
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2013

TzuYu: Learning stateful typestates TzuYu: Learning stateful typestates

Hao XIAO

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Shang-Wei LIN

Chengnian SUN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
XIAO, Hao; SUN, Jun; LIU, Yang; LIN, Shang-Wei; and SUN, Chengnian. TzuYu: Learning stateful typestates.
(2013). Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Silicon Valley, USA, November 11-15. 432-442.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5007

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5007&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

TzuYu: Learning Stateful Typestates
Hao Xiao∗, Jun Sun†, Yang Liu∗, Shang-Wei Lin‡ and Chengnian Sun§

∗School of Computer Engineering, Nanyang Technological University
†Singapore University of Technology and Design

‡Temasek Laboratories, National University of Singapore
§School of Computing, National University of Singapore

Abstract—Behavioral models are useful for various software
engineering tasks. They are, however, often missing in practice.
Thus, specification mining was proposed to tackle this problem.
Existing work either focuses on learning simple behavioral
models such as finite-state automata, or relies on techniques
(e.g., symbolic execution) to infer finite-state machines equipped
with data states, referred to as stateful typestates. The former
is often inadequate as finite-state automata lack expressiveness
in capturing behaviors of data-rich programs, whereas the
latter is often not scalable. In this work, we propose a fully
automated approach to learn stateful typestates by extending the
classic active learning process to generate transition guards (i.e.,
propositions on data states). The proposed approach has been
implemented in a tool called TzuYu and evaluated against a
number of Java classes. The evaluation results show that TzuYu
is capable of learning correct stateful typestates more efficiently.

I. INTRODUCTION

Behavioral models or specifications are useful for vari-
ous software engineering tasks. For instance, (object) types-
tates [11], [13], [27], [34] are important for program debugging
and verification. A precise (and preferably concise) typestate
is useful for understanding third-party programs. In practice,
however, such models are often inadequate and incomplete. To
overcome this problem, learning based specification mining [5]
was proposed to automatically generate behavioral models
from various software artifacts, e.g., source code [2], execution
traces [29] and natural language API documentation [37]. This
approach is promising as it requires no extra user efforts.

Existing approaches on learning typestates (also known as
interface specification [4]) can be broadly categorized into
two groups. One focuses on learning behavioral models in
the forms of finite-state automata, without data states. These
methods are often inadequate in practice, as it is known that
finite-state automata lack expressiveness in modeling data-rich
programs. Consider a simple example of a Stack class with
two operations: push and pop. A typestate of the Stack should
specify the following language: the number of push operations
in any valid trace of the model must be no less than the
number of pop operations. It is known that this language is
irregular and therefore beyond the expressiveness of finite-
state automata. On the other hand, the model of the Stack

can be easily expressed using a finite-state machine with a
guard condition on the pop operation: size ≥ 1 where size

denotes the number of items in the stack. The central issue is
thus: how to identify the proposition size ≥ 1 systematically
and automatically.

The other group learns stateful typestates using relatively
heavy-weight techniques like SMT/SAT solving. For instance,
Alur et al. [4] propose to synthesize interface specifications
for Java classes based on predicate abstraction, which relies
on theorem proving. Similarly, Giannakopoulou et al. [15]
propose to learn typestates through symbolic execution (which
relies on SMT solving) and refinement. Given that existing
theorem proving and SMT/SAT techniques are still limited in
handling complicated data structures and control flows, these
methods are often limited to small programs.

In this paper, we propose an alternative approach to learning
stateful typestates from Java programs. The key idea is to
extend an active learning algorithm with an approach to
automatically learning transition guards (i.e., propositions on
data states). Our approach takes the source code of a class
as the only input and generates a stateful typestate through
a series of testing, learning and refinement. Fig. 1 shows the
high level architecture of our approach. There are three main
components. The learner constructs a typestate based on the L*
algorithm [6]. It drives the learning process by generating two
kinds of queries. One is the membership query, i.e., whether
a sequence of events (i.e., a trace) of the current typestate
is valid. The other is the candidate query, i.e., whether a
candidate typestate matches the ‘actual’ typestate. The tester
acts as a teacher in the classic active learning setting. It takes
queries from the learner and responds accordingly based on
testing results. In the original L* algorithm, the model to be
learned is a finite-state automaton and a trace can be either
valid or invalid but never both. However, in our setting, it
is possible that two executions have the same sequences of
method calls on the same object but lead to different outcomes
(i.e., error or no-error), due to different inputs to the method
calls (which in turn result in different data states). In such
a case, alphabet refinement is performed, by splitting one
event into multiple events, each of which has a different guard
condition so that the traces are distinguished. The refiner is
used to automatically identify proper guard conditions. In the
following, we use a simple example to illustrate how our
method works.

We take the java.util.Stack class in Java (SE 1.4.2) as the
running example. Without loss of generality, let us focus on
the following two methods: push (which takes an object as
an input) and pop, and one data field eleCount (inherited
from the java.util.Vector class) which denotes the number of
elements in the stack. Initially, we have an alphabet containing

978-1-4799-0215-6/13 c© 2013 IEEE ASE 2013, Palo Alto, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

432

(+Counterexample, -Counterexample)

(Failed Tests, Success Tests)

Membership Query

Candidate Query

(O+, O-)

Divider for (O+,O-)

Fig. 1. The high-level architecture of TzuYu.

〈〉
〈〉 1

〈push〉 1
〈pop〉 0

〈pop, push〉 0
〈pop, pop〉 0

(a)

A B

push

pop

push,pop

(b)

Fig. 2. The first observation table (a) and candidate Typestate (b).

two events corresponding to the two methods. Given an
instance of the Stack class, the learner generates a number of
membership queries, i.e., a sequence of method calls. Given
one membership query, the tester generates multiple test cases
which have the same sequence of method calls (with different
arguments) and answers the query. The queries and testing
results are summarized in the observation table (refer to details
in Section II-B), as shown in Fig. 2 (a) where 〈〉 is an
empty sequence of method calls; and 〈pop, push〉 denotes the
sequence of calling push after pop. The 0s in column 〈〉 denote
that all tests generated for the sequence 〈pop〉 and then 〈〉 result
in an exception or assertion failure (hereafter failure). The 1s
denote that none of the tests result in failure. Based on the
observation table, the learner generates a candidate typestate
as presented in Fig. 2 (b). Note that the typestate is a finite-
state automaton with one accepting state, i.e., state A.

Next, the learner asks a candidate query, i.e., is the typestate
in Fig. 2 (b) the right typestate? The tester takes the candi-
date typestate and performs random walking, i.e., randomly
generates a set of tests which correspond to traces of the
typestate. Notice that a trace of the typestate is either accepting
(i.e., ending with an accepting state) or otherwise. Through
the random walking, the tester identifies one inconsistency
between the typestate and the class under analysis. That is, the
typestate predicates that calling pop from state A always results
in failure, whereas it is not always the case. For instance,
calling method push first (which leads to state A) and then
pop results in no failure.

The existence of inconsistency suggests that the typestate
must be refined. We collect data states of the stack at state
A before calling method pop and partition them into two sets,
i.e., ones which lead to failure after invoking pop and the rest.
Next, the refiner is consulted to generate a proposition φ such
that all data objects in the first set satisfy φ while all the
rest violate φ. The technique used by the refiner is based on
Support Vector Machines (SVMs) [31]. In the above example,
the generated proposition is eleCount ≥ 1. Next, we re-start
the learning process with an alphabet which contains three
events: push, [eleCount ≥ 1]pop, and [!(eleCount ≥ 1)]pop

where [eleCount ≥ 1]pop denotes the event of calling pop

when the condition eleCount ≥ 1 is satisfied. After a series

〈〉
〈〉 1

〈push〉 1
〈[!(eleCount ≥ 1)]pop〉 0
〈[eleCount ≥ 1]pop〉 1

〈[!(eleCount ≥ 1)]pop, push〉 0
〈[!(eleCount ≥ 1)]pop, [eleCount ≥ 1]pop〉 0

〈[!(eleCount ≥ 1)]pop, [!(eleCount ≥ 1)]pop〉 0

(a)

1 0
push,

[eleCount ≥ 1] pop

[eleCount ≤ 0] pop
push,pop

(b)

Fig. 3. The second observation table (a) and candidate Typestate (b) generated
by TzuYu.

of membership queries, the learner constructs the observation
table as shown in Fig. 3 (a).

Notice that all tests corresponding to [eleCount ≥ 1]pop

result in no failure and therefore it is marked 1 in the table.
A new candidate typestate is then generated from the table,
as shown in Fig. 3 (b). The tester performs random walking
again and finds no inconsistency. We then present Fig. 3 (b)
as the resultant typestate after some simple bookkeeping on
Fig. 3 (b) (by transforming !(eleCount ≥ 1) to eleCount ≤ 0
using the fact that eleCount is an integer). 2

The novelty of our approach is on integrating a refiner
into the active learning process so as to learn typestates for
data-rich programs. In particular, by adopting techniques from
machine learning community, we are able to automatically
generate propositions for alphabet refinement. The refiner acts
as an abstract mapper between the learner and the class
under analysis. Compared with existing techniques on finding
the right proposition (e.g., [15]), our approach improves the
performance of typestates generation as it avoids SMT/SAT
encoding and solving. Furthermore, to learn concise stateful
typestates efficiently, we investigate the interplay between
learning and refinement and develop an algorithm which avoid-
s re-starting learning when alphabet refinement occurs. The
method has been implemented in a tool named TzuYu1 and
our experiments show that TzuYu is able to learn meaningful
and concise typestates efficiently.

The remainder of the paper is organized as follows. Sec-
tion II presents preliminary introduction to the concepts and
techniques used in our approach. Section III presents the
details of our approach. Section IV presents details on the
implementation of TzuYu and Section V evaluates its perfor-
mance with experiments. Section VI discusses related work.
Section VII concludes the paper.

II. PRELIMINARIES

In this section we formalize the definitions related to stateful
typestate and introduce the techniques used in our approach.

A. Definitions

The input to our method is a Java class (e.g., the Stack class)
which is constituted by a set of instance variables (which could

1TzuYu is commonly known as the best student of Confucius.

433

be objects of other classes) and methods. In this work, we fix
one object of the given class as the main receiver and inspect
behaviors of all instances of the class through this object. An
object state is the status of the object, i.e., the valuation of its
variables. For each object, there is an initial object state2, i.e.,
the initial valuation of the variables. A method is a function
which takes one object state and returns a new one. A concrete
execution ex of an object is a finite sequence

ex = 〈o0,m0(−→p0), o1,m1(−→p1), · · · , ok,mk(−→pk), ok+1〉

where oi is an object state and mi(−→pi) is a method call with
concrete arguments −→pi . A failed execution is an execution
which results in an exception or assertion failure. A successful
execution is one which does not fail.

The output of our method is a stateful typestate, which is
defined on top of the deterministic finite-state automaton.

Definition 1: A deterministic finite-state automaton (here-
after DFA) is a tuple D = (S,Σ, init,→,F) such that S is a
finite set of states; init ∈ S is an initial state; Σ is the alphabet
which is a finite set of events; →: S × Σ → S is a transition
function and F ⊆ S is a set of accepting states. 2

A trace of D is a sequence tr = 〈s0, e0, s1, · · · , sn, en, sn+1〉
such that s0 = init and (si, ei, si+1) ∈→ for all i. tr is accepting
if sn+1 ∈ F. Otherwise, it is non-accepting. The language of D
is the set of all accepting traces of D. In an abuse of notations,
we write s

tr
→ s′ to denote that trace tr from state s leads to

state s′ and write tr(s) to denote s′. For two traces tr0 and tr1,
we write tr0 · tr1 to denote their concatenation.

Definition 2: A (stateful) typestate of a Java class is a
tuple T = (Prop,Meth,D) such that Prop is a set of
propositions, which are Boolean expressions over variables
in the class; Meth is the set of method names in the class;
D = (S,Σ, init,→,F) is a DFA such that Σ ⊆ Prop ×Meth.
2

In the Stack example, a proposition in Prop can be con-
stituted by eleCount, capacity (inherited from Vector), any
data field of elementData (e.g., elementData.length), etc. Set
Meth contains push and pop. By definition, typestates are
deterministic in this work. Notice that an event in Σ is a pair,
i.e., a guard condition g in Prop and a method name e in Meth.
For brevity, a transition is written as (s, [g]e, s′). A typestate
abstracts all executions of an object of the class. In particular,
a trace tr = 〈s0, [g0]e0, s1, [g1]e1, s2, · · · , sn, [gn]en, sn+1〉 is an
abstraction of the execution ex above if they have the same
sequence of methods (i.e., ei = mi for all i) and all the
guard conditions are satisfied (i.e., gi is satisfied by oi and
method arguments −→pi for all i). We denote the set of concrete
executions of tr as con(tr). Given an execution ex and an
alphabet Σ, we can obtain the corresponding trace, denoted as
abs(ex), by testing which proposition in Prop is satisfied for
each method call in ex.

A typestate D is said to be safe (or sound), if for every ac-
cepting trace tr of D, every execution in con(tr) is successful.

2For brevity, a constructor is treated in the same way as a normal method
except that it must be called initially and calling it later leads to failure.

It is complete if for every concrete execution ex of the class,
there is an accepting trace tr such that ex ∈ con(tr).

B. The L* Algorithm

The learner extends the original L* algorithm [6] with lazy
alphabet refinement, which is introduced later in section III-C.
In the following we introduce the original L* algorithm.

The L* algorithm assumes that the system to be learned
D is in the form of DFA with a fixed alphabet Σ and learns
a DFA with the minimal number of states that accepts the
same language of D. During the learning process, the L∗

algorithm interacts with a Minimal Adequate Teacher (teacher
for short) by asking two types of queries: membership queries
and candidate queries. A membership query asks whether a
trace tr is a trace ofD, whereas a candidate query asks whether
a DFA C is equivalent to D, i.e., C and D have the same
language.

During the learning process, the L∗ algorithm stores the
membership query results in an observation table (P,E, T)
where P ⊆ Σ∗ is a set of prefixes; E ⊆ Σ∗ is a set of
suffixes; and T is a mapping function such that T(tr, tr′) = 1
if tr is a trace in P or a trace in P attached with an event
in Σ; and tr′ is a trace is E and tr · tr′ is a trace of the
system; otherwise, T(tr, tr′) = 0. In the observation table,
the L∗ algorithm categorizes traces based on Myhill-Nerode
Congruence [17].

Definition 3: We say two traces tr and tr′ are equivalent,
denoted by tr ≡ tr′, if tr · ρ is a trace of S iff tr′ · ρ is a trace
of S, for all ρ ∈ Σ∗. Under the equivalence relation, we can
say tr and tr′ are the representing trace of each other with
respect to S, denoted by tr = [tr′]r and tr′ = [tr]r. 2

The L∗ algorithm always tries to make the observation
table closed and consistent with membership queries. An
observation table is closed if for all tr ∈ P and e ∈ Σ, there
always exists tr′ ∈ P such that tr · 〈e〉 ≡ tr′. An observation
table is consistent if for every two elements tr, tr′ ∈ P such
that tr ≡ tr′, then (tr · 〈e〉) ≡ (tr′ · 〈e〉) for all e ∈ Σ.
If the observation table (P,E, T) is closed and consistent,
the L∗ algorithm constructs a corresponding candidate DFA
C = (S, init,Σ,→,F) such that

• S contains one state for each trace in P; notice that
equivalent traces in P correspond to the same state.

• init is the state corresponding to the empty trace 〈〉;
• for any state s in S which corresponds to a trace tr and

e ∈ Σ, (s, e, s′) ∈→, where s′ is the state for the trace
[tr · 〈e〉]r in P;

• a state s is in F iff the corresponding trace tr satisfies
T(tr) = 1.

Subsequently, L∗ raises a candidate query on whether C is
equivalent to the system to be learned.

If C is equivalent to the system, C is returned as the learning
result. Otherwise, the teacher identifies a counterexample, say
tr, which is then analyzed to find a witness suffix. A witness
suffix is a trace that, when appended to the two traces, provides
enough evidence for the two traces to be classified into two
equivalence classes under the Myhill-Nerode Congruence. Let

434

〈〉 〈pop〉
〈〉 1 0

〈push〉 1 1
〈pop〉 0 0

〈pop, push〉 0 0
〈pop, pop〉 0 0
〈push, push〉 1 1
〈push, pop〉 1 0

(a)

10 11

00

push

pop
pop

push

push,pop

(b)

Fig. 4. The second observation table (a) candidate DFA (b) generated by the
classic L* algorithm.

tr be the concatenation of two traces tr0 and tr1, i.e., tr0 · tr1 =
tr. Let s be the state reached from state init via trace tr0, i.e.,
init

tr0→ s. tr1 is the witness suffix of tr, denoted by WS(tr), if
s

tr1→ s′ and s′ 6= D(tr), where D(tr) denotes the state reached
after running tr on D. Once the witness suffix WS(σce) is
obtained, L∗ uses WS(σce) to refine the candidate DFA C until
C is equivalent to the system. We refer readers to the work of
Lin et al. [22], [23] for more details of L* Algorithm with
examples.

Angluin [6] proved that as long as the unknown language U

is regular, the L∗ algorithm will learn an equivalent minimal
DFA with at most n − 1 candidate queries and O(| Σ | n2 +
n logm) membership queries, where m is the length of the
longest counterexample returned by the teacher and n is the
number of states of the minimal DFA.

Example 1: We again use the Stack example to illustrate
how L* works and also why it does not work when the
target class cannot be captured by a DFA. After a series of
membership queries, L∗ constructs the first candidate DFA,
as shown in Fig. 2 (b), and performs a candidate query for
the DFA. The teacher answers “no” with a positive coun-
terexample 〈push, pop〉, which should be included into the
behavior of the candidate. After analyzing the counterexample,
the witness suffix 〈pop〉 is added into the set of suffixes
E of the observation table, and the closed observation table
is shown in Fig. 4 (a). Based on the observation table, L∗

constructs the second candidate DFA, as shown in Fig. 4 (b),
and performs a candidate query for the candidate. The teacher
answers “no” again with another positive counterexample
〈push, push, pop, pop〉. This time, the witness suffix 〈pop, pop〉
is added into the set of suffixes E of the observation table, and
the closed observation table is shown in Fig. 5 (a). Based on
the observation table, L∗ constructs the third candidate DFA,
as shown in Fig. 5 (b), and performs a candidate query for the
third one. The reader may find that after the ith candidate query
for i ∈ N, there is always a witness suffix 〈(pop)i〉 showing
that the candidate DFA is incorrect, and one additional state
will be added to the candidate DFA, which makes the L∗

learning process non-terminating. 2

III. DETAILED APPROACH

In this section we first introduce the detailed design of the
tester and refiner and then introduce the learner which interacts
with the tester and learner to learn the typestate.

〈〉 〈pop〉 〈pop, pop〉
〈〉 1 0 0

〈push〉 1 1 0
〈pop〉 0 0 0

〈pop, push〉 0 0 0
〈pop, pop〉 0 0 0
〈push, push〉 1 1 1
〈push, pop〉 1 0 0

〈push, push, push〉 1 1 1
〈push, push, pop〉 1 1 0

(a)

100 110 111000
push

pop
pop

push
push

pop
push,pop

(b)

Fig. 5. The third observation table (a) and candidate DFA (b) generated by
the classic L* algorithm.

A. The Tester

The tester acts as the teacher for L* algorithm. Ideally, given
a membership query for a trace tr, the teacher should answer
either yes or no. Since tr can be mapped into a set of concrete
executions con(tr), that is to say that the teacher should answer
yes iff all executions in con(tr) are successful and answer
no iff all executions in con(tr) are failed. Similarly, given a
candidate query, the tester should answer yes iff the candidate
typestate is safe and complete.

Having a perfect teacher in our setting is infeasible for
two main reasons. Firstly, the set con(tr) is infinite (with
different arguments for method calls) in general and hence
checking whether all executions in con(tr) are successful or
not is highly non-trivial. Secondly, it could be that some
executions in con(tr) are successful, whereas some are failed.
For instance, assume the class given is java.util.vector and tr

is 〈addAll〉. A concrete execution with a method call addAll

and argument null results in exception, whereas a non-null
argument results in success. We tackle the former problem
by using guided random testing as the teacher, as we discuss
below. The latter problem is solved by alphabet refinement, as
we show in Section III-B.

In the following, we show how the tester is used as a
teacher for membership queries and candidate queries. Given
a membership query tr as follows:

tr = 〈s0, [g0]m0, s1, [g1]m1, s2, · · · , sn, [gn]mn, sn+1〉

the tester’s task is to identify multiple concrete executions
as follows: 〈o0,m1(−→p1), o2,m2(−→p2), · · · , ok,mk(−→pk), ok+1〉. In
other words, to automatically generate the arguments for all
method calls such that all guard conditions gi are satisfied. This
task is in general highly non-trivial and requires techniques
like SAT/SMT solving. In the name of scalability, we instead
apply testing techniques for argument generation. In particular,
the approach of Randoop [28] is adopted. In the following, we
briefly introduce the idea and refer readers to details in [28].

Given tr, we generate arguments for each method call one-
by-one in sequence. Given a typed parameter, the idea is to
randomly generate a value from a pool of type-compatible
values. This pool composes of a set of pre-defined value (e.g.,

435

a random integer for an integer type, null or an object with the
default object state for a user-defined class, etc.) but also type-
compatible objects that have been generated during the testing
process. We remark that in order to re-create the same object,
we associate each object with the execution which produces
the object state. Given one value for each parameter, we then
evaluate whether gi is true or not. If gi is true, we proceed
with next method call.

There are four possible outcomes of the random testing. If
all tests are successful, the answer to the query is yes, i.e., tr

should be an accepting trace. If all tests are failed, the answer
is no, i.e., tr should be a non-accepting trace. If there are
both successful tests and failed tests (for tr or a prefix of
tr), the tests are passed to the refiner for alphabet refinement
as we show later. Lastly, due to the limitation of random
testing (i.e., the price we pay to avoid theorem proving), it
is possible that some guard condition gi is never satisfied by
the generated arguments. In other words, we fail to find any
concrete execution in con(tr). In such a case, we optimistically
answer yes so that the resultant typestate is more permissive.

To answer a candidate query with a typestate C, we use
random walk [9], [10], [21] to generate a suite of test cases.
Note that the approach of Randoop [28] is again used. Test
cases which are inconsistent with the typestates are collected
into two sets: positive counterexamples and negative counterex-
amples. A positive counterexample is a successful test whose
corresponding trace tr is non-accepting. A negative example
is a failed test whose corresponding trace tr is accepting. If
both sets are empty, we answer the query with a yes, i.e.,
the typestate is the final output. If either of the two sets is
not empty, the typestate is ‘invalid’ and a counterexample
must be presented to the learner. In the original L* algorithm,
presenting any of the counterexamples will do. It is however
more complicated in our setting as we show below.

For each state s in the typestate C, we identify a set of
executions in the test suite which end at the state, denoted as
Es. For each e ∈ Σ, we extend each execution in Es with a
method call corresponding to e and obtain a new set denoted as
Ee

s . If all of the executions result in failure whereas a transition
labeled with e from s leads to an accepting state in C, the tester
reports that C is invalid and picks one execution in Ee

s and
presents its corresponding abstract trace as a counterexample.
Similarly, if all of the executions are successful, whereas a
transition labeled with e from s leads to a non-accepting state,
the tester presents a counterexample. Lastly, if some of the
executions in Ee

s result in failure and others result in success,
the refiner is consulted to perform alphabet refinement.

B. The Refiner

There are two different scenarios when the refiner is con-
sulted. One is with a membership query tr and a set of tests
in con(tr) such that for some of the executions (denoted as
T−), performing the last method call (with the generated
arguments) results in failure, whereas for the rest of the
executions (denoted as T+), performing the last call results
in success. In this case, alphabet refinement is a must as all

the tests have the same trace tr and therefore they cannot be
distinguished without alphabet refinement.

Given an execution in T− or T+, we can obtain a data state
pair (o,−→p) where o is the object state of the main instance
prior to the last method call and −→p is the list of arguments of
the last method call. Let O− be the set of all pairs we collect
from executions in T− and O+ be the set of all pairs we collect
from executions in T+. Intuitively, there must be something
different between O− and O+ such that T− fails and T+

succeeds. The refiner’s job is to find a divider, in the form
of a proposition, such that O− and O+ can be distinguished.
Formally, a divider for O+ and O− is a proposition φ such
that for all o ∈ O+, o satisfies φ and for all o′ ∈ O−, and o′

does not satisfy φ. From another point of view, there must be
some invariant for all object states in O+ (denoted as inv+)
and some invariant for all object states in O− (denoted as inv−)
such that inv+ implies φ and inv− implies the negation of φ.

The refiner in our work is based on techniques developed
by machine learning community, in particular, Support Vector
Machines (SVMs) [31]. SVM is a supervised machine learning
algorithm for classification and regression analysis. We use its
binary classification functionality. Mathematically, the binary
classification functionality of SVMs works as follows. Given
two data states (say O+ and O−), each of which can be viewed
as a vector of numerical values (e.g., floating-point numbers),
it tries to find a separating hyperplane Σn

i=1ci ∗ xi = c such
that (1) for every positive data state (p1, p2, · · · , pn) ∈ O+

such that Σn
i=1ci ∗ pi > c and (2) for every negative data state

(m1,m2, · · · ,mn) ∈ O− such that Σn
i=1ci ∗ mi < c. As long as

O+ and O− are linear separable, SVM is guaranteed to find
a separating hyperplane, even if the invariants inv+ and inv−

may not be linear. Furthermore, there is usually more than one
hyperplane that can separate O+ from O−. In this work, we
choose the optimal margin classifier (see the definition in [33])
if possible. This separating hyperplane could be seen as the
strongest witness why the two data states are different.

In order to use SVM to generate dividers, each element
in O+ or O− must be casted into a vector of numerical
types. In general, there are both numerical type (e.g., int) and
categorical type (e.g., String) variables in Java programs. Thus,
we need a systematic way of mapping arbitrary object states to
numerical values so as to apply SVM techniques. Furthermore,
the inverse mapping is also important to feed the SVM results
back to the original program. Our approach is to systematically
generate a numerical value graph from each object type and
apply SVM techniques to values associated with nodes in
the graph level-by-level. We illustrate our approach using an
example in the following.

Fig. 6 shows part of the numerical value graph for type Stack

(where many data fields have been omitted for readability). A
rectangle (with round corners) represents a categorical type,
whereas a circle associated with the type denotes a numerical
value which can be extracted from the type. Notice that a
categorical type is always associated with a Boolean type
value which is true iff the object is null. An edge reads as
“contains”. For instance, a Stack type contains an object of

436

Stack B

I ArrayI

Object

B

I B

isNull

eleCount
increment

data

element
length

isNull

isNull

Fig. 6. The numerical value graph for Stack.

type “Array” (i.e., elementData), which in turn contains objects
of type “Object”. For readability, each edge is labeled with an
abbreviated variable name and each node is labeled with the
type. To obtain a vector of numerical values from a type, we
traverse through the graph level-by-level to collect numerical
values associated with each type. In general, the graph could
be huge if a type contains many variables. For the purpose
of typestate learning, however, it is often sufficient to look at
only the top few levels.

In the following, we demonstrate how the graph is used.
Assume the last event of the membership query is [true]pop

and the two sets of object states are O+ and O− prior to
the method call. Given the receiver object of the method
call is a Stack, the refiner first abstracts O+ and O− using
level-0 numerical values in the graph, i.e., isNull, eleCount

and increment which is the amount by which the capacity
of the vector is automatically incremented when its size
becomes greater than its capacity, inherited from the Vector
class. Next, the refiner tries to generate a divider which
separates the abstracted O+ from that of O−. Assume that
O+ contains two object states and the abstracted O+ is a
set: {〈0, 1, 1〉, 〈0, 2, 1〉} where 〈0, 1, 1〉 denotes a Stack object
which is not null (i.e., 0 means that isNull is false), with
eleCount being 1 and with increment being 1. Assume that
the abstracted O− is: {〈0, 0, 1〉, 〈0, 0, 1〉}. SVM finds a divider
receiver.eleCount ≥ 1. Notice that if there does not exist a
linear divider, the refiner refines the abstraction of O+ and
O− by using numerical values from next level in the graph
(i.e., isNull for data and length of data) and tries again to
find a divider. Intuitively, the reason that we look for a divider
level-by-level is that we believe that the reason why calling the
same method leads to different results is more likely related
to the values of variables directly defined in the class and less
likely nested in its referenced data variables.

The other scenario where the refiner is consulted is with a
candidate query C and a set of executions which end in the
same state in C. Furthermore, extending the executions with a
method call corresponding to an event e would result in failure
or success. Similar to the case of a membership query, for each
execution we obtain a pair (o,−→p) where o is the object state
of the main instance prior to the last method call and −→p is
the arguments of the last method call. Similarly, we collect
two sets of those pairs O+ (from those successful executions)

Algorithm 1 L* Algorithm with Lazy Alphabet Refinement

1: Let P = E = {〈〉}
2: for e ∈ Σ ∪ {〈〉} do

3: Update T by Qm(e)
4: if e needs to be split then

5: Split(Σ, e, (P,E, T))

6: while true do

7: while there exists tr · 〈e〉 where tr ∈ P and e ∈ Σ such
that tr · 〈e〉 6≡ tr′ for all tr′ ∈ P do

8: P←− P ∪ {tr · 〈e〉}
9: for σ ∈ Σ do

10: tr′′ ←− tr · 〈e〉 · 〈σ〉
11: Update T by Qm(tr

′′)
12: if there is some e′ ∈ Σ needs to be split then

13: Split(Σ, e′, (P,E, T))

14: Construct candidate typestate C from (P,E, T)
15: if Qc(C) = 1 then

16: return C
17: else

18: if there is some e′ ∈ Σ needs to be split then

19: Split(Σ, e′, (P,E, T))

20: v←− WS(σce) ⊲ σce is a counterexample
21: E ←− E ∪ {v}
22: for tr ∈ P and e ∈ Σ do

23: Update T by Qm(tr · v) and Qm(tr · 〈e〉 · v)
24: if there is some e′ ∈ Σ needs to be split then

25: Split(Σ, e′, (P,E, T))

and O− (from those failed executions). Afterwards, SVM is
invoked to generate a divider for alphabet refinement.

C. The Learner

The learner drives the learning process and interacts with
both the tester and refiner. It uses an algorithm which extends
the L* algorithm [6] with lazy alphabet refinement.

In general, a typestate for a program often requires more
expressiveness than DFA and therefore the L* algorithm itself
is not sufficient. We solve this problem by extending the L*
algorithm with (lazy) alphabet refinement, i.e., by introducing
propositions on object states into the alphabet. The details on
the extended L* algorithm are presented in the following.

1) L* with Lazy Alphabet Refinement: When the refiner
generates a divider φ, an event e (which is the event calling
some method under certain condition) is effectively divided
into two: [φ]e and [!φ]e. With a modified alphabet, previous
learning results are invalidated and therefore learning needs
be re-started. However, re-starting from scratch is costly, as
we often need multiple rounds of alphabet refinement. In the
following, we show how to extend the L* algorithm with lazy
alphabet refinement so as to re-use previous learning results
as much as possible.

Algorithm 1 shows the pseudo-code of the L∗ algorithm
with lazy alphabet refinement, where Qm(tr) denotes the
membership query with the trace tr and Qc(C) denotes the

437

Algorithm 2 Split(Σ, e, (P,E, T))
1: Let φ be divider given by the Refiner to refine e

2: Σ←− Σ ∪ {[φ]e, [!φ]e} \ {e}
3: if p ∈ P or q ∈ E has a substring 〈e〉 then

4: split p into p1 and p2 such that p1 has the substring
[φ]e and p2 has the substring [!φ]e

5: split q into q1 and q2 such that q1 has the substring
[φ]e and q2 has the substring [!φ]e

6: Update T by Qm(pi · qi) for all i ∈ {1, 2}
7: end if

〈〉
〈〉 1

〈push〉 1
∗〈[!(eleCount ≥ 1)]pop〉 0
∗〈[eleCount ≥ 1]pop〉 1

∗〈[!(eleCount ≥ 1)]pop, push〉 0
∗〈[(eleCount ≥ 1)]pop, push〉 0

∗〈[!(eleCount ≥ 1)]pop, [eleCount ≥ 1]pop〉 0
∗〈[!(eleCount ≥ 1)]pop, [!(eleCount ≥ 1)]pop〉 0

Fig. 7. The observation table generated by the lazy L* algorithm.

candidate query of a typestate C. There are two cases where
the alphabet refinement takes place: (1) when a membership
query triggers the generation of a divider φ (lines 5, 13, 25),
which means that some alphabet e ∈ Σ needs to be split into
[φ]e and [!φ]e, it calls Algorithm 2 to refine the alphabet and
update the corresponding results of the membership queries.
(2) A candidate query may also trigger the generation of
a divider φ (line 19). If so, Algorithm 2 is also called to
refine the alphabet and update the corresponding results of
the membership queries in the observation table.

We use the Stack example to illustrate the new algorithm.
Initially, the alphabet is Σ = {push, pop}. After a series
of memberships, Algorithm 1 constructs the first candidate
typestate, as shown in Fig. 2 (b), based on the closed and
consistent observation table shown in Fig. 2 (a). A candidate
query for the first typestate is performed, and the refiner
returns a proposition eleCount ≥ 1 for the positive coun-
terexample 〈pop〉. The event pop is split into two events:
[eleCount ≥ 1]pop and [!(eleCount ≥ 1)]pop, and the L∗ learn-
ing process is restarted from the scratch. Without lazy alphabet
refinement, all the membership queries over the new alphabet
Σ′ = {push, [eleCount ≥ 1]pop, [!(eleCount ≥ 1)]pop} have
to be queried, as shown in the observation table in Fig. 7.
However, with lazy alphabet refinement, only the membership
queries marked with a ∗ symbol have to be queried. In this
small example, only two membership queries are reduced
due to the small alphabet size. In real-world examples, the
size of alphabet is usually big, and the number of reduced
membership queries is significant. The final typestate learned
by Algorithm 1 is the same as the one shown in Fig. 3 (b).

IV. TZUYU IMPLEMENTATION

We have implemented the approach in a tool named TzuYu,
which has more than 20K lines of Java code. In this section, we
discuss the challenges in implementing the proposed method
and how we have addressed them.

We first employ reflection to collect relevant information
like fields and methods of each class so as to construct a numer-
ical value graph for each class. The graph of a type depends on
the referenced types and hence it may reference many types,
but not all referenced types are useful for generating dividers.
Therefore we filter classes such as Thread, Exception and
high level interfaces such as Serializable. The public methods
defined in the target class identify the initial alphabet for the
learner. Afterwards, the learner starts to generate membership
queries and candidate queries according to Algorithm 1.

Given a membership query, the tester checks whether its
abstract trace is feasible or not by generating a number
(which is configurable) of executions and uses reflection to
run them. During execution, the tester saves the runtime states
of the arguments of each method. For argument generation,
we develop a just-in-time approach, i.e., generate the required
arguments just before executing a method. Some of the chosen
arguments may fail the guard condition, and then we choose
another argument which can pass the guard condition. If there
is no argument satisfying the condition, we generate another
set of arguments until the guard condition evaluates to true
(or a bound is reached). We don’t present the just-in-time
algorithm here due to space limitation. Informally, an argument
can be obtained from three sources, i.e., randomly generated
from a set of pre-defined type compatible values; selected from
existing executions that generate type compatible variables;
or selected from type compatible out-referenced variables
generated by the current execution. The above recursive argu-
ment generation procedure may not terminate for a recursive
constructor which has a parameter of the same class in which
the constructor is defined. We set a maximum call depth for
the recursive constructor as did by Lin et al. [25].

Before executing each method call, we store the object states
of the receiver and the arguments as an instrumented state. We
remark that using the Java standard clone mechanism to save
object states is infeasible because the class may not implement
Serializable or Cloneable interface. We thus implement a
mockup mechanism similar to the standard clone mechanism in
Java to save the runtime object into a mockup object whose
tree like class structure resembles the class structure of the
original object. The mechanism differs from the standard clone
mechanism in that only primitive type values of the object are
saved. For reference type field we construct another mockup
object as its saved value. These mockup objects can be used
by the refiner. When the real object is needed, for instance, to
generate a new test, we record the exact sequence of statements
whose execution creates the object that can then be used to
“clone” the arguments later by re-executing them.

Given a candidate query, the tester generates a number
of tests from the typestate. The default number (which is
configurable) is twenty multiplied with the maximum length of
traces generated in membership queries before this candidate
query. Each testing trace is generated by depth first random
walking on the typestate up to a fixed length, the length of the
trace is set to two plus the maximum length of traces generated
during membership queries. Due to randomness in random

438

TABLE I
THE RUNTIME STATISTICS FOR TZUYU RUNNING THE TARGET CLASSES

Target Class LOC #Method Ttotal #MQ #CQ #Trace #TC+ #SVM TSVM #Alphabet #State

java.util.Stack 50 5 1177 39 4 120 83 4 59 7 2
example.BoundedStack 40 2 764 21 4 98 69 4 138 4 2
java.io.PipedOutputStream 150 5 8343 75 6 200 48 8 5069 9 2
example.PipedOutputStream 40 4 1548 48 5 160 71 5 59 7 2
example.Signature 50 5 3227 75 6 200 102 8 156 9 2

testing and random walking, a test case generated previously
may not appear again later. To ensure the learning process
is improving always (and hopefully converging), we store all
the generated test cases so as to provide consistent answers.
Notice that we do not store the instrumented states of the test
case to reduce memory consumption and we re-execute the
test case to create the states when they are needed (e.g., to
evaluate the guard conditions).

One key step in our approach is to automatically generate a
divider for alphabet refinement. We use the SVM techniques
implemented in LibSVM [8]. The first problem with using
SVM is how to choose a good hyperplane as there are in
theory an infinite set of hyperplanes which separate two sets
of object states. The second problem is that the hyperplane
discovered by LibSVM often has float coefficients, which are
often not as readable as integer values when we use them
to build the typestate. Thus, we always (if possible) choose
integer coefficients which constitute a hyperplane which lies
between the strongest and weakest hyperplane. Further, we
implemented a few heuristics to preprocess the inputs to
LibSVM for generating a better divider. Firstly we balance
the positive and negative input data sets by duplicating data
randomly chosen from the smaller set of the two, as SVM
tends to build biased hyperplanes when the input data-set is
imbalanced.

Secondly, because the arguments of method calls are gen-
erated randomly, LibSVM may generate an incorrect divider.
For instance, given a bounded stack with a size bound 5, if
push(element) is invoked with element from {1, 2, 3} when
the bounded stack is full, whereas it is invoked with element

in {5, 6, 7} when the bounded stack is not full. LibSVM
may generate a divider element ≥ 4 suggesting that calling
push(element) with an input less than 4 will lead to failure.
This is obviously incorrect. The problem is avoided with cross
validation by checking whether the argument really affects the
execution results. This is done by executing the successful
(failed, respectively) traces whose arguments are substituted
with arguments in the failed (successful, respectively) traces.
For instance, in the above example, additional test cases are
generated so that every invocation of push(element) is tested
with the same set of input values, i.e., {1, 2, 3, 5, 6, 7}. As a
result, if the argument is irrelevant to the execution result, it
will be ruled out by cross validation.

V. EVALUATION

In this section, we first evaluate TzuYu on a set of Java
library classes selected from the JDK and then compare TzuYu

with existing tools. All the experiments were carried out on a
Ubuntu 13.04 PC with 2.67 GHz Intel Core i7 Duo processors
and 4 GB memory. All the experimental data is available in
our web site [36].

The selected JDK classes (also used in previous related
papers [15], [35]) are shown in Table I. Column LOC is the
size of the class in terms of lines of code. Column #Method

is the number of methods (excluding the constructors of the
target class) which are defined in the target class and used
to generate the initial alphabet. In this set of experiments,
we generate two values for each parameter in each method.
To get a numerical vector from an object state (for SVM
consumption), we limit the numerical value graphs to its top
five levels, which we found to be sufficient.

A. Results

Table I also shows the statistics of the experiments. Column
Ttotal is the total time used in milliseconds. The subsequent
three columns show details about the L* algorithms. Column
#MQ and #CQ are the number of membership queries and
candidate queries, respectively. Column #Trace is the total
number of abstract traces generated from random walking.
Column #TC+ is the number of positive concrete test cases
generated by TzuYu. Column #SVM and TSVM are the total
number of SVM calls and the time in milliseconds taken by
SVM to generate dividers, respectively. The last two columns
show the size of alphabets and the number of states in the
final DFA, respectively.

The following observations are made based on the experi-
mental results. Firstly, TzuYu successfully learned typestates
in all cases in seconds. Furthermore, in most cases, the time
taken by SVM is less than 20% of total time except for
java.io.PipedOutputStream where the cross validation (in order
to determine whether a method parameter is relevant) in a
SVM call consumes a few seconds. Secondly, all learned
typestates are sound and complete, which we confirm by
comparing the learned one with the manually constructed
actual one. Thirdly, the number of states in the learned
typestate is minimum, i.e., two as we are differentiating two
states only: failure or non-failure. This implies that for every
method, whether invoking the method leads to failure or not
can be determined by looking at the value of the data variables,
and further, SVM is able to identify a suitable proposition
every time. Lastly, we did not record the memory consumption
due to the garbage collection feature of JVM. However, the
memory consumption is relatively small since we did not store
the instrumented states with the test cases and the number of

439

TABLE II
PROGRAM INVARIANTS GENERATED BY DAIKON, PSYCO AND TZUYU

Method Daikon PSYCO TzuYu
java.util.Stack.pop() - - elementCount ≥ 1

java.util.Stack.peek() - - elementCount ≥ 1

example.BoundedStack.push(Integer) size one of {0, 1, 2} - size ≤ 2

example.BoundedStack.pop() size one of {1, 2, 3} - size ≥ 1

java.io.PipedOutputStream.connect(snk) - - sink == null && snk 6= null

&& snk.connected == false
java.io.PipedOutputStream.write(int) - - sink 6= null

example.PipedOutputStream.connect(snk) sink == null && snk 6= null

&& snk.connected == false

sink == null && snk 6= null

&& snk.connected == false

sink == null && snk 6= null

&& snk.connected == false
example.PipedOutputStream.write() sink 6= null snk 6= null sink 6= null

example.Signature.verify() Signature.VERIFY == state - state ≥ 2

example.Signature.sign() Signature.SIGN == state - state ≥ 1&&state ≤ 1

example.Signature.upate() Signature.SIGN ≤ state - state ≥ 1

test cases is relatively small which is linear in the number of
candidate queries.

B. Comparison with related tools

We identified three closely related tools. PSYCO [15] is
a symbolic execution based typestate learning tool; AD-
ABU [12] is a dynamic behavior model mining framework
and Daikon [14] is a dynamic invariant generator. We compare
TzuYu with them in terms of time and the quality of the
generated models. Table II shows the results of the invariants
generated by the three tools and TzuYu. Notice that PSYCO is
not available at the time of writing; we thus only obtain the
learned typestate documented in their paper [15].

We first compare the learned models as shown in Table II.
The invariants generated by ADABU are state invariants and
they are omitted from Table II. Methods with the trivial
TRUE invariant (e.g., size() in Stack) are also omitted. Both
ADABU and Daikon need test cases as input to mine models
and therefore we use the test cases generated by TzuYu as
their input for a fair comparison. The number of generated
test cases for each class is shown in the #TC+ column of
Table I. Neither ADABU nor Daikon is able to learn models
for all of the classes. For instance, neither mined models for
the java.io.PipedOutputStream class. ADABU often generates
multiple (e.g., dozens of) models for one class, which means
ADABU’s state abstraction techniques failed to generate a
good invariant. The reason is that ADABU employs a set
of pre-defined templates to generate invariants. If a mined
state invariant contains irrelevant variables, ADABU’s state
abstraction and model merging technique fails and therefore
no unified model is generated. Daikon failed to mine models
for java.util.Stack class. Both ADABU and Daikon use pre-
defined invariant templates. In comparison, the typestates
(which are invariants) generated by TzuYu are better because
TzuYu does not rely on templates but rather uses SVM
techniques to discover propositions dynamically based on
the object states. Furthermore, Daikon uses only successful
executions whereas TzuYu uses both successful and failed
executions, thus the model learned by TzuYu is more accurate
than the one generated by Daikon.

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

m
s
)

TzuYu

ADABU

Daikon

Fig. 8. Time consumed in milliseconds to mine models for target classes.

For example.PipedOutputStream and example.Signature,
PSYCO [15] can learn accurate transition guards due to the
fact that it encodes all path conditions in the source code
and uses an SMT solver to exactly find out whether failure
happens. However PSYCO is limited by the capability of the
SMT solver.

Next, we compare the execution time of each tool on
mining the models briefly. The time taken by each tool to
mine the models is plotted in Fig. 8. PSYCO is not available
for running the target classes, we cannot get the time for
it. Both ADABU and Daikon need test cases while TzuYu
generates the test cases, so we only include the time consumed
by SVM for TzuYu. The figure shows that TzuYu often
uses less time in generating the models. An exception is
the java.io.PipedOutputStream class for the reason mentioned
above.

C. Limitations of TzuYu

Firstly, because our approach is based on testing, there is
no guarantee that the learned typestate is sound or complete.
However, this can be fixed to certain extent by using an SMT
solver to verify the learned typestate. For instance, the types-
tate for Stack in Fig. 3 (b) can be verified by showing that each
transition is sound and complete, e.g., the self-looping transi-
tion at state 1 labeled with [eleCount ≥ 1]pop can be verified

440

by proving two Hoare triples: {eleCount ≥ 1}pop(){noerror}
(executing pop with a pre-condition eleCount ≥ 1 will not
lead to error) and {eleCount ≤ 0}pop(){error}. Further, if the
SMT solver identifies a counterexample, the counterexample
can be used to refine the typestate.

Secondly, because our approach is based on random testing,
there is no guarantee that a good divider can be discovered
in general—though it should emerge in theory after sufficient
testing. This can be partially fixed if we can obtain “better”
test cases through different means, e.g., from real execution
history of the given class, or through more sophisticated
test case generation methods like concolic testing [32] and
combinational testing [20].

Thirdly, our method will not terminate if the typestate for
the class under analysis is beyond the expressiveness of finite-
state machines with linear guard conditions. If the refiner fails
to find a divider for a membership query with conflicting
results (i.e., the same sequence of events leads to failure and
success), a counterexample (i.e., a path which is predicated
to fail by the typestate but succeeds in real testing execution,
or the other way round) is returned so that L* may introduce
a new state. In the worst case, TzuYu will keep generating
typestates with ever growing number of states (and eventually
times out). This is due to the limitation of SVM that could be
overcome using advanced learning techniques.

VI. RELATED WORK

Our approach is related to specification mining. We refer
interested readers to the book by Lo et al. [26] for a compre-
hensive literature review. Therefore, we only review previous
work that is closely related to the three components in TzuYu
and the overall approach.

The idea of using testing as the teacher for L* algorithm is
also found in the AMC approach [16] which uses L* to handle
counterexamples returned by the model checker. The L* algo-
rithm is also used for learning assumptions in compositional
verification [3], [7], [19], [24] by formal methods community.
TzuYu differs from these work in that it uses L* algorithm to
learn the specification from source code.

The idea of learning interface specifications from source
code was proposed by Alur et al. [4] which learns interface
specifications from source code automatically by using a
model checker as the teacher. The PSYCO tool [15] achieves
the same goal by using a symbolic execution engine as the
teacher. The X-PSYCO [18] tool extends PSYCO by answering
membership and candidate queries with testing under inputs
generated from symbolic execution. In comparison, TzuYu
employs testing and thus avoids expensive model checking or
symbolic execution. Similarly, Aarts et al. [1] proposed a fully
automated data abstraction technique to learn a restricted form
of Mealy machine in which only testing equality of arguments
is allowed. TzuYu’s SVM based alphabet refinement can be
applied to more programs.

Our testing strategy is related to Randoop [28]. We extend
Randoop to the context of learning in which the receiver object
must be the same in order to learn a better model and we

also add a new source for reference arguments which can
be chosen from an out-reference variables to improve data
coverage. Tester in TzuYu is also related to TAUTOKO [11]
which generates more test cases by mutating existing traces in
the mined model (by using ADABU) to augment the model
learning process as well as finding bugs.

We extend the active learning L* algorithm with lazy alpha-
bet refinement. There are also other learning algorithms such
as sk-strings algorithm [30]. The sk-strings algorithm passively
learns a DFA from a given set of traces by generalizing the
method call sequences in the trace to form the final DFA.
ADABU [12] can be classified as a passive learner which
requires a set of test cases as input; it abstracts the concrete
states with simple templates to abstract states thus to get the
abstract traces and then it merges models from abstract traces
to generate a model. The combination of an active learning
algorithm with automatic argument generation techniques en-
ables TzuYu to learn stateful typestates automatically.

The refiner in TzuYu is inspired by Sharma et al. [33]
who use SVM and SMT solver to generate interpolants for
counterexamples produced by model checkers. The goal of the
refiner is in line with that of the dynamic invariant generator
Daikon [14] and Axiom Meister [35]. Daikon uses a set of
pre-defined invariant templates over data from the set of given
runtime traces. Daikon may find some irrelevant invariants at
a program point. Axiom Meister uses symbolic execution to
collect all the path conditions which are then abstracted into
preconditions. TzuYu’s refiner is based on SVM which enables
TzuYu to find relevant linear arithmetic propositions over a
large number of variables.

VII. CONCLUSION AND FUTURE WORK

Despite the recent progress on learning specifications from
various software artifacts, the community is still challenged
with difficulties in dealing with data abstraction for common
programs. In this paper, we propose a fully automated typestate
learning approach from source code. To fully automate the
generation of test cases which are the required inputs for
many automata learning tools, we combine the active learning
algorithm L* with a random argument generation technique.
We then use a supervised machine learning algorithm (i.e.,
the SVM algorithm) to abstract data into propositions.

For the future work, we want to use symbolic execution to
ensure that the learned model is sound and try other machine
learning techniques in order to generate better dividers. We
also want to evaluate the effectiveness of different test case
generation techniques in learning setting.

Acknowledgements We thank the anonymous reviewers for
their invaluable comments. This work is partially supported by
NTU-NAP project “Formal Verification on Cloud” and TRF
project “Research and Development in the Formal Verification
of System Design and Implementation”. This work is also
supported by project “IDD11100102A/IDG31100105A” from
Singapore University of Technology and Design.

441

REFERENCES

[1] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. Vaandrager. Au-
tomata learning through counterexample guided abstraction refinement.
In FM, pages 10–27, 2012.

[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial
orders from source code: from usage scenarios to specifications. In
ESEC-FSE, pages 25–34, 2007.

[3] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verifica-
tion by learning assumptions. In Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages 548–562. Springer
Berlin Heidelberg, 2005.

[4] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for java classes. In POPL, pages 98–109, 2005.

[5] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In POPL,
pages 4–16, 2002.

[6] D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, Nov. 1987.

[7] H. Barringer and D. Giannakopoulou. Proof rules for automated com-
positional verification through learning. In In Proc. SAVCBS Workshop,
pages 14–21, 2003.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector
machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, 2011.

[9] T. Chow. Testing software design modeled by finite-state machines.
Software Engineering, IEEE Transactions on, SE-4(3):178–187, 1978.

[10] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random
testing of haskell programs. In ACM SIGPLAN Notices, pages 268–279,
2000.

[11] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
test cases for specification mining. In ISSTA, pages 85–96, 2010.

[12] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining object
behavior with ADABU. In WODA, pages 17–24, 2006.

[13] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde. Generating
annotated behavior models from end-user scenarios. IEEE Trans. Softw.

Eng., 31(12):1056–1073, Dec. 2005.
[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mccamant, C. Pacheco, M. S.

Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. In Science of Computer Programming, 2006.

[15] D. Giannakopoulou, Z. Rakamaric, and V. Raman. Symbolic learning
of component interfaces. In SAS, pages 248–264, 2012.

[16] A. Groce, D. Peled, and M. Yannakakis. AMC: an adaptive model
checker. In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404
of Lecture Notes in Computer Science, pages 521–525. Springer, 2002.

[17] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, 1979.

[18] F. Howar, D. Giannakopoulou, and Z. Rakamaric. Hybrid learning:
interface generation through static, dynamic, and symbolic analysis. In
ISSTA, pages 268–279, 2013.

[19] K. Ji, Y. Liu, S.-W. Lin, J. Sun, J. S. Dong, and T. K. Nguyen. CELL:
A compositional verification framework. In ATVA, 2013. To appear.

[20] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combinatorial software
testing. Computer, 42(8):94–96, 2009.

[21] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines - a survey. Proc. of the IEEE, 84(8):1090–1123, 1996.

[22] S.-W. Lin, É. André, J. S. Dong, J. Sun, and Y. Liu. An efficient
algorithm for learning event-recording automata. In ATVA, pages 463–
472, 2011.

[23] S.-W. Lin and P.-A. Hsiung. Counterexample-guided assume-guarantee
synthesis through learning. IEEE Transactions on Computers, 60(5):734–
750, 2011.

[24] S.-W. Lin, Y. Liu, J. Sun, J. Dong, and É. André. Automatic composi-
tional verification of timed systems. In FM, pages 272–276. 2012.

[25] Y. Lin, X. Tang, Y. Chen, and J. Zhao. A divergence-oriented approach
to adaptive random testing of java programs. In ASE, pages 221–232,
2009.

[26] D. Lo, K. Cheng, and J. Han. Mining software specifications: method-
ologies and applications. Chapman and Hall/CRC Data Mining and
Knowledge Discovery Series. Taylor & Francis Group, 2011.

[27] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving object typestates
in the presence of inter-object references. In OOPSLA, pages 77–96,
2005.

[28] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random testing
for java. In OOPSLA, pages 815–816, 2007.

[29] M. Pradel and T. R. Gross. Automatic generation of object usage
specifications from large method traces. In ASE, pages 371–382, 2009.

[30] A. Raman and J. Patrick. The sk-strings method for inferring PFSA. In
ICML, 1997.

[31] B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in

kernel methods: support vector learning. MIT Press, 1999.
[32] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic Unit Testing

Engine for C. In ESEC/SIGSOFT FSE, pages 263–272, 2005.
[33] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In

CAV, pages 71–87, 2012.
[34] R. E. Strom and S. Yemini. Typestate: a programming language concept

for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–
171, 1986.

[35] N. Tillmann, F. Chen, and W. Schulte. Discovering likely method
specifications. In ICFEM, pages 717–736, 2006.

[36] H. Xiao. TzuYu hosting site. http://bitbucket.org/spencerxiao/tzuyu,
May 2013.

[37] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifica-
tions from natural language API documentation. In ASE, pages 307–318,
2009.

442

	TzuYu: Learning stateful typestates
	Citation

	/var/tmp/StampPDF/8NKptsEvL5/tmp.1584005573.pdf.GrChW

