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A Formal Semantics for Complete UML State Machines
with Communications�

Shuang Liu1, Yang Liu2, Étienne André3, Christine Choppy3, Jun Sun4,
Bimlesh Wadhwa1, and Jin Song Dong1

1 School of Computing, National University of Singapore, Singapore
2 Nanyang Technology University, Singapore

3 Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
4 Singapore University of Design and Technology, Singapore

Abstract. UML is a widely used notation, and formalizing its semantics is an
important issue. Here, we concentrate on formalizing UML state machines, used
to express the dynamic behaviour of software systems. We propose a formal op-
erational semantics covering all features of the latest version (2.4.1) of UML state
machines specification. We use labelled transition systems as the semantic model,
so as to use automatic verification techniques like model checking. Furthermore,
our proposed semantics includes synchronous and asynchronous communications
between state machines. We implement our approach in USM2C, a model checker
supporting editing, simulation and automatic verification of UML state machines.
Experiments show the effectiveness of our approach.

1 Introduction

UML state machines are widely used to model the dynamic behaviour of an object.
Since the UML specification is documented in natural language, inconsistencies and
ambiguities arise, and it is thus important to provide a formal semantics for UML state
machines. A formal semantics (1) allows more precise and efficient communication
between engineers, (2) yields more consistent and rigorous models, and (3) lastly and
most importantly, enables automatic formal analysis of UML state machines.

However, existing works only provide formal semantics for a subset of UML state
machines features, leaving some important issues unaddressed. A few approaches
[19,22] consider the non-determinism in the presence of orthogonal composite states,
which is an important modelling concept. Although extensibility of the syntax structure
is important due to the refinement operations on UML state machines, the syntax for-
mats defined in those works does not extend well. A semantics able to support the full
set of syntax features will help to bring the expressive power of UML state machines to
life.

Secondly, in the existing approaches, the event pool mechanism and the communi-
cations between state machines are not thoroughly addressed. UML state machines are
used to model the behaviour of objects. The whole system may include several state
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machines interacting with each other synchronously or asynchronously. Enabling the
verification of the entire system is quite important, especially in the presence of syn-
chronous communications, which are more likely to cause deadlock situations.

Lastly, the unclarities (that is, inconsistencies and ambiguities) in the UML state
machines specifications are not thoroughly checked and discussed. Fecher et al. [8]
discussed 29 unclarities in UML 2.0 state machines. But there are still some unclarities
(such as the granularity of a transition execution sequence) that are not covered in [8]
but will be discussed in this work.

This work aims at bridging the gaps in the existing approaches with the following
contributions. (1) We provide a formal operational semantics for UML 2.4.1 state ma-
chines covering the complete set of UML state machines features. In particular, our
syntax structure is extensible to state machine refinement and future changes. Our se-
mantics formalization considers non-determinism as well as synchronous and asyn-
chronous communications between state machines. (2) We explicitly discuss the event
pool mechanisms and consider deferral events as well as completion events. (3) We
report new unclarities in UML 2.4.1 state machines specifications. (4) We develop a
self-contained tool USM2C based on the semantics we have defined; it model checks
various properties such as deadlock-freeness and linear temporal logic (LTL) properties.
We conduct experiments on our tool and results show its effectiveness.

The rest of this paper is organized as follows. Section 2 provides the preliminaries of
UML state machines. Section 3 and Section 4 define the syntax and semantics for UML
state machines, respectively. Section 5 provides the implementation and evaluation re-
sults. Related work is discussed in Section 6. Section 7 addresses the limitations of our
work, and concludes the paper with future works.

2 UML State Machines Features and Our Assumptions

2.1 Introduction of Basic Features of UML State Machines

We briefly introduce basic features of UML state machines in this section. We use the
RailCar system in Fig. 1 (a modified version of the example used in [10]) as a running
example. The RailCar system is composed of 3 state machines: Car, Handler and Depar-
tureSM (referenced by the Departure submachine state in the Car state machine). They
communicate with each other through synchronous event calls.

Vertices and Transitions. A vertex is a node, which refers to a state, a pseudostate, a
final state or a connection point reference. A transition is a relation between a source
vertex and a target vertex. It may have a guard, a trigger and an effect. The container of
a transition is the region which owns the transition. A compound transition is composed
of multiple transitions joined via choice, junction, fork and join pseudostates.

Regions. It is a container of vertices and transitions, and represents the orthogonal parts
of a composite state or a state machine. In Fig. 1, the area [R1] is a region.

States. There are three kinds of states, viz., simple state (Idle), composite state (Oper-
ating) and submachine state (Departure). An orthogonal composite state (WaitArrivalOK)
has more than one region. States can have optional entry/exit/do behaviours. A do be-
haviour (PlaySound in state Alerted) can be interrupted by an event. A state can also
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Fig. 1. The RailCar state machine

define a set of deferred events ({opend} in state WaitEnter). A final state (Final1) is a
special kind of state which indicates finishing of its enclosing region.

Pseudostates. Pseudostates are introduced to connect multiple transitions to form com-
plex transition paths. There are 10 kinds of pseudostates: initial, join, fork, junction,
choice, entry point, exit point, shallow history, deep history, terminate. A join pseu-
dostate (join1) is used to merge transitions from states in orthogonal regions. A fork
pseudostate is used to split transitions targeting states in orthogonal regions. Junction
pseudostates (Junction1) represent static branching points. Choice pseudostates (Choice1)
represent dynamic branching points, i.e., the evaluation of enabled transitions is based
on the environment when the choice pseudostate is reached.

Connection Point Reference. It is an entry/exit point of a submachine state and refers
to the entry/exit pseudostate of the state machine that the submachine state refers to. In
Fig. 1, EntryP1 and ExitP1 in Departure state are connection point references.

Active State Configuration. It is a set of active states of a state machine when it is in
a stable status1. In Fig. 1, {Operating, Crusing} is an active state configurations.

Run to Completion Step (RTC). It captures the semantics of processing one event
occurrence, i.e., executing a set of compound transitions (fired by the event), which may
cause the state machine to move to the next active state configuration, accompanied by
behaviour executions. It is the basic semantic step in UML state machines. For example

in Fig. 1, {Operating, WaitArrivalOK, Watch, WaitDepart,} opend−−−−→ {Idle} is an RTC step.

1 The state machine is waiting for event occurrences.



334 S. Liu et al.
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Fig. 2. Illustration of transition execution sequence

2.2 Basic Assumptions on UML State Machines Semantics

We briefly sketch below some new unclarities (detailed in [17]) we found in the UML
2.4.1 state machines specification, as well as our assumptions in this work.

Transition Execution Sequence. Transitions and compound transitions are used in in-
terleaving in the descriptions of transition execution sequence, which raises confusions.
The transition execution ordering is important since different execution orders may lead
to different results. For example in Fig. 2, Suppose S3 is active and transition t1 is fired.
If we define the transition execution sequence based on the compound transition, the
behaviour execution sequence is “i = 0; i + +; i − −; print(i) ” and 0 should be
printed. If we define the transition execution sequence based on a single transition, the
behaviour execution sequence should be “i = 0; i + +; i = i ∗ 2; i − −; print(i)”
and 1 should be printed. In the first case, the entry behaviour of state S2 is not executed,
which contradicts the semantics of entry behaviours. We define the transition execution
sequence based on a transition to keep the semantics consistent with entry behaviours.

Basic Interleave Execution Step. If multiple compound transitions in orthogonal re-
gions are fired by the same event, it is unclear in what granularity should the interleaving
execution be conducted: either on transition or on compound transition level. The ex-
ecution order of the (behaviours associated with the) fired transitions may affect the
value of global shared variables. We decide to regard a compound transition as the in-
terleaving execution step, since a compound transition is a semantically complete path.

Order Issues of Entering Orthogonal Composite States. On entering an orthogonal
composite state, all possible interleaving orders among its substates to be entered are
allowed, as long as the hierarchical order is preserved.

3 Syntax of UML State Machines

In this section, we provide formal syntax definitions for UML state machines features
and abstractions of event pools. We define a self-contained model which includes mul-
tiple state machines. Table 1 lists the basic notations of types defined in this work.

Our syntax definition preserves the structure specified by [1], which makes it suitable
to support refinement as well as future changes of UML state machines.
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Table 1. Type notations

Symbol Type Symbol Type Symbol Pseudostate type

KS active state configuration B boolean DHps deep history
T̃ compound transition C constraints Ips initial
K configurations Sf final state Cps choice
〈T̃〉 compound transition list S state Jops join
V vertex Trig triggers Jups junction
KV active vertex configuration T transition Tps terminate
CR connection point reference E event Enps entry point
SM state machine R region Fps fork
B behaviours PS pseudostate SHps shallow history
〈B〉 behaviour list N natural number Exps exit point

Definition 1 (State). A state is a tuple s = (r̂ , t̂def , αen , αex , αdo , ên , êx , ĉr , sm, t̂)
where:

– r̂ ⊂ R is the set of regions directly contained in this state,
– t̂def ⊂ Trig , αen ∈ B , αex ∈ B and αdo ∈ B are the set of deferred events, the

entry, exit and do behaviours defined in the state, respectively.
– ên ⊂ Enps and êx ⊂ Exps are the set of entry point and exit point pseudostates

associated with the state.
– ĉr ⊂ CR is the set of connection point references belonging to the state. sm ∈ SM

is the state machine referenced by this state; the two fields are used only when the
state is a submachine state.

– t̂ ⊂ T is the set of internal transitions defined in the state.

There are four kinds of states, viz., simple state (Ss), composite state (Sc), orthogonal
composite state (So) and submachine state (Sm ). In Fig. 1, the submachine state Depar-
ture is denoted as (∅,∅, ε, ε, ε,∅,∅, {EntryP1, ExitP1},DepartureSM,∅), where ε and ∅
denote the empty element and the empty set, respectively.

Definition 2 (Pseudostate). A pseudostate is a tuple ps = (ι, ĥ), where ι ∈ R ∪ SM

is the region or state machine in which the pseudostate is defined, and ĥ ∈ S is an
optional field which is used to record the last active set of states. This latter field is only
used when the pseudostate is a shallow history or deep history pseudostate.

The last column of Table 1 shows the notations of the ten kinds of pseudostates PS .

Definition 3 (Final state). A final state is a special kind of state, which is defined as a
tuple sf = (ι) where ι ∈ So ∪ Sc ∪ SM is the composite state or state machine which
is the direct ancestor of the container of the final state.

Definition 4 (Connection Point Reference). A Connection Point Reference is defined
as a tuple (ên , êx , s) where ên ⊂ Enps and êx ⊂ Exps are the entry point and
exit point pseudostates corresponding to this connection point reference, and s is the
submachine state in which the connection point reference is defined.

For example, in Fig. 1, EntryP1 is defined as ({EntryPoint1},∅,DepartureSM).
Vertex V � S ∪ Sf ∪ PS ∪ CR is an abstraction of all nodes.
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Definition 5 (Transition). A transition is a tuple t = (sv , tv , t̂g , g , α , ι, t̂c) where:

– sv ∈ V , tv ∈ V are the source and target vertex of the transition, respectively.
– t̂g ⊂ Trig , g ∈ C , α ∈ B and ι ∈ R are the set of triggers, the guard, the

associated behaviour and the container of the transition, respectively.
– t̂c is a set of tuples of the form segt = (ss , αst , ιst ). It represents the special

situation that a join or fork pseudostate2 connects multiple transitions to form a
compound transition. Each tuple represents a segment transition which ends in the
join (resp. emanates from the fork) pseudostate. ss ∈ S is the non-fork (resp. non-
join) end of the segment transition, αst ∈ B is the behaviour associated with the
segment transition. ιst ∈ R is the container of the segment transition.

We define the following functions on transitions for clarity sake. Functions isFork(t)
and isJoin(t) decide whether transition t is a fork transition and join transition, respec-
tively. For example, in Fig. 1, the join transition t10 is ({Join1}, {ExitPoint1}, ∅, ε, ε,
RD, {(SyncExit, ε, RD), (SyncCruise, ε, RD)}). We use t .α̃ to represent all possible action
execution sequences of t . Formal definition of t .α̃ is in [17].

Definition 6 (Region). A region is defined as a tuple r � (v̂ , t̂), where v̂ ⊂ (S ∪PS ∪
Sf ), t̂ ⊂ T are the set of vertices and transitions directly owned by the region.

Definition 7 (State Machine). A state machine is defined as sm � (r̂ , ĉp), where
r̂ ⊂ R, ĉp ⊂ Enps ∪ Exps are the set of (directly owned) regions and the set of
entry/exit point pseudostates defined for this state machine.

For example in Fig. 1, state machine DepartureSM is ({RD}, {EntryPoint1, ExitPoint1}).
Definition 8 (Compound Transition). A compound transition is a “semantically com-
plete” path composed of one or multiple transitions connected by pseudostates. The set
of compound transition T̃ = {t̃ | t̃ ∈ ST ∧ t̃ .ŝv ∈ S ∧ t̃ .t̂v ∈ S} where st ∈ ST ≡
(len(st) = 1 ∧ seg(st , 0) ∈ T ) ∨ ∃ sti , stj ∈ ST : last(sti ) = first(stj ) ∧ st = sti � stj .

The operator � denotes the operation of connecting transitions in order. Notation
len(t̃) denotes the total number of segment transitions the compound transition is com-
posed of. seg(t̃ , i) denotes the i th segment specified by the natural number index i of
a given compound transition. We use first(t̃) and last(t̃) to denote the first and last
segment of t̃ . We define t̃ .ŝv = first(t̃).ŝv , t̃ .t̂v = last(t̃).t̂v for convenience sake.

Compositional Operators. The operator “; ” represents a sequential composition. In-
terleave operation (‖|) represents a non-determinism in the execution orders. Interleave
with synchronous communications (‖|C ) is a special case of interleaving: it requires the
state machines to synchronize on the specified event in C . Interruption (∇) is used to
represent interruption of a do activity by some event occurrence. Parallel composition
(‖) represents a real concurrency, i.e., execute at the same time.

Definition 9 (System). A system is a set of state machines executing in interleaving
(with synchronous communications). sys � ‖|Ci∈[1,n]Smi where Sm � (sm,P ,GV ).
In Sm, sm denotes the state machine,P the event pool associated with sm, and GV the
shared variables of sm. And n is the number of state machines within the system sys .

2 We treat exit (resp. entry) point pseudostate the same way with join (resp. fork) pseudostate.
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For example, the RailCar system in Fig. 1 is defined by ‖|C (Car,Handler), where C =
{departReq, departAck, arriveReq, arriveAck}.3

Event Pool Abstraction. Change events, signal events, and deferred events are pro-
cessed differently in UML state machines. We provide for this purpose 3 separate event
pools, viz., completion event pool (CP ), deferred event pool (DP ), and normal event
pool (NP ). P � (CP ,DP ,NP) represents the event pool, and we define two basic
operations on P . Merge(e,EP) merges an event e into the corresponding event pool
represented by EP , and Disp(P) dispatches an event from P . Since function Merge
(formally defined in [17]) is straightforward, we focus here on Function Disp.

Definition 10. The following function formally defines the event dispatch mechanism.

Disp(P , ks) �

⎧⎪⎪⎨
⎪⎪⎩
CP\{e}; CheckDP(P , ks) if CP �= ∅ ∧ HighestPriority(e,CP)
DP\{e}; CheckDP(P , ks) if CP = ∅ ∧ DP �= ∅ ∧!isDeferred(e, ks)
NP\{e}; CheckDP(P , ks) if CP = ∅ ∧ allDefer(DP , ks) ∧ NP �= ∅
ε otherwise

CheckDP(P , ks) � DP\E ; NP ∪ E , where E � {e | e ∈ DP ∧!isDeferred(e, ks)}.

The function guarantees that the precedence order CP ≺ DP ≺ NP is preserved (≺
denotes the preceding partial order). But the order within each event pool is not speci-
fied. The macro HighestPriority(e,CP) denotes that event e has the highest priority in
CP , which preserves the priority order of a nested state over its ancestor states. In the
deferred event pool, only events that are not deferred in the current active state config-
uration (!isDeferred(e, ks)) can be dispatched. The macro allDefer(DP , ks) ⇔ ∀ e ∈
DP , isDeferred(e, ks) guarantees the priority of deferred events over normal events.
When an event is dispatched, we check all the deferred events defined in the states
of the current active state configuration, and remove those events that are not deferred
any more from DP to NP ; this is accomplished by CheckDP .

4 A Formal Semantics for UML State Machines

This section devotes to a self-contained formal semantics for all UML state machines
features. We have adopted the semantic model of Labelled Transition Systems (LTS).
The dynamic semantics of a state machine is captured by the execution of RTC steps,
which have two kinds of effects, viz., changing active states and executing behaviours.
We formally define the two kinds of effects separately. Then the semantics of the RTC
step is defined formally. At last, we define the semantics of the system.

4.1 Active State Configuration Changes

An active state configuration KS is a set of states which are active at the same time.
It describes a stable state status when the previous RTC step finishes. We use Active

3 We treat the state machine (DepartureSM) that is referenced by a submachine state (Departure)
the same way as a composite state.
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Vertex Configuration KV (a set of vertices that are active at the same time) to repre-
sent the snapshot of a state machine during an RTC execution. For example, in Fig. 1,
{Operating, Choice2} is an active vertex configuration.KS and KV are defined in [17].

Next Active State Configuration. NextK : KS × 〈T̃ 〉 → KS computes the next ac-
tive state configuration after executing the compound transition list indicated by 〈T̃ 〉.
Formally: NextK (ks , (t̃1; . . . ; t̃n)) � NxK (ksn , t̃n), where ∀ i ∈ [2, n], ksi =

NxK (ksi−1, t̃i−1) ∧ ks1 = ks . Function NxK : KS × T̃ → KS computes the next
active state configuration after executing a compound transition indicated by T̃ . For-
mally: NxK (ks , t̃) � NxPK (kvn , seg(t̃ , n)), where n = len(t̃), kv1 = ks , and
∀ i ∈ [2, n], kvi = NxPK (kvi−1, seg(t̃ , i − 1)). Function NxPK : KV × T → KV
computes the next active vertex configuration after executing a transition. Formally:
NxPK (kv , t) � kv\Leave(kv , t) ∪ Enter(t). Functions Leave and Enter represent
the set of states left and entered after executing a transition and are defined in [17].

4.2 Behaviour Execution

Another effect of executing an RTC step is to cause behaviours to be executed. We
define the following functions to collect the behaviour execution sequence.

Exit Behaviour. ExitBehaviour : KV×T → 〈B〉 collects the ordered exit behaviours
of states that a given transition leaves in the current vertex configuration. Formally:

ExitBehaviour(kv , t) = ExV (kv ,MainSource(t), t)

ExR(kv , r , t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SH (h, v); ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧
v ∈ S ∧ ∃ h ∈ SHps : h ∈ r .v̂

DH (h, v); ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧ v ∈ S
∧ ∃ h ∈ DHps : isAncestor(h.ι, r)
∧ isAncestor(t .ι, h.ι)

ExV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv
∧ ∀ s ′ ∈ r .v̂ , s ′ �∈ SHps

∧ �h ∈ DHps : isAncestor(h.ι, r)
∧ isAncestor(t .ι, h.ι)

ExV (kv , v , t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖|Cr∈v.r̂ExR(kv , r , t); exit(v) if v ∈ So ∨ (v ∈ Sm ∧ v .r̂ �= ∅)
ExR(kv , r , t); exit(v) if v ∈ Sc ∨ (v ∈ Sm ∧ v .r̂ �= ∅)
exit(v) if v ∈ Ss

ExV (kv , cr , t) if v ∈ Exps ∧
∃ cr ∈ CR : v ∈ cr .êx

ExV (kv , v .s, t) if v ∈ CR
Agn(v .r̂ , v .sm.r̂); ExV (kv , v , t) if v ∈ Sm ∧ v .r̂ = ∅
ε otherwise

The exit behaviours of executing a transition are collected recursively starting from
the innermost state. We define functions ExV and ExR to recursively collect exit be-
haviours. All the regions of a composite state should be exited before it. If the region
contains a (shallow/deep) history pseudostate, the content of the history pseudostate
should be set properly (by functions SH and DH respectively) before exiting the re-
gion. Exiting simple states means terminating the do behaviour (if any) and executing
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the exit behaviour, as defined by exit(v) = v .αdo∇v .αex . If an exit point pseudostate is
encountered, the associated connection point reference is exited, which means the state
defining the connection point reference is exited. Exiting a submachine state means ex-
iting all the regions in the state machine it refers to. Function Agn(v .r̂ , v .sm.r̂) assigns
the set of regions of a state machine to the the of regions of a submachine state.

Entry Behaviour. EntryBehaviour : T → 〈B〉 collects the ordered entry behaviours
of the states a given transition enters. Formally:
EntryBehaviour(t) = EnV (MainTarget(t),Enter(t))

EnR(r , V̂ ) � EnV (s ′, V̂ ) where r ∈ R ∧ s ′ ∈ r .v̂ ∧ s ′ ∈ V̂

EnV (v , V̂ ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v .αen ; (‖|Cr∈v.r̂EnR(r , V̂ ) ‖ v .αdo ) if v ∈ So ∨ (v ∈ Sm ∧ v .r̂ �= ∅)

v .αen ; (EnR(r , V̂ ) ‖ v .αdo) if v ∈ Sc ∨ (v ∈ Sm ∧ v .r̂ �= ∅)
v .αen ; v .αdo if v ∈ Ss

GenEvent(v .ι) if v ∈ Sf ∧ ∀ r ∈ v .ι.r̂ ,
∃ s ′ ∈ r .v̂ : s ′ ∈ kv ⇒ s ′ ∈ Sf

Agn(v .r̂ , v .sm.r̂ ); EnV (v , V̂ ) if v ∈ Sm ∧ v .r̂ = ∅

EnV (v .s, V̂ ) if v ∈ CR

EnV (cr , V̂ ) if v ∈ Enps ∧ ∃ cr ∈ CR : v ∈ cr .ên
ε otherwise

Entry behaviours are collected in a similar manner to exit behaviours, except that the
collect starts from the outermost state. We define functions EnV and EnR to recur-
sively collect the entry behaviours of all the vertices in V̂ in order. States entered by fir-
ing transition t are computed by function Enter(t). Starting from the main target state
of a transition, all regions of a composite state are entered in interleaving. Entering each
state means executing its entry behaviour followed by its do activities (s .αen ; s .αdo).
Do activities of a composite state should be executed in parallel (‖) with all the be-
haviours of its containing states. Function GenEvent(s) generates a completion event
for state s .ι and merges the generated event in the completion event pool (CP).

Collect Actions. CollectAct : KS × T̃ → 〈B〉 collects the ordered sequence of
behaviours associated with the execution of the given compound transition. Formally:
CollectAct(ks, t̃) � Act(kv1, seg(t̃ , 1)); . . . ; Act(kvi , seg(t̃ , i)); . . . ; Act(kvn , seg(t̃ ,n)),

andAct(kv , t) � ExitBehaviour(kv , t); t .α̃; EntryBehaviour(t) where n = len(t̃),
kv1 = ks and kvi = NxPK (kvi−1, seg(t̃ , i − 1)) for i ∈ [2, n].

4.3 The Run to Completion Semantics

The effects of an RTC step execution include both active state changes and behaviour
executions which may cause the event pool and global shared variables to be updated.
We use the term configuration to capture the stable status of a state machine.

Definition 11. A configuration is a tuple k = (ks ,P ,GV ) where ks is the active state
configuration, P is the event pool and GV is the set of valuation of global variables.

For example, ({Idle}, (∅,∅, {setDest}), {stopNum = 0,mode = false}) is a configu-
ration. The execution of an RTC step can be depicted as moving from one configuration
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to the next configuration. We provide the following rules to formalize an RTC step. We
use the RailCar system in Fig. 1 to illustrate the following RTC step rules.

Wandering Rule. This rule captures the case where a dispatched event e is neither
consumed nor delayed. As a result, it is discarded.

e = Disp(P),P ′ = P\{e}, ∀ s ∈ ks, e �∈ s.t̂def ,Enable((ks,P
′,GV ), e) = ∅

(ks,P ,GV )
e−→ (ks,P ′,GV )

Event e is dispatched from event pool (Disp(P)), but no transition is triggered by e
(i.e., Enable((ks,P ′,GV ), e) = ∅), and no deferred event in the current configuration
matches the event e (i.e., ∀ s ∈ ks, e �∈ s.t̂def ).

Deferral Rule 1. This rule captures the case where a dispatched event is deferred by
some states in the current active state configuration, but does not trigger any transitions.

e = Disp(P),P ′ = P\{e}, ∃ s ∈ ks : e ∈ s.t̂def ,Enable((ks,P
′,GV , e) = ∅,

P ′′ = Merge(e,P ′.DP)

(ks,P ,GV )
e−→ (ks,P ′′,GV )

Since event e is deferred, it should be merged back to the deferred event pool (i.e.,
Merge(e,P ′.DP)). So after the RTC execution, only the event pool is changed to P ′′.

Deferral Rule 2. This rule captures the case where the dispatched event e triggers some
transitions and it is also deferred by some states in the current active state configuration.
But there exists at least one state, which defines the deferred event, that has higher
priority than the source states of the enabled transitions.

e = Disp(P),P ′ = P\{e}, ∃ s ∈ ks : e ∈ s.t̂def , T̂ = Enable((ks,P ′,GV , e), T̂ �= ∅,

∀ t̃ ∈ T̂ ⇒ deferralConflict(t̃ , (ks,P ′,GV ), e),P ′′ = Merge(e,P ′.DP)

(ks,P ,GV )
e−→ (ks,P ′′,GV )

T̂ is the set of transitions enabled by the dispatched event e. Event e is also de-
ferred by some states in the current active state configuration and the event deferral has
higher priority over transition firing (∀ t̃ ∈ T̂ ⇒ deferralConflict(t̃ , (ks,P ′,GV ), e))).
As a consequence, only the event pool of the state machine changes. For example,

({Operating, WaitArriveOK, Watch, WaitEnter}, (∅,∅, {opend}),Env1) opend−−−−→
({Operating, WaitArriveOK, Watch, WaitEnter}, (∅, {opend},∅),Env1) illustrates the ap-
plication of this rule, where Env1 denotes {stopNum = 1,mode = false}.

To increase the rules readability, we use the following notations. A(t̃1, . . . , t̃n) =
CollectAct(t̃1); , . . . , ; CollectAct(t̃n) denotes the behaviours collection along tran-
sitions t̃1, . . . , t̃n . Merge(A(〈t̃ 〉),P) merges all events generated by actions in A(〈t̃〉)
into event pool P . Function UpdateV (A(〈t̃〉),GV ) updates global variables GV by
actions in A(〈t̃〉).

Progress Rule. This rule captures the case where a set of compound transitions are
triggered by a dispatched event e. There is no event deferred, or the fired transitions
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have higher priority over event deferral.

e = Disp(P),P ′ = P\{e}, T̂ ∈ Firable((ks,P ′,GV ), e), | T̂ |= n,

〈t̃〉 ∈ Permutation(T̂ ),P ′′ = MergeA(A(〈t̃〉),P ′),V ′ = UpdateV (A(〈t̃〉),GV )

(ks,P ,GV )
e−→ (NextK (ks, 〈t̃〉),P ′′,GV ′)

Function Firable((ks ,P ′,GV ), e) (defined in [17]) returns a set of maximal non-
conflicting subset of enabled transitions. The firable set of transitions4 will be executed
in an order specified by 〈t̃〉. FunctionPermutation (defined in [17]) computes all possi-
ble total orders on the set of compound transitions T̂ . Behaviours are collected along the
transition execution sequence following the permutation order (indicated by A(〈t̃〉)).
Active state configuration is changed as computed by function NextK (ks , 〈t̃〉).

ProgressC Rule. This rule captures the case where choice pseudostates are encoun-
tered during an RTC execution. Different from the RTC Progress rule, dynamic evalua-
tion would be conducted at the point where a choice pseudostate is reached.

e = Disp(P),P ′ = P\{e}, T̂ ∈ Firable((ks,P ′,GV ), e), | T̂ |= n,

t̃1i ∈ T̂ , t̃1i .tv ∈ Cps , 〈t̃〉 = (t̃1, . . . t̃
1
i , . . . , t̃n ) ∈ Permutation(T̂ ),

GV ′ = UpdateV (A(t̃1, . . . , t̃
1
i )),GV ),P ′′ = MergeA(A(t̃1 , . . . , t̃

1
i )),P

′),
t̃2i ∈ Firable(({last(t̃1i ).tv},P ′′,GV ′), e),P ′′′ = MergeA(A(t̃2i . . . , t̃n ),P

′′),
GV ′′ = UpdateV (A(t̃2i . . . , t̃n),GV ′)

(ks,P ,GV )
e−→ (NextK (ks, 〈t̃〉),P ′′′,GV ′′)

Compound transition ti is split by a choice pseudostate into t1i and t2i . The second half
of ti is evaluated based on environment GV ′ . In Fig. 1, ({Operating, WaitArriveOK,

Watch, WaitDepart}, (∅,∅, {opend}),Env1) opend��� ({Operating,Choice2}, (∅,∅,∅),
Env0) ��� ({Idle}, (∅,∅,∅),Env0)5 illustrates the application of this rule.

4.4 System Semantics

A UML state machine models the dynamic behaviour of one object within a system.
But state machines representing different components of a system may interact with
each other. In order to verify the correctness of the overall system behaviours, we need
to capture the message passing sequences between state machines in the system.

Definition 12 (Semantics of a system). The semantics of a system is defined as a La-
belled Transition System (LTS) L � (S,Sinit ,�). In this expression, S is the set of
states of L. Each LTS state is a tuple (k1, . . . , kn) where ki is the configuration of the
state machine Smi within the system. Sinit is the initial state of L. And�⊆ S × S is
the transition relation of L, defined below.

4 We assume the UML state machines obey well-formedness rules. If more than one non-
conflicting sets of transitions are fiable, the choice of which set to execute is non-deterministic.

5 We use Env0 to represent the set {stopNum = 0,mode = false}. The dashed arrow ���
represents an instant stop in a choice pseudostate.
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Table 2. Evaluation results

Model Property Result
USM2C HUGO

Time(s) State Transition Mem (KiB) TTime(s) ETime(s) State Transition Mem (KiB)
RailCar Prop1 not valid 0.013 30 34 43, 342 - - - - -

RailCarO Prop1 valid 0.011 44 54 43, 058 - - - - -
BankATM Prop2 valid 0.009 25 28 917.5 0.231 0.050 578 1, 133 98, 528

DP2 deadlock not valid 0.005 39 65 2, 318 0.196 0.111 12, 766 42, 081 98, 918

TollGate Prop3 valid 0.110 36 50 43, 345 0.197 0.505 61, 451 256, 807 100, 578

‖|Ci∈[1,n]Smi , kj −→ k ′
j

[ LTS1 ]
(k1, . . . , kj , . . . , kn)� (k1, . . . , k

′
j , . . . , kn )

‖|Ci∈[1,n]Smi , kj −→ k ′
j , e = SendSignal(j , l),Merge(e,EPl)

[ LTS2 ]
(k1, . . . , kl , . . . , kj , . . . , kn , )� (k1, , . . . , k

′
l , . . . , k

′
j , . . . , kn )

‖|Ci∈[1,n]Smi , kj −→ k ′
j , e = Call(j , l), e ∈ C , kl

e−→ k ′
l

[ LTS3 ]
(k1, . . . , kl , . . . , kj , . . . , kn)� (k1, . . . , k

′
l , . . . , k

′
j , . . . , kn)

All the state machines in the system are executed non-deterministically. Rule LTS1
captures the normal situation that a single state machine is executed without commu-
nicating with other state machines. The notation with prime, i.e., k ′j , represents the
new configuration after executing an RTC step. Rule LTS2 defines asynchronous com-
munication, i.e., the executing state machine (Smj ) sends an asynchronous message
(e = SendSignal(j , l)) to another state machine (Sml ). The state machine receiv-
ing the message merges the message into its own event pool. Rule LTS3 defines syn-
chronous communication. In this case, the callee state machine (Sml ) is triggered by
the call event (e = Call(j , l), e ∈ C ). The caller state machine (Smj ) cannot finish its
RTC step until the callee has finished execution. For example in Fig. 1, if state machine
Car and Handler are in configuration ({Operating, Crusing}, (∅,∅, {alert100},Env1),
({WaitDepart}, (∅,∅,∅),∅) separately and event alert100 is dispatched and fires tran-
sition t12. The behaviour associated with t12 invokes a call event (that is arriveReq =
Call(Car,Handler)) in Handler state machine. The Handler state machine consumes the
call event and execute an RTC step. After applying rule LTS3, the system is (({Operating,
WaitArriveOK, Watch, WaitEnter}, (∅,∅,∅),Env1), ({WaitPlatform}, (∅,∅,∅),∅)).

5 Implementation and Evaluation

We have implemented the formal semantics in a self-contained tool USM2C [2]. It sup-
ports model checking of deadlock, LTL properties, and step-wise simulation. . We com-
pared USM2C with HUGO [13] on 5 examples used in literature, viz., RailCarO [10],
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Table 3. Scalability evaluation result

N Time (s) States Transitions Memory (KiB) N Time (s) States Transitions Memory (KiB)
2 0.005 39 65 2, 318 3 0.039 237 589 10, 145
4 0.34 1, 519 5, 079 21, 059 5 3.11 9, 634 40, 366 41, 651
6 27.87 63, 069 324, 275 90, 023 7 232.64 398, 101 2, 385, 361 2, 852, 672

RailCar in Fig. 1 (modifies RailCarO to manually introduce bugs6), BankATM [13], dining
philosopher (n = 2) and TollGate [15]. HUGO is a tool translating UML state machines
into Promela models and using Spin to perform model checking.

Results are in Table 2, where Prop1=�(alert100 → ♦arriveAck), Prop2=�(retain →
((!cardValid ∧ numIncorrect ≥ maxNumIncorrect)), Prop3=�(TurnGreen → ♦carExit).
Our tool finds the manually injected bugs in RailCar system, which is out of the capa-
bility of HUGO. The results also show that our tool is more efficient in execution time
and memory consumption compared to HUGO7. The main reason is that the Promela
code generated by HUGO has many local transitions, which introduce overheads. For
example, in the generated TollGate promela code, 7 steps are conducted to move from
a initial pseudostate to its target state, while in our model only one (implicit) step is
taken. The effect is exponential in case of non-determinism.

We conducted another experiment on the dining philosophers problem to evaluate
the scalability of USM2C. Table 3 shows the result of checking deadlock free property
(with breadth first search). We can see from the result that USM2C can handle large state
spaces caused by non-determinism. Reducing further the state space through techniques
such partial-order reduction is the subject of our future work.

We believe that communications between objects are error-prone and hard to find
manually. The experiment results show that our method can find design errors in the
presence of both synchronous and asynchronous communications and is scalable.

6 Related Work

Existing approaches for formalizing UML state machines semantics fall into two major
groups, viz., translation-based approaches and direct formalization approaches.

A large number of existing approaches translate UML state machines to an existing
formal modelling language, such as Abstract State Machines [11,5,12], Petri nets [6,3],
or the modelling language of some model checkers. The verification can be accom-
plished by relying on verification tools for the translated languages. For example, state
machines have been translated to Promela [14], CSP [18], Event-B [21] and CSP# [23];
then Spin, FDR, ProB and PAT model checkers are used to perform the verification,
respectively. The translation approaches suffer from the following defects: (1) Due to
the semantic gaps, it may be hard to translate some syntactic features of UML state
machines, introducing sometimes additional but undesired behaviours. For example

6 Both examples contain transitions which emanate/enter orthogonal composite states, e.g., the
transition from Cruising state to WaitArrivalOK state, which is not supported by HUGO.

7 TTime represents the time used to translate UML state machines models into Promela. ETime
represents the time used by Spin to do model checking.
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in [23], extra events have to be added to each process so as to model exit behaviours
of orthogonal composite states. (2) For the verification, translation approaches heavily
depend on the tool support of the target formal languages. Furthermore, the additional
behaviours introduced during the translation may significantly slow down the verifi-
cation; and optimizations and reduction techniques (like partial order reduction) may
not apply in order to preserve the semantics of the original model. (3) Lastly, when a
counterexample is found by the verification tool, it is hard to map it to the original state
machine execution, especially when state space reduction techniques are used.

Works directly provide operational semantics for UML state machines are more re-
lated to our approach. [22] provides an operational semantics for a subset of UML state
machines. The approach uses terms to represent states and transitions are nested into
Or-terms, which makes it hard to extend to support the other features. Fecher [7] de-
fines a formal semantics for a subset of UML state machines features. The remaining
features are informally transformed to the formalized features. The informal transfor-
mation procedure as well as the extra costs it introduces might make it infeasible for
tool developing. The work in [19] considers non-determinism in orthogonal composite
states. But it supports only a subset of features and neither event pool mechanisms nor
RTC steps are discussed. In all those works [22,7,19], behaviours associated with states
and transitions are explicitly represented with mapping functions. As a consequence,
future changes to the state machines may cause modifications of multiple structures in
their syntax definition and the consistencies between those structures need to be prop-
erly maintained. Conversely, our semantics preserves the syntax structure specified by
the specification and should extend better to future changes and refinements of state
machines. For example, if a simple state is refined into a composite state, only the
definition of that simple state needs to be changed in our approach, whereas all the
mappings related to that simple state need to be changed in their work.

A number of prototype tools were developed to support the verification of UML
state machines in the literature. vUML [16] and HUGO [13] are tools that translate
UML state machines to PROMELA and use Spin for the verification. TABU [4] and
the tool proposed in [20] translate UML state machines to the input language of SMV.
JACK [9] is an integrated environment containing an AMC component, which is able to
conduct model checking. UML-B [21] is developed to support translation from UML
state machines into Event-B model and ProB is invoked to conduct model checking.
Among all the tools discussed here, only HUGO and UML-B are currently available.
HUGO has compatibility problems with newer versions of Spin (Spin5.x, Spin6.x),
thus manual efforts and knowledge of Spin are required for the verification. UML-B is
a UML-like notation, which integrates with B.

7 Discussion and Perspectives

In this paper, we provide a formal semantics for the complete set of UML state machines
features. Our semantics considers non-determinism as well as the communication as-
pects between UML state machines, which bridge the gap of current approaches. We
have implemented a self-contained tool, USM2C, for model checking various properties
for UML behavioural state machines. The experiments show that our tool is effective in
finding bugs with communications between different state machines.



A Formal Semantics for Complete UML State Machines with Communications 345

We discuss in the following limitations related to our work. (1) We provide basic
assumptions for those unclarities found in UML 2.4.1 state machines specifications
based on our understanding, which may introduce thread to the validity of our work. (2)
We did not formally define the constraint and action language in this work.

Several other issues linked with UML state machines remain unaddressed. As future
work, we aim at considering the real-time aspects and object-oriented issues, such as
dynamic invoking and destroying objects.

Acknowledgements. We thank the anonymous reviewers for their insightful comments.
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