
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

1-2012 

Formal modeling and validation of Stateflow diagrams Formal modeling and validation of Stateflow diagrams 

Chunqing CHEN 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Yang LIU 

Jin Song DONG 

Manchun ZHENG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
CHEN, Chunqing; SUN, Jun; LIU, Yang; DONG, Jin Song; and ZHENG, Manchun. Formal modeling and 
validation of Stateflow diagrams. (2012). International Journal on Software Tools for Technology 
Transfer. 14, 653-671. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5012 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5012&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Int J Softw Tools Technol Transfer (2012) 14:653–671
DOI 10.1007/s10009-012-0235-0

MTM

Formal modeling and validation of Stateflow diagrams

Chunqing Chen · Jun Sun · Yang Liu ·
Jin Song Dong · Manchun Zheng

Published online: 6 June 2012
© Springer-Verlag 2012

Abstract Stateflow is an industrial tool for modeling and
simulating control systems in model-based development. In
this paper, we present our latest work on automatic verifi-
cation of Stateflow using model-checking techniques. We
propose an approach to systematically translate Stateflow
diagrams to a formal modeling language called CSP# by pre-
cisely following Stateflow’s execution semantics, which is
described by examples. A translator is developed inside the
Process Analysis Toolkit (PAT) model checker to automate
this process with the support of various Stateflow advanced
modeling features. Formal analysis can be conducted on the
transformed CSP# with PAT’s simulation and model-check-
ing power. Using our approach, we can not only detect bugs in
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Stateflow diagrams, but also discover subtle semantics flaws
in Stateflow user’s guide and demo cases.

Keywords Model-based development · Transformation ·
Validation · Model checking · Stateflow

1 Introduction

Stateflow, a product of the MathWorks Company, has been
used widely to specify and simulate embedded control sys-
tems in various industry areas like aerospace [18] and trans-
portation [1,6]. Stateflow’s rich set of graphical modeling
constructs allow users to quickly describe complex systems,
and its simulation capability further helps users visualize sys-
tem behavior under particular circumstances. On the other
hand, the increasing criticality of embedded systems, for
example, systems deployed in huge quantities in automo-
bile manufacturers, raises the issue of providing high-level
assurance at early development stages. Unfortunately, State-
flow fails to support this, due to the following two factors:
(1) its semantics is specified in a narrative and sometimes
partial manner over its 1358 pages long user’s guide [17];
(2) simulations may be infeasible to analyze system behav-
ior over a large and possibly infinite number of situations.

The above gap between the requirements and the current
state of Stateflow creates an opportunity for formal meth-
ods, which are mathematically based analysis techniques for
software engineering [11,26], since they provide unambig-
uous semantics (e.g., CSP [12] in process algebras) and rig-
orous verification capabilities (e.g., model checking [5]). In
this paper, we develop formal analysis support to comple-
ment Stateflow based on a generic model-checking system
called Process Analysis Toolkit (PAT) [15,23]. PAT is a self-
contained framework to support composing, simulating, and
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654 C. Chen et al.

analyzing dynamic systems. PAT’s specification language
CSP# [22] offers great modeling flexibility by integrating
high-level operators from CSP with low-level operators from
common programs. Also PAT implements various model-
checking techniques catering for different properties such
as reachability and linear temporal properties [14]. These
strengths of PAT are useful for achieving our goal of formal
modeling and reasoning about Stateflow diagrams.

We first identify the execution semantics of Stateflow,
namely, how a Stateflow diagram executes its components
and updates variables when it is simulated. Second, we con-
struct a translator in C# as part of PAT for automatic trans-
lations. The inputs of the translator are MDL files which are
textual representation of Stateflow diagrams in nested blocks
of keywords and parameter-value pairs. However, there is
no document available explaining the syntax or grammar
of the format of MDL files. We hence acquire the details
from experiments. Last, we specify important requirements
based on translated CSP# models which represent the whole
diagrams or some components, and they are verified fully
automatically by applying PAT’s model-checking power.

So far we have covered a wide range of modeling features
of Stateflow, including history junctions, inter-level transi-
tions, implicit events, etc. Our approach has been applied
to all semantic examples in the user’s guide and non-triv-
ial examples (including demo cases used by the MathWorks
Company). We remark that we validate the correctness of
the execution semantics we model by means of simulations,
because the execution semantics of Stateflow is described
in informal operational terms supported by examples. Thus,
it is not possible to prove the equivalence between these
two execution semantics. We carefully identify the execu-
tion semantics from the user’s guide, and rigorously com-
pare the execution order and variable values of our CSP#
models (that are executable) and those counterparts of State-
flow diagrams step by step during simulations. This raises the
confidence in our CSP# models, and also leads to discovery
of subtle bugs and incomplete semantics in Stateflow user’s
guide [17]; these flaws have been acknowledged and fixed by
the MathWorks Company in its latest user’s guide (released
in September, 2010).

The remainder of this paper is organized as follows.
Related work is reviewed in the next subsection. Section 2
introduces the characteristics of Stateflow and PAT. Section 3
shows the translation from Stateflow diagrams into CSP#
models. Experiments in Sect. 4 demonstrate the applicabil-
ity and usefulness of our approach. Section 5 concludes the
paper.

Related work Although Stateflow appears to share many
graphical notations with Statecharts [9], (e.g., arrow lines
depicting transitions between states), its semantics is clearly
different from Statecharts in its handling of non-determinism.

The Stateflow semantics is complete deterministic, as the
execution order among parallel states or outgoing transitions
in a diagram is always sequential and fixed. Furthermore,
Stateflow has its own modeling features; a condition action of
a transition occurs before its source status becomes inactive,
for instance. Therefore, existing work [10,13] on supporting
Statecharts is inapplicable to Stateflow.

There exist several approaches to apply various formal
verification tools to Stateflow. Banphawatthanarak et al. [2]
translated Stateflow diagrams into the language of the SMV
model checker. However, their work excluded multi-level
hierarchical states and events, and only Boolean-valued
variables were allowed. In 2001, Sims et al. [21] manu-
ally constructed Simulink/Stateflow models1 in an invariant
checker, although the construction was informally presented.
Transformation to communication pushdown automata was
reported by Tiwari [24], although the work did not con-
sider the sequential execution order among parallel states
in Stateflow. Scaife et al. [20] converted a subset of State-
flow constructs into Lustre, a synchronous programming
language. Restrictions on the use of recursion in Lustre
constrained the type of Stateflow diagrams supported; for
instance, inter-level transitions were disallowed. Toyn and
Galloway [25] proposed to model Stateflow diagrams using
Z notation where they interpreted Stateflow as Statecharts.
Recently, Cavalcanti [3] discussed the use of Circus [19] to
specify Stateflow diagrams, though the way of handling event
broadcasting in Stateflow was inappropriate: the evaluation
was not done in a top-down manner. Denotational and oper-
ational semantics of Stateflow were proposed by Hamon [7]
and Hamon and Rushby [8], respectively. Their definitions
were at an abstract level and a number of Stateflow modeling
features were left out, such as the way to capture the effect
of actions was not specified and states having during actions
were missing. Simulink Design Verifier [16] is a new product
from the MathWorks Company to check Simulink/Stateflow
models against assertions that are specified by logic expres-
sions over variable values. The analysis is performed to all
assignments of variables during a simulation period, and lack
support of properties beyond assertions, for example, tempo-
ral properties specified in temporal logic.

Compared with those existing approaches, our work can
provide a more comprehensive analysis of Stateflow dia-
grams. We follow its intrinsic execution semantics which
is deterministic and sequential (among parallel states).
A wide range of Stateflow modeling features is covered such
as inter-level transitions and the during actions. We also
carefully investigate complex behavior like event broadcast-
ing in multi-level hierarchical diagrams. We also develop a

1 Simulink is a commercial product specifying and simulating contin-
uous dynamics, and usually integrates with Stateflow to model hybrid
systems.
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Fig. 1 Part of a Stateflow diagram of a fuel control system

translator automate the translation from Stateflow diagrams
into PAT models.

In addition, this paper distinguishes itself from our pre-
liminary work [4] by extensive refinement and enhancement.
Previously, we discussed the possibility of modeling State-
flow diagrams in PAT, and a few basic Stateflow constructs
were considered. In this paper, we extend the coverage of
Stateflow by considering more complicated constructs such
as implicit events, and refine previous method to capture the
execution semantics more precisely; in particular, we add
auxiliary variables for transitions to cope with event broad-
casting in Stateflow. We also develop the translator and apply
our approach to more and larger systems, for example, a
fault-tolerant fuel system that is a demo case used by the
MathWorks Company.

2 Background

In this section, we give a brief introduction to Stateflow and
PAT, by covering their necessary features used in this paper.
Complete description are available in their respective docu-
ments [15,17,22].

2.1 Stateflow

A Stateflow diagram is basically formed by states, transi-
tions, and junctions to specify dynamics of an event-driven
system which changes its mode according to events and con-
ditions. In the following, we will introduce important features
of states, transitions, events, and junctions. Actions will be
explained with states and transitions. We will also cover the
behavior of a Stateflow diagram during simulation and the
general structure of its textual representation in MDL files.

2.1.1 States

A state is either active or inactive during a simulation; it
changes in response to events and conditions. The activity
status of a state determines the state’s behavior. Specifically,
entry actions occur when a state becomes active, during
actions take place when a state is active, and exit actions are
executed when a state becomes inactive. We here use Fig. 1,
part of Stateflow diagrams modeling a fuel control system2

which will be illustrated in Sect. 4, as a running example.
For instance, when substate norm within state Throttle
becomes active, an assignment fail_state[THROT]
= 0 occurs, where fail_state is an array and THROT
is a constant.

To support hierarchical structure in Stateflow, a super-
state can contain substates. During simulation, a superstate
is activated (and executed) followed by its substates, and it is
exited after all of its substates become inactive. For instance,
state Counter contains a substate MultiFail that is a
superstate of states FL2, FL3 and FL4 in Fig. 1. A super-
state is decomposed either 1) exclusively where its substates
are called OR states and there is at most one OR state being
active at a time, or 2) in parallel where its substates are called
AND states and all AND states are active at the same time.
For example, states Counter, Speed, and Throttle in
Fig. 1 are parallel state as indicated by the dashed border.
Note that the numbers at the top right corners of these states
show the activation and execution order among them;Speed
becomes active after the activation of Throttle but before

2 Also available at http://www.mathworks.com/products/stateflow/
demos.html?file=/products/demos/stateflow/sldemo_fuelsys/sldemo_
fuelsys.html.
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Counter, for instance. The order can be assigned manually
by users or determined automatically by the Stateflow simu-
lator.

2.1.2 Transitions

A transition is a directed edge that links one graphical object,
either a state or a junction (discussed later), to another. A tran-
sition between two states represents a mode change from the
source state to the destination state. When the source state
is the destination state, it is a self-loop transition that causes
the source state to become inactive and immediately thereaf-
ter become active. When the source state and the destination
state are at different structure layers, namely, contained in
different superstates (or diagrams), the transition is an inter-
level transition; as shown in Fig. 1 when the transition from
state FL1 to state FL2 is executed, state MultiFail then
becomes active implicitly. When the destination state is a sub-
state of the source state, the transition is an inner transition.
A default transition is a transition with no source state and it
specifies which exclusive state to enter initially, for example,
state FL0 is entered when state Counter becomes active.

A transition is characterized by its label which consists of
events, conditions, condition actions, and transition actions
in the following format.

events[conditions]{cond_actions}/trans_actions

A transition with a label is enabled when its source state is
active, events (the absence of them means any event) occur,
and conditions (the absence of them means value true) are
true. When a transition is enabled and before it is taken, con-
dition actions take place. In contrast, transition actions occur
only after the source state of a valid transition becomes inac-
tive, i.e., the transition is taken. For instance, transition from
FL1 to FL2 can occur when FL1 is active and event INC
occurs. Note that there are two outgoing transitions fromFL1
and both are ornamented with numbers indicating the execu-
tion order. Similar to the execution order of states, Stateflow
can determine the order among multiple transitions from the
same state so as to avoid nondeterminism.

2.1.3 Events

An event is used to trigger actions of a transition or a Stateflow
diagram. An explicit event is defined by users, and it can be an
input from Simulink, an output to Simulink, or local within
a diagram. An implicit event is a built-in event that broad-
casts automatically during diagram execution. Three com-
monly used implicit events are tick, enter(state_name), and
exit(state_name): tick indicates the moment when a Stateflow
diagram awakens, and the other two occur when the specified
state of state_name is entered or exited, respectively.

(a)

(b)

Fig. 2 Examples of junctions in Stateflow

Event broadcasting is a common communication tech-
nique in Stateflow. When an event is globally broadcast, the
evaluation of the event starts from a Stateflow diagram that
is the root of all its components and follows the hierarchy of
states in a top-down manner. An event can also be directly
broadcast from one state to another to synchronize parallel
states, and the evaluation of the event is within the destination
state. Direct event broadcasting is specified in a qualified for-
mat state_name.event_name. For example, transition from
statefail to statenorm of stateSpeed in Fig. 1 broadcasts
directly event DEC to its parallel state Counter.

2.1.4 Junctions

There are two types of junctions in Stateflow. First, con-
nective junctions enable representations of different possible
transition paths for a single transition. They are often used to
model certain types of constructs in a flow graph, such as an
if-then-else decision and a for loop. For instance, in Fig. 2a,
the transition has three possible paths to different states by a
nested if-then-else construct. To be specific, if condition C1
is true, state B is entered; else if condition C2 is true, state
C is entered; when both C1 and C2 are false, a backtracking
occurs and hence state D is entered.

Second, history junctions record historical activity infor-
mation of states. A superstate containing a history junction
chooses to activate the substate, which was active last time
when the superstate was exited. Taking state PowerOn in
Fig. 2b as an example, it possesses a history junction (located
at the top right corner), and hence after the initial phase, when
PowerOn becomes active, it will activate substates Low or
High based on the historical state activation information
rather the default transition. In other words, after the initial
phase, the activation of substates is determined by history
junctions and not default transitions.
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Fig. 3 Contents of a MDL file for the fuel control system

2.1.5 Diagram execution

A Stateflow diagram is executed in discretely steps during
simulation. At each sample (discrete) time step, execution
proceeds top-down through the diagram hierarchy. Initially,
default activities are performed; for example, a substate
attached to a default transition becomes active. After the ini-
tial phase, the diagram updates its components in response
to events and conditions. Actions that take place based on
an event are atomic to that event, and hence these actions
must finish before evaluating another event; for instance, state
norm of state Speed in Fig. 1 can be re-entered only after
the evaluation of the direct event broadcast Counter.DEC
to state Counter completes.

2.1.6 MDL structure

Stateflow diagrams are saved as text files with MDL exten-
sion. The MDL files are organized in a nested block structure
with parameter-value pairs. Each Stateflow object such as
states is specified by a block that comprises a pair of brackets
following a keyword. The contents within each block depict
the properties of the corresponding object by a sequence of
pairs where each pair consists of a Stateflow parameter and
particular value. As mentioned in the introduction, there is
no document available for the syntax of MDL files. We have
learned the structure of MDL files by careful inspection of a
number of case studies. Figure 3 presents part of the MDL
file that represents the fuel control system in Fig. 1, specifi-
cally, states Speed and fail and the transition from fail
to state norm in Speed.

As shown in Fig. 3, each object is assigned to a unique
integer as its identification (ID) in MDL files. User-defined
properties such as state names, actions, and transition con-
ditions are stored as strings of parameter labelString.
The hierarchical structure of states is preserved by parameter
treeNode where the first element indicates the superstate
and the second one the first substate. For example, treeN-
ode [11 0 14 0] within the block of fail whose

ID value is 15 indicates that Speed (ID value 11) is its
superstate; value 0 means no Stateflow object, i.e., fail
has no substate. In addition, execution order of a parallel
state is explicitly stated; for instance, executionOrder
4 of Speed which is a parallel state, denoted by type
AND_STATE. Important transition properties like source
state (by src), destination state (dst), and scope (linkN-
ode [11 47 0] specifies that the transition is within state
Speed) are also captured in the transition block specifica-
tion.

The MDL files are the input of our translator as these files
capture all characteristics denoted by Stateflow diagrams.
The complicated behaviors of Stateflow diagrams require our
analyzing system to be very expressive and have powerful
reasoning capabilities; the PAT which is introduced in the
next subsection satisfies these requirements.

2.2 Process Analysis Toolkit (PAT)

PAT is an extensible model-checking framework for system
modeling, simulation and verification. PAT consists of an
editor, a simulator and various verifiers. The editor provides
an environment to develop system models and includes syn-
tax checking. The simulator enables users to interactively
execute and observe system behavior using facilities such
as random simulation, user-guided step-by-step simulation,
trace playback, counterexample visualization, etc. The veri-
fiers apply state-of-the-art model-checking techniques (e.g.,
depth-first-algorithm for safety properties and strongly con-
nected components based algorithm for liveness properties)
to analyze systems. Using PAT, we can rigorously and auto-
matically verify important properties including deadlock-
freeness and linear temporal logic properties.

PAT adopts a layered design to support the analysis of dif-
ferent models such as concurrent and probabilistic models.
For each supported model, a dedicated module is created
which defines the (specialized) language syntax, well-form-
edness rules and formal (operational) semantics. In our
work, we use the CSP module due to its support of a rich
modeling language name CSP#. CSP# combines high-level
operators like non-deterministic choice from the classic pro-
cess algebra CSP (short for Communicating Sequential Pro-
grams) [12], with programmer-favored low-level constructs
like variables and if-statement. In addition, built-in types in
PAT cover integers, Boolean, and array of integers. User-
defined datatypes can be constructed by creating a C# class,
which inherits the C# Value interface and importing that class
to CSP# models.

A constant is declared with keyword #define. For
example,#define on 1defines a global constantonwith
value 1. Note that constant values can only be integer and
Boolean in CSP#.
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A variable is indicated with keyworkd var and is either
a scalar or an array. Range and initial value(s) can be
specified explicitly. For instance, var status: = on
assigns constant value on as the initial value of variable
status, and var fail_state[4]:{0..1} defines
an array fail_state with 4 elements and the range (0
or 1) of each element.

A CSP# process can be constructed as follows.

– The process Skip terminates and does nothing.
– Data operation prefixing: extends the conventional event

prefixing processes in CSP by attaching a statement block
of a sequential program to an event. The sequential pro-
gram that usually updates variables is executed atomically
with the occurrence of the event. When no event is given,
it is interpreted as the invisible event τ . For instance, {x
= x + 1;} -> Skip increases variable x and then
terminates.

– Sequential composition: processes P and Q composed by
operator ; perform in a sequential manner: Q starts only
when P has finished.

– General choice: in process P [] Q, either process P or
process Q may execute.

– Conditional choice: classic if-then-else construct is sup-
ported in PAT by the formif(c){P} else{Q}, where
c is a Boolean formula. If c is true, process P executes,
otherwise process Q executes. Note that the else-part is
optional.

– Atomic sequence: keyword atomic defines a process
which always makes maximum progress. If a sequence
of statements is enclosed in parentheses with atomic as
its prefix, the sequence executes in one super-step without
interference from other processes.

An assertion is a query about system behaviors or properties,
indicated by keyword #assert.

– Deadlock: #assert P deadlockfree checks if
process P does not deadlock.

– Reachability: #assert P reaches goal tests whe-
ther process P can reach a state at which a given Bool-
ean-valued condition goal holds.

– Linear Temporal Logic (LTL): PAT supports the full set
of LTL syntax, such as � (always) and � (eventually)
temporal modal operators. In general, #assert P |=
F examines if P satisfies an LTL formula F.

The above expressive power of CSP# and the automatic
reasoning ability of PAT allow us to model the execution
semantics of Stateflow and verify dynamic systems repre-
sented as Stateflow diagrams against important properties.

3 Translating stateflow diagrams to CSP#

Our translation takes MDL files that are textual repre-
sentations of Stateflow diagrams; states, transitions and
junctions are denoted by block entities that contain user-
specified parameter values. The translation first converts
states (Sect. 3.1) followed by transitions (Sect. 3.2) into
PAT models. During the translation of states and transitions,
we invoke processes of transforming actions (Sect. 3.3) and
(implicit) events when needed. After translating all states and
transitions, we construct the PAT models for the diagrams
(Sect. 3.4.1). Our translation also covers advanced Stateflow
modeling features like junctions (Sect. 3.4.2). At the end of
this section, we present our discoveries and discussion.

3.1 States

We translate each state into four CSP# processes, where three
of them model types of behavior, and the fourth process
captures transition between those three types of behaviors.
A state is represented by a block of contents headed by key-
word state, and essential parameters that capture its struc-
ture and functionality are listed below, where N and string
denote a natural number and a string value, respectively.

The value of the labelString parameter stores user-
defined information like state name, and actions in response
to different state status; for example, actions following string
exi t are executed when the state exits its active status. We
demonstrate below how these parameters with their values
guide our translation.

3.1.1 Modeling entry behavior

The name of the process modeling a state entry behavior is
suffixed by_EnAct(). In addition, we use the process name
to indicate the hierarchy structure of the state, by appending
the names of all states (using symbol “_”) along the diagram’s
hierarchy. For example, a process name A_B indicates that a
state named B is contained in state A. This hierarchy infor-
mation can be derived from the treeNode parameter.

The procedure of constructing a process body to model
the entry behavior of a state is sketched in Fig. 4; its five
constituent steps are demonstrated below.
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Fig. 4 Workflow for modeling entry behavior of a state S

1. If the state is contained in a superstate (i.e., the first
element of parameter treeNode is greater than zero),
a CSP# conditional choice is generated followed by a
CSP# sequential composition operator. Otherwise, the
construction procedure moves to the next step. In the
generated conditional choice, the condition returns true
when the superstate is inactive, and the then-branch
invokes the process name which represents the super-
state so as to activate the superstate.

2. If the state is a parallel state (i.e., the value of parameter
type is AND_STATE) with a left sibling state (i.e., the
third element of parameter treeNode is greater than
zero), a CSP# conditional choice is generated; otherwise
the construction procedure continues. In the generated
conditional choice, the condition returns true when the
left sibling state is inactive. In other words, we need to
activate the parallel state (in this case, the left sibling
state) which has higher execution priority. The then-
branch invokes the process name which represents the
left sibling state, and the else-branch contains all CSP#
specifications that will be produced in the following
steps.

3. The state activity status is updated and entry actions are
executed (the way to handle actions will be elaborated in
Sect. 3.3). In our CSP# model, each status is indicated
by a variable whose name comprises the process name of
the corresponding state and the suffix “_Status”. The
value of such a variable is either active (defined as a
CSP# constant with value 1) or inactive (a constant
with value 0).

4. If the state is a superstate (i.e., the second element of
parameter treeNode is greater than zero), a CSP#

conditional choice without the else-branch is created;
otherwise, the procedure moves to Step 5.
In the generated conditional choice, the condition returns
true if this superstate is not activated by any of its sub-
states. During our translation, an auxiliary variable is
defined for every superstate to indicate the activation
direction. The name of such a variable appends the suffix
“_EnterBU” to the process name of the superstate, and
the value is Boolean; initially, the value is false denoting
that no substate activates that superstate, and the value
can be changed when a substate executes Step 1.
The then-branch contains a process, which specifies the
entry behavior of the default substate(s), followed by
any CSP# specifications generated in Step 5. Based on
the decomposition type of this state, There are two ways
to identify the default substate(s).

– When the substates are AND states, (i.e., the value of
parameter decomposition is SET_STATE), the
substate whose identification (id) is equal to the sec-
ond element of parametertreeNode has the highest
execution priority. Therefore the process name repre-
senting the substate as the default state is invoked to
perform entry behavior. We remark that the property
where the second element of treeNode points to a
substate with the highest execution priority is learnt
from our intensive experiments although this prop-
erty is unavailable from Stateflow’s documents (the
property has also been confirmed by the MathWork).

– When the substates are OR states, (i.e., the value
of parameter decomposition is CLUSTER_
STATE), we identify default substate(s) from default
transition(s) that will be described in Sect. 3.2. Once
default substate(s) are known, we can invoke corre-
sponding process name(s) to model the entry behav-
ior. Note that multiple default substates are possible
(guarded by different conditions). Moreover, the sec-
ond element of parameter treeNode in this case
usually does not point to a default substate; this
is different from the case when substates are
parallel.

5. If the state is a parallel state (i.e., the value of parame-
ter type is AND_STATE) with a right sibling state (i.e.,
the fourth element of parameter treeNode is greater
than zero), a CSP# conditional choice without the else-
branch is generated and the whole construction proce-
dure completes. Otherwise, if the state is not a superstate
(checked in the previous step), a Skip process is created
and the construction procedure terminates; else the pro-
cedure terminates. In the generated conditional choice,
the condition returns true if the right sibling state is inac-
tive, and the then-branch invokes the process name which
represents the right sibling state.
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Fig. 5 Workflow for modeling during behavior of a state S

Taking state Speed in Fig. 1 as an example, it is a
parallel state and contains two exclusive substates. Process
Speed_EnAct() is generated to specify the entry behav-
ior: the then-branch at line 2 (created at Step 2) activates
state Throttle which has higher execution priority than
Speed if Throttle is inactive; after changing Speed’s
status at line 3 (Step 3), the default substate norm may be
activated if Speed is not activated by any of its substates
(indicated by variable Speed_EnterBU) at line 4 (Step 4);
the then-branch at line 5 will activate state Counter which
has lower execution priority than Speed if Counter is
inactive (Step 5).

The above CSP# specification complies with the infor-
mative description about entry behavior in Stateflow user’s
guide. First, when a superstate is activated by one of its sub-
state, the superstate does not trigger its substates and not
check its right sibling state. Second, all parallel states are
activated at the same time according to their execution prior-
ity. In addition, our construction prevents repeated execution
of entry actions of parallel states; details are elaborated in
Sect. 3.5.

3.1.2 Modeling during behavior

We construct a process whose name is append suffix “_Du-
rAct() to the process name denoting the state. Figure 5
shows the conceptual workflow of a generation procedure
of the process body which depicts the during behavior of a
state. Three steps are explained below.

1. Transform user-defined during actions into CSP# spec-
ifications (Sect. 3.3 elaborates how to handle actions in
details).

2. Generate CSP# specifications to represent an inner tran-
sition (its definition is given in Sect. 3.2) if there exists
any.

3. When the state is a superstate (i.e., the second element
of parameter treeNode has positive value), there are
two cases based on its decomposition type.

– If the decomposition is parallel, all substates are exe-
cuted in parallel. However, their execution is still in
a sequential order which is determined by their exe-
cution priority; higher priority, executed earlier. We
declare a CSP# sequence composing process names
of all AND substates and the sequence order is the
same to their execution order.

– If the decomposition is exclusive, there is at most one
active substate. We declare nested CSP# conditional
choices to identify any active substate. Specifically, in
a conditional choice, the condition returns true when
a substate is active and its then-branch invokes the
process name denoting the substate; otherwise, the
else-branch contains a conditional choice for another
substate. Note that the order of checking is not impor-
tant unlike the case when the decomposition is par-
allel.

We reuse state Speed in Fig. 1 here to further show the
resulting CSP# process specifying its during behavior. In pro-
cessSpeed_DurAct(), the during action ofSpeed is null
(denoted by Skip), and the conditional choices at lines 2 to
4 check the activity status of substates norm and fail.

3.1.3 Modeling exit behavior

A CSP# process is generated to model the exit behavior of a
state, where the process name is suffixed with “_ExAct()”.
The generation procedure displayed in Fig. 6 consists of the
following steps.

1. If the state is a parallel state (i.e., the value of parameter
type is AND_STATE) and has a right sibling state (i.e.,
the fourth element of parameter treeNode is greater
than zero), a conditional choice without the else-branch
is created. Otherwise, the procedure moves to the next
step.
The created conditional choice captures the behavior that
any active parallel state with lower execution priority
should be deactivated before the current parallel state.
Specially, the condition returns true if the right sibling
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Fig. 6 Workflow for modeling exit behavior of a state S

state is active, and the then-branch references a process
name which models the exit behavior of the right sibling
state.

2. If the state is a superstate (i.e., the second element of
parameter treeNode has positive value), any active
substates should be deactivated before exiting the state;
otherwise, the procedure moves to Step 3. There are two
cases based on its decomposition type.

– If the decomposition is parallel, all active AND
substates should become inactive in a sequential
order which is opposite to their execution priorities;
namely, a substate having lower priority is deacti-
vated earlier. Therefore, we declare a sequence of
conditional choices without else-branches, where the
sequence order is reverse to the substates’ execution
priorities and each conditional choice deactivates a
substate if it is active.

– If the decomposition is exclusive, all active OR sub-
states should become inactive in any order. Thus,
we declare nested conditional choices. Each condi-
tional choice checks the activity status of one sub-
state, and invokes the process name which models
the exit behavior of the substate in the then-branch;
the else-branch contains another conditional choice
which checks another substate.

3. Convert user-defined exit actions into CSP# specifica-
tions (details are in Sect. 3.3) followed by changing the
activity status of the state to inactive.

Below we use state Speed in Fig. 1 to demonstrate our
way of capturing exit behavior. Speed is a parallel state
where state Counter is its right sibling state, and Speed
also contains two substates norm and fail. In our trans-
lated process Speed_ExAct(), the conditional choice at
line 2 checks the activity status of Counter, the nested con-
ditional choices between lines 3 and 5 deactivate any active
substates, and the update of Speed’s activity status is cap-
tured at line 6.

3.1.4 Modeling overall behavior

The previous three subsections define processes to model the
entry, during, and exit behavior of a state. In this subsection,
we construct a process to model the overall behavior of a
state, to be specific, the transitions from entry, through dur-
ing, to exit behaviors. The process name is formed by append-
ing the state name to other state names along the hierarchy in
a particular Stateflow diagram. The contents of the process is
a conditional choice, where the condition returns true when
the state is inactive, and the then-branch invokes the process
name (generated in Sect. 3.1.1) which represents the entry
behavior. The else-branch copes with two cases according to
the existence of an outgoing transition (its detection will be
explained in Sect. 3.2).

Case 1 When a state has no outgoing transition, the state
will stay active, once activated. Thus, the else-branch con-
tains the process name which represents the during behavior.

Case 2 When a state has an outgoing transition, the state
will become inactive if the transition occurs; an auxiliary
Boolean variable suffixed with “_OUTGOING” is defined to
indicate the occurrence. Furthermore, when there are more
than one transition, only one transition can take place, and
checking of their occurrences follows their individual execu-
tion priority (indicated by the executionOrder param-
eter in a transition block textual representation); in other
words, a transition with higher execution priority is checked
earlier. This behavior is modeled by a sequence of conditional
choices, where the sequence order is the same as the transition
execution priority. Each conditional choice corresponds to an
outgoing transition: it contains a predicate that requires the
auxiliary variable to be false, and updates the variable to be
true in its then-branch that specifies the behavior when a tran-
sition occurs. Moreover, except the last conditional choice,
the others are created without their else-branches; the else-
branch of the last one invokes the process name which repre-
sents the during behavior of the state. This modeling avoids
that transitions with lower execution priorities to be retaken
when a transition with higher priority is possible.

In addition, as a transition can cross multiple layers
between states, i.e., an inter-level transition, it is crucial to
invoke the correct process names which represent the exit
behavior of a source state and the entry behavior of a desti-
nation state in the then-branch of an above generated condi-
tional choice. Algorithm 1 is designed to derive the outermost
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source state of an outgoing transition: it starts checking if
the parent object of the source state (Parento f (SrcI D)) is
equal to the container of a transition, and updates the parent
object iteratively until the equivalence is valid.

Algorithm 1 Find the outermost source state
Require: SrcI D > 0
1: Container I D ⇐ f irst element o f link Node
2: while Parentof(SrcI D) �= Container I D do
3: SrcI D ⇐ Parentof(SrcI D)
4: end while
5: return SrcI D

The above algorithm returns a state whose parent is the
container of the transition, and thus we reference the process
which specifies the exit behavior of that state. In contrast, it is
unnecessary to derive an outermost destination state, because
our approach for modeling entry behavior of a state requires
a state to activate its superstate when needed (Sect. 3.1.1).
Namely, we can reference the process which depicts the entry
behavior of the destination state of the transition.

We below exemplify state FL2 in Fig. 1 which has two
outgoing transitions, one of them an inter-level transition. In
the following simplified CSP# model of FL2 (process names
are in an abstract form), the outermost then-branch (at line 1)
triggers the entry behavior when process FL2() is invoked
and FL2 is inactive. The two sequentially composed con-
ditional choices (lines 3-7) captures the execution priority
between the two outgoing transitions. In addition, the out-
ermost source states of these transitions are different; the
source state in the first conditional choice is MultiFail
which is a superstate of FL2.

In this section, we covered the transformation of a state
by constructing four processes to respectively model three
types of behaviors and the changes among them. The trans-
lation retains the complex and dynamic behavior of states;
for example, the entry behavior in our approach takes into
account if a state is a substate, a superstate, or a parallel
state.

3.2 Transitions

In a Stateflow diagram, a transition represents a change of
system mode and associated actions. We start with the gen-
eral structure of a transition in the textual format, followed

by details of different types of transitions. Last but not least,
an algorithm converting transitions into CSP# models is pre-
sented.

A transition is described by a block starting with the key-
word transition in a MDL file. As shown below, the
block includes information such as the unique id of a transi-
tion, ids of the source object (denoted by block src) and the
destination object (by blockdst), and the id of the container,
the object containing the transition (by the first element of
parameter linkNode). In addition, user-defined specifica-
tions such as guarded events and actions are stored in a string
attached to parameter labelString. When there are mul-
tiple transitions from the same source object, parameter exe-
cutionOrder indicates the execution priority of a transition.

Transitions can be classified into four types according to
their parameter values.

– Default transitions: thesrcblock has no parameter-value
pair. In other words, the corresponding transition has no
source object, and the destination object will execute ini-
tially when the container becomes active. For instance, if
a default transition points to a state, the state is a default
state of its superstate (used in Sect. 3.1.1).

– Inner transitions: the source object is the container (in
Sect. 3.1.2). Namely, their IDs are equal.

– Regular transitions: the container is the parent object of
the source object, and is also the parent object of the des-
tination object.

– Inter-level transitions: the container is neither the source
object nor the parent object of the source object, or the
container is not the parent object of the destination object
(used in Sect. 3.1.4).

The algorithm that converts a non-default transition con-
sists of six steps as shown in Fig. 7.

1. A conditional choice without an else-branch is gener-
ated. The condition contains a predicate that returns true
when the source state is still active (as mentioned in
Sect. 3.1.4 using auxiliary variables), and other predi-
cates can be created in the next step. The then-branch
includes a sequence of CSP# specifications that are pro-
duced in Steps 3 to 6.

2. If the transition has guarded events or conditions, they
are translated into predicates which return true when
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Fig. 7 Workflow for modeling a transition

events occur and conditions are true. Note that an event
is represented by a Boolean-valued variable in our CSP#
models. This allows us to capture the deterministic
behavior for multiple transitions from the same source
object. Reusing state FL2 in Fig. 1 as an example, the
sequential execution order between its outgoing transi-
tions is difficult to capture by a predefined event in CSP#
which cannot specify the occurrence order of events,
although such behavior is supported by the encoding we
use (the CSP# model is shown in Sect. 3.1.4).

3. If the transition is associated with conditional actions,
those actions are converted into CSP# model actions
(details are in Sect. 3.3).

4. Invoke the process name which represents the exit behav-
ior of the source state; the way to deal with case when
the transition crosses different layers (an inter-level tran-
sition) has been covered in Sect. 3.1.4. Nevertheless, for
an inner transition, the source state remains active.

5. If a transition action is specified by users, it is converted
into a CSP# process (details are in Sect. 3.3).

6. If the destination object is a state, invoke the pro-
cess which represents the entry behavior of the state.
Otherwise, if the destination object is a connective
junction without outgoing transitions, no translation is
needed; and the situation that the object is a connec-
tive junction with outgoing transitions is covered later in
Sect. 3.4.2.

The above procedure can be easily adapted to convert
default transitions by skipping Steps 1 and 4. Moreover, this
procedure can serve as a foundation to cope with transitions
consisting of in-between connective junctions (an advanced
features of Stateflow) in Sect. 3.4.2.

3.3 Actions

In Stateflow, actions are attached to either states (e.g., entry
actions) or transitions (e.g., conditional actions). We consider
two common types of actions. One is assignments, and the
other is event broadcasting.

Assignments manipulate variable values, and are exp-
ressed in conventional mathematical format. These assign-
ments are naturally mapped to their CSP# counterparts in
a data operation prefixing process. Currently all unary and
binary mathematical operators over integers in Stateflow are
supported in CSP#. We remark that CSP# lacks direct sup-
port for floating points and structured datatypes. Nonetheless,
PAT supports user-defined data structures written in program-
ming languages such as C#, C, and Java, and hence we can
construct C# (C or Java) floating point fields (or structured
datatypes) and use them in CSP# model.

There are two kinds of event broadcasting, global and
directed. Directed event broadcasting is an efficient means
of synchronization among parallel states. When an event is
broadcast to a specific state, that state receives the event and
evaluates its impact. A directed event broadcasting is trans-
lated into a sequence of CSP# processes within the process
which denotes the source state of a transition attached to
the action. The sequence first enables the event, followed by
invoking the process name which represents the target state,
and lastly disables the broadcast event.

For example, the transition in Fig. 1 from substate norm
to substate fail in state Speed contains a transition action
that directly broadcasts an event INC to a parallel state
Counter. This transition is modeled by the else-branch of
the following process Speed_norm: the data operation at
line 3 updates the event (denoted by INC), and the invoca-
tion of process Counter at line 4 evaluates the effect of this
action; the event becomes disabled at line 5. In the process,
occurred and notoccurred are declared as globally
CSP# constants.

When an event is broadcast globally, it impacts the whole
Stateflow diagram. That is to say, the evaluation starts from
the diagram level and moves down to states according to
their execution order. Moreover, an auxiliary global vari-
able named broadcast is defined in our CSP# model to
count the occurrence number of global event broadcasting.
Similarly to the way of dealing with directed event broad-
casting, a sequence of CSP# processes is created within
the source state of the transition which triggers this action
for modeling global event broadcasting. The sequence first
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increases broadcast by value 1, and then invokes the pro-
cess named Chart which denotes the whole diagram, fol-
lowed by decreasing broadcast by value 1. More details
about Chart and the usage of broadcast are in the next
section. Note that we here assume that the number of occurred
event broadcasting is finite; nonetheless, we can set a large
threshold to avoid potentially infinite event broadcasting.

3.4 Advanced features

The previous three subsections have illustrated our trans-
lation for states, transitions and actions which are essential
constituents of Stateflow diagrams. This subsection describes
our translation for advanced modeling features: diagrams,
junctions, and implicit events.

3.4.1 Modeling diagrams behavior

As initially mentioned, we focus on the execution semantics
of Stateflow diagrams, namely, the behavior at each sam-
ple time step during simulation. We generate a CSP# process
named Chart to represent a Stateflow diagram. The body of
Chart is a conditional choice, where the then-branch spec-
ifies the initialization of the diagram, and the else-branch
models the during behavior.

Similar to states, a diagram is decomposed by either exclu-
sive states (denoted by value CLUSTER_CHART of param-
eter decomposition) or parallel states (by SET_CHART
of decomposition). The decomposition type determines
how a chart activates and executes its states. For example,
the during behavior of a chart with exclusive states is rep-
resented by nested CSP# conditional choices to execute any
active states. Note that this is the same way as states are
handled (mentioned in Sect. 3.1.2).

A CSP# event click is defined to imitate a sample time
step in Chart. In addition, to capture the instantaneous
behavior of actions at a sample time step, we use the CSP#
atomic construct to invoke processes denoting states. Thus,
when an event is broadcast globally, the effect consumes zero
time; and no click occurs.

The above Chart process models the behavior of a State-
flow diagram at one sample time step. When the diagram
interacts with environment, it requires input data and events.
We create a process named Initialization to simu-
late the valuation of environmental variables, i.e., finite data
and events at each sample time step. This process captures
all possible assignments by a sequence of processes, where
each constituent process comprises of a set of CSP# general
choices to describe a possible assignment of an environment
input. For instance, process ([]x: {l..h} @{ed =
x;} -> Skip randomly assigns an environment input ed
a value which is from a lower bound l to a higher bound h.

Based on processes Chart and Initialization,
a process named Stateflow is constructed to repre-
sent the periodic behavior of a Stateflow diagram. When
there is an environmental variable, the contents of State-
flow is Chart(); Initialization(); State-
flow(); that invoke itself recursively. Otherwise, we have
Stateflow() = Chart(); Stateflow();.

3.4.2 Modeling junctions

Junctions in Stateflow are divided into two groups: con-
nective junctions (by value CONNECTIVE_JUNCTION of
parameter type in a textual format shown below) and his-
tory junctions (by value HISTORY_JUNCTION of parame-
ter type). They serve different purposes, and thus the ways
of translating them varies; illustrative examples of their use
and our translation will appear in Sect. 4.

Connective junctions within a single transition denote dif-
ferent transition paths. During simulation, the evaluation of
such a transition ends at either a state or an ending connec-
tive junction (that has no outgoing transitions). These con-
nective junctions are used to guide our translation algorithm
to generate nested CSP# conditional choices to capture all
transition paths. To be specific, the condition at line 3 checks
the type of the destination object (tr.dst), and the condition
at line 5 detects that the destination object contains at least
an outgoing transition (OutT S). The for loop (lines 6 to
10) selects every outgoing transition (temptr ) from the con-
nective junction, updates tr Acts by appending the transition
action associated with the transition which ends at the junc-
tion, and invokes recursively the method translateT with
the latest transition and transition actions. When the desti-
nation object is an ending junction (at line 11) or a state (at
line 15), the operation of GenerateT generates processes
that respectively model the entry behavior of the source
object, transition actions (if any), and the exit behavior of
the destination object (same as Steps 4 to 6 explained in
Sect. 3.2).

In the above algorithm, conditional actions are handled
at line 2 by function handleCondAct (similar to Step 3 in
Sect. 3.2). The reason for separating conditional actions from
transition actions is that the former can be executed once the
corresponding condition is true. We note that line 6 sorts
the list of outgoing transitions according to their execution
priorities as specified by parameter executionOrder; so
that an outgoing transition with higher execution priority is
translated before another with lower priority.
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Algorithm 2 Cover all transition paths
Require: src: the source object of the transition

tr : a transition; tr Acts: a list of transition actions.
1: translateT (src, tr, tr Acts){
2: handleCond Act (tr.cond Acts)
3: if tr.dst is instance of Junction then
4: OutT S ⇐ tr.dst.OutT S
5: if #OutT S > 0 then
6: for i = 0 to OutT S.si ze() do
7: temptr ⇐ OutT S(i)
8: temptr Acts ⇐ append(tr Acts, tr.tr Acts)
9: translateT (src, temptr, temptr Acts)
10: end for
11: else
12: GenerateT (src, tr, tr Acts)
13: end if
14: else
15: GenerateT (src, tr, tr Acts)
16: end if
17: }

Another group of junctions are history junctions. When
a state, called container (whose ID is the first element
of parameter linkNode), containing a history junction,
becomes active again, it activates a substate (usually is exclu-
sive) which was exited last time; the container activates its
default substate at the beginning of a simulation, i.e., time
zero. In other words, the history junction records the latest
active substate. We capture this modeling feature by the fol-
lowing three steps.

1. Declare a global CSP# variable to represent a history
junction. The variable name is the process name denot-
ing the state containing the history junction and the suffix
“_H”.

2. Update the history variable value in the process that repre-
sents the exit behavior of the container. The update takes
place after the invocation of the process which denotes
the exit behavior of a substate in the container (Step 2
in Sect. 3.1.3), and assigns the substate ID to the history
variable.

3. Construct conditional choices to control the activation of
a substate of the container in the process representing the
container’s entry behavior. When the history variable is
equal to the default value 0, the container activates default
substate(s) as demonstrated in Step 4 of Sect. 3.1.1. Oth-
erwise, the substate to be activated is determined by the
value of the history variable.

3.4.3 Modeling implicit events

Implicit events are built-in events in Stateflow, which are not
described by event objects in MDL files. Instead, they are
specified as strings associated with other Stateflow objects,
usually as guarded events in transitions. In our translation,

an implicit event is identified by its specific representation
format and the location where it appears, and the event is
captured by a CSP# specification specifying its effect in a
particular diagram.

For example, an outgoing transition, with “enter(A)”
as the value of its parameter labelString, is guarded
by an implicit event that occurs when the specified state
(A) is activated. This behavior is captured by CSP# spec-
ifications generated in the following steps. First, a Bool-
ean-valued variable is defined to denote the implicit event;
for the above example, Enter_A is declared in var
Enter_A:{0..1} = notoccurred. Next, a sequence
of processes is produced to model a directed event broad-
casting in the process that specifies the entry behavior of the
specified state,A in this case; the targeted object of the broad-
casting is the source state of the transition. Last, a condition
is created by checking the occurrence of the declared vari-
able in the process that represents the overall behavior of the
source state of the transition.

3.5 Discussions and discoveries

We have up to now illustrated how to transform fundamental
elements of Stateflow, such as states, transitions, actions and
junctions, into CSP# models. We have also explained how
to cope with advanced Stateflow modeling features such as
implicit events and history junctions.

Our CSP# modeling of the Stateflow execution semantics
is based on Stateflow user’s guide [17] which provides con-
crete examples to illustrate their behavior step by step. We
used our approach to automatically translate the majority of
these examples into CSP# models. We validated our mod-
eling by comparing the simulation results from our CSP#
models and those from Stateflow simulations. The compar-
ison is conducted by checking the equivalence (1) between
the execution order of diagram states and that of processes,
and (2) between the variable values of diagrams and CSP#
models at each step. When there is a difference, we revised
carefully our models and discussed our findings with experts
from the MathWorks, so as to ensure that our interpretations
comply with the execution semantics adopted by Stateflow.
We have also validated that fundamental properties of State-
flow are retained; for example, we have proved that the prop-
erty where at most one OR substate is active holds in those
CSP# models by model checking.

From our rigorous modeling and checking procedures, we
have discovered two previously unknown flaws as demon-
strated below. These flaws have been confirmed by experts
from the MathWorks and corrected in the latest version of
user’s guide.

One flaw is the description of the entry behavior for par-
allel states. Originally, (1) before executing entry actions of
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a parallel state, say A, “all entry steps” of parallel states
with higher execution priorities than A are performed if
they are inactive, and (2) after executing the entry actions
of A, “all entry actions” of parallel states with lower exe-
cution priories are performed if they are inactive. The above
description may result in repeated execution of A’s entry
actions when it activates a parallel state, say B, with a
higher execution priority: first all entry steps of B are per-
formed due to original rule (1), and those steps include
performing all entry actions of A because of original rule
(2); after B completes its entry steps, A continues its own
entry behavior including the execution of its entry actions.
However, this redundant execution behavior conflicts with
the actual execution behavior from the Stateflow simula-
tor where the entry action of A is executed only once.
We fix this original description in our construction pro-
cedure for modeling entry behavior of a state, particu-
larly, at Step 2 in Sect. 3.1.1 by separating the invoca-
tion of the parallel state with higher execution priority (in
the then-branch) from the other entry steps of the cur-
rent parallel state (in the else-branch); A only performs
its entry actions when it is invoked by B in the above
example.

Another flaw concerns the behavior of substates that are
destination objects of inner transitions. First, the original
user’s guide misses one circumstance where a substate is
active and an inner transition whose destination is this sub-
state is valid; from our experiments, we observed that the sub-
state became inactive and immediately active again when the
inner transition was taken. Second, we defined generic exe-
cution semantics of this type of substates: an active substate
exits and enters itself when there is a valid inner transition,
no matter the substate is the transition’s destination. Lastly,
based on our definition, we identified an incorrect statement
in [17] which stated simplification of diagrams by adopting
substates with inner transitions can retain the same behav-
ior. However, that statement left out the special behavior as
we discovered that shows the simplification may not behave
correctly.

4 Experimental studies

We have built up a translator in C# to automate the trans-
formation procedure illustrated in the previous section.
Besides applying the translator to examples from the user’s
guide [17], we have also used it on several applications,
including two demo cases from the MathWorks company:
an alarm monitor system for a car [20], and a stopwatch with
lap time measurement [7,8]. These applications cover a wide
range of Stateflow modeling features such as inter-level tran-
sitions, history junctions, and implicit events. In this section,
we first show how to systematically convert and rigorously

analyze a fault-tolerant fuel control system, and next sum-
marize the experimental results.

4.1 System description and stateflow diagrams

The fault-tolerant fuel control system is designed to be robust
where individual sensor failures can be detected and the con-
trol system can be dynamically reconfigured. A Stateflow
diagram, consisting of six parallel states, displayed in Figs. 1
and 8, models the control logic. The four parallel states, at
the top of Fig. 1 and in Fig. 8a, indicate four individual sen-
sors. The remaining two parallel states determine the over-
all system operation mode according to the status of four
sensors.

Initially, all sensors are in their normal mode except
the oxygen sensor; the warmup state in state Oxygen
is activated in the beginning until a period (symbol t in
Stateflow represents time) exceeds a predefined constant
o2_t_thresh. When a sensor fails, the control systems
broadcasts directly an eventINC to stateCounter (in Fig. 1)
which records the number of failed sensors.

The fueling mode of the engine is modeled by stateFuel-
ing in Fig. 8b. When a single sensor fails (denoted by an
implicit event in(Counter.FL1)), the engine continues
its operation and moves to a rich mode (in state Rich).
When more than one sensor fails (by another implicit event
enter(Counter.MultiFail)), the engine shuts down
(at state Shutdown). In addition, when speed exceeds the
maximum setting (max_speed), state Overspeed is acti-
vated. Note that the fueling mode after state Running is
re-entered is decided by two history junctions in states Run-
ning and Low, respectively.

4.2 Transformation and validation of diagrams

The Stateflow representation of this fault-tolerant fuel con-
trol system applies several Stateflow modeling features, such
as directed event broadcasting among parallel states, inter-
level transitions, history junctions and implicit events. We
here show how to deal with these advanced features by
transforming states Running and Overspeed in Fig. 8b;
Sect. 3.1 demonstrated our approach to convert states in
Fig. 1.

State Running contains two substates, a history junc-
tion, and two outgoing inter-level transitions. The following
process Fueling_Running_EnAct captures its entry
behavior, where the first conditional choice (lines 2 to 4)
checks the activity status of state Fueling, a superstate
of Running. The data operation at line 5 updates the sta-
tus of Running, followed by a conditional choice (from
line 6 to line 11) depicts the behavior of its substates when
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(a)

(b)

Fig. 8 Fuel control system in Stateflow

Running is not activated by any of its substates, i.e., vari-
able Fueling_Running_EnterBU being false.

In the above process specification, the then-part of the
conditional choice at line 6 captures the effect of a history
junction, denoted by variable Fueling_Running_H, on
the activation of the substates of Running. For instance,
lines 10 and 11 depicts that state Rich becomes active when
the variable value is equal to 28. On the other hand, the update
of this history junction is specified by the following process
Fueling_Running_ExAct. To be specific, before state
Running becomes inactive, it assigns Fueling_Run-
ning_H the ID value of the substate which is inactivated.
For example, lines 16 to 18 states that if state Rich whose

ID value is 28 is inactivated, the value of Fueling_Run-
ning_H is updated to 28.

Note that at the beginning of execution there is no sub-
state to be activated in Running (at line 7). This is because
state Warmup, a substate of state Low, is activated by default
with an inter-level default transition as shown in Fig. 8b. This
special behavior can be derived from the transition’s textual
representation below: (1) the empty content of the src block
states that the transition is a default transition, (2) the first ele-
ment, i.e., 23, of the linkNode parameter is the ID of state
Fueling, and (3) the value 32 in the dst block indicates
that the default state is Warmup.
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The above implicit event associated with Running is
captured in the following process Fueling_Running.
In particular, the condition at line 4 checks if the implicit
event, denoted by variable Enter_Counter_Multi-
Fail, takes place. We note that the sequence of condi-
tional choices from line 4 to line 12 captures the execu-
tion priorities between Running’s two outgoing transi-
tions.

The outgoing transition from state Overspeed contains
a connective junction that is the source of two outgoing tran-
sitions to different states.

The above contents show these three transition segments
and the junction in the MDL file, where ID 26 is Over-
speed, ID 25 Running, and ID 31 Shutdown. Apply-
ing Algorithm 2 in Sect. 3.4.2, the translation starts at
the transition with ID 60 that is the outgoing transition
of Overspeed, and checks the object type of the tran-
sition’s destination whose ID is 35 (at line 3 in Algo-
rithm 2). In this case, the type is a connective junction which
has two outgoing transitions with ID 61 and 66, respec-
tively. Hence, the for loop between line 6 and line 10 of
Algorithm 2 is executed. As shown in the following CSP#
process specifying the overall behavior of Overspeed,
transitions from the connective junction are converted into a
sequence of conditional choices between line 4 and line 9,
and the sequence order follows their execution order priori-
ties.

We note that “in(state_name)” is an implicit event
that occurs when the specified state is active. Thus, in our
above CSP# specification, we represent this type of implicit
events by checking the activity status of their corresponding
states.

The whole diagram is translated into a process named
Chart that describes the diagram behavior at a sample time
step denoted by event click (mentioned in Sect. 3.4.1).
The process shown below executes six processes of six par-
allel states based on their execution priority order; initially,
only state Oxygen is invoked (at line 3), because the process
modeling the entry behavior of Oxygen will activate other
parallel states with lower execution priority, see Step 5 in
Sect. 3.1.1 Note that no click event occurs when variable
broadcast is not equal to value 0 (at line 8). Moreover,
the update of time symbol t used in Oxygen is associated
with the click event (at lines 2 and 5).

This control system receives four inputs from its environ-
ment sensors. For the sake of simplicity, we restrict the input
type to integer. The random valuation of these four inputs is
captured by the process Initialization using general
choices (discussed in Sect. 3.4.1). With process Initial-
ization, the periodic behavior of the control system is
modeled by process Stateflow below.

Our transformed CSP# models preserve the hierarchical
structure of corresponding Stateflow diagrams, and capture
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all information such as states, variables and events. For exam-
ple, variable Counter_FL0_Status indicates the activ-
ity status of state FL0 within its superstate Counter, and
INC denotes a broadcasting event I NC in Fig. 8a. This one-
to-one correspondence allows users to easily specify desired
properties of the diagrams using the CSP# models. We pres-
ent below four safety properties of the control system which
have been verified by the model-checking capabilities of PAT.

– R1 ensures that the failure of a sensor (e.g., state fail
becomes active in state Pressure) is captured by state
Counter, namely, state FL0 is inactive.

– R2 checks that when there are at least two failed sen-
sors, the counter must be greater than value 1, i.e., state
MultiFail in Fig. 1 is active.

– R3 indicates that when the counter reaches the maximum
value 4 (denoted by state FL4), no INC event can be
generated from any sensor.

– The last assertion requires that when there are more than
one failed sensors (denoted by MultiFail), the fueling
mode becomes disabled eventually. In other words, state
Disabled is activated.

4.3 Summary of experiments

Besides the above fuel control system, we have also trans-
formed and validated other systems. Table 1 lists the model-
ing features of those systems’ Stateflow diagrams; not only
basic elements such as states, transitions, and connective
junctions are used, additional features like event broadcasting
and implicit events occur. Note that the one-to-one correspon-
dence between our transformed CSP# models and Stateflow
diagrams facilitates users to quickly relate problematic traces
of CSP# models (denoting a counterexample) to Stateflow
diagrams.

– Case 1 is the fault-tolerant fuel control system, our run-
ning example throughout this paper.

Table 1 Summary of diagram features

Case States Trans Junc Addition

1 30 32 2 Inter-level transitions, directed event
broadcast, history junctions, array
datatype, implicit events, temporal
constraints

2 9 14 0 Directed event broadcast, temporal
constraints

3 10 13 1 Implicit events

4 6 15 4 Inter-level transitions, inner transitions

– Case 2 is another demo from the MathWorks Company.3

It models gear selection in an automatic transmission.
The temporal constraints modeled in this Stateflow dia-
gram return true after the diagram wakes up user-speci-
fied times since activation of their associated states.

– Case 3 is an alarm monitor system for cars designed to ful-
fill two safety properties [20]. One property (R1) ensures
that car doors are locked when the car exceeds a pre-
defined speed, and the other (R2) triggers a belt alarm
when the car exceeds a specific speed and the seat belts
are not fastened. The PAT model checker analyzed the
transformed CSP# models of the Stateflow diagram, and
detected subtle bugs violating both properties, respec-
tively [4]. One counterexample depicts that: the car can
exceed the predefined speed before turning on its engine
(e.g., moving on a slope), and thus after the engine is
on, the default state where doors are unlocked is entered
without checking the speed. The other counterexample
revealed also the necessity of adding conditions to differ-
ent default states.

– Case 4 is a stopwatch with lap time measurement [8]. Its
Stateflow diagram adopts inner transitions to specify the
counting of time from seconds to minutes and to hours.
From our experiment, we identified a bug that the time for
display may not be equal to the digital clock (R1) when
several events occur between two digital clock clicks; the
update of the time is a during action which cannot take
place when the state of that action becomes active and
then inactive at a pair of adjacent of clock clicks.

Table 2 shows the validation results of those cases using
PAT, where property R4 of the fuel control system is In-
terMulti -> <> EngineDown. The result includes
the number of visited states and time (in seconds). The com-
puter running the experiment is equipped with Intel Core Duo
CPU at 1.86GHz and 2GB memory.

3 http://www.mathworks.com/products/stateflow/demos.html?file=/
products/demos/shipping/simulink/sldemo_autotrans.html.
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Table 2 Validation result

Case Property Verdict Visited states Time (s)

Fuel control []R1 Yes 3,021,176 63

Fuel control []R2 Yes 3,021,176 65

Fuel control []R3 Yes 3,021,176 58

Fuel control []R4 Yes 3,178,838 173

Alarm monitor []R1 No 9303 0.19

Alarm monitor []R2 No 3993 0.07

Stopwatch []R1 No 140 0.01

5 Conclusion

We have demonstrated a systematic approach to transform
and validate Stateflow diagrams based on a generic model
checker PAT. The automatic translation from Stateflow mod-
els to CSP# models in PAT preserves the execution semantics
of Stateflow, and it covers advanced Stateflow modeling fea-
tures such as implicit events and history junctions. The trans-
formed CSP# models are executable, and this enables us to
validate our interpretation of Stateflow semantics by means
of simulations, specifically, comparing execution sequences
and variable values step by step between CSP# models and
Stateflow semantic examples from its user’s guide. Moreover,
users can verify their systems against important safety and
liveness properties based on the model-checking facilities
of PAT. We have applied our approach to several examples
including two demo cases from the MathWorks Company,
where we discovered subtle defects in Stateflow user’s guide
and demo cases.

Our modeling language CSP# lacks direct support for
floating points and structured datatypes. Nonetheless, PAT
supports user-defined data structures written in programming
languages such as C#, C, and Java. Thus, we can construct
C# (C or Java) floating point fields or a structured datatypes
and then invoke them in CSP# models. Note that using C#
is straightforward in PAT since PAT is developed based on
the .NET framework; other programming languages can be
used in CSP# models by leveraging some bridging libraries
(e.g., using JNBridge to call Java in .NET). One catch is that
we must ensure that there are only finitely many different
values for any of those datatypes. Separately, human effort is
still needed to map execution trace of CSP# models to cor-
responding Stateflow diagrams when there is a violation of
desired properties. Automating this mapping process is one
future work.
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