun Sun§

∗Department of Computer Science, School of Computing, National University of Singapore, Singapore
Emails: {jiexinzh,dongjs}@comp.nus.edu.sg

†School of Computer Engineering, Nanyang Technological University, Singapore
Email: yangliu@ntu.edu.sg

‡Department of Computer Science, The University of Auckland, New Zealand
Email: j.sun@cs.auckland.ac.nz

§ISTD, Singapore University of Technology and Design, Singapore
Email: sunjun@sutd.edu.sg

Abstract—Software Architecture plays an essential role in the
high level description of a system design. Despite its importance in
the software engineering practice, the lack of formal description
and verification support hinders the development of quality
architectural models. In this paper, we present an automated ap-
proach to the modeling and verification of software architecture
designs using the Process Analysis Toolkit (PAT). We present the
formal syntax of the Wright# architecture description language
together with its operational semantics in Labeled Transition
System (LTS). A dedicated model checking module for Wright#
is implemented in the PAT verification framework based on the
proposed formalism. The module – ADL supports verification and
simulation of software architecture models in PAT. We advance
our work via defining an architecture style library that embodies
commonly used architecture patterns to facilitate the modeling
process. Finally, a case study of the Teleservices and Remote
Medical Care System (TRMCS) modeling and verification is
presented to evaluate the effectiveness and scalability of our
approach.

Index Terms—Software Architecture; Formal Verification;
Model Checking; Wright; PAT.

I. INTRODUCTION

Software Architecture plays a vital role in the high level
design of a software system. Analogy to civil engineer-
ing, it represents the fundamental structural and behavioral
descriptions of the software system during the engineering
process. Despite its importance, the lack of formal description
and verification support hinders the development of quality
architectural models. The current practice of software archi-
tecture modeling mainly relies on diagrammatic notations and
informal textual descriptions. In the past decade, formal mod-
eling techniques have been applied to software architecture
designs [2], which aimed at achieving precise specification
and rigorous verification of the intended structures and be-
haviors in the design. The advantage of such verifications is
to determine whether a modeled structure can successfully
satisfy a set of given properties derived from the requirements
of a system. Furthermore, automated verification provides an
efficient and effective means for checking the correctness of
the architecture design. A considerable number of architecture
description languages have been proposed in the past years,
e.g., Wright [2], [1], Darwin [11], ACME [4], CHAM [6] and
MP [3]. Wright, Darwin and ACME capture the properties and

structures of systems by introducing composed components
interacted through connectors, where CHAM models system
architecture in terms of molecules and transformation rules.
MP proposes to formalize the architecture specification based
on behavior models and event traces.

However, one drawback of many existing approaches in the
field lies in the limited verification support to the software
architecture models specified in those notations. For example,
Wright is considered as the prominent language in modeling
the component and connector structures. It makes explicit
use of parameterizing the specific behaviors of a particular
type. This language is partially encoded into the FDR model
checker, where a subset of the language constructs and limited
model checking properties such as compatibility checking and
deadlock analysis are available. In the Darwin language, the
system behaviors are specified by finite state process algebra.
It can describe concurrent and distributed systems and has
its own model checker LTSA [10] to perform verification.
The language can handle behavioral reconfiguration, well but
cannot address the issues of complex interactions among
reconfiguration unites. In the case of ACME language [4], it is
intended to support mapping from one architecture description
language to a logical formalism and adopts an open semantic
framework to reason the model. Kim and Garlan [7] proposed
the modeling and verification of architecture styles using the
Alloy language and its analyzer. In their approach, a few ar-
chitecture styles based on ACME descriptions were translated
and verified using Alloy. Although it offers a useful insight to
the ability of applying Alloy in automating the verification of
architecture descriptions, the performance issue is a practical
limitation of the research. The problem arisen from large scope
architecture models dramatically expanding the search spaces
of the verification in the Alloy SAT solver. To overcome this
problem, Wong et al. [18] proposed a model splitting approach
for the parallel verification of Alloy based architecture models
using their underlying styles. The approach improved the
performance of the verification, however, the overheads of the
model decomposition as well as the dependency issues among
the sub-models during the parallel verification phase still
remain as challenges. The CHAM language has an effective
way to express system properties but with no verification

support. The MP language formalizes the system architecture
via event traces as well as the event grammar rules. The
behavior of systems is captured by a variety of events and also
the precedence/inclusion relations. This language can hardly
support architecture reconfiguration and reuse.

In this paper, we present an automated approach to the
modeling and verification of software architecture designs in
the PAT framework [9], [14], [8]. We proposed a new software
architecture description language – Wright#, by combing sev-
eral previous works and adding new features. The structural
description of the language is extended from the Wright
notation [2], [1], which was proposed by Allen and Garlan in
1997. The language is relatively mature, complete, and elegant
compared with other architecture description languages. We
adopt the Configuration structure of the language to capture
the behaviors and interactions of each part of systems. The
structure is clear and precisely designed to give users a
topology representation of how the system is composed and
operated. We extend Wright with a rich set of syntax to
describe concurrent communications between the components
and connectors. We formally define the syntax and operational
semantics of Wright# to provide the foundation of formal
analysis. The new language is capable of describing both
static and dynamic system behaviors, as well as supporting the
architecture style configuration and reuse. Based on the formal
semantics, we further developed a dedicated model checking
module for Wright# in the PAT verification framework, which
supports modeling, simulation and verification of software
architecture models.

Large and complex software systems are often represent-
ed using a combination of different architectural patterns
(styles) [18]. In light of this observation, we built an archi-
tecture style library in the tool to facilitate the reuse of basic
and common architecture patterns with extension. The library
contains a set of commonly used software architecture styles,
such as the client-server, peer-to-peer, pipe-filter, publish-
subscriber, shared-data, etc. With the help of the style library,
users are able to extend and reuse existing structures in their
software architecture designs. Finally, we demonstrate our
approach with a real world case study of a Teleservices and
Remote Medical Care System (TRMCS) [5] architecture mod-
eling and verification, where the effectiveness and scalability
of the approach are evaluated.

The rest of the paper is organized as follows. Section II
defines the syntax and operational semantics of Wright#.
Section III presents the definition and verification of an
architecture style library in PAT. Section IV demonstrates the
modeling and verification of a real world case study using the
architecture module in the PAT model checker with evaluation
results. Section V concludes the paper and discusses the future
work.

II. FORMAL SYNTAX AND SEMANTICS OF WRIGHT#

In this section, we present the formal syntax and op-
erational semantics of the Wright# architecture description
language. Our notation is heavily influenced by the Wright

language, which adopts an architecture view of Component-
and-Connector (C&C) [2].

A. Formal Syntax of Wright#

The syntax of Wright# is formalized in this subsection. We
start with the formalization of the Component definition as
follows.

Definition Component. A component is a 4-tuple C =
(VarC, initC,Computation, Ports), where VarC is a set of
variables; initC is the initial valuation of the variables;
Computation defines the behavior of the component; Ports is
a set of ports.

A component has two elements to express itself: one is a
number of Ports, the other is the Computation. Ports serve
as the interfaces for the component to communicate with its
environment. The specification of each port indicates what
interaction the component has involved in. A more compre-
hensive description of the properties of each Component is
given by computation. Similarly, connectors have a Glue and
a set of Roles as defined below to specify the links between
components. The role explains how each participant joins the
interaction. The Glue provides a complete description about
how the participants work together to establish the connection.
We can see that the function of Glue in a connector is similar
to that of the Computation in a component. Variables inside the
components or connectors are local, which cannot be accessed
by other components or connectors.

Definition Connector. A connector is a 4-tuple N =
(VarN , initN ,Glue,Roles), where VarN is a set of variables;
initN is the initial valuation of the variables; Glue defines the
behavior of the connector; Roles is a set of roles.

Definition Configuration. A configuration model is a 5-tuple
C = (Ch,C,N, I,A) where Ch is a set of channels; C is a set
of components; N is a set of connectors; I is a set of instances
of components and connectors; A defines the mapping from
components’ ports to connectors’ roles.

In order to give a complete specification of the system
architecture, we introduce a Configuration schema. Besides
the components and connectors, configuration also includes
the instance definitions I and the attachment definitions A.
In the instances, users need to define a specific number of
instances for each participated component and connector in
the system. We can understand instances as the created objects
of each predefined class in Object-Oriented programming
languages like JAVA and C#. Each instance can inherent all the
properties and computations of the component or connector.
The components and connectors are more like types that can
be reused in many actual examples. The name of each instance
is required to be explicitly and uniquely defined to avoid
conflicts. Following instances, there is only one part left for
completing the configuration which is the attachment relations.
In attachments, the components’ ports are associated with
the connectors’ roles to form the whole system. Especially,

the attached ports and roles are required to be compatible
in function. The components are only permitted to attach to
connectors. Therefore, the components, connectors, instances
and attachments altogether define the configuration of a whole
system architecture.

The syntax to define the behaviors of components and
connectors in Wright are based on a subset of CSP language.
We propose a more complete syntax to model components
and connectors. The constructs mainly include process, events,
internal/external choices, and parallel composition. Compared
with Wright, our extended syntax not only includes various
concurrent communications, but also hierarchical control flows
and a rich set of data structures and operations.

P = Stop | Skip – primitives
| e{prog} → P – event prefixing
| ch!exp → P | ch?x → P – channel communication
| P ; Q – sequential composition
| P 2 Q – choice operator
| if b {P} else {Q} – conditional choice
| [b]P – state guard
| P ∥ Q – parallel composition
| P ||| Q – interleave composition
| P △ Q – interrupt
| ref (Q) – process reference

In the above, we present the syntax of architecture pro-
cesses for describing the behavioral aspects of the Ports,
Computation, Roles and Glue. Architecture processes are
abbreviated as processes for simplicity in the sequel. P and Q
are architecture processes, e is a simple event, ch is a channel,
b is a boolean expression. In addition, e! represents an event
which sends out data to its environment, e? represents an event
which receives data from the environment. The process Stop
represents the system entering a deadlock state, while Skip is a
process that represents successful termination. Event prefixing
e → P engages in event e first and then behaves as process
P. If event e is attached with a program, the program will
be executed together with the occurrence of event e. P ; Q,
behaves as P until its termination and then behaves as Q.
Choice P 2 Q is resolved only by the occurrence of an event.
Both if b {P}else{Q} and [b]P are conditional branchings. For
the former, when b is evaluated to be true, the system performs
P, else performs Q. For the latter, process P can be executed
until b is evaluated to be true. Parallel composition of two
processes with barrier synchronization is written as P ∥ Q,
where P and Q may perform lock-step synchronization, i.e., P
and Q execute an event simultaneously. Two processes which
run concurrently without barrier synchronization is written as
P ||| Q, where ||| denotes interleaving. Both P and Q may
perform their local actions without referring to each other.
Process P interrupt process Q behaves as process P first until
the first visible event of process Q is engaged, and then the
control is transferred to Q. Given a channel ch with pre-defined
buffer size, process ch!exp → P evaluates the expression exp
(with the current valuation of the variables) and puts the value

into the tail of the respective buffer and behaves as P. Process
ch?x → P gets the top element in the respective buffer, assigns
it to variable x and then behaves as P. Sending/receiving
multiple messages at once is supported. If a channel has
buffer size 0, it is a synchronous channel, whose input and
output communications must occur synchronously. A process
expression could be given a name for referencing to support
the recursion in system model.

B. Operational Semantics of Wright#

In this section, we present operational semantics of the
Wright# modeling language, which translates a model into
a Labeled Transition System (LTS). The sets of behaviors
can be extracted from the operational semantics, thanks to
congruence theorems. In order to define the operational se-
mantics of a system model, we first define the notion of
system state to capture the global system information during
the executions. Due to the page limit, we only consider
synchronous channel communication in this subsection, which
removes the (bounded) channel buffer from the system state
below and corresponding firing rules in Figure 1. But in our
implementation, both synchronous and asynchronous channel
communication are supported.

System state A system state is composed of two components
(V,P) where V is a function mapping a variable name to its
value, which we refer to as a valuation function, and P is an
architecture process.

First of all, we present the operational semantics for archi-
tecture processes as firing rules associated with each process
construct. Let Σ denote a set of events. For simplicity, a
function upd(V, prog), to which given a sequential prog and
V , returns the modified valuation function V ′ according to the
semantics of the program. We write V � b (or V ̸� b) to
denote that condition b evaluates to be true (or false) given
V . We write eva(V, exp) to denote the value of the expression
evaluated with variable valuations in V .

Figure 1 illustrates the firing rules. Rule prefix captures how
event associated with sequential programs are handled, i.e.,
the occurrence of the event and program is simultaneous and
appears, to the system, to be atomic. Notice that, this is the
only way global variables are modified. Rule channel captures
the semantics of synchronous channel communication. We
remark that there are two rules (con1 and con2) associated with
if b {P} else {Q}, whereas only one rule (guard) is associated
with [b]P. Therefore, if b is false given [b]P, then the process
is blocked until b becomes true. The semantics of parallel
composition P ∥ Q are captured using three rules. Either P
or Q can make a move if the event x is not in their common
alphabets (see rule p1 and p2), otherwise P and Q have to
synchronize on x (see rule p3). Function αP, also called the
alphabet of P, returns the set of events that appear in process
P. Notice that the event in a data operation is called non-
communicating event, which is excluded from the alphabet in
parallel processes.

V � b, (V, P) e→ (V′, P′)
[guard]

(V, [b]P) e→ (V′, P′)

[prefix]

(V, e{prog} → P) e→ (upd(V, prog), P)

(V, P) ch!→ (V, P′), (V, Q)
ch?→ (V, Q′)

[channel]

(V, P ∥ Q)
ch→ (V, P′ ∥ Q′)

P =̂ Q, (V, Q)
x→ (V′, Q′)

[def]

(V, P) x→ (V′, Q′)

[skip]

(V, Skip) X→ (V, Stop)

V � b, (V, P) x→ (V′, P′)
[con1]

(V, if b {P} else {Q}) x→ (V′, P′)

V ̸� b, (V, Q)
x→ (V′, Q′)

[con2]

(V, if b {P} else {Q}) x→ (V′, Q′)

(V, P)
eτ→ (V′, P′)

[seq1]

(V, P; Q)
eτ→ (V′, P′; Q)

(V, P) X→ (V′, P′)
[seq2]

(V, P; Q)
τ→ (V′, Q)

(V, P) x→ (V′, P′)
[ch1]

(V, P2Q)
x→ (V′, P′)

(V, Q)
x→ (V′, Q′)

[ch2]

(V, P2Q)
x→ (V′, Q′)

(V, P) x→ (V′, P′), x ∈ αP, x ̸∈ αQ
[p1]

(V, P ∥ Q)
x→ (V′, P′ ∥ Q)

(V, Q)
x→ (V′, Q′), x ∈ αQ, x ̸∈ αP

[p2]

(V, P ∥ Q)
x→ (V′, P ∥ Q′)

(V, P) x→ (V, P′), (V, Q)
x→ (V, Q′), x ∈ αP ∩ αQ

[p3]

(V, P ∥ Q)
x→ (V, P′ ∥ Q′)

where e ∈ Σ and x ∈ Σ ∪ {X}

Fig. 1. Wright# firing rules

To define the behavior of configuration schemas, we firstly
define the behavior of components and connectors. A prefixing
function prefix(pre,P) is defined as adding prefix “pre :” to
all the events and channel communications of process P. One
example is shown below.

prefix(a, invoke? → return! → Provider) =
a : invoke? → a : return! → prefix(a,Provider)

For a process definition P =̂ Q, we define dprefix(P) as
prefix(name(P),Q), where name(P) represents symbol “P :”.
One example is shown below.

dprefix(Consumer =̂ req! → result? → Consumer) =
Customer : req! → Customer : result?

→ prefix(Customer,Customer)

Given a component C = (VarC, initC,Computation,Ports),
its behavior PC is defined as a parallel composition of
Computation and Ports with the application of dprefix
function on each port. Similarly, for a connector N =
(VarN , initN ,Glue,Roles), its behavior PN is defined as a
parallel composition of Glue and Roles with the application of
dprefix on each role. The reason of adding the port name (or
role name) as the prefix in the events in port process (or role
process) is to synchronize with the events in Computation (or
Glue) process. One example of a filter component in a Pipe-
filter structure is shown below.

Pfilter = Glue ∥ dprefix(input) ∥ dprefix(output)

Given a configuration, for an instance declaration i :
component (or i : connector), the behavior of i is defined
as Ii = prefix(i,Pcomponent) (or Ii = prefix(i,Pconnector)). For a
mapping a.p as b.r from a component a port p to a connector
b role r, the meaning for such mapping is to rename all the
events prefixed with “b : r :” in Ib by replacing the prefix
“b : r :” to “a : p :”. The semantics of a configuration
C = (Ch,C,N, I,A) is defined using a LTS as follows.

Configuration LTS Given a configuration C = (Ch, C, N, I,
A), let Σ denote the set of all events in all instances in I by
applying the mapping rules in A. The labeled transition system
corresponding to C is a 3-tuple LC = (S, init,→), where S is
a set of states, init ∈ SC is the initial state (initC ,PC) (initC
is the combination of all the valuations of all instances in I,
PC is a parallel composition of behaviors of all instances in I
by applying the mapping rules in A), and →⊆ S ×Σ× S is a
labeled transition relation.

Given an LTS (S, init,→), the size of S can be infinite for
two reasons. First, the variables may have infinite domains
or the channels may have infinite buffer size. We require
(syntactically) that the sizes of the domains and buffers are
bounded. Second, processes may allow unbounded replication
by recursion, e.g., P = (a → P; c → Skip)2b → Skip, or
P = a → P ||| P. In this work, we consider only LTSs with
a finite number of states for the reason of applying model
checking. In particular, we bound the sizes of value domains
and the number of processes by constants. In our examples,
bounding the sizes of value domains also bounds the depths
of recursions.

As PAT is a generic verification framework, a dedicated
model checking module – ADL, is implemented based on the
above formal syntax and operational semantics of the Wright#
language. The ADL module supports Wright# with featured
model editor, animated simulator and verifier. The user friend-
ly simulator can interactively and visually simulate system
behaviors by random simulation, user-guide step by step
simulation, complete state graph generation and counterex-
ample visualization. Most importantly, it implements various

verification techniques catering for different property analysis
such as deadlock-freeness, divergence-freeness, reachability
checking, Linear Temporal Logic (LTL) properties with or
without fairness assumptions and refinement checking [12]. In
the next section, we present a variety of architecture structure
patterns that can be modeled by the ADL module.

III. FORMALIZING ARCHITECTURE STYLE LIBRARY

In this section, we present the style library that we defined
for software architecture module in PAT. The purpose of
such a library is for the extension as well as reuse of the
common structure patterns in a complex design. The style
library we have built includes a set of basic architecture styles,
e.g., Client-server, Peer-to-peer, Pipe-filter, Publish-subscriber,
Shared-data, etc. In the following, we will introduce the styles
one by one and give instructions on how to inherit them in a
customized user model.

Style Client_Server
{

 Component Client
 {
 Port Request = requestInfo!->receiveResults?->Request;

 Computation = Request:requestInfo!->Request:receiveResults?
 ->Computation;
 }

 Component Server(i)
 {
 Port[i] Provide = ReceiveCon?->provideResults!->Provide;

 Computation = Provide[0]:ReceiveCon?
 ->Provide[0]:provideResults!->Computation;

 }

 Connector Request_Reply_Con
 {
 Role Consumer = requestInfo!->receiveResults?->Consumer;

 Role Provider = ReceiveCon?->provideResults!->Provider;
 Glue = Consumer:requestInfo?->Provider:ReceiveCon!
 ->Provider:provideResults?->Consumer:receiveResults!->Glue;

 }
}

Style Client_Server
{

 Component Client
 {
 Port Request = requestInfo!->receiveResults?->Request;

 Computation = Request:requestInfo!->Request:receiveResults?
 ->Computation;
 }

 Component Server(i)
 {
 Port[i] Provide = ReceiveCon?->provideResults!->Provide;

 Computation = Provide[0]:ReceiveCon?
 ->Provide[0]:provideResults!->Computation;

 }

 Connector Request_Reply_Con
 {
 Role Consumer = requestInfo!->receiveResults?->Consumer;

 Role Provider = ReceiveCon?->provideResults!->Provider;
 Glue = Consumer:requestInfo?->Provider:ReceiveCon!
 ->Provider:provideResults?->Consumer:receiveResults!->Glue;

 }
}

Fig. 2. A Client-server Style

Client-server style is a basic architecture style where
there are two components: client and server, also with a
request/reply connector communicating them. The style mod-
eled in Wright# is shown in Figure 2. The client usually
requests services or information from the server and then
waits for the reply. During this period, the client does nothing
but block itself. When the server receives request, it will
process and send back the results to client. After receiving
the results, client will unblock itself and continue executing.
The connector in this style takes charge of transmitting request
message from client to server and the returned results from
server to client. Each client has one request port. Each server
has an indefinite number of provide ports which permit an
arbitrary number of clients connecting with it. Therefore, we
add one parameter i to define the number of provide ports.
When users extend this style, they should specify the concrete
value of i. In the request/reply connector we set two roles
to establish the connection – one is the consumer role, the
other is the provider role. This connector has the function of
restricting the data flow direction among components. Client-

server style is commonly used in developing network related
applications, such as the Browser/Server structure.

Style Pipe_Filter

{
 Component Filter(i, j)
 {

 Port[i] input = getData?->input;
 Port[j] output = putData!->output;
 Computation = input[0]:getData?->output[0]:putData!->Computation;

 }
 Connector Pipe
 {

 Role data_in = putData!->data_in;
 Role data_out = getData?->data_out;
 Glue = data_in:putData?->data_out:getData!->Glue;

 }
}

Style Pipe_Filter

{
 Component Filter(i, j)
 {

 Port[i] input = getData?->input;
 Port[j] output = putData!->output;
 Computation = input[0]:getData?->output[0]:putData!->Computation;

 }
 Connector Pipe
 {

 Role data_in = putData!->data_in;
 Role data_out = getData?->data_out;
 Glue = data_in:putData?->data_out:getData!->Glue;

 }
}

Fig. 3. A Pipe-filter Style

Pipe-filter style presents a system whose execution is driven
by data flow. The style modeled in Wright# is shown in
Figure 3. The components in this style are named filters. One
filter can have multiple input ports to receive data and multiple
output ports to send out data. The connector pipe is responsible
for transmitting data from one filter’s output port to another
filter’s input port. One pipe has a single data in role and a
single data out role to connect two filters. The computation
of pipe always preserves the data flow’s sequence. In this
style, the attachment relation associates the output ports of
filters with the data in roles of pipes and the input ports of
filters with data out roles of pipes. The number of input ports
and output ports are set as two parameters. This makes the
filters more flexible to adapt to user’s model. This style can
find its applications in many industrial examples, such as data
flow applications, Map-reduce model in cloud computing and
Yahoo! Pipes.

Style Publisher_Subscriber
{
 Component Publisher
 {
 Port Generate = pub!->Generate;
 Computation = Generate:pub!->Computation;
 }
 Component Subscriber
 {
 Port Accept = deliver?->Accept;
 Computation = Accept:deliver?->Computation;
 }
 Connector Event_Con(m)
 {
 Role publisher = pub!->publisher;
 Role[m] subscriber = deliver?->subscriber;
 Glue = publisher:pub?->Transfer(); Glue;
 Transfer() = |||x:{0..(m-1)}@ Deliver(x);
 Deliver(i) = subscriber[i]:deliver!->Skip;
 }
}

Style Publisher_Subscriber
{

Component Publisher
{

Port Generate = pub!->Generate;
Computation = Generate:pub!->Computation;

}
Component Subscriber
{

Port Accept = deliver?->Accept;
Computation = Accept:deliver?->Computation;

}
Connector Event_Con(m)
{

Role publisher = pub!->publisher;
Role[m] subscriber = deliver?->subscriber;
Glue = publisher:pub?->Transfer(); Glue;
Transfer() = |||x:{0..(m-1)}@ Deliver(x);
Deliver(i) = subscriber[i]:deliver!->Skip;

}
}

Fig. 4. A Publish-subscriber Style

Publish-subscriber style is mainly applied to describe asyn-
chronism systems. The style modeled in Wright# is shown in
Figure 4. It contains two categories of components: publishers
and subscribers. In this style, the publisher could publish
events which are distributed to its subscribers. The connector
takes charge of doing the distribution. Each publisher has one

generate port to generate events. Each subscriber has one
accept port to receive a variety of events. The connectors
in this style have publisher roles and subscriber roles to
connect with generate ports and accept ports in components.
In realistic applications, a publisher usually publishes events
to multiple subscribers. Taking account of this situation, the
number of subscribers is defined as a parameter in the connec-
tor. when users inherit this style, the value of parameter need to
be set in accordance with the number of subscriber instances.
Representative examples of this style include mailing systems
and social networks, such as Facebook and Twitter.

Style Peer2Peer
{
 Component Peer
 {
 Port Client = requestInfo!->receiveResults?->Client;
 Port Server = ReceiveCon?->provideResults!->Server;
 Computation = client()|||server();
 client() = Client:requestInfo!->Client:receiveResults?->client();
 server() = Server:ReceiveCon?->Server:provideResults!->server();
 }
 Connector P2P_Con
 {
 Role clientA = requestInfo!->receiveResults?->clientA;
 Role clientB = requestInfo!->receiveResults?->clientB;
 Role serverA = ReceiveCon?->provideResults!->serverA;
 Role serverB = ReceiveCon?->provideResults!->serverB;
 Glue = clientA_serverB()|||clientB_serverA();
 clientA_serverB() = clientA:requestInfo?->serverB:ReceiveCon!->
serverB:provideResults?->clientA:receiveResults!->clientA_serverB();

 clientB_serverA() = clientB:requestInfo?->serverA:ReceiveCon!->
serverA:provideResults?->clientB:receiveResults!->clientB_serverA();

 }
}

Style Peer2Peer
{
 Component Peer
 {
 Port Client = requestInfo!->receiveResults?->Client;

Port Server = ReceiveCon?->provideResults!->Server;
 Computation = client()|||server();
 client() = Client:requestInfo!->Client:receiveResults?->client();
 server() = Server:ReceiveCon?->Server:provideResults!->server();
 }
 Connector P2P_Con
 {
 Role clientA = requestInfo!->receiveResults?->clientA;

Role clientB = requestInfo!->receiveResults?->clientB;
Role serverA = ReceiveCon?->provideResults!->serverA;

 Role serverB = ReceiveCon?->provideResults!->serverB;
 Glue = clientA_serverB()|||clientB_serverA();

clientA_serverB() = clientA:requestInfo?->serverB:ReceiveCon!->
serverB:provideResults?->clientA:receiveResults!->clientA_serverB();

 clientB_serverA() = clientB:requestInfo?->serverA:ReceiveCon!->
serverA:provideResults?->clientB:receiveResults!->clientB_serverA();

 }
}

Fig. 5. A Peer-to-peer Style

Peer-to-peer style is quite similar to Client-server style but
is more complex. It distinguishes itself by allowing each
peer to act as both server and client which means it can
provide service and invoke service simultaneously. Therefore,
each peer has one client port and one server port behaving
actions just as in Client-server style. The style modeled in
Wright# is shown in Figure 5. In the computation portion, the
client process is executed interleaved with the server process.
There are four roles defined in the connector, namely, clientA,
clientB, serverA, and serverB. The relations among them are
specified in the glue where clientA could request services from
serverB and clientB could request services from serverA. Peer-
to-peer style is becoming more and more popular in nowadays
systems. Many file sharing and instant messaging systems like
BitTorrent, eDonkey, MSN and Skype are all utilizing this
architecture.

Other architecture styles such as Shared-Data, etc., can be
modeled in a similar manner. All the styles are verified to
be deadlock free and satisfy desirable safety and liveness
properties, which are specified in the form of state/event LTL
formulae. In the next section, we will demonstrate the use of
the style library in modeling a complex system architecture.

IV. CASE STUDY AND EVALUATION

In this section, we apply our approach to the modeling
and verification of the Teleservices and Remote Medical Care
System (TRMCS) [5]. The TRMCS system aims at providing

Central

Dispatcher

Clock

System

Log

Backup

Database
Main

Database

Help

Center

Help

Center

Help

Center

Key
Client-

Server
Pipe-

Filter

Publish-

Subscriber

Help

Center
Patient

Monitor

Patient

Monitor

Receive

Port

Receive

Port

Fig. 6. The Component and Connector view of TRMCS

medical services to at-home users through the Internet or
mobile phones. Synthetically, the system should provide the
following capabilities:

1) Allow the user or monitoring software to issue help
requests to the assistance center.

2) Guarantee the continuous service of the system.
3) Guarantee the delivery of help service in response to a

help request in a specific critical time.
4) Handle several help requests in parallel that competes

for service by overlapping in time and space.
5) Handle dynamic changes to the number and location of

users.
6) Provide persistent repository of data and history log.

The component and connector view diagram in Figure 6
illustrates the overall architecture of TRMCS system. From the
diagram, we can observe that the TRMCS consists of a multi-
styled structure in its design, which includes client-server,
pipe-filter and publish-subscriber. We will discuss details on
the modeling and verification in the following section.

A. Modeling and Verifying TRMCS

The system could receive requests in two different ways
according to the requirements. In one case, a patient with a
medical emergency sends a help request to TRMCS system.
The patient expects to receive a reply in certain critical time.
In the other case, a patient may have internet-based medical
monitors that give continuous readouts, e.g., EKG and EEG.
A help center may be contracted to read these monitors over
the net and raise alerts when dangerous values are detected.
For the above two cases, we separately use the components
Patient Monitors and Receive Ports to model their behaviors.
When monitors detect dangerous values or ports receive user
calls, they both can report requests to Central Dispatcher
for further processing. The relationship between them and
the dispatcher are client-server structures. The critical part
of this system is the Central Dispatcher. It is in charge of
organizing the other parts and responsible for communicating.

It can receive requests from all ports and monitors concur-
rently and process them in parallel. In order to check the
validity of each request, the dispatcher need retrieve patient
information from the patient database. Hence, the relationship
between dispatcher and databases can be viewed as client-
server structures. There are two types of patient database:
Main Database and Backup Database. When the main database
fails to response, the access should automatically switch to
the backup database. The data inside the main and backup
databases should always be synchronized to avoid inconsis-
tency. The connections between two types of databases are
pipe-filter structures. After receiving the requests, dispatcher
will distribute them to help centers for proving emergency
assistance. A request can be either picked by a help center
actively or assigned by the dispatcher to help centers passively.
Therefore, the help centers have to register in dispatcher and
receive the published incident information from dispatcher. We
can get that the relationship between the dispatcher and the
help centers is a publisher-subscriber structure. In terms of
each request, the system needs to record the request launch
time and the time of assignment or selection. That means the
dispatcher needs to write logs for each request. The connection
between the dispatcher and system logs is another pipe-filter
structure. In order to get the current time, the dispatcher
should register to a clock subsystem to receive time value
periodically. The connections between the clock and dispatcher
can be considered as another publisher-subscriber structure.
We model this TRMCS system in PAT. Due to the page limit,
we can not present the complete model in the paper. Interested
readers could refer to the more complete online version of the
case study at http://www.comp.nus.edu.sg/∼pat/adl/.

1. #assert TRMCS deadlockfree;
2. #assert TRMCS |= [](("r[0]:UserIssueRequest")

-> <>"p:RequestProcessed");
3. #assert TRMCS |= [](("r[0]:UserIssueRequest")

-> <>"p:OutputLog:putData");
4. #assert TRMCS |= [](("d:MainDatabaseCrash")

-> <>"b:BackupDBWorking");

A variety of interesting properties could be verified in
terms of TRMCS architecture design. We pick four of them
listed above for demonstration purposes. The first one is the
deadlock-free analysis. This property is checked to guarantee
the system never reaches a deadlock state. It is checked to
be valid in our model. Properties 2, 3 and 4 are stated in
LTL formulae. The second property means whenever a request
is reported by receive port 0, it shall be processed by the
dispatcher. This property guarantees that the system never
misses any incident request, which is critical in medical sys-
tems. Similarly, property 3 states that the incident information
must be recorded in the log whenever the dispatcher receives
a request from receive port 0. The last property is used to
check whether the control will be automatically switched to the
backup database whenever the main database is unavailable, so
as to guarantee the robustness of TRMCS system. The above
three LTL properties are verified to be valid in our model. For
more interesting properties, readers should refer to the case

study web page online.

B. Implementation and Performance Evaluation

The Process Analysis Toolkit (PAT) [9], [14], [8] is de-
signed to apply state-of-the-art model checking techniques for
system analysis. It is a self-contained framework to support
reachability analysis, deadlock-freeness analysis, full LTL
model checking, refinement checking as well as a powerful
simulator and verifier. PAT is designed to be an extensible
and modularized framework [9] that allows users to build
customized model checkers to support the analysis of different
system notations. Currently, modules supporting modeling and
verification of current systems [13], real-time systems [15],
probabilistic systems [17], [16] are supported in PAT. The
ADL module in PAT is dedicated to support the Wright# model
analysis and verification. We conducted experiments on the
Client-server, Pipe-filter, and TRMCS systems to evaluate the
performance.

Table 1 shows the experiment results. The data are ob-
tained with Intel Core 2 Quad 9550 CPU at 2.83GHz and
3GB memory. Symbol ‘-’ denotes out of memory. We can
see in the three examples, PAT performs reasonably well.
It handles 107 states/transitions in a few hours. The first
two examples extends the Client-server style and Pipe-filter
style via defining multiple instances. In the last example,
the number of states and running time increase rapidly as
the parameters are enlarged. This is because of the TRMCS
system is more complex in the interior communications. It
is composed by 8 components and 8 connectors for the
simplest one and embedded with vast of interleave and parallel
operations. With the purpose of comparing the results of solely
modeling in Wright# language with utilizing the style library,
we designed two models to conduct comparison. The results
demonstrate that the amount of user code is reduced nearly
1/3 via inheriting the style library. The main reason is that
most connectors can be extended in user’s model directly. For
example, in TRMCS system, the connectors of Client-server,
Pipe-filter and Publish-subscriber can be reused without any
modification. Furthermore, inheriting styles from style library
can improve the correctness of user model due to the dedicated
verification of each architecture style in the library.

V. CONCLUSION

In this paper, we present a formal approach to the modeling
and verification of software architecture designs using the
PAT framework. We defined syntax and LTS operational se-
mantics of the Wright# architecture description language. The
extension supports both static and dynamic system behaviors
modeling and configuration. Based on the formal semantics,
we implemented a dedicated model checking module for
Wright# in the PAT verification framework. The module
– ADL supports automated verification and simulation of
software architecture models in PAT. As complex system
are often modeled using a multi-styled approach, we further
developed an architecture style library which embodies a set
of commonly used architecture style patterns to facilitate the

Model Size Property States/Transitions Time(Sec)
CS C=4 deadlock-free 5841/20174 0.78
CS C=5 deadlock-free 40365/173101 6.98
CS C=6 deadlock-free 277857/1426404 58.85
CS C=3 2(Request : req →3Provide : pro) 3164/8508 0.4
CS C=4 2(Request : req →3Provide : pro) 29068/101358 4.28
CS C=5 2(Request : req →3Provide : pro) 250056/1078930 51.29
PF P=5,F=6 deadlock-free 6144/21504 0.88
PF P=6,F=7 deadlock-free 24576/98304 3.92
PF P=7,F=8 deadlock-free 98304/442368 18.28
PF P=5,F=6 2(input : get →3output : put) 38913/142850 5.8
PF P=6,F=7 2(input : get →3output : put) 180225/753666 34.2
PF P=7,F=8 2(input : get →3output : put) 819201/3842050 246.8

TRMCS H=1,M=1,R=1 deadlock-free 502079/2173895 119.69
TRMCS H=2,M=1,R=1 deadlock-free 852407/3989713 221.79
TRMCS H=1,M=1,R=1 2(MainCrash →3BackupWork) 2359919/10039998 1337.73
TRMCS H=2,M=1,R=1 2(MainCrash →3BackupWork) - -

TABLE I
EXPERIMENT RESULTS

modeling process. The users can easily extend and reuse these
verified structures in designing their customized systems. We
demonstrate the effectiveness of our approach through a real-
world case study of a Teleservices and Remote Medical Care
System (TRMCS) modeling and verification. In addition, per-
formance evaluations are presented to measure the scalability
of the approach.

In the future, we plan to develop a Graphic User Interface
(GUI) to assist the visual design of software architecture
models in the PAT framework. The GUI should provide
diagram representations of the architecture models and seemly
connect to the model checking back-end for simulation and
verification support. Another direction is to further develop on
the language aspects of the Wright# notation, e.g., extending
it with real-time and probabilistic properties to capture the
quantitative time and uncertainty factors of components and
connections in a software architecture description.

ACKNOWLEDGEMENT

This work is partially supported by the following projects:
ASTAR SERC PSF 1121202016, MOE2009-T2-1-072, TRF
Project “Research and Development in the Formal Verification
of System Design and Implementation”, and IDG31100105 /
IDD11100102 from Singapore University of Technology and
Design.

REFERENCES

[1] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic
software architectures. In FASE, pages 21–37, 1998.

[2] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[3] M. Auguston. Monterey phoenix, or how to make software architecture
executable. In OOPSLA Companion, pages 1031–1040, 2009.

[4] D. Garlan, R. T. Monroe, and D. Wile. Acme: an architecture description
interchange language. In CASCON, page 7, 1997.

[5] P. Inverardi, H. Muccini, D. Richardson, and S. Ficks. The Teleservices
and Remote Medical Care System (TRMCS). IWSSD-10, 2000.

[6] P. Inverardi and A. L. Wolf. Formal specification and analysis of
software architectures using the chemical abstract machine model. IEEE
Trans. Software Eng., 21(4):373–386, 1995.

[7] J. S. Kim and D. Garlan. Analyzing Architectural Styles with Alloy.
In Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis, pages 70–80, New York, NY, USA,
2006. ACM.

[8] Y. Liu, J. Sun, and J. S. Dong. An Analyzer for Extended Compositional
Process Algebras. In ICSE Companion, pages 919–920. ACM, 2008.

[9] Y. Liu, J. Sun, and J. S. Dong. PAT 3: An Extensible Architecture
for Building Multi-domain Model Checkers. In ISSRE, pages 190–199,
2011.

[10] J. Magee. Behavioral analysis of software architectures using ltsa. In
ICSE, pages 634–637, 1999.

[11] J. Magee and J. Kramer. Dynamic structure in software architectures.
In SIGSOFT FSE, pages 3–14, 1996.

[12] J. Sun, Y. Liu, and J. S. Dong. Model checking csp revisited: Introducing
a process analysis toolkit. In Proceedings of the Third International Sym-
posium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2008), volume 17 of Communications in Computer
and Information Science, pages 307–322. Springer, 2008.

[13] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating Specification and
Programs for System Modeling and Verification. In Proceedings of the
third IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE’09), pages 127–135. IEEE Computer Society, 2009.

[14] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. volume 5643 of Lecture Notes in Computer
Science, pages 709–714. Springer, 2009.

[15] J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying stateful timed csp
using implicit clocks and zone abstraction. In K. Breitman and A. Caval-
canti, editors, Proceedings of the 11th IEEEInternational Conference on
Formal Engineering Methods (ICFEM 2009), volume 5885 of Lecture
Notes in Computer Science, pages 581–600. Springer, 2009.

[16] J. Sun, Y. Liu, S. Song, J. S. Dong, and X. Li. Prts: An approach for
model checking probabilistic real-time hierarchical systems. In S. Qin
and Z. Qiu, editors, Formal Methods and Software Engineering, volume
6991 of Lecture Notes in Computer Science, pages 147–162. Springer
Berlin / Heidelberg, 2011.

[17] J. Sun, S. Song, and Y. Liu. Model checking hierarchical probabilistic
systems. In J. S. Dong and H. Zhu, editors, Formal Methods and
Software Engineering - 12th International Conference on Formal En-
gineering Methods, ICFEM 2010, Shanghai, China, November 17-19,
2010. Proceedings, volume 6447 of Lecture Notes in Computer Science,
pages 388–403. Springer, 2010.

[18] S. Wong, J. Sun, I. Warren, and J. Sun. A Scalable Approach to
Multi-Style Architectural Modeling and Verification. In Proceedings
of the 13th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2008), pages 25–34. IEEE Press, 2008.

	Model checking software architecture design
	Citation

	tmp.1584004022.pdf.CO1Cv

