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Abstract. Real-time system verification must deal with a special notion of
‘fairness’, i.e., clocks must always be able to progress. A system run which pre-
vents clocks from progressing unboundedly is known as Zeno. Zeno runs are
infeasible in reality and thus must be pruned during system verification. Though
zone abstraction is an effective technique for model checking real-time systems,
it is known that zone graphs (e.g., those generated from Timed Automata mod-
els) are too abstract to directly infer time progress and hence non-Zenoness. As
a result, model checking with non-Zenoness (i.e., existence of a non-Zeno coun-
terexample) based on zone graphs only is infeasible. In our previous work [23],
we show that model checking Stateful Timed CSP with non-Zenoness based on
zone graphs only is feasible, due to the difference between Stateful Timed CSP
and Timed Automata. Nonetheless, the algorithm proposed in [23] requires to as-
sociate each time process construct with a unique clock, which could enlarge the
state space (compared to model checking without non-Zenoness) significantly. In
this paper, we improve our previous work by combining the checking algorithm
with a clock-symmetry reduction method. The proposed algorithm has been re-
alized in the PAT model checker for model checking LTL properties with non-
Zenoness. The experimental results show that the improved algorithm signifi-
cantly outperforms the previous work.

1 Introduction

Timed Automata [2,11] are popular for real-time system modeling and verification. Ver-
ification tools for Timed Automata based models have proven to be successful [15,5].
Nonetheless, modeling hierarchical timed systems in Timed Automata is not trivial.
The proposed remedies include extensions of Timed Automata [6,8,4,9] or alterna-
tive languages [29,16,23]. In our previous work [23], a new language named Stateful
Timed CSP (STCSP) is proposed to model hierarchical real-time systems, which com-
bines compositional language constructs from process algebra community (i.e., Timed
CSP [20]) with imperative programs and timed constructs like delay, timeout, and dead-
line, etc. For instance, we write P timeout[d] Q in STCSP to denote that process P
must perform an action (e.g., a data operation or channel communication) within d
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time units or otherwise process Q takes over the control and starts executing; we write
P deadline[d] to denote that P must terminate within d time units.

Like model checking Timed Automata, model checking STCSP models must deal
with the emptiness checking problem, i.e., the problem of checking whether a timed
model accepts at least one non-Zeno run. An infinite run is non-Zeno if and only if
it takes an unbounded amount of time. Zeno runs are infeasible in reality and thus
must be pruned during system verification. That is, it is necessary to check whether
a run is Zeno so as to avoid presenting Zeno runs as counterexamples. For instance,
given a model P deadline[1] where P = a → P | b → Skip. If property ‘eventually
event b occurs’ is verified without non-Zenoness, then a counterexample with infinitely
many a events will be generated. A close look reveals that the counterexample is Zeno
since infinitely many a events must occur within 1 time unit. We thus need a method
to check whether a run is Zeno or not. Furthermore, the reason that the non-Zenoness
checking is particularly interesting is that it is infeasible with zone abstraction [13],
which is an effective technique for model checking Timed Automata (which has been
employed by many tools including UPPAAL [15]) and STCSP [23]. Zone abstraction,
which constructs zone graphs, is too abstract to directly infer time progress and hence
non-Zenoness. This issue has attracted much attention recently. The proposed remedies
include either introducing an additional clock [24] or additional accepting states in zone
graphs [13]. The state-of-art emptiness checking algorithm [12] for Timed Automata
has a complexity of (|C|+ 1)2 · |ZG| where |C| is the number of clocks and |ZG| is the
size of the zone graph.

Unlike Timed Automata, model checking with non-Zenoness in STCSP can be
achieved based on the zone graphs only. It has been shown that zone abstraction can be
applied to STCSP, by explicitly associating clocks with the timed constructs, dynam-
ically activating/de-activating clocks and constructing the zone graph [23]. STCSP is
different from Time Automata as it relies on implicit clocks which cannot be modified
directly. We observe that clocks in STCSP (which are implicit) always have constant
upper bounds. For instance, if a clock c is used to model a ‘timeout’ at time d, c is as-
sociated with an upper bound d which will remain constant. Based on this observation,
we develop an efficient emptiness checking algorithm for STCSP in [23], based on zone
graphs only without introducing extra clocks or states. The algorithm is then applied to
model checking STCSP models with the non-Zenoness assumption.

Our Contribution. In this work, we significantly improve [23] by combining the empti-
ness checking algorithm with a clock-symmetry reduction method. We show that empti-
ness checking can be performed even without maintaining the clock names (since the
clock names in [23] are implicit and ‘introduced’ anyway), which implies that a clock
symmetry reduction method can be applied. That is, the emptiness problem for STCSP
can be solved based on a quotient zone graph, which potentially reduces the size of the
zone graph by a factor of K factorial, where K is the maximum number of overlapping
clocks. The experimental results confirm that our method improves previous approaches
significantly and allows model-checking with non-Zenoness with minor overheard com-
pared to model checking without non-Zenoness. In summary, we make the following
new contributions. First, we develop a clock-symmetry reduction method and combine
it with the emptiness checking algorithm for STCSP, which significantly improves the
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P = Stop | Skip | e → P | a{program} → P | if (b) {P} else {Q} | P | Q | P; Q
| P \ X | P ‖ Q | Wait[d] | P timeout[d] Q | P interrupt[d] Q | P within[d]
| P deadline[d] | Q

Fig. 1. Process constructs

performance. Second, we extend the PAT model checker [23] to support LTL checking
with non-Zenoness assumption for STCSP, and compare our algorithm with previous
approaches by verifying a number of benchmark systems.

2 Stateful Timed CSP

STCSP [23] is a recently proposed real-time modeling language, which extends Timed
CSP [19] with shared variables and additional timed process constructs. An STCSP
model is a 3-tuple (Var, σ0, P0) where Var is a set of finite-domain global variables; σ0

is the initial valuation of Var (which maps one variable to one value only) and P0 is a
process. A variable can be of a pre-defined type like Boolean, bounded integer, array
of bounded integers or any user-defined data type1. Process P models the control logic
of the system using a rich set of process constructs. A process can be defined by the
grammar presented in Figure 1. For simplicity, we assume that P is not parameterized.

Process Stop does nothing but idling. Process Skip terminates, possibly after idling
for some time. Process e → P engages in event e first and then behaves as P. Note that e
may serve as a synchronization barrier, if combined with parallel composition. In order
to seamlessly integrate data operations, we allow sequential programs to be attached
with events. Process a{program} → P performs data operation a (i.e., executing the
sequential program whilst generating event a) and then behaves as P. The program
may be a simple procedure updating data variables (written in the form of a{x :=
5; y := 3}) or a complicated sequential program. A conditional choice is written as
if (b) {P} else {Q}. Process P | Q offers an (unconditional) choice between P and Q2.
Process P; Q behaves as P until P terminates and then behaves as Q immediately. P\X
hides occurrences of events in X. Parallel composition of two processes is written as
P ‖ Q, where P and Q may communicate via event synchronization (following CSP
rules [14]) or shared variables. Notice that if P and Q do not communicate through
event synchronization, then it is written as P ||| Q, which reads as ‘P interleaves Q’.
Additional process constructs (e.g., while or periodic behaviors) can be defined using
the above. In order to focus on the central issue in this paper, we keep the un-timed
process compositions minimal and focus only on sequential composition, conditional
choice and parallel composition in the following.

In addition, a number of timed process constructs are designed to capture common
real-time system behavior patterns. Let d ∈ R+. Process Wait[d] idles for exactly d time
units. Process P timeout[d] Q behaves as P if P performs an action before d time units

1 Refer to PAT user manual on how to define a type in C# or Java.
2 For simplicity, we omit external and internal choices [14] in the discussion.
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elapsed since the process starts, or as Q after idling for d time units. Notice that when
exactly d time units have elapsed, either P or Q may execute. Process P interrupt[d] Q
behaves as P for exactly d time units (during the time P may perform multiple actions)
and then behaves as Q. Process P within[d] constrains that P must react (by performing
an action) within d time units. Process P deadline[d] constrains that P must terminate
within d time units. Notice that a timed process construct is always associated with an
integer constant d which is referred to as its parameter. Furthermore, a process expres-
sion Q can be given a name P, written as P = Q, and recursion can be defined through
process referencing.

Example 1. Let δ and ε be two constants. Fischer’s mutual exclusion algorithm is a
model (Var, σ0, Protocol). Var contains one integer variable named turn recording the
process which attempts to access the critical section most recently. Valuation σ0 maps
turn to -1, indicating that no process is attempting initially. Process Protocol is defined
as Pro(0) ‖ Pro(1) where

Pro(i) = if (turn = −1) {
(set.i{turn := i} → Wait[ε]) within[δ];
if (turn = i) {

cs.i → exit.i{turn := −1} → Pro(i)
}
else {Pro(i)}

}
else {

Pro(i)
}

Process Pro(i) models a process with a unique integer identify i. If turn is -1, the process
starts attempting to enter the critical section. Firstly turn is set to be i (indicating that the
i-process is now attempting). Note that this must occur within δ time units (captured by
within[δ]). Next, the process idles for ε time units (captured by Wait[ε]). It then checks
whether turn is still i. If so, it enters the critical section. Otherwise, it restarts from the
beginning. Mutual exclusion is guaranteed if δ < ε. �

Given a model (Var, σ0, P0), its concrete operational semantics is defined through a
set of firing rules. We omit the rules here and refer interested readers to [23]. Based
on the firing rule, we can systematically construct a labeled transition system (LTS)
CG = (S, init, Σ, T) such that a state in S is of the form (σ, P) where σ is a valuation
function of Var and P is a process; init = (σ0, P0); Σ is the alphabet; and a transition in
T of the form (s, (d, e), s′) such that s, s′ ∈ S and (d, e) : R+×Σ is the transition label.
Note that d is a real number that denotes the time elapsed (since s is reached) before
the transition is taken and e is the event name. A (rooted) non-Zeno run of the model
is an infinite sequence 〈s0, (d0, e0), s1, (d1, e1), · · ·〉 of CG such that s0 = (σ0, P0) and
(si, (di, ei), si+1) is a transition of CG for all i and the sum of d0, d1, · · · is unbounded.
The sequence 〈s0, e0, s1, e1, · · ·〉 is called a timed-abstract run. A model is non-empty
if and only if it contains at least one non-Zeno run.

STCSP differs from Timed Automata as it relies on implicit clocks. For instance,
intuitively, a clock starts ticking whenever a process Wait[d] is activated. Semantically,
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it has been shown in [23] that STCSP has the same expressiveness as closed timed safety
automata with invisible transitions (i.e., τ transitions), which is strictly less expressive
than Timed Automata with invisible transitions and more expressive than closed timed
safety automata. More importantly, because clocks in STCSP are implicit and there is
no direct way to access the clocks, the bounds associated with the clocks always remain
constant.

3 Emptiness Checking of Stateful Timed CSP

In the following, we describe the emptiness checking algorithm for STCSP developed
in [23]. First we summarize dynamic zone abstraction developed for STCSP and then
introduce the emptiness checking approach.

3.1 Dynamic Zone Abstraction

Implicitly, each timed process instance is associated with a unique clock. For instance,
it can be viewed that the clock associated with Wait[3] starts ticking as soon as it is
activated and expires as soon as it reaches 3. Notice that different instances of the
same process are associated with different clocks. For instance, given process P =
Wait[3]; P, each invocation of P will generate a different instance of Wait[3] with a
different clock. For simplicity, we write Waitc[d] (P timeoutc[d] Q and so on) to denote
that the associated clock is c. The clock is activated as soon as the process is activated
(i.e., the process receives the control). For instance, in process Waitc1 [5]; Waitc2 [4], only
c1 is activated and c2 is activated as soon as Waitc1 [5] is terminated. Given a process P,
the set of activated clocks of P is written as clock(P).

In the abstract zone graph, a node is of the form (σ, P, Z) where σ is a valuation of
Var; P is a process; and Z is a zone which is a constraint on values of clock(P). We write
clock(Z) to denote the clocks used in Z. For now, we say that two abstraction configura-
tions (σ0, P0, Z0) and (σ1, P1, Z1) are equivalent if σ0(x) = σ1(x) for all x in Var; and
P0 and P1 are equivalent processes associated with the same clocks; and Z0 and Z1 share
the same canonical form if they are represented as DBMs(Difference Bound Matrices).
An abstract transition is of the form (σ, P, Z)

e→ (σ′, P′, Z′). Notice that clock(P) and
clock(P′) could be different, i.e., some process constructs may be pruned and some new
ones may be activated. For instance, given process (e → Waitc2 [3]) timeoutc1[4] Q, the
transition labeled with e results in a configuration where c1 is pruned (see the abstract
firing rule below) and c2 is activated. Clocks that are not in clock(P) are irrelevant to
future behaviors of (σ, P, Z). Therefore, we always prune those clocks from Z. Given
a set of clocks X, we write Z[X] to denote the zone obtained by projecting Z onto X.
This operator can be realized based on DBM [23]. Furthermore, we define a function
clean(σ, P, Z) that returns the abstract configuration (σ, P, Z′) where Z′ is the conjunc-
tion of Z[clock(P)] and c = 0 for each c ∈ (clock(P)\clock(Z)). Notice that Z[clock(P)]
prunes irrelevant clocks and (clock(P) \ clock(Z)) contains the newly activated clocks.
It can be seen that clock(P) = clock(Z′).

The abstract operational semantics is defined through a set of abstract firing rules.
We present sample abstract firing rules P timeoutc[d] Q in the following. The rest can
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be found in [23].

(σ, P, Z)
e→ (σ′, P′, Z′)

(σ, P timeoutc[d] Q, Z)
e→ (σ′, P′, Z′ ∧ c ≤ d)

(σ, P timeoutc[d] Q, Z)
τ→ (σ, Q, Z↑ ∧ c = d ∧ idle(σ, P, Z))

The first rule states if a transition of P occurs no later than d time units since the process
is enabled, the timeout is resolved. Otherwise, if P may delay until c = d (captured by
idle(σ, P, Z)), time out occurs when c = d. Function idle(σ, P, Z) returns the zone that
can be reached by idling from the abstract system configuration (σ, P, Z). For instance,
the following shows how the idle function is defined for process P timeout[d] Q.

idle(σ, P timeoutc[d] Q, Z) = Z↑ ∧ c ≤ d ∧ idle(σ, P, Z)

Intuitively, process P timeoutc[d] Q can idle as long as P can idle and the reading of
clock c is less than or equal to d. Similarly, we can define idle for all process types.
The detailed definition is presented in [23]. It is important to notice that all the timing
constraints are in the form of c ≤ d or c = d.

Given a model (Var, σ0, P0), using the abstract firing rules, we can build an abstract
zone graph AG = (S, init, Σ, T) such that S is a set of abstract states (σ, P, Z) such that
Z is not empty; init = clean(σ0, P0, true) is the initial configuration; Σ is the alphabet;
and T contains a transition ((σ, P, Z), e, clean(σ′, P′, Z′)) iff (σ, P, Z)

e→ (σ′, P′, Z′).
It has been shown that CG and AG share the same set of time-abstract runs [23] and

therefore we can model check AG against temporal properties like LTL formulae. The
number of states in AG is bounded by #σ×#P×#Z where #σ is the number of valu-
ations of Var; #P is the number of process expressions and #Z is the number of zones.
#σ is finite by assumption. #P is infinite for two reasons. Firstly, due to unbounded
recursion, P can be infinitely long. For example, define P0 = e → (P0 ‖ Pnew) which
forks a process Pnew every time e occurs. The resultant process therefore may contain
unboundedly many copies of Pnew. In this work, we assume that P always has a bounded
length, following existing approaches [17]. Secondly, because different timed process
instances have different clocks, unboundedly many clocks are used. As a result, there
are infinitely many different P and Z. Because P has a bounded length by assumption,
there is a bound K on the number of overlapping activated clocks (since every clock is
associated with one timed process instance in P). Hence, we can systematically rename
the clocks in P (and correspondingly in Z) to a set of reserved K clocks.

Let C = {x1, x2, · · · , xK} be the set of reserved clocks. Given any state (σ, P, Z), for
any clock x in clock(P), if x �∈ C, then x is renamed to an available clock in C\clock(P).
As a result, only K clocks are necessary and thus #P is finite. Lastly, it can be shown
that all clocks in STCSP have upper bounds (i.e., c ≤ d for all clock c and some
integer d) and hence #Z is finite if the number of clocks is finite. Notice that zone
normalization is not necessary. This is exactly the approach proposed in [23]. We refer
to the LTS constructed in the above way as RAG (short for renamed abstract graph).
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3.2 Emptiness Check

In [23], we present an algorithm to solve the emptiness problem based on RAG, with a
complexity linear in the size of RAG. The next theorem reduces the emptiness checking
problem to an SCC search problem, the proof of which can be found in [23].

Theorem 1. A model is non-empty if and only if RAG contains a reachable (maximum)
strongly connected component (SCC) scc such that

† not all transitions connecting two states in scc are instantaneous; and
‡ {clock(P) | (σ, P, Z) in scc} = ∅. �

Intuitively, the second condition states that every clock is pruned eventually. The above
theorem implies that in order to solve the emptiness problem, we need to test each SCC
against two conditions: whether it contains a transition which can be locally delayed;
and whether every clock is reset later. Notice that both checks have a complexity linear
in the size of the SCC. This leads to the algorithm shown in Algorithm 1. It takes a

Algorithm 1. Previous emptiness checking algorithm for STCSP
Algorithm NonEmptinessChecking {
1. while (there are un-explored states) {
2. find a new SCC scc;
3. if (scc satisfies † and ‡) { return true; }
4. }
5. return false;
6. }

STCSP model as input, and constructs RAG on-the-fly while applying Tarjan’s algo-
rithm to identify SCCs. Once an SCC is found, we check whether it satisfies † and ‡. If
yes, it returns true at line 3. After checking all SCCs, it returns false. The complexity of
the algorithm is linear in time |RAG| (which is due to Tarjan’s algorithm for identifying
SCC). The overhead of checking † and ‡ is minor.

4 Improved Emptiness Checking Algorithm

In this work, we show that we can improve the performance of emptiness checking
using a clock symmetry reduction method.

4.1 Clock Symmetry Reduction

The zone abstraction presented above relies on associating timed processes with ex-
plicit clocks. Note that the clock names are irrelevant, except for distinguishing different
timed processes. Consider two configurations (σ, P, Z) and (σ, P′, Z′) such that

P = Waitc1 [5] ‖ (Q0 timeoutc2 [6] Q1) and Z = c2 ≤ c1
P′ = Waitc2 [5] ‖ (Q0 timeoutc1[6] Q1) and Z′ = c1 ≤ c2
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They are exactly the same if we interchange clock c1 and c2. In fact, all clocks are fully
symmetric, since they are implicit and ‘introduced’ anyway. In the following, we present
a method which systematically detects such equivalent states, and potentially reduces
the state space by a factor of K factorial. Later, we show that it can be combined with
our algorithm for emptiness check.

Observe that there is a fixed ordering on the clocks in clock(P) for any process P,
e.g., from left to right as they appear in P. For instance, P as defined above has the
sequence 〈c1, c2〉, where P′ has the sequence 〈c2, c1〉. Let 〈c1, c2, · · ·〉 be the sequence
of clocks in clock(P) with the ordering. Recall that C = {x1, x2, · · · , xK} is the set of
reserved clocks. We define a function map such that map(ci) = xi for all i, i.e., map-
ping the first clock in the sequence to the first reserved clock x1 and the second to x2,
etc. In an abuse of notation, we write map(σ, P1, Z1) to denote the abstract configura-
tion (σ, P2, Z2) such that any clock ci in clock(P1) is renamed to xi in P2 and Z2. It
is easy to see that (σ, P1, Z1) and (σ, P2, Z2) are equivalent. For instance, the above
two configurations are mapped to the same configuration (σ, P′′, Z′′) such that P′′ is
Waitx1 [5] ‖ (Q0 timeoutx2[6] Q1) and Z′′ is x2 ≤ x1.

Given a model (Var, σ0, P0) and its abstract zone graph AG, we obtain a QAG (short
for quotient abstract graph) after applying function map to every state of AG, i.e., an
abstract LTS (S, init, Σ, T) such that S is a set of abstract states (σ, P, Z) such that Z is
not empty; init = map(clean(σ0, P0, true)) is the initial state; Σ is the alphabet; and
T contains a transition ((σ, P, Z), e, (σ′, P′, Z′)) if and only if (σ, P, Z)

e→ (σ′, P′′, Z′′)
and (σ′, P′, Z′) = map(clean(σ′, P′′, Z′′)). Lastly, since the clocks in P always appear
in the same ordering, we can re-order the clocks in Z such that they follow the same
order. Afterwards, the clock names are irrelevant and the clocks can be anonymized.

Corollary 1. AG and QAG are time-abstract bi-similar. �

Two zone graphs are time-abstract bi-similar if and only if there exists a time-abstract
bi-simulation relation between them [23]. In [23], we proved that CG and AG are time-
abstract bi-similar. Corollary 1 can be proved similarly.

4.2 QAG Extension

Notice that Theorem 1 requires to check whether a clock is pruned in order to determine
whether an SCC is non-Zeno, anonymizing the clocks in QAG makes it infeasible to
track which clock is pruned. To solve this problem, we extend QAG with two transition
labels. One is a set of resetting clocks to tell whether a clock is reset later. The other
is a Boolean flag to tell whether a transition can be delayed locally. We start with the
former.

Let x0 be another reserved clock, which is not in the set C of reserved clocks pre-
sented before. We define a new function newclean that satisfies the following: for every
(σ, P, Z), newclean(σ, P, Z) = (σ, P, Z′ ∧ x0 = 0) if clean(σ, P, Z) = (σ, P, Z′). Intu-
itively, function newclean is the same as function clean except that it introduces a new
clock x0. The idea is to have a clock at 0 for every state so that by looking at the value
of x0 after a transition, we can infer whether the transition is required to occur immedi-
ately. For instance, given (σ0, Q0, Z0)

e→ (σ1, Q1, Z1) (where x0 is set to 0 in Z0), we
can infer that the transition must occur immediately if Z1 implies x0 = 0.
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Notice that given a system run in STCSP, a transition that can be locally delayed
may in fact be constrained to occur immediately globally. Consider the following ex-
ample: (e → Wait[5]) deadline[5]. If we only consider event e, it is only constrained to
occur within 5 time units. However, because the process e → Wait[5] is constrained to
terminate within 5 time units, e must occur immediately.

In the following, we augment QAG so as to solve the emptiness problem. Given any
transition ((σ, P, Z), e, (σ′, P′′, Z′′)) in QAG, by definition there exists P′ and Z′ such
that (σ, P, Z)

e→ (σ′, P′, Z′) and map(newclean(σ′, P′, Z′)) = (σ′, P′′, Z′′). We asso-
ciate the transitions with three additional labels. Let 〈x1, x2, · · · , xm〉 be the sequence of
clocks appearing in P; and 〈x1, x2, · · · , xn〉 be the sequence of clocks appearing in P′′.
Notice that all clocks in P and P′′ have been mapped to the set of reserved clocks. The
additional labels are:

– a Boolean flag b to indicate whether the transition can be locally delayed.
– a set of indices R = {i1, i2, · · ·} such that for all i in the set, xi is in clock(P) but

not clock(P′), i.e., the indices of clocks which are removed.
– a mapping f such that f (i) = j if map(xi) = xj for all i �∈ R.

A run is then 〈s0, (e0, b0, R0, f0), s1, (e1, b1, R1, f1), · · ·〉. With the label R and f , given
any state sk = (σk, Pk, Zk) in the sequence, and the i-th clock xi in the sequence of
clocks in Pk, we can check whether xi is removed later. A clock is removed later if it is
removed immediately or renamed to a clock which is removed later. That is, xi at sk is
removed if and only if there exists l ≥ k such that l = k and i ∈ Rk; or fk(i) = j and
clock xj at si+1 is removed later.

Theorem 2. Let π = 〈s0, (e0, b0, R0, f0), s1, (e1, b1, R1, f1), · · ·〉 be a run of QAG. π is
non-Zeno if and only if

∗ there exists infinitely many k such that bk = true;
� and for all m, every xi ∈ clocks(Pm) is removed later. �

Proof : Recall that every clock is associated with a timed process and every clock is
bounded from above. A clock thus puts an upper bound on the execution time of every
transition of a segment of the run, i.e., from the moment the clock is activated to the
moment the clock is removed.
(only-if ) If π is non-Zeno, ∗ is trivially true. Since every clock is bounded from above,
every clock must be removed since by definition its value goes unbounded along the
run; otherwise, we have an empty zone and thus an infeasible run. Hence, � is true.
(if ) In the following, we show that if ∗ and � are true, thus π is progressive [2] and thus
non-Zeno. Let the following be a segment of π.

〈si, (ei, bi, Ri, fi), si+1, · · · , (ei+k, bi+k, Ri+k, fi+k), si+k+1〉

such that bi = true and all clocks in the process of si are removed before or at the last
transition of the segment. Because there are infinitely many such segments, in order to
prove that the run is progressive, it is sufficient to show that the segment takes a positive
integer amount of time. Let yj denote the number of time units that can elapse from state
sj to sj+1 where i ≤ j ≤ i + k. For each clock c used in the segment (including those
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not in si), assume that clock c is present at state sm and not removed until state sm+n+1

where i ≤ m ≤ m + n ≤ i + k (i.e., its life-span in the segment). We have a constraint
of the following form, which puts an upper bound on the total time of a part of the
segment.

ym + ym+1 + · · ·+ ym+n ∼ dc – (C1)

where ∼∈ {≤,=}. Because bi is true, it is implied that dc > 0 if m = i (by assumption
bi = true). In the following, we analyze all three cases and show the theorem holds.

– If dc = 0 (which implies m > i), ym, · · · , ym+n must all be 0. For the constraint on
any clock c′, we can substitute ym, · · · , ym+n with 0 and get a constraint in the same
form but with dc′ > 0. Notice that by ∗, it is guaranteed that not all dc′ is 0.

– If dc > 0 for all constraints and if ∼ is =, then the segment takes at least d (which
is a positive integer) time and therefore we conclude that π is non-Zeno.

– If dc > 0 for all constraints and ∼ is ≤, the constraints are satisfiable with yi = dmin

(i.e., yi equals the minimum of all ds and the rest of the variables equal to 0).
Therefore, we conclude that π is non-Zeno.

With the above, we conclude that the theorem holds. �

4.3 Improved Emptiness Check

In the following, we extend Algorithm 1 for STCSP. Notice that emptiness check based
on QAG is more complicated as we do not maintain clock names (and hence telling
whether a clock is removed later is not as straightforward). By Theorem 2, every clock
of every state in a run must be checked in order to determine whether the run is non-
Zeno or not. The following theorem simplified the task by showing that it is sufficient
to check any state which is visited infinitely often.

Theorem 3. A model is non-empty iff QAG contains a reachable (maximum) SCC such
that

† it contains a transition (s, (e, b, R, f ), s′) where b = true;
‡ and there is a state (σ, P, Z) in the SCC satisfies that for every clock in clock(P),

there is a path from (σ, P, Z) in the SCC such that the clock is removed along the
path. �

Proof : (only-if ) Assume that QAG is non-empty, since QAG is finite-state, there must
be a non-Zeno run and the run must visit a set of states/transitions X infinitely often.
There must be an SCC which contains X. X must contain a transition with a label b being
true (by contradiction) and therefore † is trivially true. Similarly, every clock of a state
in X (which is a state in the SCC) must be removed later (by definition). Thus, there
exists some states (σ, P, Z) in the SCC such that every clock in clock(P) is removed
later. For every other state (σ′, P′, Z′) in the SCC, because (σ′, P′, Z′) can always reach
(σ, P, Z), every clock in clock(P′) is removed too (either before reaching (σ, P, Z) or
after).
(if ) Assume there exists an SCC satisfying † and ‡. Let π be a run that visits every
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Algorithm 2. Algorithm for STCSP emptiness check
Algorithm NonEmpty {
1. while (there are un-explored states) {
2. find a new SCC scc;
3. if (scc satisfies †) {
4. let s = (σ,P, Z) be a state in scc;
5. foreach clock x in clock(P) {
6. if (!IsRemoved(s, x)){
7. goto line 1; }
8. }
9. return true;
10. }
11. }
12. return false;
}

Algorithm IsRemoved(s, x) {
1. return false if (s, x) has been explored;
2. foreach transition (s, (e, b,R, f ), s′) {
3. if (x ∈ R or IsRemoved(s′, f (x))) {
4. return true; }
5. }
6. return false;
}

state/transition in the SCC infinitely often. It is straightforward to see that π satisfies
∗ of Theorem 2 because of †. By ‡, there exists a state s such that every clock c at
s is removed later (by visiting s multiple times and each time choosing a path which
removes a different clock). For every other state s′ in the SCC, there exists a path from
s′ to s. A clock at s′ is either removed before reaching s or removed afterwards (since
all clocks at s are removed later). Therefore, � is satisfied. Thus, π is non-Zeno by
Theorem 2 and QAG is non-empty.
Therefore, we conclude that the theorem holds. �

The above theorem implies that in order to solve the emptiness problem, we need to
check each SCC to see whether it contains a transition that can be locally delayed; and
whether all clocks of any state are removed later. This leads to the algorithms shown
in Algorithm 2. Given a model (Var, σ0, P0), algorithm NonEmpty constructs QAG on-
the-fly while applying Tarjan’s algorithm to identify SCCs. Once an SCC is found, we
check whether it satisfies † (line 3). Lines 4 to 10 then check whether ‡ is satisfied.
Notice that at line 4, any state can be picked. For efficiency, we always pick the state
in the SCC which has the least number of clocks (since it is sufficient to check any
state). The inner loop from line 5 to 8 then checks whether every clock of the state is
removed later using algorithm IsRemoved. Given a state s and a clock x at the state,
algorithm IsRemoved returns true if and only if x is removed later. Line 1 of algorithm
IsRemoved prevents the same pair (a state and a clock) from being explored again, so
that the algorithm becomes terminating. Lines 2 to 5 check whether x is removed along
any of the outgoing transitions or the renamed clock f (x) is removed at the post-state
s′ (through a recursive call). If yes, it returns true at line 4. Otherwise, it returns false
at line 6. Notice that at line 6 of algorithm NonEmpty, if any clock is not removed,
then by Theorem 3 there is no non-Zeno run visiting states of the SCC infinitely often
and therefore we drop the SCC and go on with checking other unexplored SCCs. If all
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Fig. 2. A general Timed Automaton example

clocks are removed, we return true at line 9 since the run which visits all states and
transitions in the SCC infinitely often must be non-Zeno.

The correctness of algorithm can be established based on Theorem 3 straightfor-
wardly. Given that it has been established that QAG is finite, it is obvious that the algo-
rithm is terminating. In the worst case, the algorithm runs in time O(|QAG|+K2·|QAG|)
where |QAG| is the number of transitions in QAG and K is the maximum number of
clocks in any state. Firstly, Tarjan’s algorithm runs in time |QAG|. Secondly, the over-
head of checking † is negligible. Lastly, given an SCC in QAG, the algorithm for check-
ing ‡ run in time O(Kmin · Kmax · |SCC|) where Kmin (and Kmax) is the minimum (and
maximum) number of clocks in any state of the SCC and |SCC| is the number of tran-
sitions in the SCC. In particular, if there exists a state with no clock (i.e., Kmin = 0), we
conclude ‡ is satisfied right away.

In practice, the algorithm performs better than the upper bound complexity for sev-
eral reasons. Firstly, the algorithm often terminates early as it constructs the state space
on-the-fly and terminates as soon as an SCC satisfying † and ‡ is found. Secondly, the
overhead of checking ‡ is reduced when (A) we find that a clock is not removed later
(in which case we conclude ‡ is not satisfied by the SCC); (B) or we find a transition
satisfying a constraint of the form c = d where c is a clock activated at some state in
the SCC (in which case we conclude ‡ is true, as at least d time units have elapsed since
c is activated). In addition, notice that not all SCCs need to be checked against ‡. For
instance, only SCCs which satisfy † (and acceptance conditions from the property, e.g.,
containing a Büchi accepting state if the property is LTL) are to be checked.

Notice that our approach does not work for Timed Automata in general. Because
for every clock in our model, the constraints on the clocks remain the same throughout
its life-span, along any path in the graph. This allows us to obtain a set of constraints
on segments of a run in the form of (C1) (refer the proof of Theorem 2) and also
allows us to detect whether a transition can be locally delayed, without referring to a
particular path. In the setting of Timed Automata, given any state, the constraints on
a clock differ if different paths are taken from the state. For instance, given a Timed
Automaton shown in Figure 2, where state A is the initial state and c is a clock. The
transition from A to B can be delayed given the path from A to D but not the path from
A to C. Interested readers are referred to [22] on how to extend Algorithm 1 to Timed
Automata. This work is however orthogonal to [22] as the clock-symmetry reduction is
specific to STCSP.

5 Evaluation

We extend PAT model checker [23] to support model checking with non-Zenoness
using our method. We evaluate its efficiency using five examples. The first three are
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benchmark systems modeled in STCSP: Fischer’s mutual exclusion algorithm, the rail-
way control system, and the CSMA/CD protocol. In addition, we model and verify two
hierarchical systems: a simplified pacemaker [3], and a multi-lift system. All models
are available online [21]. We remark that modeling the latter two systems in Timed
Automata could be non-trivial due to system hierarchy.

The pacemaker example models an electronic implanted device which functions to
regulate the heart beat by electrically stimulating the heart to contract and thus to pump
blood throughout the body. Quantitative timing is crucial for pacemakers. A pacemaker
can operate in many different modes according to the implanted patient’s heart prob-
lem. We skip the details and refer the readers to [21]. The verified property is that
always either a heart beat is detected or the pacemaker eventually stimulates one. The
lift system is a standard case study used to demonstrate the power of various specifi-
cation/verification techniques. It is hierarchical, i.e., the system contains multiple lifts,
floors, users, and a central controller; each lift contains a local controller, a button panel;
and each local controller is composed of multiple processes (for controlling the shaft,
maintaining the request queue, etc.); etc. Furthermore, real-time is an important aspect
of the system, e.g., a lift door opens for a certain number of time units; a lift travels at
certain speed; etc. The verified property is that a lift door eventually closes.

In our experiments, in order to focus on the reduction obtained using the new
method, simple LTL properties which are true are chosen. Notice that because the model
checking algorithm is on-the-fly, its performance depends on the searching order in
the presence of a counterexample. Table 1 summarizes the experimental results, ob-
tained on a server running 64-bit Windows with Intel Xeon CPU at 2.13GHz and 32GB
RAM. Column RZG shows the verification statistics based on constructing RZG (which
renames clocks but not anonymize them). Column K shows the maximum number
of overlapping clocks. Column +Zeno shows the verification time without the non-
Zenoness assumption, and −Zeno shows the verification time with the non-Zenoness
assumption. Similarly, column QAG shows the verification statistics based on construct-
ing QAG. Column OH shows the overhead of non-Zenoness check and column Speedup
shows the improvement. Note that ‘-’ means that the data is not available (either out of
memory or running for more than 8 hours). The memory consumption in PAT cannot
be measured accurately due to limitation of managed memory in .NET framework. The
number of states can reflect the real memory usage.

A few observations can be made based on the results. Firstly, it can be shown from
the data that non-Zenoness checking incurs some overhead. The theoretical study shows
that in the worst case the state space could be enlarged by a factor of 1 + K2, whereas
in all the experiments, model checking with non-Zenoness takes three times less than
the time needed for model checking without non-Zenoness. In average, the overhead
is 58% of the verification time without non-Zenoness. Secondly, the experiment results
confirm that the verification is significantly faster compared to [23] in all cases, because
clock symmetry reduction is combined with non-Zenoness check. The speedup ranges
from 2 to 90.25 times. In average, the speedup is 17 for this set of experiments. It can be
further noticed that though in theory that the more clocks, the more potential speedup
there is, the actual speedup depends on the particular models.
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Table 1. Experiment results for STCSP model checking with non-Zenoness

Model K
RZG QAG Speedup

States +Zeno(s) -Zeno(s) States +Zeno(s) -Zeno(s) OH +Zeno -Zeno
Fischer*5 5 1.1M 180 361 36K 3 4 33% 60 90.25
Fischer*6 6 - - - 291K 50 73 46% - -
Fischer*7 7 - - - 2.6M 1557 4522 190% - -
Railway*6 4 158K 14 16 74K 6 6 0% 2.33 2.67
Railway*7 4 1.1M 143 203 527K 44 53 15% 3.25 3.83
Railway*8 4 9.1M 4895 8104 4.3M 818 1339 64% 5.98 13.55
CSMA*6 5 30K 4 5 15K 2 2 0% 2 2.5
CSMA*8 5 237K 46 54 119K 20 21 5% 2.3 2.57
CSMA*10 5 1.6M 1012 1291 803K 239 338 64% 4.23 3.82
Pacemaker - - - - 1.2M 8711 - - - -
Lift*2*2 4 8.7M 12271 22260 756K 297 728 145% 42.31 30.57

6 Related Work

This work is related to research on hierarchical real-time system modeling and verifica-
tion. Compositional specification for real-time systems based on timed process algebras
has been studied extensively [16,29,18,23]. The closely related work is STCSP [23]
which integrates timed process constructs with data variables in order to model com-
plex systems. In [23], zone abstraction, which has been proven successful for Timed
Automata, is adopted and used to verify STCSP models. The idea is to explicitly asso-
ciate clocks with each timed process constructs and use constraints to represent clock
values. Furthermore, the approach in [23] is designed to minimize the number of clocks
by sharing clocks among all process constructs which are activated at the same time.
This work improves [23] by reducing the size of the zone graph significantly (through
exploring the symmetry among the clocks). Furthermore, we show that the emptiness
problem can be solved based on the reduced zone graph.

This work is also related to research on model checking with non-Zenoness. In [24],
it has been shown that zone graphs generated from Timed Automata are too abstract
to directly infer time progress and hence non-Zenoness. Syntactic conditions for Timed
Automata to be free from Zeno runs have been identified. In [24,27], the authors showed
that every Timed Automaton can be transformed into a strongly non-Zeno one, for
which, the emptiness problem can be solved easily. The price to pay is an extra clock.
Recently, it has been shown that adding one clock may result in an exponentially larger
zone graph [13]. The proposed remedy is to transform the zone graph into a guess zone
graph by introducing extra states. A path of the guess zone graph is non-Zeno if all
clocks which are bounded from above are reset infinitely often during the run and the
run visits an extra state such that the clocks can be strictly positive [13]. The guess zone
graph is |C| + 1 times larger than the zone graph and the complexity of the proposed
algorithm is |ZG| · (|C| + 1)2 where ZG is the size of the zone graph and |C| is the
number of clocks. In addition, this work is remotely related to the work on non-Zeno
real-time game strategy [7], which however is not based on zone abstraction, whereas
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our work is on solving a problem on combining zone abstraction and non-Zenoness. In
this work, we show that zone graphs generated from Stateful Timed CSP models are
different as all clocks are bounded from above and cannot be reset arbitrarily. As a re-
sult, detecting Zeno runs based on zone graphs is feasible. In addition, this work is also
related to the work on applying symmetry reduction technique in model checkers, e.g.,
adding symmetry reduction to UPPAAL [10], exploiting symmetry in RED [28], etc.

In terms of tool support for model checking with non-Zenoness, UPPAAL [15] and
KRONOS [5] and RT Spin [26] allow some form of non-Zenoness detection. UPPAAL

relies on test automata [1] and leads-to properties. The problem with this approach is
that it is sufficient-only. KRONOS supports an expressive language for specifying prop-
erties, which allows encoding of a sufficient and necessary condition for non-Zenoness.
Checking for non-Zenoness in KRONOS is expensive. The non-Zenoness checking al-
gorithm implemented in RT Spin is unsound [26]. Furthermore, an alternative approach
has been proposed by the author in [25]. It is however never implemented. As far as
we know, our implementation in PAT is the only model checker that supports model
checking LTL with the non-Zenoness assumption.

7 Conclusion

Our contribution in this work is threefold. Firstly, we improve our previous work for
STCSP significantly by combining the emptiness checking algorithm with a clock-
symmetry reduction method. Secondly, we realize our method in the context of model
checking LTL through various benchmark systems and show that it can be used with
minor overhead. Lastly, we develop a software toolkit to support model checking LTL
with the non-Zenoness assumption.

As for future work, we are investigating how to check timed refinement relationship
between two Stateful Timed CSP models with the assumption of non-Zenoness.
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