
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2013

USMMC: A self-contained model checker for UML state machines USMMC: A self-contained model checker for UML state machines

Shuang LIU

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Manchun ZHENG

Bimlesh WADHWA

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LIU, Shuang; LIU, Yang; SUN, Jun; ZHENG, Manchun; WADHWA, Bimlesh; and DONG, Jin Song. USMMC: A
self-contained model checker for UML state machines. (2013). Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, Saint Petersburg, Russia, August 18-26. 623-626.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5010

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5010&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5010&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Shuang LIU, Yang LIU, Jun SUN, Manchun ZHENG, Bimlesh WADHWA, and Jin Song DONG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5010

https://ink.library.smu.edu.sg/sis_research/5010

USMMC: A Self-Contained Model Checker for UML State
Machines∗

Shuang Liu
School of Computing, National

University of Singapore
liushuang@comp.nus.edu.sg

Yang Liu
Nanyang Technological

University
yangliu@ntu.edu.sg

Jun Sun
Singapore University of
Technology and Design
sunjun@sutd.edu.sg

Manchun Zheng
Singapore University of
Technology and Design

manchun zheng@sutd.edu.sg

Bimlesh Wadhwa
School of Computing, National

University of Singapore
dcsbw@nus.edu.sg

Jin Song Dong
School of Computing, National

University of Singapore
dongjs@comp.nus.edu.sg

ABSTRACT
UML diagrams are gaining increasing usage in Object-Oriented sys-
tem designs. UML state machines are specifically used in modeling
dynamic behaviors of classes. It has been widely agreed that verifi-
cation of system designs at an early stage will dramatically reduce
the development cost. Tool support for verification UML designs
can also encourage consistent usage of UML diagrams throughout
the software development procedure. In this work, we present a
tool, named USMMC, which turns model checking of UML state
machines into practice. USMMC is a self-contained toolkit, which
provides editing, interactive simulation as well as powerful model
checking support for UML state machines. The evaluation results
show the effectiveness and scalability of our tool.

Categories and Subject Descriptors:.
D.2.4 [Software/Program Verification]: Model checking

General Terms:.
Verification

Keywords:.
UML state machines, model checking, semantics

1. INTRODUCTION
UML diagrams are gaining increasing usage in object oriented

system designs and UML state machines are specially used to model
the dynamic behaviors of classes. These diagrams serve as the basis
for code development. However, UML specification is documented
in natural language, which easily introduces inconsistencies and
ambiguities [3]. Another default reported about UML diagrams
is the lacking of consistency usage [11] throughout the software
development process. As is reported in [11], Software engineers
tend to use UML “as long as it is considered useful, after which it is
∗This work is supported by project 9.10.11 “Software Verification
from Design to Implementation” of Programme Merlion (official
collaborative grant co-funded by France and Singapore).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

set aside or even discarded”. Lacking of tool support is one of the
reasons which prevents the usage of UML throughout the software
development process (Zeichick [15] found in their survey in 2002
that the reason for one-fourth of the investigate people that do not
use UML is because that “their tools do not support UML”). We
believe that, in order to make UML helpful throughout the software
development process, to enable stimulation the dynamic behavior
of UML designs and to turn the idea of automatic finding system
design flaws in early stages into practice, rigorous analysis and
verification supports on the UML diagrams are necessary. There
exists some tools, such as vUML [8], HUGO [6] and TABU [2],
which support model checking UML state machines. These tools
conduct translations from a UML diagrams to the input language of
some model checkers, such as SPIN, UPPAAL, etc. The verification
can be accomplished by relying on verification tools for the target
languages. But the translation-based approaches suffer from the
following defects: (1) Due to the semantic gaps between UML state
machines and the target languages, it may be hard to translate some
syntactic features of UML state machines, introducing additional
but undesired behaviors. For example in [16], extra events have
to be added to each process in order to model exit behaviors of
orthogonal composite states, which introduces redundant behaviors.
(2) Translation-based approaches heavily depend on the target for-
mal languages. Furthermore, the additional behaviors introduced
during the translation may significantly slow down the verification;
and optimization and reduction techniques (like partial order re-
duction) may not apply in order to preserve the semantics of the
original model. (3) Lastly, for verification, translation-based tools
are very sensitive to the updating of the underlying model checkers
they depend on. For example the counterexample re-translation
functionality of HUGO is disabled because of the updating of Spin.

All the discussed deficiencies make it difficult to apply those
tools in real world problems. In order to address these issues, we
are motivated to develop a self-contained model checker which is
customized for UML state machines.

Our tool, named USMMC (UML State Machine Model Checker),
is implemented based on a formal operational semantics [9] defined
for the complete set of UML state machines diagrams. We currently
support model checking of safety and liveness properties with differ-
ent fairness assumptions [13]. We have implemented our tool in a
way that all the model checking details are hidden from the users so
that users without any model checking background are also able to
use our tool. Our tool provides user-friendly graphical interfaces. It
takes as input a UML state machine diagram in xmi format, which
is compatible with existing UML case tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2494595

623

Our tool distinguishes itself from existing UML tools with the
following features:

• It is a fully automatic tool for model checking UML state ma-
chine diagrams directly and provides user friendly graphical
interface.

• It supports model checking of safety and liveness properties
with fairness assumptions.

• It supports simulation and verification of multiple UML state
machines interactions.

• It reports violations directly in terms of UML state machine
execution traces, which are intuitive to follow.

The rest of the paper is organized as follows. Section 2 briefly
introduces the operational semantics that our implementation is
based on. Section 3 presents the architecture and implementation
details of USMMC. Section 4 reports evaluation results of our tool.
We discuss related work in Section 5. Section 6 provides further
discussions and concludes the paper.

2. FORMAL SEMANTICS OF UML STATE
MACHINES

To enable direct model checking of UML state machines, we pro-
vide an operational semantics for UML state machines [9], which
serves as the theoretical foundation for the implementation of US-
MMC. The operational semantics covers all features of the latest
version (v2.4.1) of UML state machines [1], including the com-
plex features such as choice, join/fork pseudostates, submachine
state which are often left out by existing approaches. We also con-
sider communications between state machines as well as event pool
mechanisms, which makes verification of the entire system behavior
(instead of a single UML state machine) possible. The syntax struc-
ture of our formalization obeys the structure of OMG UML state
machines specifications, which adapts well to future changes, such
as refinements.

The semantic model of our operational semantics is Labeled
Transition System (LTS), which is subject to model checking. In
our semantic definition, each LTS step corresponds to an run-to-
completion (RTC) step in UML state machines, which may be com-
posed of multiple UML state machine transitions. Thus implemen-
tation based on our formal semantics will dramatically reduce the
state space generated compared with translation-based approaches.
This is also confirmed by the evaluation results in Section 4.

3. ARCHITECTURE DESIGN AND IMPLE-
MENTATION

In this section, we introduce the architecture design, the function-
ality and the implementation choices of USMMC.

3.1 Architecture of USMMC
USMMC is a self-contained model checker for UML state ma-

chines, which consists of four components, i.e., Editor, Parser, Sim-
ulator and Verifier. Fig. 1 shows the architecture design of USMMC.
The UML state machines and various assertions can be edited in
the text editor component. On clicking the simulation/verification
button, the parser is first called to parse the UML state machines
and assertions into internal representations; then simulation/model
checking components are invoked to perform the simulation/model
checking respectively. In the case of an invalid assertion, a con-
terexample in terms of UML state machines execution trace will be

Verifier

Simulator

Editor

Parser

XML Parser Assertion Parser and Buchi Automata Translator

Counterexamples

Assertion
Collection

UML State
Machine

Collection

Simulator Graphical
Viewer

Reachability
Model Checker

DeadLock
Model Checker

Explicit On-the-fly Model Checking
Supporting Fairness Assumptions

UML State
Machine Models LTL Assertions Reachability

Assertions
DeadLock
Assertions

View BA

generategenerate

Figure 1: The Architecture of USMMC

returned. In the following, we are going to introduce each compo-
nent of USMMC in details.

Editor The editor component provides a text editor which en-
ables editing of both models and properties. Since our tool focuses
on providing model checking support for UML state machines in-
stead of graphical modeling, so it takes as input UML state machines
in xmi format, which is exported from existing UML case tools. The
editor also supports syntax highlighting and multiple document
editing.

Parser In USMMC, we have implemented a parser for UML
state machines and a parser for assertions. The xml parser parses
UML state machines (in xmi format) into internal representations,
i.e., the syntax structure for UML state machines defined in [9]. The
formal semantics of UML state machines is implemented to obtain
the LTS models from the internal representations. The LTL models
will be consumed by simulation and model checking components in
later stages. The assertion parser parses LTL, liveness and deadlock
free assertions into internal representations. It supports an assertion
language which allows LTL formulae constituted with propositions
and events, which compliments existing model checkers. Buchi
Automata can be generated from negations of LTL assertions.

Simulator USMMC provides a user friendly simulator which is
capable of performing automatic random walking or user-guided
step-by-step simulations on UML state machines executions. Since
our implementation is based on the formal semantics and the LTS
steps are consistent with the UML state machine RTC steps, the
LTS model generated by our simulator actually directly reflects
the execution of UML state machines. Thus the simulator of US-
MMC provides good tractability to the original UML state machines
model. The simulator also provides other functionalities, such as
complete state graph generation, trace playback, counterexample
visualization.

Verifier The verifier is capable of conducting on-the-fly explicit
state model checking on a variety of properties, including deadlock-
free checking, reachability checking and refinement checking [14].
Furthermore, it implements dedicated algorithms for model check-
ing LTL properties under a variety of fairness constraints, including
global fairness, event/process level weak fairness and event/process
level strong fairness [13], which are often required for verification of
liveness properties. Counterexamples are returned as UML state ma-
chine execution traces (instead of any intermediate formats), which
are intuitive to follow.

624

3.2 Implementation Choices for USMMC
There are many “semantic variation points” [3] in UML state

machines specifications, which introduce difficulties to the semantic
formalization as well as tool implementation. We are going to dis-
cuss our choices for implementing some of the important semantic
variation points in USMMC in this section.

Event Dispatching Mechanism The concept of event pool is
introduced to control the event consumption within a UML state
machine and to enable communications between different state
machines. It guarantees the stabilization of the state machines
within a finite number of steps. But the concrete data structure
to implement the event pool and event dispatching order are not
specified. Our implementation of event pool follows the operational
semantics of UML state machines defined in [9], where sets are
used to represent event pools. Completion and deferred events are
properly considered according to the specification [1].

Conflicting Transitions In UML state machines, multiple tran-
sitions can be enabled by a single dispatched event. A maximal
non-conflicting set of transitions should be decided to execute and
the OMG UML state machines documentation [1] has provided two
priority rules to deal with conflicts. However not all conflicts are
solvable by the provided priority rules. In our implementation, all
the enabled maximal non-conflicting transition sets will be enumer-
ated if more than one maximal non-conflicting transition sets are
triggered by the same dispatched event and the priority of them
cannot be solved.

Communications between State Machines USMMC supports
verification and simulation of multiple state machines communica-
tion through signal and call events. In our implementation, signal
events are processed asynchronously and call events are processed
synchronously, i.e., the caller state machine will be blocked until
the callee state machine finishes its execution and returns control.
Recursive calls are supported in our implementation.

4. VERIFICATION RESULTS
In this section, we conduct verifications on some commonly used

examples with USMMC and HUGO [6]. HUGO is a tool which
translates UML state machines into Promela models and utilizes
Spin to perform model checking. The latest version of HUGO is
based on Spin4.3.0, which is out-of-date. HUGO has compatability
problems with Spin5.x and Spin6.x, as a result, the conterexam-
ple returned by Spin cannot be translated back to UML execution
traces and is hard for human to interpret. The examples we use are
RailCarO [5], RailCar [9] (modifies RailCarO to manually intro-
duce bugs. Both examples contain transitions emanating/entering
orthogonal composite states, which are not supported by HUGO.),
BankATM [6], dining philosopher1 and TollGate [7]. The experi-
ments are conducted with an Intel Core i7− 2600, 3.4GHZ CPU
and 8GB memory machine. Our tool works on Windows7, 64-bit
operating system and HUGO works with Spin6.2.3 on Ubuntu10.04
LTS operating system.

The verification results are shown in Table 1. TTime represents
the time used to translate UML state machines models into Promela.
ETime represents the time used by Spin to do model checking. Our
tool finds the manually injected bugs in RailCar system, which is out
of the capability of HUGO since HUGO does not support transitions
emanate/enter orthogonal composite states, which are presented in
the RailCar model. The results also show that our tool out performs
HUGO both in execution time and memory consumption on all the
examples.

1We model forks and philosophers as separate UML state machines,
which execute in parallel.

The main reason is that the Promela code generated by HUGO
has many local transitions, (thus many local variables are introduced
to record the status of the intermediate states, which are memory
consuming) which introduce overheads. For example, in the gen-
erated TollGate promela code, 7 steps are conducted to move from
an initial pseudostate to its target state, but it is actually within one
RTC step in the UML state machines semantics. Our tool strictly
obeys the RTC semantics of UML state machines, where only one
step is taken for the above case. The costs introduced by local transi-
tions are exponential in case of non-determinism, such as the dining
philosopher example.

The experiment also shows the scalability of USMMC. We check
the deadlockfree property (with breadth first search) on dinning
philosopher models from n = 2 up to n = 72, and our tool is
capable of finding the deadlock within acceptable amount of time.
Spin reports out-of-memory error on the models generate by HUGO
when n ≥ 4. The data in Table1 for n = 4 is obtained when we set
the search depth as the default value, i.e. 1, 000, 000. We can see
from the result that USMMC can handle large state spaces caused
by non-determinism. Reducing further the state space through tech-
niques such as partial-order reduction is the subject of our future
work.

5. RELATED WORK
There were some tools developed for model checking UML di-

agrams. vUML [8] is one of the early tools which translates a
UML state machines into Promela models. It supports checking of
deadlock, livelock, and reachability properties. But these properties
require explicitly annotating states with stereotypes and constraints.
LTL properties cannot be checked by vUML without knowing the
translated Promela model. HUGO [6] is a tool which aims at ver-
ifying the consistencies of UML state machines with properties
specified by collaboration diagrams or sequence diagrams. It trans-
lates UML state machines into Promela, the input language of the
Spin model checker. It supports model checking of deadlock proper-
ties and LTL properties. In [16], UML state machines are translated
to CSP# and verified by PAT model checker. TABU [2] translates a
UML state machines into the input language of SMV model checker.
Different from vUML and HUGO, it can support verification the
of LTL properties by providing property patterns, which guides
the specification of properties. Another tool [12] is based on SMV
model checker. It is capable of checking both the static, i.e., well-
formed rules, and dynamic properties of a UML state machines.
JACK [4] is an integrated environment based on the usage of pro-
cess algebras, automata and temporal logic. It supports many phases
of system development process by integrating different editing and
verification tools. The AMC component inside JACK is able to con-
duct model checking against ACTL properties. But the components
of JACK use FC2 as exchange format, which is not widely sup-
ported by the state-of-practice tools. Among all the tools discussed
here, only HUGO is currently available. All of them except JACK
conduct a translation-based approach, which suffers from efficiency
and tractability problems. JACK, though directly implements the
semantics, is not fully automatic and is unavailable now. Our tool,
USMMC, is developed for the purpose of providing fully automatic
and direct model checking functionalities, which is more efficient,
user friendly and achieves a good coverage of UML state machine
features. Since the counterexamples are presented in terms of event
execution tracess in UML state machines instead of any intermediate
formats, USMMC provides good tractability of design flaws.

2n is the number of philosophers.

625

Table 1: Evaluation results

Model Property Result USMMC HUGO
Time(s) State Transition Mem (KiB) TTime(s) ETime(s) State Transition Mem (KiB)

RailCar Prop1 not valid 0.013 30 34 43, 342 - - - - -
RailCarO Prop1 valid 0.011 44 54 43, 058 - - - - -
BankATM Prop2 valid 0.009 25 28 917.5 0.231 0.050 578 1, 133 98, 528
TollGate Prop3 valid 0.110 36 50 43, 345 0.197 0.505 61, 451 256, 807 100, 578

DP2 deadlock not valid 0.005 39 65 2, 318 0.196 0.111 12, 766 42, 081 98, 918
DP3 deadlock not valid 0.039 237 589 10, 145 0.242 379.009 4, 626, 838 23, 897, 077 276, 067
DP4 deadlock not valid 0.34 1, 519 5, 079 21, 059 1.117 8944.754 57, 213, 708 339, 761, 530 3, 059, 807
DP5 deadlock not valid 3.11 9, 634 40, 366 92, 369 - - - - -
DP6 deadlock not valid 27.87 63, 069 324, 275 226, 271 - - - - -
DP7 deadlock not valid 232.64 398, 101 2, 385, 361 2, 852, 672 - - - - -

Prop1=�(alert100→ ♦arriveAck), Prop2=�(retain → ((!cardValid ∧ numIncorrect ≥ maxNumIncorrect)), Prop3=�(TurnGreen → ♦carExit).

6. CONCLUSION AND DISCUSSIONS
We developed a self-contained model checker and simulator for

UML state machines, which is able to check safety and liveness
properties and conduct step-wise simulation of UML state machines
executions. Our tool is implemented based on a formal operational
semantics defined for UML state machines. The experiment results
show the effectiveness and efficiency of our tool. USMMC has
been implemented as a stand-alone tool in C# with user-friendly
graphical interfaces. Starting from 2012, USMMC has come to a
stable stage with solid testing and 11 built-in examples. It has been
applied to verify many real-time systems ranging from classical
concurrent algorithms, such as the dining philosopher problem,
to real world problems, such as the railcar system. Our future
works include further reducing the state space through techniques
such as partial order reduction. Detail information about USMMC
(including the video demonstration and the deliverable tool) can be
found in our website www.comp.nus.edu.sg/~lius87. We
list some known issues about our tool and possible solutions as
follows.

Compatability problem about XMI format Although OMG
had released XML Interchange Format (XMI) as the standard ex-
change format of UML diagrams, different tools adopt different
versions of XMI, which causes compatability problems between the
models exported by different tools. The models exported by one
case tool cannot be properly displayed by the other tools, as is re-
ported by [10]. This is a known open issue. Since our tool takes the
UML state machine models (in xmi format) exported by those tools
as input and it is infeasible for us to support all those incompatable
formats, we support the output format of Enterprise Architect in the
current stage. Providing our own graphical modeling front-end for
UML state machines may thoroughly solve the problem and this is
subject to our future work.

Structure of the Event Pool Currently, the event pool is im-
plemented as a set in our tool. We are planning to provide more
structures, such as queue, bag, and user-defined structures for the
event pool implementation in order to meet more modeling require-
ments.

Action language In the current implementation, we do not pro-
vide any specific language for modeling actions and behaviors of
UML state machines, just a subset of Object Constraint Language
(OCL), arithmetic and boolean calculations are supported. So we
are planning to support more complex languages, such as imperative
programming languages (C/C#/java), as the description language of
events, actions and activities. This will make our tool coincide with
existing graphical UML editing tools and is capable of conveying
more meticulous system design concerns.

7. REFERENCES
[1] OMG unified language superstructure specification (formal).

Version 2.4.1, 2011-08-06. http://www.omg.org/
spec/UML/2.4.1/Superstructure/PDF/.

[2] M. E. Beato, M. Barrio-Solórzano, C. E. Cuesta, and P. de la
Fuente. UML automatic verification tool with formal methods.
Electronic Notes in Theoretical Computer Science, 127:3–16,
2005.

[3] H. Fecher, J. Schönborn, M. Kyas, and W. de Roever. 29 new
unclarities in the semantics of uml 2.0 state machines. In
Formal Methods and Software Engineering. Springer, 2005.

[4] S. Gnesi, D. Latella, and M. Massink. Model checking UML
statechart diagrams using JACK. In HASE, 1999.

[5] D. Harel and E. Gery. Executable object modeling with
statecharts. IEEE Computer, 30:31–42, 1997.

[6] A. Knapp and S. Merz. Model checking and code generation
for UML state machines and collaborations. In Proceedings of
5th Workshop on Tools for System Design and Verification,
Technical Report, 2002.

[7] J. Kong, K. Zhang, J. Dong, and D. Xu. Specifying behavioral
semantics of UML diagrams through graph transformations.
Journal of Systems and Software, 82:292–306, 2009.

[8] J. Lilius and I. P. Paltor. vUML: A tool for verifying UML
models. In ASE, 1999.

[9] S. Liu, Y. Liu, E. André, C. Choppy, J. Sun, B. Wadhwa, and
J. S. Dong. A formal semantics for complete uml state
machines with communications. In iFM, 2013.

[10] B. Lundell, B. Lings, A. Persson, and A. Mattsson. UML
model interchange in heterogeneous tool environments: An
analysis of adoptions of XMI 2. In MODELS. Springer, 2006.

[11] M. Petre. UML in practice. In ICSE, 2013.
[12] W. Shen, K. Compton, and J. Huggins. A toolset for

supporting UML static and dynamic model checking. In
COMPSAC, 2002.

[13] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible
verification under fairness. In CAV, 2009.

[14] T. Wang, S. Song, J. Sun, Y. Liu, J. S. Dong, X. Wang, and
S. Li. More anti-chain based refinement checking. In ICFEM,
2012.

[15] A. Zeichick. Modeling usage low; developers confused about
uml 2.0, mda. Technical report, BZ Research, 2002.

[16] S. Zhang and Y. Liu. An automatic approach to model
checking UML state machines. In SSIRI-C, 2010.

626

	USMMC: A self-contained model checker for UML state machines
	Citation
	Author

	USMMC: a self-contained model checker for UML state machines

