
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2013 

Combining model checking and testing with an application to Combining model checking and testing with an application to 

reliability prediction and distribution reliability prediction and distribution 

Lin GUI 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Yang LIU 

Yuanjie SI 

Jin Song DONG 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
GUI, Lin; SUN, Jun; LIU, Yang; SI, Yuanjie; DONG, Jin Song; and WANG, Xinyu. Combining model checking 
and testing with an application to reliability prediction and distribution. (2013). Proceedings of the 2013 
International Symposium on Software Testing and Analysis, ISSTA '13, Lugano, Switzerland, July 15–20. 
101-111. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5004 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Lin GUI, Jun SUN, Yang LIU, Yuanjie SI, Jin Song DONG, and Xinyu WANG 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/5004 

https://ink.library.smu.edu.sg/sis_research/5004


Combining Model Checking and Testing with an
Application to Reliability Prediction and Distribution

Lin Gui
National University of

Singapore
lin.gui@nus.edu.sg

Jun Sun
Singapore University of
Technology and Design
sunjun@sutd.edu.sg

Yang Liu
Nanyang Technological
University, Singapore

yangliu@ntu.edu.sg
Yuan Jie Si

Zhejiang University, China
siyuanjie@zju.edu.cn

Jin Song Dong
National U. of Singapore
dcsdjs@nus.edu.sg

Xin Yu Wang
Zhejiang University, China

wangxinyu@zju.edu.cn

ABSTRACT
Testing provides a probabilistic assurance of system correct-
ness. In general, testing relies on the assumptions that the
system under test is deterministic so that test cases can be
sampled. However, a challenge arises when a system under
test behaves non-deterministiclly in a dynamic operating en-
vironment because it will be unknown how to sample test
cases.

In this work, we propose a method combining hypothe-
sis testing and probabilistic model checking so as to provide
the “assurance” and quantify the error bounds. The idea
is to apply hypothesis testing to deterministic system com-
ponents and use probabilistic model checking techniques to
lift the results through non-determinism. Furthermore, if a
requirement on the level of “assurance” is given, we apply
probabilistic model checking techniques to push down the
requirement through non-determinism to individual compo-
nents so that they can be verified using hypothesis testing.
We motivate and demonstrate our method through an appli-
cation of system reliability prediction and distribution. Our
approach has been realized in a toolkit named RaPiD, which
has been applied to investigate two real-world systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking , Statistical methods, Reliability

General Terms
Reliability, Verification

Keywords
MDP, hypothesis testing, reliability prediction, reliability
distribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15-20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

JMS

Gateway

Pricing
Server

Printing 
Agent

Order 
Messages

CCS 
Server 1

CCS 
Server 2

CCS 
Server 3 D

B

Figure 1: Architecture of the CCS System

1. INTRODUCTION
Testing is useful because it provides a certain level of as-

surance of system correctness/reliability. The more testing,
the more likely a system behavior (being a bug or not) is
demonstrated. When the system under test is deterministic,
the level of “assurance” can be precisely captured through
hypothesis testing, which is a statistical process determin-
ing whether to reject a null hypothesis based on tests gener-
ated according to the probability distribution in a model [3].
However, the testing method for quantifying the level of “as-
surance”remains unknown if the system is non-deterministic
(or equivalently that the probability distributions of certain
events are unknown or hard to predict). In this work, a prob-
abilistic“assurance” for non-deterministic system is achieved
through combing hypothesis testing and probabilistic model
checking, and the underlying principle are demonstrated
through an application of system reliability analysis.

A motivating example One product of our industrial
collaborator, a financial software solution provider, is the
Call Cross System (CCS), which is a stock trading system
accepting order flow in a global operating environment. It
operates on a 24 hours basis for 6 days per week. It has been
successful in operation since 2005 and playing a crucial part
in the core business of a financial institute in Boston. The
CCS system is required to be highly reliable, and quantita-
tively 99.99% of the transactions must be correctly handled.
With such a requirement, an immediate question is: how do
we calculate the system reliability and present our calcula-
tion as a formal evidence to show that the delivered system
will meet the requirement? A related question is: given
the system level reliability requirement, what is the reliabil-
ity requirement on each of the system components, so that
the component development teams can carry out reliability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ISSTA’13, July 15–20, 2013, Lugano, Switzerland
ACM 978-1-4503-2159-4/13/07
http://dx.doi.org/10.1145/2483760.2483779

101



measures on their own? The former is known as reliabil-
ity prediction problem and we term the latter as reliability
distribution problem.

In order to answer the questions, we must understand the
architecture of the CCS. Figure 1 shows the high-level archi-
tecture of the CCS, where arrows represent the directions of
dataflow. At the top level, the system consists of six com-
ponents. Gateway serves as a linkage between peripheral
applications and the CCS. It receives order messages in the
data batch manner and dispatches them to different sym-
bol partitions in the CCS Servers via Java Message Service
(JMS) server. JMS serves as the messaging engine for order
flows, executions, pricing requests and responses, printing
trade reports in several markets. CCS Servers are the core
of the system to perform the business logics.They consist of
a cluster of Websphere AppServer nodes with WebSphere
Partitioning Facility (WPF) enabled. The workload is dy-
namically distributed to the server nodes based on the par-
titioning policies. The status of each partition is monitored
in real-time. If one node fails, partitions in the failed node
are reloaded to other healthy nodes. The partitions com-
municate with the external objects via a JMS server. Pric-
ing Server is a JMS client that processes pricing requests
and responds with pricing events to CCS servers. Printing
Agent is a JMS client that receives printing requests and
responses to JMS after printing. DB is the database server
for the CCS system. A stock trading transaction is accom-
plished through a series of steps involving multiple system
components. First, the Gateway sends order messages to
its inbound queue through the JMS. The CCS servers re-
ceive order messages from inbound queue, process and store
them into the database through underlying service frame-
work. Afterwards, the Pricing Server provides the current
price to CCS Servers. After the transactions are finished,
the trading information is shown by the Gateway or printed
by the Printing Agent. The transaction completes after dis-
playing out. Furthermore, components are often duplicated
in the CCS system to achieve high reliability.

Why existing approaches are not enough? Soft-
ware reliability is defined as the probability of failure-free
software operation for a specified period of time in a spec-
ified environment [22]. In this work, we consider reliability
of a system based on the probability of failure of the sys-
tem. Existing approaches on the reliability prediction prob-
lem fall into two categories: black-box approaches [18, 38]
and white-box approaches [7]. The black-box approaches
treat a system as a monolith and evaluate its reliability us-
ing testing techniques. They use the observed failure infor-
mation to predict the reliability of software based on several
models such as Jelinski-Moranda model [19], Musa Okumoto
model [30], Littlewood-Verrall model [25], etc. On the con-
trary, the white-box approaches assume reliability of sys-
tem components are known and evaluate software reliability
analytically based on a model of the system architecture in-
cluding Discrete Time Markov Chains (DTMCs) [7], Contin-
uous Time Markov Chains (CTMCs) [22], or Semi-Markov
Processes (SMPs) [20]. In these approaches, the probabilis-
tic transfer of control among components is assumed to be
known. For instance, the probability is assumed to be a con-
stant in DTMC-based approaches or a function of time in
CTMC/SMP-based approaches.

In the following, we argue that because the CCS system’s
behavior relies on the run-time environment, the existing

approaches are not ideal for it, nor for non-deterministic
systems in general. The white-box approaches rely on mod-
eling systems in DTMCs, CTMCs or SMPs, which imply
that there is only one probability distribution out of any
system component. In other words, if the system’s behavior
is hard to predict, the assumption that the probability dis-
tribution of transitions among system components is known
should be problematic. For instance, if we model the CCS
system using a DTMC, one probability distribution is re-
quired to capture the probability that an order is processed
by different CCS servers. Obtaining this probability dis-
tribution is highly non-trivial as the target CCS server is
chosen at run-time using a sophisticated dynamic load bal-
ancing algorithm. A probability distribution obtained in a
testing environment is likely to be different from that of the
real system. As a result, the estimated system reliability
may lose its accuracy. A “safer” (and more convincing to
the stakeholder) prediction is to assume no knowledge on
the distribution and assume that an order may be nonde-
terministically assigned to any CCS server. The existing
black-box approaches rely on testing the overall systems.
However, with a non-deterministic system under test, it is
unclear how test cases should be generated systematically so
that testing can provide a quantifiable level of “assurance”.

There is another issue with the existing white-box ap-
proaches. Two inputs are required including the reliability
of the system components and a model of the system ar-
chitecture. The former is usually obtained simply through
component-based testing, which could be misleading. For in-
stance, a component which failed 2 out of 50 test cases and
a component which failed 40 out of 1000 test cases would
have the same reliability of 96%. It is, however, obvious
that 96% for the second component is more accurate. In the
CCS system, we have indeed discovered that the number of
tests for different components varies significantly. Mixing
these semantically different data in calculating the system
reliability gives inaccurate results.

Combining testing and model checking From the
above analysis, testing is ineffective in non-deterministic sys-
tems. On the contrary, model checking is well-known to be
able to handle non-deterministic systems systematically [9,
5]. We thus propose to combine testing (in particular, hy-
pothesis testing) and model checking (in particular, proba-
bilistic model checking) for non-deterministic systems. The
idea is to apply hypothesis testing to system components
which are deterministic and use probabilistic model check-
ing to lift the results through non-determinism.

In the example of reliability prediction and distribution,
we propose to apply hypothesis testing to measure compo-
nent reliability with error bounds, and to use MDP-based
probabilistic model checking to obtain system-level reliabil-
ity. Hypothesis testing is one of the testing methods [33],
and can be used to bound the number of test cases by indi-
cating when the test can be stopped [38]. With hypothesis
testing, users can quantify the accuracy of a test result by
giving error bounds, i.e., the probability of false positive
and false negative testing conclusions. MDPs are used in
our probabilistic model checking. Compared to DTMCs,
MDPs support nondeterminism, i.e., there may be multiple
probability distributions from a state in the model. With
its expressiveness, we can then properly model complicated
systems like the CCS. However, compared to DTMC-based

102



Step 2
Reachability Checking

Step 1
Obtain an MDP

Components 
Hypothesis 

Testing System 
Reliability

(b)
Step 1

Obtain a 
Parameterized MDP

System 
Reliability 

Requirements

Step 2
Parameterized

 Reachability Checking

Hypothesis Testing 
Requirements on 

Components

Step 3
Synthesize Reliability 

Requirement for Components

A System 
Architecture

              Legend
           Input/output of steps

           Input/output data

(a)

Figure 2: Workflow: (a) reliability prediction; (b) reliability distribution

reliability prediction or distribution, MDP-based algorithms
are more challenging, as we show later.

Figure 2-a shows our workflow of solving the reliability
prediction problem. Firstly, hypothesis testing is applied
to obtain the reliability of system components. The result
is a probability, i.e., the reliability of a component being
larger or equal to this probability, with error bounds de-
fined by users. Next, MDP-based reachability analysis is
used to compute the overall system reliability, which is the
probability that the system reaches the success state. Notice
that existing algorithms on probabilistic reachability check-
ing must be extended to handle the error bounds obtained
with hypothesis testing. Figure 2-b shows the workflow of
solving the reliability distribution problem. Given a reliabil-
ity requirement for the system with error bounds, we solve
the problem in three steps. Firstly, we construct a parame-
terized MDP model within which each component is associ-
ated with variables representing its reliability measurement.
Next, we develop a parameterized probabilistic reachabil-
ity checking algorithm to obtain the minimum constraints
on the variables. Lastly, we synthesize concrete reliability
requirement for each component based on the constraints.
We develop a toolkit named RaPiD to fully automate our
approach and apply it to investigate two real-world systems.
The rest of paper is organized as follows. Section 2 reviews
background on MDP-based probabilistic model checking and
hypothesis testing. Section 3 presents our approach on com-
bining probabilistic model checking and hypothesis testing.
Section 4 shows an application of our approach to reliabil-
ity prediction and distribution. Section 5 evaluates our ap-
proach. Section 6 concludes with related works.

2. BACKGROUND
In this section, we briefly introduce the background on

probabilistic model checking and hypothesis testing.

2.1 Probabilistic Model Checking for MDPs
Discrete Time Markov Chains (DTMCs) and Markov De-

cision Processes (MDPs) are popular choices to model prob-
abilistic systems. Given a set of states S , a distribution is
a function µ : S → [0, 1] such that Σs∈S µ(s) = 1. Let
Distr(S) be the set of all distributions over S .
Definition A DTMC is a tuple D = (S , init ,Pr) where S is
a set of states; init ∈ S is the initial state; Pr : S → Distr(S)
is a transition function. 2

DTMCs are discrete stochastic processes satisfying the Markov
property. A DTMC model can be expressed by a stochastic
matrix P : S × S → [0, 1] such that

∑
s′∈S P(s, s ′) = 1. An

element P(si , sj ) represents the transition probability from
state si to state sj . A state is an absorbing state if it has
only self-looping outgoing transitions, i.e., P(si , si) = 1.
Definition An MDP is a tupleM = (S , init ,Act ,Pr) where
S is a set of states; init ∈ S is the initial state; Act is an al-

phabet; and Pr : S ×Act → Distr(S) is a labeled transition
relation. 2
Different from a DTMC, there may be multiple distributions
from a state, and each is labeled with a different action in
an MDP. Intuitively, given a state s, an action (and the
corresponding distribution) is first selected nondeterministi-
cally by a scheduler, and then one of the successor states is
reached according to the probability distribution. A sched-
uler is a function deciding which action to choose based on
the execution history. A DTMC can be defined by an MDP
M and a scheduler δ, which we denote as Mδ.

With different schedulers, a state s may be reached with
different probabilities. The measurement of interest is thus
the maximum and minimum reachability probabilities. Let
B be a set of target states. The maximum probability of
reaching any state in B is denoted as Pmax (M |= �B),
which is defined as: Pmax (M |= �B) = supδ P(Mδ |= �B).
Similarly, the minimum is defined as: Pmin(M |= �B) =
infδ P(Mδ |= �B) which yields the lower bound of the prob-
ability of reaching B . The supremum/infimum ranges over
all, potentially infinitely many, schedulers. Existence of op-
timal memoryless schedulers, in which the decision for choos-
ing next action/distribution based on the current state is
independent of the previous choices, has been proved in [5].
Based on the result, different methods (e.g., by value itera-
tion [5]) have been developed to calculate the maximum and
minimum reachability probabilities.

Value iteration is an iterative approximation technique
used to calculate the maximum and minimum probabilities
of reachability, and often yields better performance than
solving linear programs in practice [21, 36]. In the follow-
ing, we will demonstrate the application of value iteration on
finding the maximum probability for reaching any state in
B from the initial state. Let V be a vector such that, given
a state s, V (s) = Pmax (M |= �B) is the maximum prob-
ability of reaching B from s. For instance, V (init) is the
maximum probability of reaching B from the initial state.
First, using backward reachability analysis, we can identify
the set of states X which have non-zero probability of reach-
ing B , i.e., B is reachable from any state in X . Next, we
iteratively build an approximation of V based on the pre-
vious approximation. Let V i be the i-th approximation.
We define V i such that V i(b) = 1 for all b ∈ B and any
i ; V i(n) = 0 for all n 6∈ X and any i ; and for each state
s ∈ X − B , we have

V 0(s) = 0;

V i+1(s) = max{
∑

t∈S Pr(s, a, t)×V i (t) | a ∈ Act(s)}.
It can be shown that for every state s, V i+1(s) ≥ V i(s)

and we can obtain V in the limit, i.e., limi→∞V i = V .
In reality, it may take many iterations before V i converges
and thus value iteration is often stopped using a number of
different conditions (e.g., when a fixed number of iterations
have been reached or when the difference between two suc-

103



cessive iterations falls below a certain threshold). Minimum
probability of reaching B can be calculated similarly.

Each iteration involves a matrix-vector multiplication, which
has a complexity of O(n2 × m) in the worst case, where n
is the number of states in S and m is the maximum number
of actions from a state. Note that for sparse MDP models,
the complexity is often O(n×m). The number of iterations
required to achieve certain numerical precision is related to
the subdominant eigenvalue of the transition matrix [35].

2.2 Hypothesis Testing
Hypothesis testing is a statistical process to decide the

truthfulness of two mutual exclusive statements: H0 and
H1, where H0 is the hypothesis that the probability of a
given event is larger than or equal to a given value p0, and
H1 is the alternative hypothesis (i.e., the probability of the
event is less than or equal to a given value p1). Besides,
two parameters are required from users. One is the targeted
assurance level (θ) over the system, and the other is the
indifference region (2σ). Indifference region refers to the re-
gion (p1, p0), used to avoid exhaustive sampling and obtain
the desired control over the precision [39]. With the input
θ and σ, p0 = θ + σ, p1 = θ − σ. The probability of ac-
cepting H1 given that H0 holds is required to be at most α,
called false negative, and the probability of accepting H0 if
H1 holds should be no more than β, called false positive. In
practice, the error bounds (i.e., α, β), and σ can often be
decided by how much testing resource the component devel-
oper has. In general, it would require more resource for a
smaller error bounds or a smaller indifference region.

Hypothesis testing has been applied for reliability estima-
tion [38]. Let R be the reliability of a module. Suppose that
we wish to test the hypothesis that the reliability R is at least
θ. With a user defined σ, we have hypothesis H0 : R > θ+σ
and H1 : R 6 θ − σ. We remark that hypothesis testing re-
quires a way of sampling system executions according to its
operational usage. Many sampling methods have been de-
veloped and applied for software demonstrating testing [37,
34]. There are two main acceptance sampling methods to
decide when testing can be stopped. One is fixed-size sam-
pling test, which often results in a large number of tests [39].
The other one is sequential probability ratio test (SPRT),
which yields a variable sample size. SPRT is faster than
fix-sampling methods as the testing process ends as soon as
a conclusion is made. The basic idea of SPRT is to calcu-
late the probability ratio, after observing a test result and
comparing with two stopping conditions [4]. If either of the
conditions is satisfied, the testing stops and returns which
hypothesis is accepted. Readers can refer to [39] for details.

Example In the CCS system, to verify whether the re-
liability of a CCS server is at least 0.8, users should define
the test parameters (i.e., σ, α and β). Assuming α = 0.01,
β = 0.01, and σ = 0.1, the parameters define the goal for the
testing, i.e., whether to accept H0 “the reliability of the CCS
Server is at least 0.9” or H1 “its reliability is at most 0.7”. If
the “true” reliability is at most 0.8, it is guaranteed that the
probability of wrongly accepting H0 is less or equal to 0.01.
By the stopping criterion, we have xm > 0.8138m + 3.4040
(to accept H0) or xm 6 0.8138m − 3.4040 (to accept H1).
We start the testing with m = 0; xm = 0. After executing
a test case (which is chosen randomly according to the user
profile), m increases by 1. xm either increases by 1 if the
test finishes without failure or remains the same otherwise.

Next, the updated m and xm are used for stopping crite-
ria. If any one of the stopping criteria is fulfilled, H0 or H1

is accepted accordingly; otherwise, sampling continues with
another test case and the above steps will be repeated. 2

The error bounds quantify the reliability measurement.
They can differentiate the above-mentioned case, i.e., two
different test cases which have concluded the same reliability
of 96% with different number of tests. Assuming that a
fixed sampling plan is adopted with θ set to 0.96 and σ
set to 0.01, the minimum error bounds are: α = 0.5262 and
β = 0.3357 for 2 failures out of 50 tests case; and α = 0.2161
and β = 0.2026 for the case of 40 failures out of 1000 tests.
Therefore, the result based on the larger sample size is more
accurate in terms of smaller error bounds.

SPRT is guaranteed to terminate [4], while the expected
sample size is hard to determine. Wald [3] has provided
a good approximation. The expected sample size increases
from 0 to p1 and decreases from p0 to 1. The worst case is
when the “true” probability is within the indifference region.
If a = 0.01, b = 0.01, p0 = 0.99, and p1 = 0.98, the expected
sample size will be 3.0005 × 103 by Wald’s approximation.
If considering the hypothesis testing parameters with high
precision, which is normally the case in practice, e.g., a =
0.001, b = 0.001, p0 = 0.9999, p1 = 0.9998, the expected
sample size will be 6.8811× 105 in this case.

3. COMBINING MODEL CHECKING
AND HYPOTHESIS TESTING

Hypothesis testing enables directly sampling on systems,
but is not suitable to nondeterministic systems. On the
contrary, probabilistic model checking can handle nondeter-
minism easily with exact solutions, but suffers from state
explosion problem. The combination of both is proposed in
such a way that hypothesis testing is conducted on each sub-
system separately and probabilistic model checking method
is performed on the system level modeled in an MDP. This
can be formally presented as follows.

Let M be an MDP, φ be a property (which can be in
LTL [32], PCTL [15], etc.). By probabilistic model check-
ing, it can calculate the probability of the set of paths inMσ

that satisfy the φ for all schedulers σ, denoted as P(M |= φ).
It can also check whether a property holds with probability
at least θ, i.e., P>θ(M |= φ), which returns a Boolean value.
The model is assumed to be composed of several compo-
nents, denoted as M(D0,D1, . . . ,Dn), where each Di is a
deterministic system component. We connect the probabil-
ity of satisfying global property φ with the probability of
satisfying the local properties for each component with the
following function.

P(M |= φ) =
f (P (D0 |= φ0) ,P (D1 |= φ1) , . . . ,P (Dn |= φn))

where φi is the local property for component i and f is a
function that takes in the probability of satisfying the local
properties in each component and outputs the probability
of satisfying the global property in the whole model.

Similarly, the verification task of comparing the probabil-
ity of satisfying a global property with a bound relates to
that of local properties in each components is as follows.

P>θ(M |= φ) =
(
P>θ0 (D0 |= φ0)

)
∧
(
P>θ1 (D1 |= φ1)

)
∧ . . .

where θ = f (θ0, θ1, . . . , θn). In each deterministic compo-
nent Di , the probability of satisfying a local property φi be-

104



ing larger than a given value θ, denoted as P>θi (Di |= φi),
can be verified by hypothesis testing.

With the setting above, we show how to solve two differ-
ent problems as explained below. Firstly, if the objective
is to obtain a probability of a system satisfying a global
property, we first perform hypothesis testing to obtain the
probability of each component satisfying the correspond-
ing local property. Notice that we need to specify certain
discrete levels from high to low, e.g., l1 = 1, l2 = 0.99,
etc. Hypothesis testing is performed against those discrete
levels (e.g., li) sequentially, until P>li (Di |= φi) is true.
The li is the approximated maximum probability of satis-
fying the local property. Afterwards, we perform probabilis-
tic model checking based on the obtained results to calcu-
late P(M |= φ). Second, a global verification task, i.e.,
P>θ(M |= φ), can be distributed into several local verifica-
tion tasks, i.e., P>θi (Di |= φi) for each component Di . This
relies on the assumptions that there is an inverse function of
the given f , denoted by f −1, such that each θi is calculated
from f −1(θ); whenever the result of P>θi (Di |= φi) is false
for a component Di , P>θ(M |= φ) is also false, and vise
versa.

Besides, it is still necessary to analyze how error bounds
at system level are related to the ones at components.

Lemma 3.1. Let αc and βc be the error bounds of ver-
ifying components Dc. Let C be the set of all components
of a system. Let the error bounds for the overall system be
(α, β). α is bounded by max{αc | c ∈ C} and β is bounded
by

∑
c∈C βc.

Proof Let M be a system. We define the following hy-
pothesis: Φ (“Accept P>θ(M |= φ) is true”); Φs (“Accept
P>θs (Ds |= φs) is true”); ¬Φ (“Accept P>θ(M |= φ) is
false”); ¬Φs (“Accept P>θs (Ds |= φs) is false”); Ψ (“In fact,
P>θ(M |= φ) is true”); Ψs (“In fact, P>θs (Ds |= φs) is true”);
¬Ψ (“In fact, P>θ(M |= φ) is false”); and ¬Ψs (“In fact,
P>θs (Ds |= φs) is true”). Let (α, β) be the error bounds for
verifying P>θ(M |= φ). By definition, α is Pr(Ψ | ¬Φ), i.e.,
the probability of false negative.

α = Pr(Ψ | ∃ c ∈ C.¬Φc) – ?
6 max{Pr(Ψ | ¬Φs) | c ∈ C}
6 max{Pr(Ψc | ¬Φs) | c ∈ C}
6 max{αc | c ∈ C}

(?) holds because “accepting that P>θ(M |= φ) false” is
equivalent to “accepting that there exists a Ds such that
P>θs (Ds |= φs) is false”.

Similarly, β is Pr(¬Ψ | Φ), i.e., the probability of false
positive.

β = Pr(¬Ψ | Φ) = Pr(¬Ψ | ∀ c. Φc)
= Pr(∃ c ∈ C. ¬Ψc | ∀ c ∈ S . Φc)
6

∑
i∈C Pr(¬Ψc | ∀ c ∈ C. Φc)

=
∑

c∈C Pr(¬Ψc | Φc) =
∑

c∈C βc – 2

The setting above is beneficial in terms of alleviating state
space explosion problem and easily handling system nonde-
terminism. However, the general form above depends on a
few assumptions which are not easy to be satisfied in general.
We assume verification of a global property φ can be divided
into the verification against local properties φ0, φ1, . . . , φn ;
and the probability of satisfaction in the system is related to
that of components by a function f . In general, such func-
tion is hard to attain, not to mention its inverse function
f −1.

Nonetheless, f can be obtained in some cases. A special
case is when all local properties are the same as a global
property, i.e., φi = φ for the component Di . The function
f is an evaluation of the MDP model which can be done by
numerical methods e.g., value iteration. In the following, we
show that the problem of reliability analysis is exactly such
a special case and thus can be solved efficiently.

4. RELIABILITY ANALYSIS
The special case can readily apply to the software re-

liability analysis, i.e., reliability prediction and reliability
distribution, by setting local properties and modeling func-
tion “f ” explicitly. The property of interest in reliability
analysis is the probability that a software has no failure.
This is a global property, denoted by P(M |= �¬failure).
The global property is actually composed by a set of lo-
cal properties, i.e., probability of each module running suc-
cessfully without any failure. An MDP model is built from
the system architecture and users environment. Each mod-
ule in the system can be treated as a component D in the
MDP. The transition probability between components, e.g.,
Pij , is the probability from component i to component j ,
given that component i does not fail, i.e., Pij is conditional
on P(Di |= �¬failure). Therefore, the transition proba-
bility of the MDP, e.g., from component i to component
j , is P(Di |= �¬failure)Pij . Here, conditional probabil-
ity pij can be estimated from usage profile [29, 18]. By
reachability checking on the MDP (e.g., via value itera-
tions), the relationship between P(M |= �¬failure) and
P(Di |= �¬failure) for each component i can be established.

In the following, we present the details of applying the
combination of hypothesis testing with probabilistic model
checking to software reliability analysis. We first set up as-
sumptions of our reliability analysis, followed by the con-
struction of an MDP from system architecture and opera-
tional environment. The methodologies for reliability pre-
diction and distribution are then introduced, respectively.

4.1 Assumptions and Threads to Validity
Considering reliability analysis as a special application,

there are some underlying assumptions in terms of system
reliability model and component failure behavior.

We use an MDP to model a system. Each state represents
the execution of a single component of the application. Same
as other Markov models, our model relies on the assumption
of Markovian transfer of control among components, i.e.,
the probability distribution of future executing components
depends only upon the present components.

Similar to [7, 18, 14, 13], our model also assumes that
there is statistical independence among failures of the com-
ponents. More specifically, the failure occurring within one
component is neither the result of a failure occurring within
another component, nor able to cause any other component
to fail. However, in practice, different component may be
heavily dependent, which may be a result of data exchange
occurring through parameters or messages passing. In this
work, we limit ourself to the applications whose components
are failure independent. It appears to be a strict condition.
However, the present assumption can be well satisfied con-
sidering many up-to-date large systems (e.g. CCS), within
which the components are designed, implemented and tested
independently. If any failure dependent components exist
and can be grouped into one, the model would still work.

105



Moreover, in our reliability model, we assume that fail-
ure of any component will eventually lead to the failure of
the system. For a system consisting of self-recovery or self-
correction mechanism, there are some executions that end
successfully after recovery. These scenarios are not consid-
ered as failure cases. Nonetheless they can be modeled in
an MDP.

4.2 System Level Modeling
When to use nondeterministic choices? Compared

to DTMCs, MDPs allow us to capture both probabilistic
and nondeterministic behavior. A central issue is: when to
use nondeterministic choices and when to use probabilistic
choices. In general, probabilistic choices can be viewed as
informed nondeterministic choices. That is, we use a non-
deterministic choice when we have no definitive information
on how the choice is resolved. For instance, if all we know
is that there are two different outgoing transitions after ex-
ecuting a component C , we model the two transitions using
a nondeterministic choice. If the choice is made locally, af-
ter testing C systematically, we learn the frequency of each
outgoing transition and we can model C with a probabilistic
choice. However, if the result of executing C is correlated to
its inputs, there are two cases. If the inputs are the result of
executing some other component K in the system, we may
either model it as a nondeterministic choice conservatively;
or we calculate the probability distribution of C ’s results
based on the probability distribution of K ’s results. Notice
that if we systematically test C and K as a whole, we may
obtain a probability distribution of C ’s results. However, if
the inputs of C are from an external environment which is
difficult to predict (e.g., like the traffic of stock transactions),
a nondeterministic choice would deliver a “safer” model.

In a nutshell, testing helps to turn nondeterministic choices
into probabilistic choices. Ideally, we would like to learn
probability distribution of all actions in the system. Nonethe-
less, due to the limited resources for testing or knowledge of
the external environment, we often have to employ nonde-
terministic choices.

Example In the following, we illustrate the difference
between nondeterministic choices and probabilistic choices
using a simple example. Figure 3 presents a simplified frag-
ment of the CCS system. There are two components S1
and S2, with reliability 0.8 and 0.9, respectively. The com-
ponents execute simultaneously and independently. Assume
that S1 is chosen 30% of the time. The corresponding
DTMC model is shown on the left of the figure. The system
reliability is then estimated as 0.3 × 0.8 + 0.7 × 0.9, which
is 0.87. There are two potential problems with the above
prediction. First, the two components are running in paral-
lel and hence a DTMC cannot truthfully model the system.
Second, the transition probability is decided through user
profiles, which can only be obtained within limited tests in
a testing environment before the system is deployed. The
transition probability is hardly accurate since it is deter-
mined by the dynamic tasks loading at run-time. If an MDP
is used to model the system, as shown on the right, the re-
liability is calculated as 0.8 if S1 is chosen and 0.9 if S2 is
chosen. The result shows that in the worst case, the sys-
tem is only as reliable as S1. We can see that the result
based on the MDP model is less dependent on the external
environment. 2

dynamic tasks 
loading at run-timeSever 1 Sever 2

MDP

S2S1

1 1

S2S1

0.3 0.7
DTMC

Figure 3: A system with run-time tasks distribution

In the CCS example, depending on the run-time traffic of
the transaction, a sophisticated dynamic load balancing al-
gorithm is used to distribute transactions to the three CCS
servers. There are 15 different combinations of choices, i.e.,
any of the three is chosen; two of them are chosen in a
particular order; or all three of them are chosen in a par-
ticular order. It is challenging, if not impossible, to predict
the probability distribution of the choices. Modeled as non-
deterministic choices, these choices can be distinguished by
different schedulers and the system reliability for each choice
can be calculated and compared during value iteration.

Reliability Modeling The model of a system in our set-
ting is an MDP M = (S , init ,Act , Pr). For each system
component C (i.e., a self-contained piece of codes that can
be independently designed, implemented, and tested), there
is a pair of states, C and xC , in S which represent the state
of C executing and the state right after C terminates, re-
spectively. Further, S contains two absorbing states: a state
of Success and a state of Failure. Here, the probability of
a system always not getting failure state is the same as the
probability of a system eventually reaching success state,
denoted as P(M |= �Success). If the reliability of C is RC ,
there is one probability distribution from C such that there
is probability RC to reach xC and probability 1 − RC to
reach Failure. Notice that if there is certain failure handling
mechanism in the system (like WPF in the CCS system),
the transition with probability 1− RC leads to a failure re-
covering state instead of the Failure state.

A simplified model of the CCS system is shown in Figure 4.
The data in this figure are obtained based on test results on
an early version of the system. Only the nondeterministic
choices among the three CSS servers are shown and we fur-
ther ignore the ordering among the three servers so as to
save space. For compact presentation, we skip the Failure
state. Instead, a node labelled as C (R) is used to denote
that the name of the component is C and the probability
of reaching Failure is 1 − R and probability of R to transit
to the successive components. The transition probability at
each edge represents the usage information. Taking Server1
as an example, its reliability can be read off from the graph
as 0.9972 and it has three outgoing transitions labeled with
action η. If Server1 terminates successfully, it has a proba-
bility 0.584 of going to Exit , and a probability 0.416 of going
to DB . If Server1 fails, it goes to Server2, which serves as
a backup server for Server1. A backup transition is denoted
by a dash line in the figure. In the corresponding MDP,
the three transitions are labeled with (η, 0.9972 × 0.584),
(η, 0.9972 × 0.416), and (η, 1 − 0.9972), respectively. Note
that if action (ε, 1) is chosen at Enter , there is a backup
server available for Server1a or Server2a . If action (σ, 1) or
(ω, 1) is selected instead, there are no backup servers avail-
able, i.e., both servers are failed or the three servers are all
running to finish a job.

106



Gateway(0.9975)

JMS(0.9943)

Print(0.9463)

Success(1) Price(0.9457)

Exit(1) Server1(0.9972)

Server2(0.9972)

Server3(0.9972)

Enter(1)

Server1a(0.9972) Server2a(0.9972)

Server2b(0.9972)Server1b(0.9972) Server3b(0.9972)

DB(0.9811)

η
,
0
.5

η
,
0
.5

η
,
0
.3

5
2
8

η
,
0
.0

2
7
2

η
,
0
.2

7
7
4

η, 0.3426

η
,
0
.5

η
,
0
.5

η, 0.5

η
,
0
.5

η
, 1

λ
,
1

γ,
1

δ, 1

ε,
1

ω
,
1

η, 0.584

η
,
0
.4
1
6

η, 0.584

η, 0.416

η
,
0
.5
8
4

η, 0.416

η
,
0
.5

8
4

η, 0.416

η
,
1

η
,
0
.5

8
4

η, 0.416 η, 1

η
,
1

η
,
0
.2

η, 0.2

η, 0.2

η,
0.
2

η,
0.
2

η, 1

Figure 4: A simplified model for the CCS system

4.3 Reliability Prediction
Given the hypothesis testing results of each component

and an MDP, we then calculate the overall system reliability.
Based on Lemma 3.1, if all components are tested with the

same error bounds (αc , βc), the error bounds of the overall
system are (αc , βc × N ), where N is the number of compo-
nents. Notice that system-level false positive β could be N
times larger than the one at component level. This implies
that the confidence of system level measurement is lower
than that of the components.

The maximum and minimum system reliabilities can by
calculated by Pmax (M |= �Success) and Pmin(M |= �Success),
respectively, and can be calculated using the value iteration
method. Given the CCS model1 in Figure 4, we obtain that
the system reliability ranges from 0.95505 to 0.95729. The
worst reliability is obtained with a scheduler such that three
servers are running together, whereas the best reliability is
obtained when only one is running. Detailed analysis is dis-
cussed in Section 5.

4.4 Reliability Distribution
Our approach on distributing the overall system reliability

requires two inputs: (1) a reliability requirement R on the
overall system and a pair of error bounds (α, β); (2) a system
model in the form of an MDP. The goal is to find a relia-
bility requirement on some components so that the overall
reliability requirement is satisfied. The resultant require-
ment on the components (e.g. component c), is in the form
of a reliability probability Rc and a pair (αc , βc), which can
be established using hypothesis testing on the smaller-scale
component. In the following, we first show how to identify
Rc and then how to obtain (αc , βc).

Given an MDP M and a scheduler δ, we can obtain a
DTMC Mδ. The probability of reaching the Success state,
P(Mδ |= �Success), is a polynomial function constituted by

1The reliability are relatively low as they are obtained from
test environment before the software released. The data for
released version is confidential from the company. We have
demonstrated that our method can still work and is accurate
to a certain level by assuming relatively high reliability of
each component (e.g., 99.999%), which is often the case after
software released, available at [1].

multiple variables (i.e., Rc for all relevant components). The
constraint P>R(Mδ |= �Success) then gives us the reliabil-
ity requirement on each component, under the scheduling of
δ. However, such a constraint is hardly useful in practice
as the reliability of the components constraint each other.
For simplification and making the results useful in practice,
we assign different weights for the components participating
in reliability distribution, by considering testing costs, e.g.,
testing time, and effort. In practice, the software can make
use of some readily developed components. The components
whose reliability is already known and rarely changes (e.g.,
a legacy component), will not participate in reliability dis-
tribution.

As a result, P>R(Mδ |= �Success) becomes a polynomial
inequality constituted by a variable x only. Using numerical
methods, we can obtain a lower bound on x , which is the re-
liability requirement we need. Multiplying x with assigned
weights, the reliability requirement for the components par-
ticipating in reliability distribution can be obtained. Take
the model in Figure 4 for example. Assume R is 0.98 and
the scheduler δ1 resolves the nondeterministic choice at state
Enter by selecting action η. We further assume a unit weight
assigned to all components, the calculated polynomial us-
ing our algorithm above is 0.5x1 + 0.16435x3 + 0.05402x5 +
0.11641x7 − 0.09865x8 · · · ≥ R. When the iterations stop,
the polynomial is accumulated up to the term of x160. We
omit the result of the terms here. By Newton’s method [2],
we obtain that the lower bound on x is 0.99601. This is the
reliability requirement for every component since we assum-
ing the same weight.

The above concerns only one scheduler. In general, there
are multiple schedulers and we need to guarantee that the
system reliability requirement is satisfied with any sched-
uler. Applying value iteration directly is very challenging
as we need to compare polynomial functions representing
the probability of reaching Success through different dis-
tributions from a state in each iteration. We thus adopt
an alternative approach, i.e., we compute a lower bound
on x for every scheduler and the maximum of the lower
bounds gives us the minimum requirement on component
reliability. Based on [5], only finitely many memoryless
schedulers need to be considered. Our algorithm works as
follows. First, an unvisited memoryless scheduler δ is se-
lected. Next, we perform the value iteration method on
Mδ. The following shows how the result vector V is up-
dated. Assume scheduler δ chooses a distribution µs at state

s: V (n+1)(s) =
∑

t∈S x × µs(t)×V (n)(t). Once a stopping
condition is satisfied, we obtain a constraint V (init) ≥ R
and solve the equation V (init) − R = 0 using Newton’s
method to obtain a lower bound on x so that V (init) ≥ R
is true. The steps above are repeated for all memoryless
schedulers.

The upper bound of memoryless schedulers equals to the
product of the numbers of distributions for each state. If
there are ten states and two of them both have 3 distri-
butions and the rest has one, the number of schedulers is
bounded by 9. Essentially, the more nondeterminism there
is, the more schedulers are to be considered. In practice,
the number of schedulers are manageable as we are dealing
with a high-level system model. Further, since schedulers
are independent, we can parallelize the computation.

Next, we distribute the system error bounds (α, β). We
assume that error bounds of each component are the same,

107



denoted as (α′, β′). Based on Lemma 3.1, we can deduce the
following constraints: α′ 6 α and β′ 6 β

N
. Therefore, the two

error bounds for each component are α and β
N

, respectively.
Given the model in Figure 4, we assume the system error
bounds are (0.02, 0.04). Since N is 8, the error bounds for
each component are (0.02, 0.005). β′ might be considerably
smaller than β if N is large. A very small error bound
for hypothesis testing may lead to a large number of tests.
The practical implication is that one can estimate system
reliability by testing either larger components with larger
error bounds (which is harder to test but needs less tests)
or smaller components with smaller error bounds (which is
easier to test but needs more tests).

5. IMPLEMENTATION AND EVALUATION
The proposed approach has been realized in a toolkit named

RaPiD (Reliability Prediction and Distribution). RaPiD
is a self-contained toolkit for reliability prediction and dis-
tribution, and it is publicly available at [1], with all case
studies. It provides a user friendly interface to draw MDP
models as well as fully automated methods to solve the reli-
ability prediction and distribution problems. RaPiD is im-
plemented with 4K lines of C# code. It uses a number
of MATLAB (version 2009a) libraries to support powerful
mathematical calculations as well as graph plotting func-
tions. In the following, we apply RaPiD to study two real-
world systems and obtain interesting results.

5.1 Reliability Prediction for the CCS
The CCS system has more than 300K lines of code. To

predict the reliability of the CCS system, we first build an
MDP model (as partly shown in Figure 4) and then test each
of the components. Next, we apply RaPiD with a stopping
criterion of 1E-5 and obtain the minimum/maximum system
reliability of 0.95505/0.95729, respectively.

To compare the effectiveness of different models, i.e., the
effect of nondeterministic choices for system reliability pre-
diction, we build three models in total. Model M 1 is a
DTMC model, assuming that the probability distribution of
all transitions among system components are known; M 2 is
as shown in Figure 4 where nondeterministic choices are used
to model the run-time choice of the CCS servers, and M 3
further introduces nondeterminism by modeling the choices
of going back to JMS or DB from a CCS server nondeter-
ministically. To investigate the usefulness of the back-up
servers in terms of system reliability, we modify these three
models to incorporate transitions leading to a backup server.
The resultant models are denoted as M 1b, M 2b and M 3b,
respectively.

As presented, if we assume all components have the same
reliability x , we can obtain system reliability as a polynomial
function of x for each scheduler. Using RaPiD, we can plot
the functions, as shown in Figure 5. Different from M 1, M 2
has 5 schedulers, and M 3 has 160 schedulers in total since it
has a state with 5 nondeterministic choices and another five
states each with 2 nondeterministic choices. The dash lines
are the corresponding functions for M 1b, M 2b and M 3b,
respectively. Notice that many of functions are identical
(e.g., for M 3) and their plots overlap with each other.

The following observations can be made based on the re-
sults. First, the difference between maximum reliability
and minimum reliability becomes larger when the number of

Table 1: Reliability prediction for the three models
Name (#Schedulers) M1 (1) M2 (5) M3 (160)

Min. Reliability 0.95568 0.95401 0.73149
Max. Reliability 0.95568 0.95568 0.96257

0.90 0.92 0.94 0.96 0.98 1.00
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

S
ys

te
m

 R
el

ia
bi

lit
y

Component Reliability

 σ1
 σ2
 σ3
 σ4
 σ5
 Req

0.9956 0.9960 0.9964 0.9968
0.974
0.976
0.978
0.980
0.982

Figure 6: Reliability analysis result for the CCS

nondeterministic choices increases. For instance, Table 5.1
shows the differences for the three models.

Assuming that we need to show the system’s reliability is
at least 0.95, the result based on M 3 is not conclusive, which
suggests further testing is necessary so that we can learn
the probability distribution of the nondeterministic choice
(i.e., the transitions from CCS servers to JMS or DB) and
make more accurate prediction. The result based on M 2
on the other hand shows that we can make fairly accurate
prediction without making any assumption on the run-time
dynamic loading decisions, and this serves as a strong argu-
ment that the system is robust in the open dynamic stock
market. If we superimpose the results for M 1, M 2 and M 3
(i.e., the solid curves in Figure 5 (a), (b), (c)), we can find
that the curve in graph (a) resides between the curves in
graph (b), all the curves in (a) and (b) reside between the
curves in graph (c). Second, in all three graphs, the dashed
curves are higher than the corresponding solid curves. It
implies that the system reliability indeed becomes higher
by introducing a backup server. Nonetheless, it should be
noticed that with the increase of component reliability, the
gain of system reliability by introducing the backup server
decreases. The results confirm (and quantify) our intuition.

5.2 Reliability Distribution for the CCS
RaPiD solves the reliability distribution problem using the

approach documented in Section 4.4. There are totally 15
different choices of servers operation modes for the CCS,
which indicates 15 schedulers existing in the model. Fig-
ure 6 visualizes the results for those five schedulers for the
model shown in Figure 4, where scheduler σ1/σ2/σ3 chooses
action η/λ/γ (i.e., to run Server1/Server2/Server3 only,
respectively) at state Enter ; scheduler σ4 leads to state
Server1a and possibly state Server2a subsequently (i.e., to
run Server1 and Server2 at the same time); and scheduler
σ5 leads to a state where all three servers are running.

Assume that the system reliability requirement is 0.98
(i.e., the horizontal dash line in Figure 6). When all curves
are above the dash line, we have sufficient component relia-
bility to guarantee the system is reliable with any scheduler.
Given the same component reliability, a scheduler is “better”
if its corresponding system reliability is higher. Similarly,
given the same system reliability, a scheduler is “better”
if its corresponding component reliability is lower. Notice
that when component reliability is low, the less severs are
chosen to work simultaneously (e.g., scheduler σ1 and σ2),

108



0.80 0.85 0.90 0.95 1.00
0.5

0.6

0.7

0.8

0.9

1.0

Sy
st

em
 R

el
ia

bi
lit

y

Component Reliability

 σ1, M1
 σ1, M1b

0.80 0.85 0.90 0.95 1.00
0.5

0.6

0.7

0.8

0.9

1.0
 σ1 to σ5, M2
 σ1 to σ5, M2b

 

 

Sy
st

em
 R

el
ia

bi
lit

y

Component Reliability
0.80 0.85 0.90 0.95 1.00

0.5

0.6

0.7

0.8

0.9

1.0

σ2,σ72 overlaps

 σ1 & σ2, M3
 σ71, M3b
 σ72, M3b
 σ75, M3b
 σ64, M3b

 

Sy
st

em
 R

el
ia

bi
lit

y

Component Reliability

σ1,σ71 overlaps

Figure 5: System reliability vs. component reliability for: (a)M1 and M1b; (b)M2 and M2b; (c)M3 and M3b

the higher the system reliability is achieved; and as compo-
nent reliability becomes higher (e.g., > 0.95), the schedulers
(e.g., σ4) leading to more servers running outperform the
others.

5.3 Reliability Distribution for the TCS
The Burr Proton Therapy Center is a radiation therapy

facility associated with the Massachusetts General Hospital
in Boston. Proton therapy is a treatment controlling the
dose of radiation delivered to the patients. High precision
radiation therapy enables reduced dose to healthy tissue.
Reliability assurance on such system is of uttermost impor-
tance. One software component of the system, called the
Therapy Control System (TCS), provides the users with all
the control functions necessary. It is written primarily in
250K lines of C code. The TCS handles the storage and
retrieval of patient data entry of prescriptions, scheduling of
treatments, patient positioning and beam delivery.

A high-level view of the system is shown in Figure 7. The
Human/Computer Interface Layer is a graphical user inter-
face. The Application Layer is the core of the system. It
consists of four modules: System Manager (SM), which con-
trols operational modes, and event reporting; Beam Man-
ager (BM), which handles allocation and operation of the
proton beam transport; Treatment Manager (TM), which
handles the patient treatment sequence from prescription
to irradiation; and Database Manager (DM), which pro-
vides functions to allow the other modules to access to the
database. The Control Unit Layer contains drivers for the
physical devices, including Accelerator Control Unit (ACU),
Energy Selection and Beam Transport Control Unit (ECU-
BTCU), Positioning Control Unit (PCU), Treatment Con-
trol Unit (TCU), and Safety Control Unit (SCU). These are
implemented in a table-driven fashion as low level state ma-
chines. RTServer is the information distribution server. It
manages all communication among client processes, freeing
all low-level network coding. RTH1 and DataDAQ are two
data acquisition interfaces. RTH1 is in charge of ACU and
SCU, while DataDAQ is in charge of the rest of control units.
The service starts with any beam service requirements sent
via Human/Computer Interface Layer, and completes after
the BM generating the irradiation summary.

The TCS system serves as an excellent case study for our
reliability distribution method as it is presently undergoing
a software upgrade. Some components are to be revised or
replaced. Given the requirement on system level reliability,
it is desirable to generate concrete reliability requirement
for newly developed components so that they are contracted

Human/Computer 
Interface Layer

RTH1 DataDAQ

RTServer

DM

Application 
Layer

Control Units
BM

ACU SCU PCU TCU
ECU-
BTCU

SM

TM

Figure 7: Architecture of a Therapy Control System

HCI RTServer TM

BM

SM

DM

RTH1

DataDAQ

Success

ACU SCU PCU TCU ECU − BTCU

λ, 1

η, 1 ζ, 1
η,

1
λ,

1

λ, 1 λ, 1

γ, 1
γ, 1

δ
,
1

η
,
1γ

,
1

ε,
1

η
,
1
η
,
1

β, 1

η, 1

β, 1
η, 1

γ, 1

η, 1

δ, 1

η, 1

η, 1
η, 1

η, 1 β, 1

η,
1

γ,
1

Figure 8: A reliability model for the TCS

properly. The challenge in applying RaPiD is that there is no
precise information on transition probabilities. The reason
is that testing the system is highly complicated, as there are
5 concurrent machines and many interrupting events gener-
ated by hardware control units. However less complex safety
mechanisms are in place to mitigate any error. As a result,
transition probability and the system are modeled by non-
determnistic choices only. Nonetheless, we show that we can
still obtain some useful results.

A simplified MDP model of the system is shown in Fig-
ure 8. As the reliability of each component is not available,
they are omitted. Although there are 2,592 schedulers, only
three different system reliability functions of component reli-
ability exist. By further analyzing the corresponding sched-
ulers reported by RaPiD, we can identify three typical work-
flows of the system that result in the three scenarios, respec-
tively.

In Figure 9, the plot of the worst scenarios is a horizon-
tal line of zeros. It implies that for any component reli-
ability, the system level reliability is zero, i.e., the system
cannot reach the Success state. This set of schedulers al-
ways chooses RTH 1 or DataDAQ from RTServer and hence

109



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

S
ys

te
m

 R
el

ia
bi

lit
y

Component Reliability

 Worst Scenarios
 Best Scenarios
 Moderate Scenarios

Figure 9: Reliability analysis result for the TCS

state Success is never reached. The best scenarios include
the cases within which the transition directly goes from
RTServer to BM and then reaches Success. In real situa-
tion, this is an extreme case that the system sends beam
treatments request directly to the BM , which completes
the job, and then the whole transition finishes successfully.
Moderate scenarios contain cases within which RTServer
goes to SM , TM , or BM and then goes to DM ; and after-
wards, DM reports data back to BM and lastly the Success
state is reached. As we can see, without any testing results
on the system, we are able to find out the worst/best system
reliability in respect to components reliability. This infor-
mation is particularly helpful in the early stage of software
development, as the system developers can use the results
as a guideline on how to test the system or how to improve
the system reliability, e.g., by improving the feedback com-
munication from control unit layer to RTServer.

5.4 Scalability
RaPiD is efficient in our case studies. The reliability pre-

diction took 0.03 seconds for the CCS, and the reliability dis-
triution took 42 seconds for the CCS (with 160 schedulers)
and 628 seconds for the TCS (with 2,592 schedulers). To fur-
ther test the scalability of RaPiD, we evaluate RaPiD’s reli-
ability prediction and distribution using 5 benchmark MDP
models from [21] as well as randomly generated models (with
1K to 50K states and the number of states for having mul-
tiple transitions are sampled from a uniform distribution).
The results show that RaPiD is able to handle 14K states
per second on average (with termination threshold as rela-
tive difference 1.0E-6) in calculating reachability probability.
Reliability distribution (with a bound 600 on the number
of terms in the obtained polynomial) is slightly slower due
to maintaining/updating/solving the polynomial functions.
The data is obtained using a PC with Intel(R) Core(TM)
i7CPU at 2.80 GHz and 8 GB of RAM.

6. RELATED WORK AND CONCLUSION
Hypothesis testing has gained its popularity in probabilis-

tic model checking [8, 40, 24] as it can overcome state space
explosion problem. Its applications were limited to deter-
ministic systems in the early stage. In recent years, it has
been extended to nondeterministic systems [6, 16, 23]. [6]
provides an approach that only limits to spurious nonde-
terminism that introduced by the commutativity of concur-
rently executed transition in compositional setting. [16, 23]
applies learning techniques to search for near optimal sched-
ulers so as to convert MDP to an induced Markov Chain.
The effectiveness in searching for the near-optimal sched-
ulers is decided by several parameters for controlling the
maximum number of schedulers to evaluate each time and

the effectiveness of learning process. All those parameters
shall be tuned by users. Instead, our approach lifts up non-
determinism to a level that exact methods can be used.

Our work can also be viewed as performance analysis of
programs with probabilities. Geldenhuys et al. [12] have
provided an approach to calculate the probabilities of code
executions quantitatively. This work can be seen as a form
of profiling. In the context of weakest preconditions, McIver
and Morgan have several work in studying probabilities and
nondeterminism in programs, e.g., in [28]. In our work, the
probability of transition is known as a priori.

Our framework has been applied to reliability prediction
and distribution. For reliability prediction, it is related to
software architecture based reliability evaluation [7, 18, 14,
13]. Compared to the above work, our approach handles
systems with model parameters which are hard to obtain.
Furthermore, it can quantify the accuracy of component re-
liability with the help of hypothesis testing. Some recent
studies focus on dynamically changing parameters in relia-
bility models and updating parameters based on run-time
data [27, 11, 10]. These are not applicable until the soft-
ware is released. Our reliability model tackles the issue
on missing run-time information before system deployment.
In addition, our remedy relies on modeling hard-to-predict
run-time behaviors as nondeterministic choices so as to ob-
tain reliability measurement which is independent of the dy-
namic environment. Our reliability distribution problem is
similar but slightly different from the reliability allocation
problem by solving an optimization problem, e.g., in [31,
17, 26]. The optimization goals are to minimize the amount
of testing time while ensuring that a system is sufficiently
reliable. [26] also discusses a way to minimize the number
of remaining faults given a fixed amount of testing efforts.
Our method on reliability distribution focuses on the mini-
mization of component reliability requirement. To the best
of authors’ knowledge, our work is the first on applying the
combination of probabilistic model checking with hypothesis
testing to reliability prediction and distribution. Moreover,
we have established the system error bounds from compo-
nents error bounds and vice versa.

In future work, we will extend our combined setting to the
verification of general properties, which can support quan-
titative measurement like “the probability of warning mes-
sages failing to send before failure occurs is at least 0.99”.
This is related to the decomposition of global property into
local properties, which is complicated in general. We are
currently studying conditions under which such decomposi-
tion is sound (i.e., if the components satisfy the local proper-
ties, then the global property is guaranteed) or complete or
both. A possible approach is to start with coarse sound de-
composition and refine the decomposition through a method
similar to counter-example guided abstraction refinement.

7. ACKNOWLEDGEMENT
This work has been supported in part by research grant

ZJURP1100105 and IDD11100102 (SUTD).

8. REFERENCES
[1] RaPiD. http://www.comp.nus.edu.sg/~pat/rel.

[2] M. Avriel. Nonlinear Programming: Analysis and
Methods. Dover Publishing, 2003.

[3] A.Wald. Sequential tests of statistical hypotheses.
Annal of mathematical statistics 16, 2:117–186, 1945.

110



[4] A.Wald. Sequential Analysis. Wiley, 1947.

[5] C. Baier and J. Katoen. Principles of Model Checking.
The MIT Press, 2008.

[6] J. Bogdoll, L. M. F. Fioriti, A. Hartmanns, and
H. Hermanns. Partial order methods for statistical
model checking and simulation. In Formal Techniques
for Distributed Systems, pages 59–74. Springer, 2011.

[7] R. C. Cheung. A user-oriented software reliability
model. IEEE Trans. Software Engineering,
SE-6(2):118–125, 1980.

[8] E. Clarke, A. Donzé, and A. Legay. Statistical model
checking of mixed-analog circuits with an application
to a third order δ- σ modulator. In Hardware and
Software: Verification and Testing, pages 149–163.
Springer, 2009.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[10] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-time
parameter adaptation. In ICSE, pages 111–121.

[11] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time
efficient probabilistic model checking. In ICSE, pages
341–350. ACM, 2011.

[12] J. Geldenhuys, M. B. Dwyer, and W. Visser.
Probabilistic symbolic execution. In ISSTA, pages
166–176. ACM, 2012.

[13] S. Gokhale. Architecture-based software reliability
analysis: Overview and limitations. IEEE Trans.
Dependable and Secure Computing, 4(1):32–40, 2007.

[14] K. Goševa-Popstojanova and K. S. Trivedi.
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation,
45(2-3):179–204, 2001.

[15] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. In Formal Aspects of
Computing 6(5), pages 512–535, 1994.

[16] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer,
and E. M. Clarke. Statistical model checking for
markov decision processes. In QEST, pages 84–93.
IEEE, 2012.

[17] C. Y. Huang and M. R. Lyu. Optimal testing resource
allocation, and sensitivity analysis in software
development. IEEE Trans. Reliability, 54(4):592–603,
2005.

[18] A. Immonen and E. Niemel. Survey of reliability and
availability prediction methods from the viewpoint of
software architecture. Software and Systems Modeling,
7(1):49–65, 2008.

[19] Z. Jelinski and P. Moranda. Software reliability
research. Freiberger, W.(ed.): Statistical Computer
Performance Evaluation, pages 465 – 484, 1972.

[20] P. Kubat. Assessing reliability of modular software.
Operations Research Letters, 8(1):35–41, 1989.

[21] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
CAV, pages 585–591, 2011.

[22] J. C. Laprie and K. Kanoun. Handbook of software
Reliability Enginerring, chapter Software Reliability
and System Reliability, pages 27–69. McGraw-Hill,
New York, NY, 1996.

[23] R. Lassaigne and S. Peyronnet. Approximate planning
and verification for large markov decision processes. In
SAC, pages 1314–1319. ACM, 2012.

[24] A. Legay, B. Delahaye, and S. Bensalem. Statistical
model checking: An overview. In RV, pages 122–135,
2010.

[25] B. Littlewood and J. L. Verrall. A bayesian reliability
growth model for computer science. Journal of the
Royal Statistical Society, Ser. A (Applied Statistics),
pages 332 – 346, 1973.

[26] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel.
Optimal allocation of test resources for software
reliability growth modeling in software development.
IEEE Trans. Reliability, 51(2):183–192, 2001.

[27] I. Meedeniya and L. Grunske. An efficient method for
architecture-based reliability evaluation for evolving
systems with changing parameters. In ISSRE, pages
229–238.

[28] C. Morgan and A. McIver. pgcl: Formal reasoning for
random algorithms. South African Computer Journal,
pages 14–27, 1999.

[29] J. D. Musa. Operational profiles in software-reliability
engineering. IEEE Trans. Software Engineering,
10(2):14–32, 1993.

[30] J. D. Musa and K. Okumoto. A logarithmic poisson
execution time model for software reliability
measurement. Malaiya, Y. K.; Srimani, P. K. (ed.):
Software Reliability Models - Theoretical
Developments, Evaluation & Applications, pages 23 –
31, 1990.

[31] R. Pietrantuono, S. Russo, and K. S. Trivedi. Software
reliability and testing time allocation: An
architecture-based approach. IEEE Trans. Software
Engineering, 36:323–337, 2010.

[32] A. Pnueli. The Temporal Logic of Programs. In
FOCS, pages 46–57. IEEE, 1977.

[33] H. Sandoh. Reliability demonstration testing for
software. IEEE Trans. Reliability, 40(1):117–119, 1991.

[34] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg.
Selection of optimal software reliability growth models
using a distance based approach. IEEE Trans.
Reliability, 59(2):266–276, 2010.

[35] W. J. Stewart. Introduction to the numerical solution
of Markov chains. Princeton University Press, 1994.

[36] J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards
flexible verification under fairness. In CAV, pages
709–714. Springer, 2009.

[37] O. Tal, C. McCollin, and T. Bendell. Reliability
demonstration for safety-critical systems. IEEE Trans.
Reliability, 50(2):194–203, 2001.

[38] D. M. Woit. Estimating software reliability with
hypothesis testing. Technical report, CRL Report
No.263, Monterey, 1996.

[39] H. Younes. Verification and Planning for Stochastic
Processes with Asynchronous Events. PhD thesis,
Carnegie Mellon, 2005.

[40] H. Younes and R. G. Simmons. Probabilistic
verification of discrete event systems using acceptance
sampling. In CAV, pages 223–235. Springer, 2002.

111


	Combining model checking and testing with an application to reliability prediction and distribution
	Citation
	Author

	/var/tmp/StampPDF/cO_wTcuxTp/tmp.1584005669.pdf.GB4CW

