
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2013 

Constraint-based automatic symmetry detection Constraint-based automatic symmetry detection 

Shao Jie ZHANG 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Chengnian SUN 

Yang LIU 

Junwei MA 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
ZHANG, Shao Jie; SUN, Jun; SUN, Chengnian; LIU, Yang; MA, Junwei; and DONG, Jin Song. Constraint-
based automatic symmetry detection. (2013). Proceedings of the 2013 28th IEEE/ACM International 
Conference on Automated Software Engineering (ASE), Silicon Valley, USA, November 11-15. 15-25. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5005 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5005&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Shao Jie ZHANG, Jun SUN, Chengnian SUN, Yang LIU, Junwei MA, and Jin Song DONG 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/5005 

https://ink.library.smu.edu.sg/sis_research/5005


Constraint-Based Automatic Symmetry Detection
Shao Jie Zhang∗, Jun Sun∗, Chengnian Sun†, Yang Liu‡, Junwei Ma∗, and Jin Song Dong†

∗Singapore University of Technology and Design, Singapore
†National University of Singapore, Singapore
‡Nanyang Technological University, Singapore

{shaojie_zhang, sunjun, junwei_ma}@sutd.edu.sg, {suncn, dongjs}@comp.nus.edu.sg, yangliu@ntu.edu.sg

Abstract—We present an automatic approach to detecting
symmetry relations for general concurrent models. Despite the
success of symmetry reduction in mitigating state explosion prob-
lem, one essential step towards its soundness and effectiveness, i.e.,
how to discover sufficient symmetries with least human efforts, is
often either overlooked or oversimplified. In this work, we show
how a concurrent model can be viewed as a constraint satisfaction
problem (CSP), and present an algorithm capable of detecting
symmetries arising from the CSP which induce automorphisms
of the model. To the best of our knowledge, our method is the
first approach that can automatically detect both process and
data symmetries as demonstrated via a number of systems.

I. INTRODUCTION

In practice, a certain (sometimes rich) degree of symmetries
is ubiquitous in concurrent and distributed systems [26], [36].
A number of representative real-world complex networks,
including a broad selection of biological, technological and
social networks, are found to have a nontrivial symmetric
structure [26]. In theory, given a model, a symmetry is an
automorphism of its underlying state space (which can be
viewed as a graph). A naive (and complete) symmetry detection
method thus needs to explore the complete space. In general,
if a symmetry detection method is performed on a state space,
then the complete state space is required to be constructed prior
to the exploration. It is not only computationally expensive
or impossible, but also against the original goal of symmetry
reduction to reduce the explored state space. A practical and
popular approach is to use static analysis to derive symmetries
at model level [22], [34].

Existing symmetry reduction approaches have two main
limitations in the identification of symmetries in a model.
First, the soundness and efficiency highly depend on human
efforts. It is generally too difficult for machines to look through
the behavior of concurrent models to pin down symmetries
correctly. Most approaches require users to provide correct
symmetries, which is tedious and error-prone. Some languages
provide dedicated instructions for specifying symmetries [22],
[30], [31]. For instance, Murϕ provides a special data type with
a list of syntactic restrictions. All values that belongs to this
type are equivalent. Although there are automatic approaches
which do not need expert insights, they are designed for specific
languages [24], [23], or require models to be written in specific
patterns [13], [14]. Thus they trade off generality for efficiency,
and consequently a user has to transform his problem into a
form amenable to the approach. Second, existing approaches
can only handle a specific class of symmetries and largely

ignore other classes of symmetries which could reduce state
space significantly. As a result, symmetries in the underlying
state space are only partially discovered.

In this work, we develop a novel approach for symmetry
detection which addresses these two limitations. Not restricted
to a particular modeling language, our approach works for gen-
eral concurrent models (i.e., concurrent composition of finite-
state machines which could communicate through channels,
synchronous events or shared memories) in a fully automatic
way. Further, it is able to detect many kinds of process
symmetries and data symmetries together. The workflow of
our approach is shown in Figure 1.

First, a concurrent model is translated into a semantics-
equivalent nondeterministic sequential model using existing
approaches [3], [25]. The motivation behind is two-fold. First, it
is nontrivial to analyze concurrent models whose behaviors are
not obvious, such as subtle flexible communication patterns and
numerous possible interleavings between processes. Second, we
can take advantage of well-developed static analysis techniques
for sequential models. The worst case complexity of the
translation is linear in the total number of atomic statements
of all processes.

Second, we consider the problem of discovering symmetries
from a new angle. Our key insight is recognizing the similarity
between the role of symmetries in constraint programming and
that in model checking. Our analysis transforms the sequential
model into a constraint satisfaction problem, and extracts a
graphical representation of the CSP called colored graph. Each
automorphism of the colored graph is proved to correspond to
one in the concurrent model, which is effectively discovered by
applying a graph automorphism generator named Saucy [12].
The detected symmetries can be used later to speed up the
performance of a state space exploration tool, e.g., a model
checker or a simulator.

The above steps can be performed fully automatically.
The effectiveness and efficiency of our approach have been
demonstrated via a variety of systems.

The rest of this paper is organized as follows. Section II
presents a simple motivating example. Section III introduces
relevant background information and terminology used through-
out this paper. Section IV describes our automatic symmetry
detection approach in details and proves the soundness of our
approach. Section V presents the results of our case studies.
Section VI surveys related work. Section VII concludes the
paper and discusses possible future work.

978-1-4799-0215-6/13/$31.00 c© 2013 IEEE ASE 2013, Palo Alto, USA15



Fig. 1: Automatic symmetry detection workflow

II. MOTIVATING EXAMPLE

In the following, we use a token circulation protocol [2]
as a running example. All the agents, or nodes, are deployed
in a directed ring. The protocol requires the existence of a
leader. Each agent has two single-bit variables recording its
token and label and one Boolean constant indicating whether
it is a leader. Only agents that are adjacent can interact (the
source node is the initiator and the target is the responder).
During an interaction, two agents update both of their states
according to two predefined transition rules . If two agents
have the same label, the responder is a leader and the initiator
is not, the responder sets its label to the complement of the
initiator’s label; otherwise the responder copies the label from
the initiator. If an interaction triggers a label change, a token
is passed from the initiator to the responder. Starting from an
arbitrary configuration, the protocol guarantees that eventually
there is always one and only one agent holding a token.

The concurrent model of this protocol with N agents is
described in Figure 2 using the syntax of Communicating
Sequential Programs [32]. Process Rule1 (or Rule2) defines
how an initiator u interacts with a responder v. Every
time there is an interaction in the network, the initiator
and responder must update themselves according to the two
transition rules. A rule is applicable only if the guard condition
(e.g., !leader[v] ∧ label[u]! = label[v]) is satisfied. An event
(e.g., rule2) may be attached with variables updating (e.g.,
token[u] := 0; token[v] := 1; label[v] =: label[u]). The
whole token circulation protocol is described as process
TokenCirculation, which is the interleaving (modeled by
the operator |||) of all possible interactions in the network.
Initially, the system can be in any possible configuration and
the initial variable valuation is omitted here for simplicity.

Rule1(u, v) = [!leader[u] ∧ leader[v] ∧ label[u] = label[v]] rule1

{token[u] := 0; token[v] := 1; label[v] := 1− label[u]; }
→ Rule1(u, v);

Rule2(u, v) = [!leader[v] ∧ label[u]! = label[v]] rule2

{token[u] := 0; token[v] := 1; label[v] := label[u]; }
→ Rule2(u, v};

TokenCirculation() = (|||x : 0..N − 1@

(Rule1(x, (x+ 1) mod N)|||(Rule2(x, (x+ 1) mod N));

Fig. 2: Concurrent model of token circulation protocol

Simple as the protocol is, the protocol exhibits non-trivial
symmetries: (a) process symmetries that rotate every process
following the network direction; (b) data symmetries that swap
the label values; (c) the combinations of process and data
symmetries that permute processes and label values together.

Existing data symmetry detection approaches [10], [22] rely
on scalarset annotations to discover fully symmetric compo-
nents (i.e., components which are identical up to rearranging
their identifiers). Although values of all label variables are
fully symmetric in this case, that is, permuting the values 1 to
0 and 0 to 1 for all label variables together over all the states
and transitions of the state space results in the same state space,
the arithmetic operations on the variables prohibit the use of
scalarsets. Further, the protocol does not take message-passing
paradigm, so the approaches [13], [14], [24], [23] for detecting
process symmetries are not applicable. Moreover, as far as we
know, there is no approach that considers process and data
symmetries which are not both full symmetries at the same
time, i.e., no existing approaches can find all symmetries in
this example.

III. PRELIMINARIES

This section is devoted to the background knowledge of
symmetry reduction in one application area of state space
exploration, i.e., model checking, and the relevant concepts of
constraint satisfaction problems.

A. Model Checking with Symmetry Reduction

We present our work in the setting of Labeled Transition
Systems (LTSs). An LTS is a tuple L = (S, init,Σ,→) where
S is a finite set of states, init ∈ S is the initial state, Σ is a finite
set of events and →: S×Σ×S is a labeled transition relation.
A permutation σ is said to be an automorphism of an LTS L
iff it preserves the transition relation and the initial state, i.e.,
(∀s1, s2 ∈ S; e ∈ Σ. s1

e→ s2 ⇒ σ(s1)
e→ σ(s2)) ∧ σ(init) =

init. A group G is an automorphism group of L iff every
σ ∈ G is an automorphism of L. A permutation σ is said to be
an invariance of L and property φ iff it is an automorphism of
L and σ(φ) ≡ φ where ≡ denotes logical equivalence under all
propositional interpretations [17]. G is an invariance group of L
and φ iff every σ ∈ G is an invariance of L and φ. Given a state
s ∈ S, the orbit of s is the set θ(s) = {t| ∃σ ∈ G. σ(s) = t},
i.e., the equivalence group which contains s. From the orbit
of state s, a unique representative state rep(s) can be picked
such that for all s and s′ in the same orbit, rep(s) = rep(s′).
Intuitively, if σ is an invariance of φ, states of the same orbit
are behaviorally indistinguishable with respect to φ. Based on
this observation, an LTS L can be turned into a quotient LTS
LG where states in the same orbit are grouped together. If G
is an invariance group of L and φ, then L satisfies φ iff LG
satisfies φ [8].

There are two common types of symmetries for improving
the performance of model checking. A process symmetry
is a permutation on identifiers of concurrent processes. A
data symmetry is a permutation on data values. For example,
suppose a state st is (s1, s2, · · · , sn) where si is the local

16



state valuation of process i. If σ is a process symmetry on
the process ids {1, 2, · · · , n}, then σ acts on st in the form
σ(st) = (sσ(1), sσ(2), · · · , sσ(n)); if it is a data symmetry, then
σ acts on st in the form σ(st) = (σ(s1), σ(s2), · · · , σ(sn)).

B. Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a triple (V,D,C)
where V is a finite set of variables, D is a set of finite domains
and C is a finite set of constraints. Each variable vi ∈ V has
an associated domain Di ∈ D of possible values. A literal is
a statement of the form vi = d where vi ∈ V and d ∈ Di.
For any literal l of the form vi = d, we use var(l) to denote
its variable vi. The set of all literals is denoted by χ. An
assignment is a set of literals, each of which is a variable
valuation of the CSP. A solution of a CSP is a complete
assignment which satisfies each constraint in C. A constraint
c is defined over a set of variables, and the set is denoted as
Var(c).

A solution symmetry is a permutation of literals that preserves
the set of solutions [9]. A constraint symmetry is a solution
symmetry that preserves the constraints of the CSP [9]. But
a solution symmetry may not be a constraint symmetry. For
example, a CSP is (V = {x, y, z}, D = {1, 2, 3}, C = {x <
y, y < z}). It only has one solution {x = 1, y = 2, z = 3}.
One of its solutions symmetries is (x = 2, x = 3). But it
is not a constraint symmetry, because it maps the literals
{x = 2, y = 3} which satisfies x < y to {x = 3, y = 3} which
does NOT satisfy it. For a CSP (V,D,C), a variable symmetry
σ is a permutation on V such that for any constraint c ∈ C,
{v1=a1, · · · , vn=an} satisfies c iff {σ(v1)=a1, · · · , σ(vn)=an}
satisfies c; a value symmetry σ is a permutation on D such
that for any constraint c ∈ C, {v1=a1, · · · , vn=an} satisfies
c iff {v1=σ(a1), · · · , vn=σ(an)} satisfies c. A variable-value
symmetry is a permutation of the literals (i.e., V ×D) that is
a constraint symmetry. Note that a variable-value symmetry is
not necessarily a composition of a variable symmetry and a
value symmetry.

IV. AUTOMATIC SYMMETRY DETECTION

In the section, we describe an automatic approach to
detecting the symmetries of a concurrent model. It translates
a concurrent model into a CSP whose symmetries can be
exploited using the state-of-the-art detection approaches for
CSPs.

Algorithm 1 gives an overview of the overall approach. There
are three main steps. The first step, as described in procedure
Concurrent2Sequential, converts a concurrent model CurModel
into its semantics-equivalent nondeterministic sequential model
SeqModel. The second step, as described in lines 3-9, separately
transforms each enabling condition and each next-state program
in SeqModel, and its init statement to a semantics-equivalent
CSP as shown by Procedure Transform. These CSPs are then
merged into one single CSP. The third step, detects variable,
value and variable-value symmetries in the merged CSP, as
described in Procedure DetectSymmetries. Further, we prove
that each detected symmetry is a real automorphism of the

Algorithm 1: Overview of our approach
1 autos := ∅;V L := ∅; csps := ∅;
2 SeqModel := Concurrent2Sequential(CurModel)
3 identify the set of global variables V G in SeqModel;
4 foreach summand sum in SeqModel do
5 identify the set of local variables locals of sum;
6 V L := V L ∪ locals;
7 foreach function or enabling condition f in sum do
8 csps := csps ∪ {Transform(f)};

9 csps := csps ∪ {Transform(init)};
10 autos := DetectSymmetries (Merge(csps), V G, V L);

LTS of the original concurrent model. Lastly, we present two
lightweight but effective optimization methods.

A. Step 1: Conversion from Concurrent to Sequential

We briefly introduce the principle of modeling concurrent
models by means of nondeterministic sequential models. The
corresponding sequential model can be built by simulating
the behavior of the concurrent model and keeping track of
local states of each process and global states all the time.
Basically, the preparatory step of the transformation is to
introduce a new integer variable state for each process in
the model to represent its control points, and then a syntactic
transformation is performed to translate each statement into one
or more sequential statements recursively. Then a concurrent
model is reduced into a sequential one which captures all its
behaviors. Note that the idea of linking concurrent models to
nondeterministic sequential models goes back to the work of
Ashcroft and Manna [3], [20] for proving the correctness of
concurrent programs. The detailed transformation process is
also explained in [37]. The transformation is general enough to
handle three different types of systems with respect to execution
patterns, i.e., sequential and parallel systems with synchronous
and asynchronous communication. Therefore our approach is
not specific to one particular specification language. Moveover,
for a concurrent model, its corresponding sequential model can
be extracted in linear time [37]. The resulting model has the
total number of atomic statements of all processes in the worst
case.

Figure 3 shows the sequential model for the token circulation
protocol. The nondeterministic sequential model is written in
a single process with data variables that describes a system as
a set of guarded and nondeterministic transitions. It contains
a single parameterized recursive process definition and the
initial parameter valuations of this process. The left-hand side
of the process definition is a process name with a vector of
data parameters. Here we refer to these parameters as global
variables. An addition operator in the right-hand side ‘sums’
a list of nondeterministic transitions, to which we refer to as
summands. A summand has a declaration of local variables
followed by an enabling condition, an event (if any) and a
next-state program from left to right. Each local variable can be
evaluated to any value of its type nondeterministically. It is read-

17



type AG : 0..N − 1

type BIT : 0..1

proc TokenCirculation(BIT[N ] token, BIT[N ] label, BOOL[N ] leader) =

AG u1.AG v1.[v1 = (u1 + 1) mod N∧!leader[u1] ∧ leader[v1] ∧ label[u1] = label[v1]]

rule1{token[u1] := 0; token[v1] := 1; label[v1] := 1− label[u1]; } → TokenCirculation(token, label, leader)
+

AG u2.AG v2.[v2 = (u2 + 1) mod N∧!leader[v2] ∧ label[u2]! = label[v2]]

rule2{token[u2] := 0; token[v2] := 1; label[v2] := label[u2]; } → TokenCirculation(token, label, leader);
init TokenCirculation(∗);

Fig. 3: Sequential model of the token circulation protocol

only and cannot be of array type1. Executability of a summand
is decided by its enabling condition that is a Boolean expression;
the action of the summand is decided by the event name; the
effect of the summand is decided by its next-state program
which updates the global variables. A next-state program is
composed of a sequence of statements. A statement can be
an assignment, conditional, or while-loop statement. Besides,
there is an initial valuation of global variables denoted by init,
which is the entry where the process starts to execute. The
symbol ∗ denotes the nondeterministic choice of all possible
evaluations of global variables.

For the running example, the transition in Process Rule1
(resp. Rule2) is transformed into the first (resp. second)
summand in the sequential model. There are two process
identifiers used in each transition from the domain {0 · · ·N−1}.
The initiator and responder ids u and v are transformed into u1
and v1 (resp. u2 and v2 ) in the first (resp. second) summand.

B. Step 2: Transformation from the Sequential Model to a CSP

We describe how to convert a function or the init statement
into the static single assignment form (SSA) [11] below, from
which an equivalent CSP is derived. SSA is a form of a
semantics-preserving intermediate representation of a program,
which requires that each variable be assigned exactly once.
The key feature of SSA is that each variable with the same
name always has the same value in everywhere in the program.
The immutability of variables is the primary reason why we
transform each function into a constraint system by the use of
SSA.

Converting ordinary source code into SSA is relatively
straightforward. In essence, it replaces the target variable of
each assignment with a fresh name. Every usage of this variable
in the succeeding statements is replaced with the new name,
until a new assignment to the same variable occurs. We call the
existing variables original variables, and other new variables
versioned variables.

Further, SSA defines an artificial function φ to represent the
choice between different branches of a conditional statement
defined formally as follows. A new Boolean variable b, called

1If a local variable is an array, the language can be extended to support it
easily, as we have done in our tool.

decision variable, is introduced to store the value of the
condition and the if and else branches are converted separately.
For each variable x defined in the if or else branch, an
additional assignment x′′′ := φ(x′, x′′, b) is inserted at the
end of the block to achieve branch selection, where x′ and
x′′ are the last definitions of x in the if and else branches
respectively.

φ(x′, x′′, b) = if b then x′ else x′′

Still, converting a program to SSA form becomes more
complicated when while-loop statements are involved. A while-
loop can be equivalently regarded as an infinite number of
nested conditional statements. But it is impractical to transform
it into such conditional statements. So the assumption here is
that any loop can be finished in a finite number of iterations.
In this way, we reduce the problem of converting a loop
to converting a list of conditional statements. Note that this
assumption puts little limitation on our approach. Because the
loop considered here is the loop included in one next-state
program that is atomically executed. It is rare for a practical
system to put the whole loop in one atomic step.

Another challenge is handling array manipulation. The reason
is that a new assignment statement of an array does not
necessarily kill all the old values in the array. For instance,
the meaning of the assignment A[i] := A[i] + 5 is two-
fold. First, it increases the value of the ith element in the
array A by 5. Second, all the values of other elements are
unchanged. We cannot simply assign the left-hand side with
a new name, which loses the second meaning. Thus we
define a function ϕ as follows to handle array assignments.
Suppose an array assignment is array[index] := value and
array0 is the latest name of array before the assignment
in the SSA form. We replace the original assignment with
array1 := ϕ(array1, array0, index, value) where array1 is
a fresh name. Note that ϕ can be a polymorphic function so
as to handle multi-dimensional arrays.

array1 := ϕ(array1, array0, index, value) ={
array1[index] = value∧

∀j 6= index. array1[j] = array0[j]

Take the next-state program of the first summand in
Figure 3 (i.e., token[u1] := 0; token[v1] := 1; label[v1] :=

18



1− label[u1];) as an example. Its SSA form is

token1 := ϕ(token1, token, u1, 0)
token2 := ϕ(token2, token1, v1, 1)
label1 := ϕ(label1, label, v1, 1− label[u1])

The SSA form we obtain can be more succinct by applying
copy propagation technique, commonly used in compiler
optimization. It eliminates unnecessary temporary copies of a
value generated by our transformation, and further facilitates
our symmetry detection approach. An assignment is an identity
assignment if it is in the form x := y which assigns the value of
y to x and y is either a variable or a constant. Copy propagation
is the process of replacing the occurrences of targets of identity
assignments with their values.

The SSA form of a program always has the same behaviors
as the original program [11]. After the conversion of a
function to SSA, the next conversion from SSA to a CSP
is straightforward. Each assignment is directly mapped to
a constraint by interpreting each assignment operator as an
equivalence operator. Both representations are very similar.
It is easy to know the SSA and its CSP representation have
equivalent behaviors as the following proposition states.

Proposition 1. Given an SSA representation P , let CP be the
CSP converted from P . If for an input I the execution of P
produces valuations V for all variables, then I and V is a
solution of CP and vice versa.

For an enabling condition, since it is already a constraint, it
does not need any transformation. For the init statement, we
convert it into a constraint in a very similar way. Suppose the
process in the sequential model is P (Dom1 v1, · · · , Domn vn)
and its init statement is P (a1, · · · , an). It is converted to
v1 = a1 ∧ · · · ∧ vn = an. Then we simply combine all the
constraints derived from each next-state program, enabling
condition and the init statement to build one large CSP for
this whole sequential model.

For the running example, the conversion step builds the
corresponding CSP for its sequential model as shown in
Figure 4. Since its init statement represents all possible
evaluations of global variables, it has no effect on symmetry
breaking in the CSP and thus is skipped for simplicity.

C. Step 3: Symmetry Detection on CSP

Next we explain the procedure to discover constraint
symmetries in the merged CSP which we denote as CF in
the following. First, we present the state-of-the-art symmetry
detection method for CSP, on which our detection approach is
based. However, considering the role each constraint plays in
the sequential model, this method is not completely suitable
in terms of correctness and performance. To cope with this
problem, we describe our alternations as follows.

Our approach is based on the automatic symmetry detection
method for CSP proposed by Puget [29]. It allows us to detect
variable symmetries, value symmetries and non-trivial ones
involving both variables and values. For each constraint, the
approach first calculates all the allowed assignments. Then the
graph of this constraint c is constructed in the following way.

A variable node is created for each variable in c. An array
represents a collection of scalar variables. So a distinct variable
node is created for each element of the array. A constraint node
is created for c. A value node is created for each value of each
variable in c. An assignment node is created for each allowed
assignment of c. Edges connect each value node to its variable
node, each assignment node to the value node representing
each variable-value literal occurring in the assignment, and
each assignment node to the constraint node. So the number
of nodes in the colored graph is the sum of the number of
variables, literals, constraints and allowed assignments, and the
number of edges is the sum of the number of literals, allowed
assignments and variables in allowed assignments.

The graphs for all constraints are combined into a single
graph, called colored graph. The coloring scheme for this graph
is described in three rules:
• all variable nodes with the same domain have the same

unique color;
• for a variable, all of its value nodes have the same unique

color. If two variables have the same color, their value
nodes have the same color;

• for a constraint, its assignment nodes all have the same
unique color. If two constraints have the same color, their
assignment nodes have the same color.

It addresses symmetries by computing the automorphisms of
the colored graph. It has been proved that each automorphism
of this graph corresponds to a constraint symmetry as restated
in the following theorem.

Theorem 2. [29] Let C = (V,D,C) be a CSP. Its colored
graph G is constructed as illustrated above. Suppose σ is an
automorphism of G and s is an assignment of C. For each
constraint c ∈ C, s satisfies c iff σ(s) satisfies c.

Before applying this method to our problem, we have to
address the concern raised by the differences of ordinary CSPs
and the CSP we convert the sequential model into. Some
variables in a sequential model cannot be used at the same
time, local variables in different summands for example. So
for its corresponding CSP, it is unreasonable to detect variable
symmetries between those variables. Therefore, the original
coloring scheme is refined such that variable nodes which have
the same domain are of the same unique color iff
• each of them is a local variable of the same domain in

the same summand,
• or each of them is an original global variable of the same

domain,
• or each of them is the latest version of a global variable

of the same domain.
It is not difficult to show that each automorphism found under
the new coloring strategy is also an automorphism under
the original coloring strategy. So Theorem 2 still holds. The
soundness of our work is stated as follows.

Theorem 3. Let L = (S, init,Σ,→) be its labeled transition
system of a concurrent model M. Each automorphism σ we
get in Algorithm 1 is an automorphism of L.

19



V = {u1, v1, u2, v2, leader[N ], token[N ], label[N ], token1[N ], token2[N ], token3[N ], label1[N ]}
D = {AG,AG,AG,AG,BOOL,BIT,BIT,BIT,BIT,BIT,BIT}

C =



v1 = (u1 + 1) mod N∧!leader[u1] ∧ leader[v1] ∧ label[u1] = label[v1]
token1[u1] = 0 ∧ (∀t ∈ AG.t 6= u1 → token1[t] = token[t])
token2[v1] = 1 ∧ (∀t ∈ AG.t 6= v1 → token2[t] = token1[t])
label1[v1] = 1− label[u1] ∧ (∀t ∈ AG.t 6= v1 → label1[t] = label[t])
v2 = (u2 + 1) mod N∧!leader[v2] ∧ label[u2]! = label[v2]
token3[u2] = 0 ∧ (∀t ∈ AG.t 6= u2 → token3[t] = token[t])
token2[v2] = 1 ∧ (∀t ∈ AG.t 6= v1 → token2[t] = token3[t])
label1[v2] = label[u2] ∧ (∀t ∈ AG.t 6= v2 → label1[t] = label[t])

Fig. 4: Constraint satisfaction problem of the token circulation protocol

Proof sketch By definition, we must show that (i) if s1
e→

s2, then σ(s1)
e→ σ(s2), and (ii) σ(init) = init.

Suppose P is an equivalent sequential model of M, and
s1

e→ s2 corresponds to the execution of the summand sum
of P . Without loss of generality, we assume there is only one
global variable vg in P and one local variable vl in sum. s1

e→
s2 is assumed to denote executing sum when vg := value1 and
vl := value2. That is, when vg := value1 and vl := value2,
its enabling condition fe is true, event e is executed and global
variables are updated in its next-state function fn which leads
to state s2.

Suppose C is the constraint satisfaction problem converted
from P in Algorithm 1. By Theorem 1, all the constraints
converted from fe and fn are satisfied when vg = value1 and
vl = value2. By Theorem 3, σ is a constraint symmetry of C.
So all of the constraints from fe and fn are also satisfied when
σ(vg = value1) and σ(vl = value2). Again by Theorem 1, we
get σ(s1)

e→ σ(s2). Similarly, we can prove σ(init) = init.

Note that the inverse of the theorem may not hold. For
example, if two processes of the same type identical up to
swapping their process identifiers are intentionally modeled as
processes of two different types, this process symmetry is not
reflected in its corresponding colored graph.

The number of nodes in the colored graph of a CSP is the
sum of the number of literals, which is the product of the
variable domain sizes, and the number of allowed assignments
for constraints. For a constraint with n variables, it may have
O(mn) possible assignments in the worst case, where m is the
size of the largest domain. The time complexity of computing
allowed assignments of one constraint is O(mn), and the time
and space complexity of constructing the colored graph for a
CSP accumulate to t × O(mn) where t is in the number of
constraints.

Figure 5 shows a part of the colored graph obtained
from the CSP of the running example with N = 3. Due
to space restriction and graph complexity, we make the
following alternations for simplicity in order to help users
better understand its inherent symmetries while still preserv-
ing the essence of the graph. This graph fragment shown
is built from part of the first constraint in the CSP, i.e.,
v1 = (u1 + 1) mod N ∧ label[u1] = label[v1]. We skip the
representation of all nodes generated from v1 = (u1+1) mod N
and variable and value nodes for v1 and u1. Note that rotating

three label variables clockwise still yields the same graph;
swapping any literals of the form label[i] := 0 and label[i] := 1
for all 0 <= i < 3 in all the assignments yields the same
graph.

Fig. 5: Part of the colored graph of the running example’s CSP

Example For the running example, assume there are three
processes with ids 0, 1 and 2, it has 3 process symmetries
from rotating the processes following the direction of the
network, i.e., (0)(1)(2), (0, 1)(1, 2), (0, 2)(1, 2)2; it has 2 data
symmetries from swapping all the possible values of all
label variables, i.e., (0)(1), (0, 1). Further, new symmetries are
introduced by the product of these automorphisms. Therefore,
we discover 6 symmetries in total.

D. Optimization

In the step of symmetry detection, we perform two
lightweight but effective optimization techniques, the first one
to speed up the construction of the colored graph and the
second to remove symmetries which are useless for model
checking.

1) Breaking Down Array Writing Constraints: Each array
writing constraint is involved with at least all the variables of
two arrays, which often becomes a performance bottleneck.
In order to reduce the time consumption, one straightforward
way is keeping the number of variables as small as possible.
We transform it into K + 1 simple constraints each involving

2Permutations are written in the cyclic notation. If a1, a2, · · · , an are
distinct elements of Ω, then the cycle (a1, a2, · · · , an) denotes the permutation
σ on Ω, i.e., for 1 ≤ i < n, σ(ai) = ai+1, σ(an) = a1 and for any
b ∈ Ω \ {a1, a2, · · · , an}, σ(b) = b.

20



much fewer variables in the following way3 where K is the
array size, and refine the coloring strategy such that elements
of different arrays have different colors.

array1[index] = value∧
(∀j ∈ {0, · · · , N − 1}.j 6= index→ array1[j] = array0[j])

⇓
array1[index] = value
array1[0] = array0[0]
array1[1] = array0[1]

· · ·
array1[N − 1] = array0[N − 1]

The soundness of the transformation is stated by the
following theorem.

Theorem 4. Let C be a CSP. and C′ its corresponding CSP of
C after transforming all array writing constraints. Then any
constraint symmetry of C′ is also a constraint symmetry of
C.

Proof Assume σ is a constraint symmetry of C′. The
constraints in C are separated into two sets: one containing all
the array writing constraints S1 and the other containing all the
rest constraints S2; similarly, the constraints in C′ are separated
into two sets: one containing all the constraints transformed
from an array writing constraints S′1 and the other containing
all the rest constraints S′2. Since S2 and S′2 are identical, σ is
also a constraint symmetry for S2.

We define a function evals which takes an assignment s
and a constraint c, and returns the satisfaction of c when
evaluated as s. Without loss of generality, we assume there
are no multi-dimensional arrays in C. Suppose an array
writing constraint c in S1 is array1[index] = value ∧ (∀j ∈
{0, · · · , N − 1}.j 6= index → array1[j] = array0[j]).
It is transformed into the list L containing N + 1
constraints {array1[index] = value, array1[0] =
array0[0], · · · , array1[N − 1] = array0[N − 1]} in S′1. Let
s be an assignment of C. Because all elements of an array
have the same color which is different from that of any other
variable. For any element array0[k] where k ∈ {0, · · · , N−1},
σ(array0[k]) = array0[k′] where k′ ∈ {0, · · · , N − 1}. This
also applies to elements of array1. There are three conditions
to be considered: (1) if the first constraint in L is evaluated
to false at s, i.e., evals(array1[index] = value) = false,
then evals(c) = false. Because σ is a constraint
symmetry, evalσ(s)(σ(array1[index] = value)) =
evalσ(s)(array1[σ(index)] = value) = false. So
evalσ(s)(σ(c)) = false; (2) Otherwise if there exists
i ∈ {0, · · · , N −1} such that evals(array1[i] = array0[i]) =
false where i 6= evals(index), then evals(c) = false.
Since evals(array1[i] = array0[i]) = false,
evals(c) = false and evalσ(s)(σ(array1[i] = array0[i])) =
evalσ(s)(array1[σ(i)] = array0[σ(i)]) = false. Because
i 6= evals(index), evalσ(s)(σ(i)) 6= evalσ(s)(σ(index)).
Therefore, evalσ(s)(σ(c)) = false; (3) Otherwise, evals(c) =

3For ease of presentation, we only show how to transform a writing constraint
of a one-dimensional array. It can be easily extended to multi-dimensional
arrays.

true. That is, evals(array1[index] = value) = true
and ∀j ∈ {0, · · · , N − 1} and j 6= evals(index) such
that evals(array1[j] = array0[j]) = true. Considering
σ is a constraint symmetry, evalσ(s)(σ(array1[index] =
value)) = evalσ(s)(array1[σ(index)] = σ(value)) = true
and ∀j ∈ {0, · · · , N − 1} and j 6= evals(index)
such that evalσ(s)(σ(array1[j] = array0[j])) =
evalσ(s)(array1[σ(j)] = array0[σ(j)]) = true. Because
j 6= evals(index), evalσ(s)(σ(j)) 6= evalσ(s)(σ(index)). So
evalσ(s)(σ(c)) = true.

Therefore, σ is also a constraint symmetry of C.
2) Removing Redundant Value Symmetries: The colored

graph may contain some values of a variable which do not
satisfy any constraint transformed from an enabling condition
or the init statement. It means that those values are impossible
to appear at any time during the execution of the system.
Take the CSP (V = {x, y}, D = {{0, 1, 2}, {2, 3, 4}}, C =
{x > 1, y = x + 1}) as an example. A value symmetry
σ = (x := 0, x := 1) exists in the CSP. Suppose the constraint
x > 1 is originally derived from the enabling condition and
y = x+ 1 is the next-state program of the same summand in
the sequential model. So neither x := 0 nor x := 1 is valid
in any state, which makes σ useless for reducing the state
space. Therefore, it is safe and appropriate to remove these
values during the graph construction in order to avoid redundant
symmetries later. For each variable’s value, we record whether
it appears in at least one allowed assignment of a constraint
representing an enabling condition or the init statement. If
not, it will be removed.

V. CASE STUDIES

We have implemented the colored graph construction de-
scribed in Section IV. The resulting graph is input to Saucy [12]
which produces the generating set of the automorphism group
of a graph. For a group, its generating set is a subset whose
elements are denoted by generators such that each element of
the group can be obtained by the combination of generators
of this subset. A generating set is often used as a compact
representation of a group. Then the generating set is input to
GAP [19] system which produces all the elements in the group.
All experiment data is online [1], part of which is summarized
in Table I.

The experimental cases cover a variety of computing systems.
From the perspective of execution patterns, they include
sequential systems, concurrent systems with synchronous
communication using shared variables or shared actions,
and distributed systems with asynchronous message passing
mechanism. From the perspective of communication topologies,
they include networks of layers, rings, trees, stars, complete
graphs and hypercubes. From the perspective of symmetry
types, there are systems with only process symmetries, with
only data symmetries and with both of them.

In Table I, |Colored Graph| denotes the size of the colored
graph generated for each configuration, Construction denotes
the time (in seconds) taken to construct the colored graph;
|Generators| denotes the size of the generating set of the

21



TABLE I: Symmetry detection results on a Linux laptop with Intel 2.8GHz and 3.8 GB memory

System | Colored Graph | Construction(s) Saucy(s) |Generators| |Aut(G)| Scalar SCD
Reader-writer problem [33]
3 120 0.127 0.004 1 2 N N
Peterson’s mutual exclusion protocol [28]
9 2311 0.695 0.018 8 362880 N Y12 4207 1.037 0.030 11 479001600
A prioritized resource allocator1[14]
2-2-3 393 0.553 0.004 4 24 N Y3-3-4 534 0.902 0.005 7 864
Three-tiered architecture2[14]
3-3-2 419 0.480 0.005 5 144 N Y3-3-3 452 0.515 0.006 6 1296
4-4-3 518 0.508 0.006 8 6912
Message passing in a hypercube network3[14]
5 3586 1.447 0.026 4 3840 N N6 11555 3.317 0.066 5 46080
Dining philosophers
10 556 0.492 0.005 1 10 N N20 1086 1.033 0.007 1 20
Miler’s scheduler [27]
10 487 2.665 0.001 0 0 N N
Non-deterministic two-hop coloring protocol in undirected rings [2]
9 2013 0.788 0.012 5 216 N N12 3105 1.282 0.013 5 288
Self-stabilizing leader election protocol in complete graphs [18]
12 21155 2.684 0.394 11 479001600 N N15 164809 15.783 8.326 14 1307674368000
Self-stabilizing leader election protocol in directed rooted trees [6]
15 466 3.954 0.275 4 16 N N19 580 7.404 0.005 6 128
Self-stabilizing leader election protocol in rings [18]
9 21378 4.781 0.093 1 9 N N12 214169 51.265 1.266 1 12
Hanoi puzzle
3 891 0.523 0.003 1 2 N N6 6520 1.636 0.023 1 2
Scheduling the social golfer problem4[16]
3-3-4 1542 1.374 0.009 9 725760 N N
1 A configuration is written in the form a0 − a1 − · · · − ak−1, where client processes 0, 1, · · · , a0 have priority

level 0, a0 + 1, a0 + 2, · · · , a1 have priority level 1, etc.
2 A configuration is written in the form a1 − a2 − · · · − ak , which denotes that the system consists of k server

processes and ai clients connected to server i.
3 A configuration is denoted by the number of dimensions of the hypercube. Note that the configuration d is

composed of 2d processes.
4 A configuration is written in the form G-S-W where G is the number of groups, S is the number of golfers in

one group and W is the number of weeks.

automorphism group G of the colored graph computed by
Saucy; Saucy denotes the time taken by Saucy to compute
generators; |Aut(G)| denotes the size of G computed by GAP.
For systems whose configurations are not explained here,
a configuration of each one is identified by the number of
processes/components. The last two columns denote whether
these symmetries can also be detectable by two popular
existing approaches scalarset (Scalar) and static channel
diagrams (SCD) (which are introduced in Section VI) without
major changes on the original model, e.g., rewriting each
arithmetic or relational operation on variables related to process
identifiers into the logical disjunction of all explicit variable
values allowed by this operation, or remodeling the process
communication mechanism into channels only. For a system
with data symmetries, such as two-hop coloring protocol,
existing approaches are still unable to discover them even
if the system is changed into the form the approaches require.

As Table I shows, the overhead of our approach is quite low
even for the systems with large automorphism groups. We study
the same cases as the static channel diagram approach [13],
[14] (i.e., Peterson’s protocol, resource allocator, three-tiered
architecture and message passing in a hypercube network) and
our approach is able to find all symmetries reported in their
work efficiently. However, the effectiveness of our approach is
not limited to message passing systems or process symmetries.

A. Performance Improvement

The performance bottleneck of our approach lies in the size
of the colored graph. First, allowed assignments for constraints
often contribute the largest portion of the graph size. For a
constraint with n variables, as discussed in Section IV-D1,
in order to reduce its time consumption, one straightforward
way is keeping n as small as possible. So we break down
a constraint into a set of sub-constraints and guarantee that

22



TABLE II: Symmetry reduction results I on a Windows laptop
with Intel 3.4GHz and 8 GB memory with PAT 3.5 [32]

Model States (Without Reduction) States With Reduction Gain
Dining philosophers

10 154450 15489 90.0%
12 1684801 140536 91.7%
14 OM 1313052 -

Three-tiered architecture
3-3-2 7840 462 94.1%
3-3-3 21952 286 98.7%
4-4-3 188272 OT -

Non-deterministic two-hop coloring protocol in undirected rings
3 13824 442 96.8%
4 331776 8058 97.6%
5 OM OT -

the logical conjunction of sub-constraints is equivalent to
the original constraint. This method has a side effect: it
increases the number of constraints. Fortunately, this effect is
negligible because the time consumption for computing allowed
assignments is much more sensitive to the number of variables
in a constraint than to the number of constraints, and the
performance bottleneck is its time consumption instead of its
memory. Second, we have observed that users may sometimes
define larger variable domains than necessary. Our approach
does not rely on the exact domain of variables, but can take
advantage of it to construct a smaller colored graph.

B. Symmetry Reduction

We apply detected symmetries to the depth-first exploration
of the whole state spaces of system configurations. A classic
canonicalization function [22] is used to calculate a unique
representative for each equivalence class of states, i.e., applying
all the automorphisms to a visited state to find the lexico-
graphically smallest image. Table II contains the experimental
results before and after symmetry reduction for part of systems
configurations in Table I. In the table, States means the number
of states stored, OM means exploring the configuration ran out
of memory, OT means more than 2 hours, and Gain means the
relative improvement on stored states brought by symmetry
reduction. For the conducted experiments, the saving in terms
of memory is 95.9% in average.

The computational overhead of symmetry reduction stems
from checking whether the unique representative state of a
visited state has been explored. Thus calculating representative
states would be costly in time if there are a large number
of automorphisms. It is known as constructive orbit problem
(COP), which is NP-hard in general [7]. In practice, only sys-
tems with full symmetries are supported by existing symmetry
reduction approaches, because representatives can be efficiently
calculated in polynomial time.

One way of relaxing the prohibitive time requirement of COP
is to allow multiple representatives for each equivalence class
of states. Table III contains the experimental results for state
space exploration without symmetry reduction, with symmetry
reduction using unique representative, and with symmetry
reduction using multiple representatives. From the table, it

is shown that multi-representatives symmetry reduction stores
more states than single-representative as expected. Here we
consider the algorithm of calculating multiple representatives
called local search in [15], which is only dependent on the
generators of an automorphism group. A group with a large
number of elements has a much smaller number of generators.
So the multi-representatives approach is much faster than the
single-representative one in most cases. It remains our future
work to solve the COP problem efficiently for certain classes
of automorphism groups in practice.

VI. RELATED WORK

The importance of detecting symmetries for state space
exploration has garnered much interest in recent years and
several methods have emerged. The discussion on each method
will largely be focused on the answers to two questions: (1)
How much effort is required from model designers? (2) How
many kinds of symmetries can be detected?

A. Scalarset Method

One of the oldest and most widespread symmetry detection
approaches is using scalarset. It is first introduced by Ip
and Dill in the explicit model checker Murϕ [22]. Scalarset
is a data type which determines an unordered finite set of
consecutive integer values. It is a fully symmetric type, i.e.,
permuting any values of a scalarset type throughout the state
space must result in an automorphism. So this method is only
capable of handling fully symmetric components. For usage,
a user may define a new scalarset type for a class of fully
symmetric components and assign each component’s identifier
to a unique value of this type. Then the verifier automatically
extracts the automorphisms from scalarset types. In this way,
scalarsets provide a convenient and efficient way for users to
define symmetries, considering the number of automorphisms
generated by a scalarset is the factorial of its size. This method
is applied to several other model checkers like Spin [4], [5],
Uppaal [21].

However, it has two disadvantages that impose a heightened
burden on designers. First, the applicability of this method
relies on designers to have expert insights to precisely identify
identical components in a system. Second, in order to make
sure the symmetry extraction method is sound, a much rigorous
syntactic requirement is placed on operations of scalarsets to
rule out all possible symmetry breaking constructs. Last but
not least, it is applicable only for fully symmetric systems.

It is worth to mention that the local variables in our work act
as a much more generalized version of the popular scalarset.
They both represent a subrange of values. A local variable may
be the source of symmetries in a model, whereas a scalarset
variable must be the source of symmetries in a model. Since
scalarset variables have to be specified by designers, the lack
of a computer-assisted approach results in correctly expressing
symmetries as wholly the designers’ responsibility. But our
approach automatically identifies which local variables are real
symmetry makers and which operations are symmetry breaking
constructs so as to remove all the burden from designers.

23



TABLE III: Symmetry reduction results II on a Windows laptop with Intel 3.4GHz and 8 GB memory with PAT 3.5 [32]

Model Without Reduction With Reduction (Unique) With Reduction (Multi)
States Time (Sec) States Time (Sec) States Time (Sec)

Dining philosophers
10 154450 15.3 15489 14.2 106819 23.2
12 1684801 212 140536 242 1149178 341
14 OM - 1313052 3563 OM -

Three-tiered architecture
3-3-2 7840 1.1 462 8.4 966 1.0
3-3-3 21952 3.6 286 60.4 2290 5.1
4-4-3 188272 42.3 - OT 35524 103

Non-deterministic two-hop coloring protocol in undirected rings
3 13824 10.3 442 15.4 1567 4.6
4 331776 511 8058 668 33415 160
5 OM - - OT 661454 5718

B. Static Channel Diagrams

Donaldson and Miler design a fully automatic approach to
detecting process symmetries for channel-based communication
systems [13], [14]. Their approach also involves constructing
a graph called static channel diagram from a Promela model,
whose automorphisms possibly correspond to the automorphism
of the Kripke structure along with the model. Each node is
created for each process or channel. If a process possibly sends
a message to a channel, then a directional edge is created from
the process node to the channel node. Similarly, if a process
possibly receives a message from a channel, then a directional
edge is created from the channel node to the process node.
All process (resp. channel) nodes representing the same type
of processes (resp. channel) have the same unique color. The
generators for the automorphism group in the static channel
diagram are computed using a graph automorphism algorithm.
But a computed generator may not be a real automorphism
in the state space. In order to preserve the soundness of the
detection approach, each generator obtained from the diagram
has to be validated that it transforms the original program P
into an equivalent program with the complexity O(|P| log
|P|).

Similar to scalarset approaches, there is a series of limitations
on input Promela programs to rule out symmetry breaking
constructs. One of them is disallowing the use of process
identifiers in relational and arithmetic operations, which is
commonly thought to be the source of breaking symmetries.
However, it is not necessary the case in many systems such as
the motivating example. They propose a straightforward strategy
to relax this restriction, i.e., rewriting a relational or arithmetic
operation into a disjunction of all possible combinations of
variable valuations. But the validity checking for each generator
would suffer a significant loss in performance because the size
of the program becomes at most O(nk) of the original one,
where n is the largest size of domains of variables representing
process identifiers and k is the highest arity of any relational
or arithmetic operations involving these variables.

Lastly, our method is remotely related to an on-the-fly
symmetry detection and reduction approach proposed by
Wahl and D’Silva [35]. It starts a reachability checking with
the assumption that all processes are fully symmetric. As

each transition is analyzed, the asymmetries it induces are
used to partition the processes. Our approach can deduce
how an arbitrary transition breaks symmetries not limited to
process symmetries prior to model checking. So combining
two approaches can potentially improve the performance of
symmetry reduction.

VII. CONCLUSION AND FUTURE WORK

The main contribution of our work is a new automatic
symmetry detection approach. To the best of our knowledge, our
study is the first work to relax all the syntactic restrictions on the
model form, and also the first work to consider various process
symmetries, data symmetries and their combinations. A variety
of case studies showed that the overhead of symmetry detection
is negligible and detected symmetries save the majority of a
state space to be explored.

A line of our future work is to design efficient algorithms
for calculating representative states for automorphism groups
that satisfy certain structural properties and are often used in
practice. All existing symmetry detection approaches only
work on one instance of a parameterized system at a time.
We observe that, for a parameterized system, the distinctive
features of symmetries are often determined by the essence
of the system structure rather than concrete valuations of
the parameters. So the other interesting line of future work
is to provide a once-for-all solution of obtaining universal
symmetries for the entire instances in a parameterized system.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their invalu-
able comments. This work is supported by project
“IDD11100102A/IDG31100105A” from Singapore University
of Technology and Design and in part by NTU-NAP project:
“Formal Verification on Cloud” from Nanyang Technological
University.

REFERENCES

[1] http://www.comp.nus.edu.sg/~pat/detection/.
[2] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing

population protocols. ACM Transactions on Autonomous and Adaptive
Systems, pages 643–644, 2008.

24



[3] E. Ashcroft and Z. Manna. Formalization of Properties of Parallel
Programs. In Machine Intelligence, 1970.

[4] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. In SPIN,
pages 1–19, 2000.

[5] D. Bosnacki, L. Holenderski, and D. Dams. A Heuristic for Symmetry
Reductions with Scalarsets. In FME, pages 518–533. 2001.

[6] Canepa, Davide and Potop-Butucaru, Maria Gradinariu. Stabilizing token
schemes for population protocols. CoRR, 2008.

[7] E. Clarke, E. Emerson, S. Jha, and A. Sistla. Symmetry Reductions in
Model Checking. In CAV, pages 147–158, 1998.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 2000.

[9] D. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M. Smith.
Symmetry definitions for constraint satisfaction problems. Constraints,
11(2-3):115–137, 2006.

[10] M. Cohen, M. Dam, A. Lomuscio, and H. Qu. A Data Symmetry
Reduction Technique for Temporal-epistemic Logic. In ATVA, pages
69–83, 2009.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and
Systems, pages 451–490, 1991.

[12] P. T. Darga, K. A. Sakallah, and I. L. Markov. Faster Symmetry Discovery
using Sparsity of Symmetries. In DAC, pages 149–154, 2008.

[13] A. F. Donaldson and A. Miller. Automatic Symmetry Detection for
Model Checking Using Computational Group Theory. In FM, pages
631–631, 2005.

[14] A. F. Donaldson and A. Miller. Automatic Symmetry Detection for
Promela. Journal of Automated Reasoning, pages 251–293, 2008.

[15] A. F. Donaldson and A. Miller. On the Constructive Orbit Problem.
Annals of Mathematics and Artificial Intelligence, 57(1):1–35, 2009.

[16] I. Dotú and P. Van Hentenryck. Scheduling Social Golfers Locally. In
CPAIOR’05, 2005.

[17] E. A. Emerson and A. P. Sistla. Symmetry and Model Checking. Formal
Methods in System Design, pages 105–131, 1996.

[18] M. J. Fischer and H. Jiang. Self-stabilizing Leader Election in Networks
of Finite-state Anonymous Agents. In OPODIS’06, 2006.

[19] The GAP Group. GAP – Groups, Algorithms, and Programming, 2012.
[20] J. F. Groote, A. Ponse, and Y. S. Usenko. Linearization in Parallel pCRL.

Journal of Logic and Algebraic Programming, 2001.

[21] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaandrager.
Adding Symmetry Reduction to UPPAAL. In FORMATS, pages 46–59.
2004.

[22] C. N. Ip and D. L. Dill. Better Verification through Symmetry. Formal
Methods in System Design, pages 41–75, 1996.

[23] M. M. Jaghoori, M. Sirjani, M. R. Mousavi, E. Khamespanah, and
A. Movaghar. Symmetry and Partial Order Reduction Techniques in
Model Checking Rebeca. Acta Inf., pages 33–66, 2010.

[24] M. M. Jaghoori, M. Sirjani, M. R. Mousavi, and A. Movaghar. Efficient
Symmetry Reduction for an Actor-based model. In ICDCIT’05, pages
494–507, 2005.

[25] R. A. Krzysztof and E.-R. Olderog. Verification of Sequential and
Concurrent Programs. 1991.

[26] B. D. MacArthur, R. J. Sánchez-Garćia, and J. W. Anderson. Symmetry
in Complex Networks. Discrete Applied Mathematics, pages 3525 –
3531, 2008.

[27] R. Milner. Communication and Concurrency. 1989.
[28] G. L. Peterson. Myths About the Mutual Exclusion Problem. Information

Processing Letters, 1981.
[29] J.-F. Puget. Automatic Detection of Variable and Value Symmetries. In

CP, pages 475–489, 2005.
[30] A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a Symmetry-Based

Model Checker for Verification of Safety and Liveness Properties. ACM
Transactions on Software Engineering and Methodology, pages 133–166,
2000.

[31] C. Spermann and M. Leuschel. ProB Gets Nauty: Effective Symmetry
Reduction for B and Z Models. In TASE, pages 15–22, 2008.

[32] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification
under Fairness. In CAV, pages 709–714, 2009.

[33] T. Wahl. Adaptive Symmetry Reduction. In CAV, pages 393–405.
Springer-Verlag, 2007.

[34] T. Wahl and A. Donaldson. Replication and Abstraction: Symmetry in
Automated Formal Verification. Symmetry, pages 799–847, 2010.

[35] T. Wahl and V. D’Silva. A Lazy Approach to Symmetry Reduction.
Form. Asp. Comput., pages 713–733, 2010.

[36] Y. Xiao, M. Xiong, W. Wang, and H. Wang. Emergence of Symmetry
in Complex Networks. Phys. Rev. E, page 066108, 2008.

[37] S. J. Zhang, J. Sun, C. Sun, Y. Liu, J. Ma, and
J. S. Dong. Symmetry Detection for Model Checking.
http://www.comp.nus.edu.sg/~pat/detection/report,
2013.

25


	Constraint-based automatic symmetry detection
	Citation
	Author

	/var/tmp/StampPDF/r0afKcndG2/tmp.1584005625.pdf.J8bka

