
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2013

vTRUST: A formal modeling and verification framework for vTRUST: A formal modeling and verification framework for

virtualization systems virtualization systems

Jianan HAO

Yang LIU

Wentong CAI

Guangdong BAI

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HAO, Jianan; LIU, Yang; CAI, Wentong; BAI, Guangdong; and SUN, Jun. vTRUST: A formal modeling and
verification framework for virtualization systems. (2013). Proceedings of the 15th International
Conference on Formal Engineering Methods, ICFEM 2013, Queenstown, New Zealand, October 29 -
November 1. 329-346.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5001

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5001&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5001&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

vTRUST: A Formal Modeling and Verification
Framework for Virtualization Systems

Jianan Hao1, Yang Liu1, Wentong Cai1, Guangdong Bai2, and Jun Sun3

1 School of Computer Engineering, Nanyang Technological University
2 NUS Graduate School for Integrative Sciences and Engineering

3 ISTD, Singapore University of Technology and Design

Abstract. Virtualization is widely used for critical services like Cloud comput-
ing. It is desirable to formally verify virtualization systems. However, the com-
plexity of the virtualization system makes the formal analysis a difficult task,
e.g., sophisticated programs to manipulate low-level technologies, paged mem-
ory management, memory mapped I/O and trusted computing. In this paper, we
propose a formal framework, vTRUST, to formally describe virtualization sys-
tems with a carefully designed abstraction. vTRUST includes a library to model
configurable hardware components and technologies commonly used in virtu-
alization. The system designer can thus verify virtualization systems on criti-
cal properties (e.g., confidentiality, verifiability, isolation and PCR consistency)
with respect to certain adversary models. We demonstrate the effectiveness of
vTRUST by automatically verifying a real-world Cloud implementation with
critical bugs identified.

1 Introduction

Over the last few years, virtualization is widely used in many areas especially in Cloud
computing. Enterprise users can save money on establishment and upgrading of funda-
mental computing resources by outsourcing their business logics on the virtualization
server which provides instant-ready, pay-by-use and elastic computing services.

Technically, a virtualization server, especially Infrastructure-as-a-Service (IaaS),
employs a middleware called hypervisor to multiplex limited hardware resources to
multiple virtual machines (VMs). Each VM should provide an illusion of virtualized
hardware whose configurations include processor count, memory size, storage space
and communication capabilities. For a user, a typical virtualization service involves
calculation of user-provided computation and feedback of the result. Therefore, it is
critical for virtualization systems to guarantee critical properties such as secrecy of
user’s information and verifiability of computed results.

However, research [15] shows that virtualization systems are vulnerable due to a
larger attack surface and immature implementations. Software bugs in critical compo-
nents (e.g., hypervisor), improper usage of secure technique (e.g., Trusted Computing)
and flawed security assumptions can all lead to vulnerabilities. To investigate whether
vital properties of a virtualization system can be guaranteed, it is particularly necessary
for the system to be formally verified before the deployment.

L. Groves and J. Sun (Eds.): ICFEM 2013, LNCS 8144, pp. 329–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

330 J. Hao et al.

Hardware Configurations

Software Design

Attacker Assumptions

Requirements

vTRUST
Framework

System
Model

Properties

Model
Checker

Bad

Good

No

Yes

Counterexample

Verified

Fig. 1. Workflow

Unfortunately, virtualization systems are rarely analyzed by rigorous techniques like
formal methods. So far, seL4 [8] is the only hypervisor that has been formally verified
for functionalities at source code level using a theorem proving approach. However, the
verification of seL4 on ARM platform took 20 person*year in total for complete proof
based on Isabelle/HOL [10]. Since common hypervisors employed in Cloud systems
are much bigger than seL4, it is arguably infeasible to verify them using a similar ap-
proach. Especially, because theorem proving is highly dependent on expert knowledge
and manually created verification scripts can be error-prone. In this case, it is desirable
to investigate an automatic approach to formally analyze virtualization systems.

In this paper, we propose a formal framework, namely vTRUST, to model and an-
alyze virtualization systems using model checking tools with minimal manual effort.
Fig. 1 presents the essential workflow to formally analyze the implementation of a vir-
tualization system with the help of vTRUST. For a general virtualization system, it can
be decomposed into 4 parts: software design, hardware configurations, attacker assump-
tions and service requirements are shown as slashed blocks for inputs. Based on software
descriptions, the designer can implement executable programs on vTRUST architecture.
Compared to real architecture (e.g., x86 and ARM), the vTRUST architecture focuses on
the most critical (low-level) operations such as handling of virtualization traps, manip-
ulation of memory protection and interaction with Trusted Computing, which are tech-
nically sophisticated and error-prone for software implementation. It is arguably safe to
convert verified executable programs to native code on real architecture without the risk
of introducing critical bugs. The designer can also model malicious programs according
to various attacker assumptions. Based on hardware configurations and malicious pro-
grams, vTRUST framework can generate hardware and adversary models respectively.
Additionally, critical properties will be specified in the system requirements. With the
system model (including programs, hardware and adversary models) and the properties
as inputs, a model checker can analyze the virtualization system. Especially, when a cer-
tain property is invalid, a counterexample will be given to direct implementation revision.

For page limitation, this paper only illustrates the most essential part of vTRUST. For
more details, one may refer to [2] which includes full source code and testing results.
The contributions of this paper can be summarized as follows.

– We propose a formal framework vTRUST, which is capable of modeling and an-
alyzing virtualization systems with minimal manual efforts. It can cover common
low-level details of virtualization systems and automatically explore design vulner-
abilities. Moreover, the framework is extensible for more features.

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 331

– High-level properties of virtualization systems, e.g., confidentiality, verifiability,
isolation and PCR consistency are formally specified. A verifier can test whether a
property is satisfied with tolerance to a specific attacker model.

– As a case study, a Cloud implementation is modeled and analyzed by the vTRUST
framework with PAT [1] as the model checker. A critical bug is found regarding un-
expected relocation of hypervisor in a protected memory region, which is difficult
to reveal manually.

Related Works. Formal verification of virtualization systems has been receiving more
and more academic interest. One of the most famous works is the formal verification of
seL4 [8], making it the only hypervisor verified at source code level so far. Although
seL4 has only 8,700 and 600 lines of C and assembly code in ARM platform, the ver-
ification took 20 person*year to complete the proof on Isabelle/HOL, which makes
the method infeasible to more complex systems. VCC [5] is another work to analyze
the correctness of C programs by annotating the code with contracts in C preprocessor
macros. Annotated programs are translated to logical formulas which will be passed to
SMT solver Z3. Especially, Microsoft Hyper-V has been verified by VCC [9]. Other
work focuses on verifying the integrity of hypervisor. Datta et al. [6] proposed a logic
system to formally prove integrity of programs in the system using Trusted Computing.
Vasudevan et al. [14] summarized the requirements for hypervisor based on hardware-
assisted virtualization technology. Moreover, Soren Bleikertz et al. [4] proposed an au-
tomated verification approach for virtualized infrastructures.

2 Preliminary

2.1 CSP# Language

CSP# [12] is a modeling language which extends Hoare’s CSP with new language fea-
tures. CSP# integrates high-level modeling operators (e.g., parallel composition, choice,
interrupt, channel communication, etc.) with shared variable and low-level procedural
codes, for the purpose of efficient mechanical system verification. Part of the syntax of
CSP# is given in the following, which will be used in the later content.

P ::= [b]P – state guard
| e → P – event prefixing
| c?m → P(m) | c!m → P – channel input/output
| P ; Q – sequential composition
| e{program} → P – data operation prefixing
| P � Q – external choices
| P ||| Q – interleaving
| (||| i : {x ..y} • P(i)) – indexed interleaving
| P (e → Q); – interrupt

whereP andQ are processes, e is an event, b is a Boolean expression and c is a channel.
In e{program} → P , program is executed atomically with the event e. Channel input
and output events can be synchronous or asynchronous (with bounded channel buffer).
P ||| Q allows processes P and Q to execute independently except they communicate

332 J. Hao et al.

BIOS

Devices

Processors
Processor 1 Processor 2 Processor N-1

RAM TPM Network AdaptorDisk
Memory

Bus

Processor 0

Fig. 2. Machine Model

with shared variables or synchronous channels. Especially, (||| i : {x ..y} • P(i)) is an
indexed interleaving composition, which is equal to P(x) ||| P(x + 1) ||| ... ||| P(y)
where x and y are integers (assuming x ≤ y). Similar syntax go for indexed external
choices. P $ (e → Q) behaves as P until event e is engaged and then behaves as Q .

2.2 Hardware Technologies Related to Virtualization Systems

Virtualization systems rely on featured hardware technologies. First of all, processors
should support classical virtualization, or trap-and-emulate virtualization [11], where
the processor operates in dual modes, i.e., host and guest. Virtual Machine (VM) ex-
ecution in the guest mode will be monitored for specific events. Upon an event, the
execution in the guest mode will be suspended. A system software called hypervisor
will take over to handle the event in the host mode. Especially, the guest program can
actively invoke ‘hypercall’ for requesting services offered by the hypervisor. To provide
memory resource among VMs, paged memory management are supported by Memory
Management Unit. Memory-Mapped I/O is employed to access peripheral devices.

Virtualization systems can leverage on Trusted Computing for security enhancement.
Trusted Computing is a technology aiming to enhance security of modern computers.
Rather than confining what software can be carried out, Trusted Computing measures
critical software stack, which is usually called Trusted Computing Base (TCB), as evi-
dence. A secure chip, namely Trusted Platform Module (TPM) [13], must be installed to
achieve Trusted Computing. TPM internally protects resources such as Platform Con-
figuration Registers (PCRs), Endorsement Key (EK) and Storage Root Key (SRK). A
PCR stores SHA-1 results from measuring memory data. Its value can be extended by
inputting new data to it. Particularly, a method called Dynamic Root of Trust Measure-
ment (DRTM) can be used to measure a piece of code as initial TCB with measurement
result stored in PCR, and execute the code transactionally [3]. DRTM can only be per-
formed by invoking ‘late launch’ instruction. The EK proves this TPM conforms to
specification and SRK protects keys generated in the TPM. In addition, TPM can attest
PCR value to a remote verifier. By comparing it to a known hash value of the software,
one can realize what is running on the system.

2.3 Attacker Assumptions

For a virtualization system, attackers usually target the server where users’ information
is stored. In this work, we assume that attacks are performed by malicious software. The
most important capability of the attacker is to construct malicious programs, and let the
malicious programs be invoked on the server, which depends on the attacker’s access

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 333

Memory Management Unit
(MMU)

Execution Engine

Host Guest

Register
File

Memory Addressing

Register
Addressing

Processor

(a) Framework

Legacy

Inactive

Guest

Inactive

Host

PowerOn Halt
Error

Wake Halt
Error

Trap

Release

BSP AP

(b) States

Fig. 3. Processor Model

right. Hence, we define type 1 attacker as the malicious virtualization user who can only
interact with the server remotely. Therefore, the attacker will compromise uploaded
computational program which will be executed on the server. We also define type 2
attacker as one who has physical access to the server. Such an attacker can overwrite
programs stored on the server’s harddisk.

3 vTRUST: A Formal Framework for Virtualization Systems

This section is devoted to the proposed framework vTRUST, which includes formal
descriptions for hardware modeling, software modeling and adversary modeling. One
may refer to [2] for the complete model.

3.1 Hardware Modeling

A virtualization system requires featured hardware for its functionalities. For exam-
ple, Fig. 2 shows a typical hardware model, which consists of processors, memory and
devices. An internal network will connect them for communication.

To efficiently model low-level details of these hardware components, we make nec-
essary abstractions to facilitate automatic verification like model checking. However,
the most critical behaviors of hardware features are preserved and kept similar to real
hardware. We will explain each subsystem in the following paragraphs. Especially, we
employ a uniform model for memory and device subsystems. Lastly, various models
will be composed together as a complete system model.

Execution Model. Fig. 3(a) illustrates the internals of a processor. For processor i , it
can be active or inactive, which is represented by Boolean state active[i]. When the
processor is active, it can operate in different modes. Especially, the first active proces-
sor, or bootstrap processor (BSP), always works in the legacy mode where virtualization
is disabled. Application processors (APs) can be woken up by invoking the instruction
WAKE in BSP or other active APs. When the AP is active, it operates in the guest
mode initially and can be trapped into the host mode. After the hypervisor has done its
job, it ‘releases’ the control back to the guest mode. The operational mode is modeled
by state variable mode[i] and transitions are illustrated by Fig. 3(b).

334 J. Hao et al.

The multiprocessor subsystem can thus be composed by parallel composition as fol-
lows where Proc(i) represents processor i . Process Proc(i) can be activated by set-
ting active[i] to true and mode[i] to legacy or guest for BSP or APs respectively. Af-
ter event wakeup.i is engaged, LegacyOrGuest(i) models the execution in the legacy
or guest mode as follows. The execution is essentially a loop of fetching and execut-
ing programs. The loop modeled by the FELoop(i) can be interrupted when channel
prochalt [i] receives a message to halt current processor. In this case, active[i] will be
set to false and the processor will wait for the next wake-up.

Processors() = (||| i : {0..(N − 1)} • Proc(i));
Proc(i) = [active[i]]wakeup.i → LegacyOrGuest(i);
LegacyOrGuest(i) = FELoop(i) (prochalt [i]?0{active[i] = false; } → Proc(i));

According to trap-and-emulate virtualization, the execution in the guest mode will
be trapped into the host mode upon specific events such as access to privileged re-
source, executing illegal instructions or intentionally invoking hypercall. Process Trap
is employed to model the trap as follows.

Trap(i , context) = g2h{mode[i] = HOST ; saveContext(context); } → Host(i);
Host(i) = FELoop(i) (release[i]?0{mode[i] = GUEST ; } → Skip);

where parameter context denotes the essential information (e.g., source, reason, af-
fected instruction and operators, etc.) of the trap. Event g2h models the transition from
the guest mode to the host mode by changing operational mode and saving context. Pro-
cess Host(i) models the execution in the host mode. It is similar to LegacyOrGuest(i)
except that FELoop(i) can be interrupted by receiving event of synchronous channel
release[i] which ‘releases’ the control back to the guest mode.

Specifically, every program in vTRUST is modeled as a CSP# process, e.g.,BIOS (i)
or Bootloader(i) where i indicates its execution environment on processor i . A pro-
gram is a container of instructions and assigned with an identifier such as Prog BIOS
or Prog Bootloader . Processor i will fetch and execute a program each time repeatedly
as modeled by FELoop(i).

FELoop(i) = fetch.i{prog [i] = fetchProgram(pnp[i]); pnp[i] + +; } → Execute(i);
FELoop(i);

Execute(i) = [prog [i] == Prog BIOS]BIOS(i) �
[prog [i] == Prog Bootloader]Bootloader(i) � ...

Event fetch.i loads the current program from the memory address pnp[i] which
stands for the pointer to the next program. The prog[i] will internally cache fetched
programs during its execution. The pointer to the next program will be increased. Af-
ter that, process Execute(i) models the execution of program prog[i] by dispatching
according to program identifier.

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 335

Table 1. Primitive Instructions

Mnemonic Legacy mode Host mode Guest mode
MOVE dst, src dst ← eval(src)
JUMP adr pnp ← eval(adr)
WAKE hv , ptp, pnp Activate another processor. Trap

hv = hypervisor (physical address)
ptp = paging table pointer (physical address)
pnp = guest entry (logical address)

HALT Inactivate current processor Trap
RELS Illegal Release Trap
HYPC id Illegal Illegal Trap (Hypercall id)
LL start, len Late launch Illegal Trap

Instruction Set. vTRUST defines only 7 primitive instructions whose semantics are
summarized in Table 1. They are the only architectural interfaces defined to modify
system states such as operational mode, register/memory values and device status. Each
instruction is modeled as a CSP# process and its parameters are used to represent in-
struction operands. Note that an instruction may behave differently in different modes.
For example, instruction RELS can be modeled as follows1.

RELS(i) = [mode[i] == LEGACY]Error(UNDEFINED INSTRUCTION) �
[mode[i] == HOST]release[i]!0 → Stop �

[mode[i] == GUEST]Trap(i , INVOKE INSTR RELS)

Particularly, executing RELS in legacy mode throws an error of undefined instruc-
tion. In the host mode, the instruction will terminate hypervisor’s execution and release
the control back to the guest program which triggers the trap. Lastly, when it is executed
in the guest mode, it results in a trap with ‘invoke RELS ’ as the context.

Primitive instructions used in every mode are MOVE and JUMP . The former is
used for data movement and the latter can intentionally modify the pointer to the next
program. Note that function eval(x) evaluates x based on the current execution envi-
ronment and x stands for one of or a combination of register, memory and immediate
number addressing modes. For example, MOVE (Mem(0),Reg(x)) copies data from
register x to memory address 0. Moreover, the operand can also leverage CSP# syntax
for arithmetic operations. For instance, MOVE (Mem(0),Mem(0) + Mem(0)) will
double the value stored in Mem(0).

As shown in Fig. 3(a), memory addressing is handled by MMU which is a featured
component for virtualization systems to allocate memory resources among VMs. In the
guest mode, every memory addressing will be processed by MMU for address transla-
tion and access right checking. The memory address referred to in the operand is called
the logical address which is defined in the context of each processor; and the translated
address is called the physical address which is globally indexed. Both logical and phys-
ical memory spaces are continuously grouped into pages as the granularity of memory
management. The page size is configurable in vTRUST. A system structure called pag-
ing table describes how a logical address can be translated and what access rights are
granted. Paging tables are stored in memory and a control register is employed to select

1 In fact, CSP# does not allow a process to interrupt itself. The real implementation relies on
another independent process as a proxy.

336 J. Hao et al.

one of them as the active one in the guest mode. A paging table consists of a set of
entries where entry e(v , p, ac) indicates the v th page in logical memory space should
be translated to the pth page in physical memory space. The ac stands for access con-
trol which describes the access rights granted for this page as a combination of READ ,
WRITE and EXECUTE . However, MMU works differently in the legacy or host
mode. The logical address is identically translated to the physical address and access
right checking is omitted. This mechanism facilitates hypervisor to manage memory
resources.

MOVE (i ,dst , src) = iMOVE .i{executeMOVE (i , dst , src)} →
if (lastState(i) == SUCCESS){/ ∗ DoNothing ∗ /
}elseif (lastState(i) == FAILED){

if (mode[i] == LEGACY || mode[i] == HOST){Error()}
else{Trap(i ,Context(INSTR MOVE ,dst , src))}}

MMU’s behavior is modeled by data operations of each instruction. For example,
above statements model the execution of instruction MOVE in processor i . The pro-
gram attached with event iMOVE .i invokes function executeMOVE to calculate state
changes after execution of the instruction, which includes translation and access right
checking in MMU. When it is successful, the updated state will be committed atomi-
cally at the occurrence of event iMOVE .i ; otherwise, the state is unchanged and the
processor will trigger an error or a trap according to current operational mode.

Additionally, WAKE (hv , ptp, pnp) is the instruction to activate another application
processor. Especially, the new activated processor will start execution in the guest mode
where hv is the hypervisor entry, ptp is the paging table pointer and pnp is the logical
memory address of the first guest program. On the contrary, HALT is the instruction to
inactivate the current processor.

Memory and Device Model. Unlike a processor that actively executes programs,
memory is passive. Therefore, memory access is modeled as a part of data operations in
instruction execution, e.g., in the function executeMOVE for instruction MOVE . To
access devices, Memory-Mapped I/O (MMIO) technology is employed. That is, from
the view of a processor, when it performs memory addressing at particular physical
memory address, the system bus can route the request to a specific device rather than
memory. In other words, a physical address can be mapped to a memory unit or a func-
tional port of a device; otherwise, it is reserved and thus illegal to be accessed.

As memory and devices work in a similar way by atomically responding to requests
from the system bus, we can summarize their common behaviors using an unified base
class in C#. Each type of device can thus be modeled as a derived class by implement-
ing the interfaces such as configuration upon installation, response of reading from or
writing to particular functional port, and initialization upon machine reset.

Currently, vTRUST provides 5 common devices, i.e., RAM, ROM, disk, network
adapter and TPM as shown in Fig. 4. ROM (Fig. 4(a)) is the simplest device. It defines
one readonly functional port. Reading on it retrieves internal content which represents
the flashed data upon installation and will be persistent across power cycles. RAM

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 337

(a) ROM

10 2 n-1

(b) RAM

DATAADR

(c) Harddisk

SEND/RESV

(d) Net Adapter

RETCMD

Cryptographic Engine

SRK PCREK

(e) TPM

Fig. 4. Memory and Device Models

(Fig. 4(b)) is mostly used in the system. It defines n functional ports as memory units
and each is linked to a corresponding internal data for reading and writing. Especially,
initialization will zero all units to model its volatile property. Disk (Fig. 4(c)) provides
permanent storage across power cycles. Different from memory, storage units in disk
cannot be accessed directly. To visit a specific cell, one must write the offset of that
cell to the selector port. After that, one can read/write the data port to access selected
cell. Network adapter (Fig. 4(d)) offers capabilities to communicate with remote users.
One can read from ‘receive’ port for retrieving data or write to ‘send’ port for transmit-
ting data. Internally, they are modeled by receving/sending event of CSP# synchronous
channel. Therefore, the execution of the instruction that involves receiving/sending will
be blocked until connected a remote party is ready to send/receive data. TPM (Fig. 4(e))
plays a vital role in Trusted Computing. A port is defined to receive encapsulated com-
mand to the TPM; and the other port can be read to retrieve command result. Essential
functionalities mentioned in Sec. 2.2 are modeled.

These 5 common devices are expected to cover popular virtualization hardware; if
not, one may further model new devices by implementing additional subclasses.

3.2 Software Modeling

In the vTRUST framework, software is implemented as functional programs. Each pro-
gram can be modeled as a CSP# process that mainly consists of primitive instruc-
tions. For example, a BIOS firmware program can be modeled by process BIOS (i)
where i represents the execution environment of processor i and its identifier will be
Prog BIOS .

BIOS(i) = DISKLOAD(i ,Mem(1), 0); JUMP(i , 1);
DISKLOAD(i ,dst , offset) = MOVE (i ,Mem(DISK SEL), offset);

MOVE (i , dst ,Mem(DISK DATA));

where DISKLOAD defines a macro for loading a unit from harddisk to memory by
calling two MOVE instructions on selector and data ports of the harddisk respectively.
BIOS loads the first storage unit to Mem(1) and transfers the control to it.

For a program that involves arithmetics and flow control, one can leverage CSP# syn-
tax to achieve that. However, since the program executes in a single processor, syntax
such as concurrency composition is not allowed.

338 J. Hao et al.

3.3 Adversary Modeling

In vTRUST, an attack is performed by executing malicious software. First, malicious
programs can be manually modeled as a vTRUST program. The program can addition-
ally invoke knowledge.add(x) to add a new entry x to the attacker’s knowledge. Espe-
cially, a process Eavesdrop is defined to add all accessible data (i.e., via memory and
register addressing) to model eavesdropping. Furthermore, we use non-deterministic
choice to enumerate all possible attack behaviors. In particular, vTRUST provides a
library to model a piece of code that can execute arbitrary instructions.

ArbCode(i , n, opt) = Eavesdrop();
if (n > 0){ArbInstruction(i , opt); ArbCode(i , n − 1, opt)}

ArbInstruction(i , opt) = Skip �

[opt .allowMOVE]ArbMOVE (i , opt .move) �
[opt .allowJUMP]ArbJUMP(i , opt .jump) �
[opt .allowLL]ArbLL(i , opt .ll) � ...

Here, process ArbCode(i , n, opt) models a piece of code that contains up to n in-
structions where each is modeled by process ArbInstruction(i , opt). An eavesdrop-
ping behavior is inserted between every two arbitrary instructions. Internal choices are
employed to model non-determinism including doing nothing (Skip) or executing a
particular instruction with undetermined operands. Especially, opt describes options
for constructing these instructions. The option contains Boolean switches for executing
each instruction with constraints of the operands. For example, an instruction
JUMP(i , adr) with specific range as adr can be modeled as follows.

ArbJUMP(i , range) = (� adr : {rangemin ..rangemax } • JUMP(i , adr));

Constructing malicious code with non-determinism is powerful to discover vulner-
abilities. However, due to large choices of instructions and their operands, modeling a
malicious program tends to reach state explosion in model checking. As a tradeoff, a
compromised program can be modeled as a revision to its original program. The de-
signer may rely on his domain knowledge to insert pieces of malicious code to proper
positions of the original program, or skip certain original instructions.

For type 1 attacker, only uploaded program can be compromised aiming to exploit
bugs on server software. For type 2 attacker, he is able to compromise all software on
server’s harddisk including the bootloader and even the hypervisor.

3.4 Compose a Complete Model

To complete the system, models of hardware, software and adversary must be composed
together. Before power on the server, its hardware must be configured, which can be
modeled by ConfigServer as follows.

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 339

ConfigServer() = ConfigProcessors(4, 4); InstallDev(0,ROM (Prog BIOS));
InstallDev(1,RAM (23)); InstallDev(24,Disk(Prog Bootloader));
InstallDev(28,TPM (AKey(ek), SKey(srk));
InstallDev(32,Net(chnout , chnin));

OnlineServer() = ResetAll(); (Processors() (sysreset?0 → PowerOn()));
VirtSys() = ConfigServer(); (OnlineServer() ||| Users());

where ConfigProcessors(n, ps) plugs n processors with ps units as a memory page;
InstallDev(adr , dev) installs a device (memory is considered as a special device) dev
on the system and maps its functional ports starting from physical memory address adr .
Each device is initialized by a constructor in C#. ROM (p) models ROM flashed by p
as its content;RAM (n) provides RAM with length of n; Disk(x0, x1, ..., xn−1) models
a harddisk whose storage units are initialized by array x ; TPM (ek , srk) configures a
TPM chip with ek and srk as endorsement storage keys; and Net(out , in) models a
network adaptor binding its outbound and inbound ports to channels out and in .

Process OnlineServer models server’s running behaviors. ResetAll resets all com-
ponents. The server hardware will start to work as modeled by process Processors .
The system can be interrupted only after reset, which is modeled by the synchronous
channel sysreset . In this case, the server will be restarted by invoking PowerOn again.
The complete behaviors of the system can thus be modeled by process VirtSys as a
sequence of server configuration and interaction between online server and users.

4 Properties of Virtualization Systems

For a virtualization system, it is desirable to provide guarantees for its software imple-
mentation. This section discusses some important properties for virtualization systems.

Confidentiality. Confidentiality guarantees that the system can prevent user’s program,
data and computed result from disclosure. It is a general requirement for virtualization
systems to convince their users that sensitive information outsourced to a server are safe.
Confidentiality is vital because when it is unsatisfied, the user’s information which may
contain intellectual properties can be disclosed to an untitled entity, which leads to loss
of commerce and reputation.

In vTRUST, an attacker’s knowledge has been formally modeled by knowledge,
which makes the specification straightforward. First, NonConfidentiality defines the
insecure state that the user’s secret has been obtained by the attacker, which breaks
the confidentiality requirement. In other words, secret can be recovered from the at-
tacker’s knowledge where secret represents sensitive information which generally in-
cludes user-provided data, program and computational result. Therefore, the model
checker can test the system’s reachability to such insecure state, which is specified
by reaches syntax. If the result is valid, the model checker will generate an execu-
tion trace to break the confidentiality as a counterexample; otherwise, it indicates state
NonConfidentiality is unreachable, i.e., confidentiality is satisfied.

340 J. Hao et al.

#define NonConfidentiality (knowledge.know(secret));
#assert VirtSys() reaches NonConfidentiality ;

Verifiability. For the user who outsources his computation to a virtualization server,
it is desirable to have a guarantee that the computational result is faithfully calculated
from the input program and data. Verifiability defines a such property that users are
capable of detecting if the result is forged. Similar to modeling confidentiality, we can
model non-verifiability first and test its reachability, as shown below. The state of non-
verifiability is reached when ‘the user believes the result is good’ but ‘it is actually
forged’. The definitions of two conditions are problem-specific.

#define NonVerifiability (BelieveGoodResult && ForgedResult);
#assert VirtSys() reaches NonVerifiability ;

Isolation. For a cloud service with multiple users, it is desirable to guarantee the iso-
lation among VMs. That is, any two VMs should not share same physical memory
page unless it is expected. Especially, we specify ‘strong isolation’ and ‘weak isolation’
properties respectively. The former does not allow any overlapped mapping whereas the
latter relaxes it by allowing shared memory page if WRITE right is not granted.

Given any a processor i in the guest mode and another processor j in any mode,
their active paging tables are denoted by pti and ptj . The negative proposition of strong
isolation can thus be defined as ∃ ea ∈ pti , eb ∈ ptj −→ (ea .p = eb .p), where
ea and eb refer to paging entries as mentioned in 3.1, and e.p denotes its physical
page number. Similarly, the negative proposition of weak isolation is defined as ∃ ea ∈
pti , eb ∈ ptj −→ (ea .p = eb .p) ∧ (ea .ac&WRITE �= 0). With the definitions of
non-strong-isolation and non-weak-isolation, we model theses conditions in C# and
test their reachability in the same way as confidentiality and verifiability.

PCR Consistency. For a system leveraging on Trusted Computing, when its PCR in-
dicates a good TCB, the expected hypervisor should be always loaded for handling the
traps, defined as PCR consistency. In other words, if a compromised hypervisor is acti-
vated to handle the traps but the PCR fails to reflect that the TCB is bad, PCR value is
inconsistent with system status.

Suppose goodpcr is the condition to indicate whether the PCR is a good value and
program Hypervisor Bad refers to the malicious hypervisor that should never be exe-
cuted in the host mode when the good PCR value is present. The inconsistent state can
be modeled as follows.

#define InconsistentPCR (goodpcr && hv(Hypervisor Bad));
#assert VirtSys() reaches InconsistentPCR;

where hv(x) tests if program x is being executed in the host mode. Again, testing state
reachability will verify the property.

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 341

Server

User

Viirtualization
System

Start

Start

Good TCB

Key
Generation

Good Result

Decrypt &
Compute

Request Certified Key Encrypted
Program & Data

Encrypted
Result

YY

N N

Initialization Negotiation Computation Verification

Fig. 5. Interactive Protocol

5 Case Study: Formal Analysis of Trusted Block as a Service

Trusted Block as a Service (TBaaS) [7] is a Cloud computing implementation. The
system allows individual users to outsource their programs and data to the Cloud and
retrieve computed results. We choose it as an example for its generality.

TBaaS involves interactions between a Cloud server and Cloud users. As shown in
Fig. 5, the interactions can be divided into 4 stages: initialization, negotiation, computa-
tion and verification. In the initialization stage, the server is expected to setup a secure
virtualization environment ready for providing services. In the negotiation stage, the
user requests the service and a server will reply with evidence that the server system
is securely built up. If the evidence is accepted, the user will enter the next stage; oth-
erwise, the protocol aborts. The computation stage starts with uploading user’s data
and program to the server via an established secure channel. The server will create an
isolated Trusted Block as a sandbox for the computation. The computed result and its
integrity proof will be securely sent back to the user once the computation is done. In the
verification stage, the user will verify the integrity of the result and finish the session.

Particularly, the initialization of the server involves considerable low-level operations
with hardware. For example, it relies on bootloader to load the late launch entry (the
first program after late launch) and the hypervisor into memory for DRTM. To minimize
TCB, TBaaS moves potentially untrusted code such as network driver to the manage-
ment VM. The isolation is achieved by paged memory management. As involved in
DRTM, the late launch entry and the hypervisor must be bug-free.

5.1 System Modeling

In this section, we configure hardware and implement software from its design.
Furthermore, we model malicious software according to attack assumptions.

Hardware Configuration. TBaaS server equips with 4 processors and groups 4 mem-
ory units as a page. First 24 physical memory units are allocated for ROM and RAM.
Harddisk, TPM and network adaptor are installed in separate memory pages. The con-
figuration is the same as mentioned in Sec. 3.4 except that harddisk stores programs
Prog Bootloader , Prog Driver , Prog LLEntry and Prog Hypervisor in sequence.

342 J. Hao et al.

Software Implementation. The server starts with the BIOS program which loads boot-
loader and transfers the control to it.

#define PADR LLENTRY 4; #define PADR HV 5;
Bootloader(i) =

DISKLOAD(i ,Mem(PADR LLENTRY), 2); //Mem(4) <= Prog(LLEntry)
DISKLOAD(i ,Mem(PADR HV), 3); //Mem(5) <= Prog(Hypervisor)
LL(i ,PADR LLENTRY , 2);

Essentially, the bootloader loads late launch entry and hypervisor from harddisk to
adjacent memory addresses defined by PADR LLENTRY and PADR HV . Late
launch is invoked with measurement of these memory units. If successful, late launch
entry will take the control. Its task is to setup virtualization environment. Firstly, it pre-
pares the paging table for the management VM (stored in Mem(PADR MVMPT)).
The first page is mapped to the first physical page with all access rights for executing
the driver program and accessing buffers; The second page is mapped to the functional
port of the network adaptor (defined by PADR NET) with read/write access to allow
the driver program to operate the adaptor. PADR DRIVER and LADR DRIVER re-
spectively defines the driver’s physical address and logical address based on newly pre-
pared paging table. A WAKE instruction is invoked to create the management VM by
providing its hypervisor, paging table and entry point.

#define PADR DRIVER 2; #define LADR DRIVER 2;
#define PADR MVMPT 6; #define PADR NET 32;
LLEntry(i) =

DISKLOAD(i ,Mem(PADR DRIVER), 1); //Mem(2) <= Prog(Driver)
MOVE (i ,Mem(PADR MVMPT),PageTable([0,RWX], [PADR NET ,RW]));
WAKE (i ,PADR HV ,PADR MVMPT ,LADR DRIVER); HALT (i);

The hypervisor is the most vital component in the system. TBaaS hypervisor only
accepts two traps: the hypercall from the management VM for data arrival and the hyper-
call from a Trusted Block for the notification of completed computation. We summarize
its structure in the following pseudo-code below due to space limitation.

Hypervisor(i) =
if (hypercall from Management VM && FuncID == DATAARRIVAL){

Response network message according to network protocol;RELS(i);
}else if (hypercall from TB && FuncID == JOBDONE){

Encapsulate the result of TB;Halt(i);
}else{Error Handler}

The virtualization users interact with the server by network communication which is
modeled by operating channels bound to the server’s network adaptor. Especially, the
computational program uploaded to the server must follow this template:

UserProg(i) = Read input data, calculate the result and store it to a specified location
HYPC (i ,JOBDONE);

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 343

Table 2. Model Checking Results

Attacker Malicious Software Properties Results
Bootloader Hypervisor UserProg Valid? | S | | T | Time(s) Mem(MB)

Type 1 - - 5 instructions NonConfidentiality NO 762K 1182K 249 74
NonVerifiability NO 762K 1182K 247 93
NonStrongIsolation NO 762K 1182K 249 88
NonWeakIsolation NO 762K 1182K 248 123
InconsistentPCR NO 762K 1182K 253 143

Type 2 4 instructions 3 instructions - NonConfidentiality YES 163K 251K 42 102
NonVerifiability YES 163K 251K 42 85
NonStrongIsolation YES 163K 251K 42 81
NonWeakIsolation YES 163K 251K 42 104
InconsistentPCR YES 163K 250K 42 106

Type 2 4 instructions 3 instructions - NonConfidentiality NO 2481K 6551K 705 104
(Bug fixed) NonVerifiability NO 2481K 6551K 713 95

NonStrongIsolation NO 2481K 6551K 713 141
NonWeakIsolation NO 2481K 6551K 710 109
InconsistentPCR NO 2481K 6551K 717 132

Malicious Software. For the type 1 attacker model, we assume one of the users, e.g.,
Alice, uploads a malicious program which can be modeled as follows.

UserProg Bad(i) = ArbCode(i , l ,opt);

where l indicates how complex the malicious program will be constructed, and opt
controls the options of modeled code. They should be adjusted according to time and
space constraints in the verification, i.e., more capable attackers can have more ways to
execute the code, but this leads to longer verification time.

Type 2 attacker can compromise any program on the harddisk. We model
the malicious programs by inserting pieces of malicious code into the origi-
nal programs at the proper positions. For example, compromised bootloader can
be modeled by inserting malicious code before original late launch instruction.
Compromised late launch entry, driver and hypervisor can be modeled simi-
larly. To load these compromised programs, the original harddisk will be re-
placed by Disk(Prog Bootloader Bad ,Prog Driver ,Prog LLEntry ,Prog Hypervisor ,

Prog Driver Bad ,Prog LLEntry Bad ,Prog Hypervisor Bad).

5.2 Verification and Evaluation

The TBaaS system should satisfy the properties as mentioned in Sec. 4. Specifically,
confidentiality is specified by defining the secret as good users’ uploaded programs,
data and computed results. For verifiability, we model user’s judgement of the re-
sult’s integrity as a variable UserJudge which can be undefined , good and forged .
The user should keep it as undefined before the verification stage where it will be
updated to good or forged according to the interaction protocol. Therefore, condition
BelieveGoodResult in Sec. 4 can be defined as ‘UserJudge == good ’. For the con-
dition ForgedResult , it can be evaluated by comparing user-received result with the
genuine result pre-computed by the designer. Strong isolation and weak isolation must
be achieved to isolate user’s information among TBs. As Trusted Computing is used in
TBaaS, PCR consistency must be satisfied as well.

344 J. Hao et al.

Based on the system model generated by vTRUST and specified properties, we ana-
lyze the system against certain adversary models. Table 2 summarizes the experimental
results where the testbed is a workstation with Intel Xeon E3-1245 CPU and 8GB RAM.
Depth-first search is used to verify the properties.

For type 1 attacker (Alice), uploaded program contains 5 arbitrary instructions (in-
cluding macros such as DISKLOAD) with all options enabled. The result shows ex-
pected behavior that all properties are satisfied. For type 2 attacker, he compromises
software on the server side: bootloader is compromised by adding 4 arbitrary instruc-
tions; a malicious hypervisor is modeled by introducing 2 arbitrary instructions before
creating the Trusted Block and another arbitrary instruction before encryption of the
computed result.

The experimental result shows that a critical bug is found to break all properties by
compromising bootloader and hypervisor when type 2 attacker is present. Based on the
counterexample generated by PAT, we reconstruct the malicious bootloader as follows.

Bootloader Bad(i) =
DISKLOAD(i ,Mem(4), 2); //Mem(4) <= Prog(LLEntry)
DISKLOAD(i ,Mem(5), 3); //Mem(5) <= Prog(Hypervisor)

+ +MOVE (i ,Mem(1),Mem(4)); //Mem(1) <= Mem(4)
+ +MOVE (i ,Mem(2),Mem(5)); //Mem(2) <= Mem(5)
+ +DISKLOAD(i ,Mem(5), 6); //Mem(5) <= Prog(Hypervisor Bad)
+ + LL(i , 1, 2); //Late launch {Mem(1) | Mem(2)}

LL(i , 4, 2);

The original code firstly loads good late launch entry and hypervisor to Mem(4) and
Mem(5) where the malicious code relocates them to Mem(1) and Mem(2) and fur-
ther overwrites Mem(5) by the malicious hypervisor. Late launch with memory range
Mem(1) to Mem(2) will be invoked. As a result, the same PCR value will be obtained
as the original bootloader would, which makes Cloud user infeasible to distinguish the
difference. In original late launch entry, instruction WAKE assigns Mem(5) as the hy-
pervisor for the management VM, which grants the malicious hypervisor the right to
execute in the host mode, making all properties unsatisfied. To amend it, the late launch
entry must perform a sanity check of where it is being loaded at the very beginning. Ver-
ification shows that amended system can defend against type 2 attacker.

6 Discussion and Conclusion

The vTRUST framework is a tradeoff between details and efficiency. For complex vir-
tualization systems, vTRUST models the most critical low-level features such as trap-
and-emulate execution, paged memory management, Memory Mapped I/O and Trusted
Computing. With these features, one can model complex software logic based on sim-
plified instruction set which is the fundamental for automatic exploration of vulnerabil-
ities. Abstraction techniques such as explicit definition of programs help to achieve the
goal without losing capabilities of modeling high-level properties.

Specifically, CSP# allows to define user-customized data types and their determined
behavior in C#, which facilitates vTRUST to model internal states and their transitions

vTRUST: A Formal Modeling and Verification Framework for Virtualization Systems 345

of hardware components. Most importantly, Object-Oriented Programming is utilized
to model memory and devices for reusability. By implementing determined operations
in C#, CSP# code can focus on non-determinism modeling and thereby improve read-
ability. On the other side, we leverage CSP# syntax for flow-control and arithmetic op-
erations and therefore avoid enlarging the instruction set.

The critical bug found by vTRUST is subtle. For the implementation regarding so-
phisticated technologies such as Trusted Computing and virtualization, it is common to
overlook something in coding. For example, although the fact ‘DRTM is irrelevant to
memory location’ can be derived by PCR extending operation, this issue is not high-
lighted in popular documents such as [3]. For a designer of virtualization systems, it
is highly possible to overlook this deep-level information. Even worse, we argue sim-
ilar bugs can hardly be revealed by traditional software testing or manual inspection.
We remark that the properties that can be verified are not limited to the four types as
shown in Sec. 4. Other functional properties like correctness can also be verified, which
is mainly constrained by the model checker used.

In this paper, we proposed a formal framework vTRUST to analyze implementa-
tions of virtualization systems. Based on the vTRUST architecture, the system designer
can implement software with low-level details as executable programs. The framework
covers most common critical features in virtualization systems and thus can be used as
a general modeling and analysis tool. Especially, we employed vTRUST to analyze a
Cloud prototype, called TBaaS, and found a critical bug regarding a relocation issue
which is arguably hard to discover by software testing or manual inspection. In the fu-
ture, we will extend this work for more hardware features such as hardware interrupts
and master devices. Hardware-based attacks will also be covered. Moreover, we will
investigate optimization of modeling malicious code with more case studies.

Acknowledgement. We would like to thank project ‘IDD11100102’ from Singapore
University of Technology and Design which supports this work.

References

1. Process Analysis Toolkit, http://www.comp.nus.edu.sg/
2. vTRUST Website, http://www.comp.nus.edu.sg/%7Epat/vtrust
3. AMD. Secure Virtual Machine Architecture Reference Manual
4. Bleikertz, S., Groß, T., Mödersheim, S.: Automated Verification of Virtualized Infrastruc-

tures. In: CCSW, pp. 47–58 (2011)
5. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,

W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

6. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A Logic of Secure Systems and its Application
to Trusted Computing. In: SP, pp. 221–236 (2009)

7. Hao, J., Cai, W.: Trusted Block as a Service: Towards Sensitive Applications on the Cloud.
In: TrustCom, pp. 73–82 (2011)

8. Klein, G., et al.: seL4: Formal Verification of an OS Kernel. In: SOSP, pp. 207–220 (2009)

346 J. Hao et al.

9. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809. Springer,
Heidelberg (2009)

10. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

11. Popek, G.J., Goldberg, R.P.: Formal Requirements for Virtualizable Third Generation Ar-
chitectures. Communications of the ACM 17, 412–421 (1974)

12. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and Programs for System
Modeling and Verification. In: TASE, pp. 127–135 (2009)

13. Trusted Computing Group. Trusted Platform Module Main Specification. Version 1.2, Re-
vision 116 (2011)

14. Vasudevan, A., McCune, J.M., Qu, N., van Doorn, L., Perrig, A.: Requirements for an
Integrity-protected Hypervisor on the x86 Hardware Virtualized Architecture. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 141–165.
Springer, Heidelberg (2010)

15. Williams, B., Cross, T.: Virtualization System Security. In: IBM (2010)

	vTRUST: A formal modeling and verification framework for virtualization systems
	Citation

	tmp.1584005843.pdf.MSJ2n

