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Verifying Linearizability via
Optimized Refinement Checking

Yang Liu, Wei Chen, Member, IEEE, Yanhong A. Liu, Jun Sun, Shao Jie Zhang, and Jin Song Dong

Abstract—Linearizability is an important correctness criterion for implementations of concurrent objects. Automatic checking of

linearizability is challenging because it requires checking that: 1) All executions of concurrent operations are serializable, and 2) the

serialized executions are correct with respect to the sequential semantics. In this work, we describe a method to automatically check

linearizability based on refinement relations from abstract specifications to concrete implementations. The method does not require

that linearization points in the implementations be given, which is often difficult or impossible. However, the method takes advantage of

linearization points if they are given. The method is based on refinement checking of finite-state systems specified as concurrent

processes with shared variables. To tackle state space explosion, we develop and apply symmetry reduction, dynamic partial order

reduction, and a combination of both for refinement checking. We have built the method into the PAT model checker, and used PAT to

automatically check a variety of implementations of concurrent objects, including the first algorithm for scalable nonzero indicators. Our

system is able to find all known and injected bugs in these implementations.

Index Terms—Linearizability, refinement, model checking, PAT

Ç

1 INTRODUCTION

LINEARIZABILITY [31] is an important correctness criterion
for implementations of objects shared by concurrent

processes, each of which performs a sequence of operations
on the shared objects. Informally, a shared object is
linearizable if each operation on the object can be understood
as occurring instantaneously at some point, called the
linearization point, between its invocation and its response,
and its behavior at that point is consistent with the
specification for the corresponding sequential execution of
the operation.

One common strategy (used in manual proofs and
automatic verification) for proving linearizability is to
determine linearization points in the implementations of
all operations and then show that these operations are
executed atomically at the linearization points [20], [3], [58].
However, for many concurrent algorithms (e.g., the elim-
ination back off stack [29], the restricted double-compare
single-wrap operation [28], the Herlihy and Wing queue

[31], the optimized version [19] of Michael and Scott’s lock-
free FIFO queue [42], the fine-grained set with wait-free
contains operation [58], and the scalable nonzero indicators
[21]), it is difficult or even impossible to statically determine
all linearization points. Taking a particular example, in the
K-valued register algorithm [5, Section 10.2.1], linearization
points differ depending on the execution history. Further-
more, the linearization points determined might be incor-
rect, which can lead to wrong verification results. Therefore,
it is desirable to have automatic methods for verifying these
algorithms without the knowledge of linearization points.
However, existing methods for automatic verification with-
out using linearization points either apply to limited kinds
of concurrent algorithms [60] or are inefficient [58].

In this work, linearizability is defined as trace refinement
of operation invocations and responses from a specification
to an implementation, where the specification is correct
with respect to sequential semantics. Trace refinement
(hereafter refinement) is a subset relationship between
traces of two systems. That is, a concrete implementation
refines an abstract specification if and only if the set of
execution traces of the implementation is a subset of those
of the specification. The idea of casting linearizability as
refinement has been explored before. Alur et al. [2] showed
that linearizability can be cast as containment of two regular
languages. Derrick et al. [14] expressed linearizability as
nonatomic refinement between Object-Z and CSP models.
Other approaches prove linearizability of various algo-
rithms using trace simulation [10], [19], [40].

Our method is not limited to any particular kinds of
modeling languages or concurrent algorithms. It exploits
model checking of finite state systems specified as con-
current processes with shared variables. In particular,
linearizability is verified using refinement checking meth-
ods. Though sometimes practically feasible [46], the worst-
case execution time of refinement checking is exponential in
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the size of the abstract specification. To handle real-world
concurrent objects, we exploit powerful optimizations to
improve the efficiency and scalability of our refinement
checking algorithm.

First, our refinement checking explores system behaviors
on-the-fly so that a counterexample, if it exists, is produced
without generating the entire state space.

Second, we combine state-of-the-art state reduction
techniques to combat the state space explosion. The first
one is symmetry reduction. Symmetry reduction targets a
system composed of sets of behaviorally similar or identical
components. Such similarity, or symmetry, often induces
equivalent portions of the underlying state space of a system.
Provided that the satisfaction of a property to be checked
remains unchanged at each equivalent state, exploring one
state among the equivalent states is sufficient for verifying
the property. A system that models multiple processes
manipulating a shared object concurrently tends to exhibit a
high degree of symmetry since each operation on this object
often originates from a generic system description without
distinguishing the processes. Usually either all processes are
symmetric, or they can at least be divided into several classes
of symmetric processes. For example, in the algorithm for
mutual exclusion without priority, each process competing
for access to a critical section is equivalent to one another,
and thus this system exhibits full symmetry; in the readers-
writers protocol, all readers have the same behavior, and so
they are “interchangeable,” whereas readers and writers
cannot be interchanged. Therefore, the readers-writers
protocol contains symmetry in readers, but the global
behavior is asymmetric. Based on this observation, we apply
the symmetry reduction technique for refinement model
checking [43] to exploit symmetry between similar processes
to reduce the state space.

The second one is partial order reduction. Concurrently,
executing processes generate different interleaving traces,
and these traces often produce equivalent behaviors. The
intuitive idea of partial order reduction is to explore only
one interleaving ordering of equivalent traces. In practice,
many concurrent object algorithms are designed to mini-
mize the costs of interprocess communication and coordi-
nation for scalability reason by reducing the granularity and
frequency of locking. Due to the loose coupling between
processes, processes potentially have a number of indepen-
dent steps, and partial order reduction can be fairly
efficient. Because pointer variables are frequently used in
these algorithms, static approaches fail to accurately detect
the independence between program statements. Thus, we
apply a dynamic approach called Cartesian partial order
reduction [27] in this work.

Then, we combine the above two optimization techni-
ques (which has never been explored before in refinement
model checking algorithms) to achieve maximum reduc-
tion. We prove the soundness and completeness of our
combination algorithm. Experimental results show that the
combination of partial order and symmetry can yield even
better reductions in model checking concurrent object
algorithms than either of the two techniques alone.

Our method does not rely on the knowledge of
linearization points, but can take advantage of them if
given. If linearization points are given (e.g., marked in the

implementation), our method constructs an even smaller
search space. Some of the optimization techniques are
specialized for linearizability checking while others are
general. The result is a powerful linearizability checking
method that is much more efficient than our prior work [37].

We extend the PAT model checker [51], [38]1 to support
the proposed approach. PAT supports an event-based
modeling language [50] that has a rich set of concurrent
operators. We apply the proposed method to automatically
check finite-state implementations of concurrent object
algorithms, such as concurrent counter and queue algo-
rithms, complicated objects with external garbage collector,
such as concurrent list-based set [59], as well as sophisti-
cated algorithms—this work is the first published formal
verification of scalable nonzero indicators [20] and the
mailbox problem2 [4]. Both algorithms use sophisticated
data structures and control structures, and therefore the
linearization points are difficult to determine. Counter-
examples were reported quickly for incorrect algorithms,
such as an incorrect implementation of concurrent queues
[47]. Experimental results confirm that our method with the
new optimizations is significantly more efficient and
scalable than our prior results [37] and other work [58].
Note that our method only verified the finite-state versions
of these algorithms.

The rest of the paper is structured as follows: Section 2
presents the definition of linearizability. Section 3 shows
how to cast linearizability as refinement relations and
proves its correctness. Section 4 describes the verification
algorithm and the optimization methods. Section 5 presents
experimental results. Section 6 discusses related work.
Section 7 concludes.

2 LINEARIZABILITY

Linearizability [31] is a safety property of concurrent systems,
over sequences of actions corresponding to the invocations
and responses of the operations on shared objects. We begin
by formally defining the shared memory model.

Definition 1 (System Models). A shared memory modelM is
a 3-tuple structure ðO; initO; P Þ, where O is a finite set of
shared objects, initO is the initial valuation of O, and P is a
finite set of processes accessing the objects.

Every shared object has a set of states that it could be in.
Each shared object supports a set of operations, which are pairs
of invocations and matching responses. These operations are
the only means of reading or writing the state of the object. A
shared object is deterministic if, given the current state of the
object and an invocation of an operation, the next state of the
object, as well as the return value of the operation, are unique.
Otherwise the shared object is nondeterministic. A sequential
specification3 of a deterministic (respectively, nondeterminis-
tic) shared object is a function that maps every pair of
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1. Available at http://www.patroot.com.
2. This algorithm is omitted in this paper due to its size. The details can

be found in PAT built-in examples.
3. More rigorously, the sequential specification is for a type of shared

objects. For simplicity, however, we refer to both actual shared objects and
their types interchangeably in this paper.



invocation and object state to a pair (respectively, a set of
pairs) of response and a new object state.

Formally, an execution of a shared memory modelM¼
ðO; initO; P Þ is modeled by a history which is a sequence of
operation invocations and response actions that can be
performed on O by processes in P . The behavior of M is
defined as the set, H, of all possible histories together. A
history � 2 H induces an irreflexive partial order <� on
operations such that op1 <� op2 if the response of operation
op1 occurs in � before the invocation of operation op2.
Operations in � that are not related by <� are concurrent. A
history � is sequential iff <� is a strict total order. Let � ji be
the projection of�on process pi, which is the subsequence of�
consisting of all invocations and responses that are performed
by pi in P . Let � joi be the projection of � on object oi in O,
which is the subsequence of � consisting of all invocations
and responses of operations that are performed on object oi.
Every history � of a shared memory modelM¼ ðO; initO; P Þ
must satisfy the following basic properties:

. Correct interaction: For each process pi in P , � ji
consists of alternating invocations and matching
responses, starting with an invocation. This property
prevents pipelining4 operations.

. Closedness:5 Every invocation has a matching re-
sponse. This property prevents pending operations.

A sequential history � is legal if it respects the sequential
specifications of the objects. More specifically, for each
object oi, there exists a sequence of states s0; s1; s2; . . . of
object oi such that s0 is the initial valuation of oi, and for all
j ¼ 1; 2; . . . according to the sequential specification (the
function), the jth invocation in � joi together with state sj�1

will generate the jth response in � joi and state sj. For
example, a sequence of read and write operations of an
object is legal if each read returns the value of the preceding
write if there is one, and otherwise it returns the initial value.

Given a history �, a sequential permutation � of � is a
sequential history in which the set of operations as well as
the initial states of the objects are the same as in �. The
formal definition of linearizability is given as follows.

Definition 2 (Linearizability). Given a model M¼ ðO ¼
fo1; . . . ; okg; initO; P ¼ fp1; . . . ; pngÞ. Let H be the behavior
ofM.M is linearizable if for any history � in H there exists a
sequential permutation � of � such that:

1. for each object oi (1 � i � k), � joi is a legal sequential
history, (i.e., � respects the sequential specification of
the objects), and

2. for every op1 and op2 in �, if op1 <� op2, then
op1 <� op2, (i.e., � respects the runtime ordering of
operations).

Linearizability can be equivalently defined as follows: In
every history �, if we assign increasing time values to all

invocations and responses, then every operation can be
shrunk to a single time point between its invocation time
and response time such that the operation appears to be
completed instantaneously at this time point [40], [5]. This
time point is called its linearization point.

Linearizability is defined in terms of the interface
(invocations and responses) of high-level operations. In a
real concurrent program, the high-level operations are
implemented by algorithms on concrete shared data
structures, e.g., a linked list that implements a shared stack
object [53]. Therefore, the execution of high-level operations
may have complicated interleaving of low-level actions.
Linearizability of a concrete concurrent algorithm requires
that, despite complicated low-level interleaving, the history
of high-level invocation and response actions still has a
sequential permutation that respects both the runtime
ordering among operations and the sequential specification
of the objects. This idea is formally presented in the next
section using refinement relations.

Linearizability is a safety property [40], so its violation
can be detected with a finite prefix of an execution history.
However, the liveness property is also important for some
critical systems which guarantees the progress of the
systems. Even if the model satisfies linearizability, it might
not progress as desired. For instance, even under a fair
scheduler, Treiber’s push/pop [53] might never terminate if
there is always another concurrent push/pop. This issue is
a known property of lock-free or nonblocking algorithms
(e.g., lock-free stacks [53], [12] and lock-free queue [19],
[11]). It in fact reflects a deliberate design choice to give up
guaranteed termination of individual operations in favor of
a weaker guarantee of overall progress to obtain an efficient
implementation. This suggests that linearizability is just one
of many criteria properties for concurrent object design. We
remark that liveness properties can be formulated as linear
temporal logic (LTL) formulae (an example is given at the
end of Example 1) and checked using standard LTL model
checkers (with or without the assumption of a fair
scheduler [52], [51]). The PAT model checker supports
LTL model checking with a number of different fairness
assumptions [52], [51].

3 LINEARIZABILITY AS REFINEMENT

In this section, we define system behaviors as labeled
transition systems (LTSs) and linearizability as a refinement
relationship between two system models (or equivalently
two LTSs). We propose two ways of constructing the
refinement relation for the case where linearization points
are not given and the case where they are given, respectively.

3.1 Semantic Model

First of all, we introduce LTSs as the semantic models used
to capture the behaviors of shared memory models defined
by high-level operations or representing real concurrent
programs.

Definition 3 (LTS). An LTS is a tuple L ¼ ðS; init; Act;!Þ
where S is a finite set of states, init 2 S is an initial state, Act
is a finite set of actions, and ! � S �Act� S is a labeled
transition relation.
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4. Pipelining operations mean that after invoking an operation, a process
invokes another (same or different) operation before the response of the first
operation.

5. This property is not required in the original definition of linearizability
in [31]. However, adding it will not affect the correctness of our result
because, by [31, Theorem 2], for a pending invocation in a linearizable
history, we can always extend the history to a complete one and preserve
linearizability. We include this property to obviate the discussion for
pending invocations.



For simplicity, we write s!� s0 to denote ðs; �; s0Þ 2 ! .
The set of enabled actions at s is enabledðsÞ ¼ f� 2 Act j 9
s0 2 S:s!� s0g. A path � of L is a sequence of alternating
states and actions, starting and ending with states � ¼
hs0; �1; s1; �2; . . .i such that s0 ¼ init and si !

�iþ1
siþ1 for all i.

If � is finite, then j�j denotes the number of transitions in �.
A path can also be infinite, i.e., containing an infinite
number of actions. Since the number of states are finite,
infinite paths are paths containing loops. The set of all
possible paths for L is written as pathsðLÞ.

A transition label can be either a visible action or an
invisible one. Given an LTS L, the set of visible actions in L
is denoted by visL and the set of invisible actions is denoted
by invisL. A �-transition is a transition labeled with an
invisible action. A state s0 is reachable from state s if there
exists a path that starts from s and ends with s0, denoted by
s)
�
s0. The set of �-successors is �ðsÞ ¼ fs0 2 S js!� s0 ^

� 2 invisLg. The set of states reachable from s by perform-
ing zero or more � transitions, denoted as ��ðsÞ, can be
obtained by repeatedly computing the �-successors starting
from s until a fixed point is reached. We write s!�� s0 iff s0 is
reachable from s via only �-transitions, i.e., there exists a
path hs0; �1; s1; �2; . . . ; sni such that s0 ¼ s, sn ¼ s0, and
si !

�iþ1
siþ1 ^ �iþ1 2 invisL for all i . Given a path �, we can

obtain a sequence of visible actions by omitting states and
invisible actions. The sequence, denoted as traceð�Þ, is a
trace of L. The set of all traces of L is written as tracesðLÞ ¼
ftraceð�Þj� 2 pathsðLÞg.

LTSs can often be shown graphically, e.g., Fig. 1 shows an
example LTS6 where invisible transition labels are omitted
for simplicity. We define the refinement relation between
two LTSs, usually called trace refinement, as follows.

Definition 4 (refinement). Let L1 and L2 be two LTSs. L1

refines L2, written as L1 wT L2, iff tracesðL1Þ � tracesðL2Þ.

3.2 Linearizability without Linearization Points

In this section, we make no assumption on the knowledge
of the linearization points, which can be known or
unknown. We show how to create high-level linearizable
specifications and how to define linearizability as refine-
ment. Linearizability is a local property, i.e., a system is
linearizable iff each individual shared object is linearizable.
Hence, we assume there is only one shared object in a
system without loss of generality.

3.2.1 Linearizable Specification

To create a high-level linearizable specification for a shared
object, we rely on the idea that, in any linearizable history,
any operation can be thought of as occurring at some
linearization point. For a shared object o, we define a
specification model Msp ¼ ðfog; initfog; PspÞ as follows:
Every execution of an operation op of o on a process pi 2

Psp includes three atomic steps: the invocation action
invðopÞoi , the linearization action linðopÞoi , and the response
action resðop; respÞoi . Since there is only one object o, we
omit the superscript o for simplicity. The linearization
action linðopÞi performs the computation based on the
sequential specification of the object. In particular, it maps
the invocation and the object state before the operation to a
new object state and a response, changes the object to the
new state, and stores the response resp locally. The
response action resðop; respÞi generates the actual response
resp using the stored result from the linearization action.
Each of the three actions is executed atomically without
interruption. However, the three actions of an operation
may be interleaved with actions of other operations being
performed by other processes.

Given a deterministic shared object o, the corresponding

modelMsp ¼ ffog; initfog; Pg can be constructed as follows:

Each operation op that can be performed by process pi 2 P
is defined as a circular state machine with three states 1) an

idle state spi;0, 2) a state sðopÞpi;1 after the invocation of op

but before the linearization action of op, and 3) a state

sðop; respÞpi;2 for every response resp of op, representing the

state after the linearization action of op but before the

response of op. The transition from state spi;0 to state sðopÞpi;1
is triggered by an invocation action invðopÞi. The transition

from state sðopÞpi;1 to state sðop; respÞpi;2 is triggered by a

linearization action linðopÞi. The transition from state

sðop; respÞpi;2 to state spi;0 is triggered by a response action

resðop; respÞi. We let all invocation actions and response

actions be visible actions and all linearization actions be

invisible actions. This is because only the invocation and

response are considered in the behavior of Msp (refer to

Section 2 for the definition of behavior). Each process is

defined as the nondeterministic choice of invoking all the

allowed operations on object o.
Let Lsp ¼ ðSsp; initsp; Actsp;!spÞ be the semantic model of

Msp. Then, Ssp is the cross product of all object values and
all process states. Initial state initsp is the combination of the
initial value of object o and spi;0s for all processes pi. For
s 2 Ssp, let svo be the value of object o encoded in s, spi be the
state of pi in s, and s�pi and s�pi;�vo be the state s excluding
spi and excluding spi and svo , respectively. The labeled
transition relation!sp is such that for ðs;!e ; s0Þ 2!sp , 1) if
e ¼ invðopÞi, then s�pi ¼ s0�pi , spi ¼ spi;0, and s0pi ¼ sðopÞpi;1;
2) if e ¼ linðopÞi, then s�pi;�vo ¼ s0�pi;�vo , spi ¼ sðopÞpi;1, and
s0pi ¼ sðop; respÞpi;2, where s0vo and resp are the new object
value and the response, respectively, based on the sequen-
tial specification of object o and the old object state svo and
the state spi ¼ sðopÞpi;1 of process pi; 3) if e ¼ resðop; respÞi,
then s�pi ¼ s0�pi , spi ¼ sðop; respÞpi;2, and s0pi ¼ spi;0.

To create a high-level linearizable specification for a
nondeterministic shared object, the same idea above
applies. Assume the object o has j nondeterministic
response values after invoking operation op. Formally, each
operation op that can be performed by process pi is defined
as a state machine with ðjþ 2Þ states: 1) an idle state spi;0,
2) a state sðopÞpi;1 after the invocation of op but before the
linearization action of op, and 3) j states fsðop; resp1Þpi;21

. . .
sðop; respjÞpi;2jg for all possible responses of op, representing
the states after the linearization action of op but before the
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Fig. 1. An LTS example.

6. The dotted circles will be explained in Section 4.



response of op. Circular state transitions are similarly
defined as well.

3.2.2 Implementation Formalization

To formalize any given concurrent algorithm, we need to
identify the invocation and response actions so that
histories can be formulated based on these actions. For a
concurrent algorithm, implementing a shared object o, we
define an implementation model Mim ¼ ðfog; initfog; PimÞ.
We assume that Pim is a parallel execution of all processes.
Furthermore, the behavior of each process is assumed to be
infinite nondeterministic invocations of all the operations
supported by the object. In this work, we use ProcessðiÞ and
System to model the behaviors of process Pi and the
algorithm, respectively. One example can be found in
Algorithm 3.3. Each operation is defined by the algorithm.
Executions of program statements shall be considered as
(invisible) actions. The atomicity of a statement execution
can be defined based on the actual hardware architectures.
For example, if a computer architecture can compute x ¼
xþ 1 in one step, then we can treat this statement as atomic
action under this particularly architecture. Taking another
example, if a computer architecture supports an atomic
compare-and-swap (CAS7) instruction, then executing the
statements representing a CAS is an atomic action under
this particularly architecture. Further, local statements can
be grouped into one atomic action to reduce the state space
of LTS. This can be considered as manual partial order
reduction. Since we are interested in the histories of the
algorithm, an invocation action is added to the beginning of
each operation and a response action is added to every
return statement of each operation. All other actions
(i.e., the statement execution) inside the algorithm are
treated as invisible action since they do not contribute to the
histories. The semantic model ofMim is denoted by an LTS
Lim ¼ ðSim; initim;Actim;!imÞ.

In the following, we use a K-valued register implemen-
tation to demonstrate how our linearizability checking
approach works.

Example 1 (K-Valued Register [5, Section 10.2.1]). A
K-valued (K > 2) single-writer single-reader register R
can be simulated using an array B of K binary single-
writer single-reader registers. The possible values of R
are fO; 1; . . . ; K � 1g. The value i is represented by a 1 in
the ith entry of array B and 0 in all other entries. For each
binary register, there is a single processor (the writer)
that can write to it and a single processor (the reader)
that can read from it, and the values read or written can
only be 0 or 1.

When read and write operations do not overlap, it is
simple to perform the operations, i.e., a read operation
scans the array beginning with index 0 until it finds a 1
in some entry and returns the index of this entry.
A write operation writes the value v by writing the
value 1 in the entry whose index is v and clearing

(setting to 0) the entry corresponding to the previous
value if different from v.

When read and write operations might overlap, to
ensure that a read operation reads the last value written
two changes are made: 1) a write operation clears only
the entries whose indices are smaller than the value it is
writing, and 2) a read operation does not return when it
finds the first one but makes sure that all lower indexed
bits are still zero. Specifically, the reader scans from the
low indices toward the high indices until it finds the
first one; then it reverses direction and scans back
down to the beginning, keeping track of the smallest
index observed to contain a 1 during the downward
scan. This is the value returned. Details are given in
Algorithm 3.2. Note that the linearization point of the
read operation is not fixed because the value of v to be
returned depends on the last position of value 1 found
during the downwards scan, i.e., only the last execution
of line 8 is the linearization point rather than any
execution of line 8 is the linearization point.

The linearizable specification model is defined as in
Algorithm 3.1, where R is the shared register with initial
value 0. The statement in Line 1 for both read and write
operations is the linearization action.

The refinement relation is based on comparing the
arguments of the invocation and return values of the
responses of an operation. In this example, the only
visible actions are the invocation and response of the
read and write operations. The system model is
constructed as a general client on the shared register,
which consists of a parallel composition of a reader
process and a writer process. Further, the writer process
nondeterministically chooses one of K possible values to
execute write operation. If there are multiple operations
a process can perform, then a process is modeled to
nondeterministically execute one of the operations.

We remark that interesting progress properties can be
verified by model checking. For example, suppose K is 3,
then one can model check the formula

�invðreadÞreader!�ðresðread; 0Þreader _ resðread; 1Þreader
_ resðread; 2ÞreaderÞ;

where � and � are modal operators denoting “always”

and “eventually,” respectively. This property says that

once reader invokes the read operation, it will eventually

get the value rather than being blocked by the writer

indefinitely.

Algorithm 3.1 K-valued register specification

shared R :¼ 0;

Procedure read Procedure writeðvÞ
1: v :¼ R; 1: R :¼ v;
2: return v 2: return

Reader :¼ read;Reader

Writer :¼ ðwriteð0Þ ½� � � � ½� writeðK � 1ÞÞ;Writer8

System :¼ ReaderkWriter9
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7. CAS is an atomic CPU instruction used in multithreading to achieve
synchronization. It compares the contents of a memory location to a given
value and, only if they are the same, modifies the contents of that memory
location to a given new value. The atomicity guarantees that the new value
is calculated based on up-to-date information; if the value had been
updated by another thread in the meantime, the write would fail.

8. ½� denotes nondeterministic choice between operations.
9. k denotes the parallel composition of processes.



Algorithm 3.2 K-valued register implementation
Initially the shared registers B½0� through B½K � 1� are

all 0.

Procedure read Procedure writeðvÞ
1: i :¼ 0; 1: B½v� :¼ 1;

2: while B½i� ¼ 0 do 2: for i :¼ v� 1 downto 0

3: i :¼ iþ 1; do

4: end while 3: B½i� :¼ 0;

5: up; v :¼ i; 4: end for

6: for i ¼ up� 1 downto 0 5: return

do

7: if B½i� ¼ 1 then

8: v :¼ i;
9: end if

10: end for

11: return v

Reader :¼ read;Reader

Writer :¼ ðwriteð0Þ ½� . . . ½� writeðK � 1ÞÞ;Writer

System :¼ Reader jjWriter

3.2.3 Linearizability Formalization

The following theorem characterizes the linearizability of
an implementation Mim through a refinement relation
where the corresponding specification Msp is created by
following the steps in Section 3.2.1 and Lim and Lsp are
the LTSs corresponding to Mim and Msp. This theorem
establishes our approach to verifying linearizability.
Different versions of this result have appeared in
distributed computing literature, e.g., Theorems 13.3,
13.4, and 13.5 in Lynch’s book [40].

Here, we assume that all shared objects have finite
domains and each process has finitely many local states,
which disallows unbounded nontail recursion that results
in infinitely many local states. These assumptions ensure
that the constructed LTSs of the models have a finite
number of states so that the models can be verified using
model checking techniques. We further assume that there is
no process creation or termination, which ensures that
optimization techniques presented in Section 4 are applic-
able. This assumption is true for all the algorithms in this
paper and generally holds when each process is designed to
run on a single thread.

Theorem 1. Let Lim be an implementation LTS generated by the

steps in Section 3.2.2, and Lsp be the corresponding

specification LTS generated by the steps in Section 3.2.1. All
traces of Lim are linearizable if and only if Lim wT Lsp.

Proof (Sufficient Condition). For any trace � 2 tracesðLimÞ,
because Lim wT Lsp, � is also a trace of Lsp. Let � be an
execution history of Lsp that generates the trace �. We
define the sequential permutation � of � as the
reordering of operations in � by following the order of
the linearization actions of all operations and all
processes in �. That is, if op1 <� op2, the linearization
action of op1 must be ordered before the linearization
action of op2 in �, and thus op1 <� op2. It is also easy to
verify that � is a legal sequential history of object o since
the linearization action of every operation in � is the only
action in the operation that affects the object state based

on its sequential specification and the order of operations
in � respects the order of linearization actions in �.

Necessary condition. Let � be a trace of Lim. By
assumption, � is linearizable. We need to show that �
is also a trace of Lsp. Since � is linearizable, there is a
sequential permutation � of � such that � respects both
the sequential specification of object o and the runtime
ordering of the operations in �. We construct an
execution history � of Lsp from � and � as follows:
Starting from the first action of �, for any action e in �,
1) if it is an invocation action, append it to �; 2) if it is a
response action resðop; respÞi, locate the operation op in �
and, for each unprocessed operation op0 by a process j
before op in �, process op0 by appending a linearization
action linðop0Þj to �, following the order of �; finally,
append linðopÞi and resðop; respÞi to �. It is not difficult to
show that the execution history � constructed this way is
indeed a history of Lsp. Moreover, obviously the trace of
� is �. Therefore, � is also a trace of Lsp. tu

The above theorem shows that to verify linearizability of
an implementation, it is necessary and sufficient to show
that the implementation LTS is a refinement of the
specification LTS. This provides the theoretical foundation
of our method. Notice that the verification by refinement
given above does not require identifying low-level actions
in the implementation as linearization points, which can be
difficult (or even impossible) for some algorithms (e.g., the
elimination backoff stack [29], the restricted double-
compare single-wrap operation [28]). In fact, the verifica-
tion can be automatically carried out without special
knowledge about the implementation beyond the imple-
mentation code itself.

3.3 Linearizability with Linearization Points

In some cases, one may be able to identify certain actions in
an implementation as linearization points, which are
linearization actions. This section presents an alternative
and simpler way of formalization when the linearization
points are known.

3.3.1 Linearizable Specification

When the linearization points are known, a linearizable
specification can be constructed in a similar way as in
Section 3.2.1. The difference is that we make linearization
actions visible and hide the invocation and response actions.
More specifically, we obtain a specification LTS L0sp by the
following two modifications to Lsp: 1) We change each
linearization action linðopÞi to linðop; respÞi to include the
response resp computed by this linearization action; this is
possible because the return value of an operation is available
after linearization action; and 2) we make only linearization
actions visible and all invðopÞi and resðop; respÞi invisible.

3.3.2 Implementation Formalization

To formalize any given concurrent algorithms in this case,
we adopt the same way as for specification construction.
After generating the Lim by following Section 3.2.2, we
mark only linearization actions visible and hide all other
actions as above. There is no need to add invocation and
response actions in this case. Similarly to the construction of
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linearizable specifications, we include the responses in the
linearization actions. We demonstrate this idea using the
following example.

Example 2 (Abstract Concurrent Counter). Treiber [53]
proposed a concurrent stack implementation using CAS
instructions. Here, we use one of its simplified versions
presented in [10], as shown in Algorithm 3.3. The pointerH
is shared by all processes. Each operation tries to
update H until its CAS operation succeeds. To keep this
algorithm finite-state (hence subject to model checking),
we assume that the size of the stack and the number of
processes are finite. Based on this algorithm, we propose
a concurrent counter implementation by abstracting the
stack elements to stack size as shown in Algorithm 3.4. A
proof that Algorithm 3.4 is equivalent to the original
algorithm, Algorithm 3.3, is omitted for brevity.

Since the concurrent counter implements the standard
push and pop operations, the specification of the
concurrent counter algorithm is defined in Algorithm 3.5.
Here, the actual data are abstracted because only the
stack size is relevant, which is modeled as shared
variable S with initial value 0. A push operation
increases the stack size by 1. A pop operation decreases
the stack size by 1 if it is bigger than 0 and returns the
stack size before the decrease; otherwise it returns 0. We
introduce atomic construct to indicate that the program in
the block is to be executed as one superstep, noninter-
leaved with other processes. This atomic construct is the
linearization action for the pop operation.

The linearization points of Algorithm 3.3 are known
[3]. Therefore the verification can be conducted directly
by modeling linearization points and leaving out
invocation and response actions. Clearly the specification
model of the stack has only one linearization action
(i.e., the corresponding atomic block) for each operation.
We make each linearization action visible and include
the return value. For the push operation, its linearization
action is linðpush; S þ 1Þi, where i is the process
identifier and S þ 1 is the stack size after update.
Likewise, the linearization action of the pop operation is
linðpop; SÞi, where i is also the process identifier and S is
the stack size before update.

The linearization points of the counter implementa-
tion are conditional. For the push operation, only a
successful CAS (at line 4) is considered to be a
linearization point. For the pop operation, there are two
conditional linearization points: If the counter is 0,
returning 0 at line 4 is a linearization point; otherwise,
a successful CAS (line 7) is a linearization point.

Algorithm 3.3 Concurrent stack implementation

type Node ¼ fval : T ;next : Nodeg;
shared NodeH :¼ null;
N is the maximum value that can be stored by the stack

Procedure pushððvÞððvÞ Procedure pop

1: n :¼ newNodeðÞ; 1: repeat

2: n:val :¼ v; 2: ss :¼ H;

3: repeat 3: if ss ¼ null then

4: ss :¼ H; 4: return empty

5: n:next :¼ ss; 5: end if

6: until CASðH; ss; nÞ 6: n :¼ ss:next;

7: return 7: lv :¼ ss:val;
8: until CASðH; ss; nÞ
9: return lv

ProcessðiÞ :¼ ðpushð1Þ ½� . . . ½� pushðNÞ ½� popÞ;ProcessðiÞ
System :¼ Processð1ÞjjProcessð2Þ jj . . . jj ProcessðNÞ

Algorithm 3.4 Concurrent counter implementation

shared H :¼ 0;

Procedure push Procedure pop

1: repeat 1: repeat

2: ss :¼ H; 2: ss :¼ H;

3: n :¼ ssþ 1; 3: if ss ¼ 0 then

4: until CASðH; ss; nÞ 4: return 0;

5: return 5: end if

6: n :¼ ss� 1;

7: until CASðH; ss; nÞ
8: return ss;

ProcessðiÞ :¼ ðpush ½� popÞ;ProcessðiÞ
System :¼ Processð1Þ jj Processð2Þ jj . . . jj ProcessðNÞ

Algorithm 3.5 Concurrent counter specification

shared S :¼ 0;

Procedure push Procedure pop

1: S :¼ S þ 1; 1: atomic

2: return 2: if S ¼¼ 0 then

3: v :¼ 0;

4: else

5: S :¼ S � 1;

6: v :¼ S;

7: end if

8: end atomic

9: return v;

ProcessðiÞ :¼ ðpush ½� popÞ;ProcessðiÞ
System :¼ Processð1Þ jj Processð2Þ jj . . . jj ProcessðNÞ

3.3.3 Linearizability Formalization

Theorem 2. Let L0im be an implementation LTS with known
linearization actions and specified by the steps in Section 3.3.2,
and L0sp be the corresponding specification LTS generated by
the steps in Section 3.3.1. All traces of L0im are linearizable if
and only if L0imwTL0sp.

Proof (Sufficient condition). For any trace � 2 tracesðL0imÞ,
because L0imwTL0sp, � is also a trace of L0sp. Let � be the
execution history of L0im that generates the trace �. �
respects the sequential specification of the objects since
the linearization action in L0sp is the only action that
affects the object states. Furthermore, each linearization
action in � is always between its invocation and response
action in � because of the way � is generated. According
to the second definition of linearizability using lineariza-
tion points in Section 2, � is the shrank execution of �,
and each action is the linearization point of the
corresponding operation.

Necessary condition. Let � be a trace of L0im. Let � be the
execution history of L0im that generates the trace �. By
assumption, L0im is linearizable and all linearization
actions are identified in the implementation. Therefore,
� is the shrank execution of � and each action is the
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linearization point of the corresponding operation.
Condition “all linearization actions are identified in the
implementation” ensures that each operation has a
linearization point in �. Since linearization actions in
L0im represent the effects of the object changes, we can
find the same linearization action in the L0sp. Hence, � is
also a trace of L0sp tu.

It is not difficult to see that the implementation model
built with the knowledge of linearization points is much
simpler and contains fewer visible actions. Hence, the
verification can be done more efficiently by comparing only
one action for each operation. However, it is important to
note that, as stated in Theorem 2, to make refinement a
necessary condition of linearizability in this case one has to
show that no other actions in the implementation can be
linearization points. In other words, the determined
linearization points have to be complete. Otherwise, even
if the verification finds a counterexample for the refine-
ment relation, it may be due to unidentified linearization
points, and one cannot conclude that the implementation is
not linearizable.

4 VERIFICATION OF LINEARIZABILITY

With the results presented in Section 3, all we need is a
scalable refinement checking algorithm to establish linear-
izability. In this section, we present a classic algorithm
[45] for refinement checking, and then optimize it with
symmetry reduction, partial order reduction, and their
combination.

In the following, we fix two LTSs, Lim ¼ ðSim, initim;
Actim; TimÞ and Lsp ¼ ðSsp; initsp; Actsp; TspÞ, which repre-
sent an implementation and a specification, respectively.
Notice that both Lim and Lsp typically have invisible
actions. That is, if linearization points are unknown, all
actions except invocation and response actions are invisible;
if linearization points are known, all except the linearization
actions are invisible. As a result, both Lim and Lsp have a
degree of nondeterminism, e.g., two different processes
both can take �-transitions, resulting in two identically
labeled actions from the same state.

For ease of understanding, we use the bounded abstract
concurrent counter algorithm as a running example, and
show how the state space of the whole program can be
reduced by symmetry reduction, then partial order reduc-
tion, and, at last, their combination. Moveover, to show the
generality of our approach, we assume that the linearization
points are unknown. To properly display the entire state
space, due to space limitations, we only show a stack being
used by two processes, with ids 0 and 1, respectively, so the
effect of reduction approaches can be demonstrated visually
to help readers better understand the technical details of
our approach. Furthermore, we require that each process
perform only one push operation. The stack is initially
empty and its size is 2.

4.1 A Linearizability Checking Algorithm

To establish a refinement relationship between Lim and Lsp,
we need to show that every trace of Lim is allowed by Lsp.
Because of nondeterminism in Lsp, after a sequence of

visible actions there may be many states that the system
might be in. A refinement checking algorithm thus will
have to keep track of all the states reachable in Lsp on a
given trace, which can be achieved by determinization, also
known as normalization. A determinization of an LTS L is a
deterministic LTS, written as DðLÞ, such that L and DðLÞ
have the same traces. With determinization, checking
whether Lim refines Lsp is reduced to checking whether
Lim refines DðLspÞ, which is easier because there is exactly
one state in DðLspÞ corresponding to each possible trace. A
standard approach for determinization is through subset
construction [32].

Definition 5 (Determinization). Let L ¼ ðS; init, Act;!Þ be
an LTS. The determinized LTS of L is DðLÞ ¼ ðSd; initd;
Actd;!dÞ where Sd � 2S is a set of subsets of S, initd ¼
��ðinitÞ, Actd ¼ visDðLÞ ¼ visL, and !d � Sd �Actd � Sd
is a transition relation such that X!� dY iff Y ¼ fy : Sj9x 2
X; 9s 2 S : x!� s ^ y 2 ��ðsÞg.

In the following, we fix Dsp ¼ ðSd; initd; Actd; TdÞ to be
the determinized LTS of Lsp. All states connected by
�-transitions in Lsp are grouped in Dsp. For instance, the
dotted circles in Fig. 1 show the determinized states. It is
straightforward to show that Dsp is deterministic, i.e., for
any state s 2 Sd and any visible action � 2 Actd, there is at
most one state s0 2 Sd such that s!� ds

0.
Refinement checking is then reduced to reachability

analysis10 of the synchronous product of Lim and Dsp. Each
state of the product space is a state pair ðim; spÞ, where im
is an implementation state and sp is a determinized
specification state. If there exists a state pair ðim0; sp0Þ such
that im!� im im0, sp!� dsp

0 for some � 2 Actd \Actim, we say
there is a product transition from ðim; spÞ to ðim0; sp0Þ
labeled with �.

Algorithm 4.1 shows an on-the-fly linearizability check-
ing algorithm. It performs a depth-first-search for a state
that violates linearizability, i.e., a pair ðim; spÞ 2 Sim � Sd
such that sp is an empty set. The algorithm returns true if no
such pair is found. Otherwise, a counterexample violating
trace refinement is found. The algorithm maintains two
data structures. checked is a set of product states that have
been explored and pending is a stack containing new states
yet to be explored. On line 2, the initial state of the product
is pushed into pending. While there are new states to be
explored (i.e., pending is not empty), a pending state is
obtained from pending on line 7, which is then added to
checked on line 8. If the state is of the form ðim; ;Þ, we infer
that there exists a trace that leads Lim to state s and leads
Lsp to no state, and therefore the trace serves as a
counterexample to refinement. The code fragments for
producing a counterexample are shown in gray color,
which stores a path of Lim from the initial state initim to
state s in stack counterexample. For brevity, these code
fragments are omitted in the algorithms presented later in
this section. If a successor state of ðim; spÞ has not been
explored (i.e., ðim0; sp0Þ 62 checked on line 20), it is pushed
into pending on line 21. Note that Function nextðim; spÞ
returns the set of successor states in the product. Formally,
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nextðim; spÞ
¼ fðim0; spÞjim!� im im0 ^ � 2 invisLimg
[ fðim0; sp0Þj9� 2 visLim : im!� im im0

^ 8x0 2 sp0; 9x 2 sp; 9u 2 sp0 : x!� sp u ^ x0 2 ��ðuÞg:

If the implementation takes a �-transition (e.g., any action
that is not an invocation or response action if the lineariza-
tion points are unknown), the trace of the implementation
remains the same (as � is always pruned from the trace) and
therefore the set of corresponding states in Lsp (which are
reached via the same trace) remains the same. In other
words, the determinized state remains the same. If the
implementation takes a visible transition, then the same
action must be performed by the specification, resulting in a
new determinized state. To obtain nextðs;XÞ algorithmi-
cally, it is necessary to compute the set of states reached by a
�-transition from a given state, which can be implemented
using a standard depth-first-search.

Algorithm 4.1. A linearizability checking algorithm

Procedure Linearizability ðLim; LspÞ
1: checked :¼ ;
2: pending:pushððinitim; ��ðinitspÞÞÞ
3: stack depth:pushð0Þ
4: path depth :¼ hi
5: counterexample :¼ hi
6: while pending 6¼ ; do

7: ðim; spÞ :¼ pending:popðÞ
8: checked :¼ checked [ fðim; spÞg;
9: d :¼ stack depth:popðÞ

10: while d > 0 ^ path depth:peekðÞ 	 d do

11: path depth:popðÞ
12: counterexample:popðÞ
13: end while

14: path depth:pushðdÞ

15: counterexample:pushðimÞ
16: if sp ¼ ; then

17: return counterexample

18: end if

19: for all ðim0; sp0Þ 2 nextðim; spÞ do

20: if ðim0; sp0Þ 62 checked then

21: pending:pushððim0; sp0ÞÞ
22: stack depth:pushðdþ 1Þ
23: end if

24: end for

25: end while

26: return true

For the running example, Fig. 2 shows the determiniza-
tion of its specification LTS and Fig. 3 shows the
specification-implementation product LTS explored during
linearizability checking (let us ignore for now the colors and
shades of edges and nodes). Each node in Fig. 3 contains
two parts, the implementation state in the upper part and
the determinized specification state in the lower part. If an
action is a visible action, then the corresponding edge is
labeled with its name. Otherwise, the edge is labeled with
the statement in the push operation of Algorithm 3.4. lji
denotes the statement on line i executed by process j.
Because we assume the linearization points of this algo-
rithm are unknown, the visible actions are the invocation
and response of the push operation. That is, push inv:i and
push res:i:v are the invocation and response action, respec-
tively, where i is the identifier of the invoking process and v
is the return value of the push operation.

The algorithm terminates as long as the product has
finitely many states. The soundness of the algorithm follows
from [45]. Note that determinization is performed on-the-fly
so that in the presence of a counterexample only part of Dsp

is constructed. In practice, this algorithm may suffer from
state space explosion. Its complexity is linear in the number
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of transitions in the product. The size of the product is

bounded by the size of Lim and Dsp. In the worst case, Dsp

may have exponentially more states than Lsp. Further, Lim
and Lsp typically have an exponential blow up in the size of

the system models representing the specification and

implementation. Thus, it is necessary to explore powerful

state reduction techniques to model check complex con-

current object implementations.

4.2 Optimization 1: Symmetry Reduction

A concurrent data object is often designed to be accessed by

many behaviorally similar or even identical processes. Such

similarity or symmetry often induces equivalent portions of

the underlying state space. Symmetry reduction [24] is an

effective technique for eliminating such equivalent states.

The idea is to only explore the behavior of one process and

conclude the same for homogeneous others (subject to

property-specific conditions).
For temporal logic model checking, classical symmetry

reduction approaches [34], [48], [23] often choose a unique
representative state from each class of equivalent states. Each
visited state is replaced with its representative state. Un-
fortunately, these approaches fail to fit into the context of
refinement-style linearizability checking. The significant
obstacle is lock-step synchronization on all visible actions
between the state spaces of implementation and specification
models. If symmetry reduction is applied to an implementa-
tion (respectively, a specification) model, replacing an
implementation (respectively, specification) state with its
representative potentially influences the synchronization
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result and thus sacrifices the validity of linearizability
checking. For instance, suppose a common action � is
ready to be executed from a state pair ðs; s0Þ, where s is an
implementation state and s0 is a specification state. If
symmetry reduction is applied to the implementation
model, the state pair is changed to ðt; s0Þ, where t is the
representative state of the equivalence class including s.
However, t is likely unable to engage �. In this case, a false
counterexample is produced by Algorithm 4.1.

Moffat et al. [43] proposed a symmetry reduction
approach for trace refinement checking. In the following,
we first use their approach to perform symmetry reduction
on Lim during linearizability checking. Then, we extend and
improve their work to achieve better performance.

We begin with introducing relevant notations and
terminology. A permutation � on a finite set of objects
(e.g., process identifiers) is a bijection from the set to itself
(i.e., a function that is one-to-one and onto). For instance,
suppose the system is a parallel composition of N processes
Pi, where i ranging from 1 to N is a unique identifier
associated with the process. Permutation � may be defined
such that �ðiÞ ¼ ðiþ 1Þ mod N for each i. Suppose N is 2.
We have �ð1Þ ¼ 2 and �ð2Þ ¼ 1, written as ð1; 2Þ.11 A
permutation group is a group of permutations under
functional composition 
. For instance, a permutation group
in the above example formed by � is hð1; 2Þ; ð1; 2Þ 
 ð1; 2Þi,
which equals hð1; 2Þ; ð1Þð2Þi.

Let PermðSÞ be the group of permutations of the finite
set S. Next, we define the concept of automorphism group.

Definition 6 (Automorphism). Given an LTS L ¼ ðS; init;
Act;!Þ, a group G � PermðsÞ � PermðActÞ is an auto-

morphism group of L if and only if

1.

8� 2 G; s1; s2 2 S; � 2 Act :

s1 !
�
s2 ¼) �ðs1Þ !

�ð�Þ
�ðs2Þ:

2. �ðinitÞ ¼ init.
It is often the case that an automorphism group is given

as a group acting on the process identifiers of the state
variables as well as labeled actions. For example, a
permutation �, defined on the actions and states in Fig. 2,
may also be described as the permutation of process
identifiers, i.e., ð0; 1Þ.

Our starting point of symmetry reduction is the simple
observation that, in practice, each operation on a con-
current data object often originates from a generic system
description without discriminating process identifiers in
both its implementation and specification. This means that
if there is any symmetry relation between processes in an
implementation model, then there will be the same relation
in its corresponding specification model and vice versa.
Note that both the implementation and specification
models in this work take the form of a parallel composition
of processes. The insight is therefore captured by a

premise: A permutation is an automorphism of Lim if and
only if it is also an automorphism of Lsp.

Let G be an automorphism group on both Lim and Lsp.
Considering that the usual linearizability checking algo-
rithm explores the product space of Lim and Dsp, we need to
prove that G is also an automorphism group on this
product space so that we can apply symmetry reduction on
it. We first prove the following lemma.

Lemma 1. If a permutation is an automorphism of an LTS L, it is
an automorphism of DðLÞ.

Proof. Suppose that permutation � is an automorphism of
L. By definition, a transition t ¼ X!� dY is in DðLÞ iff
9x 2 X; 9y 2 Y : x!� x0 ^ y 2 ��ðx0Þ. Further, 8s1; s2 2 S;
� 2 Act : s1 !

�
s2 iff

�ðs1Þ !
�ð�Þ

�ðs2Þ:

Thus, x!� x0 , �ðxÞ !�ð�Þ �ðx0Þ and y 2 ��ðx0Þ , �ðyÞ 2
��ð�ðx0ÞÞ. Thus, there is exactly a transition

�ðP Þ!�ð�Þd �ðQÞ

in DðLÞ. Considering that t is arbitrary, � is also an
automorphism of DðLÞ. tu
Next, we prove the following theorem:

Theorem 3. If G is an automorphism group on both Lim and Lsp,
then it is an automorphism group on the product space of Lim
and Dsp.

Proof. By Definition 6, we must show that for any � 2 G, 1) if

sp!� d sp
0 and im!� im im0, then �ðspÞ !�ð�Þ

d
�ðsp0Þ and

�ðimÞ !�ð�Þim �ðim0Þ, 2) �ðinitdÞ ¼ initd and �ðinitspÞ ¼
initsp.

By the premise, � is an automorphism of Lim. If

im!� im im0, then �ðimÞ!�ð�Þim �ðim0Þ. By Lemma 1, � is an

automorphism of Dsp. So if sp!� dsp
0, then �ðspÞ!�ð�Þd

�ðsp0Þ. Therefore, �ðspÞ�ð�Þ!d�ðsp0Þ and �ðimÞ!�ð�Þim�ðim0Þ.
Similarly, because � is an automorphism of both Lim

and Dsp, �ðinitdÞ ¼ initd and �ðinitspÞ ¼ initsp.
Since � is an arbitrary automorphism in G, we

conclude that G is an automorphism group on the
product space of Lim and Dsp. tu

The function repPair is defined to “twist” a state pair in
the product space using an automorphism in G as follows:

repPairðim; sp; �Þ ¼ ð�ðimÞ; �ðspÞÞ
where im 2 Limsp 2 Dsp and � 2 G:

A repPair-twisted (hereafter twisted) path through the

product space is a sequence hs0; �1; �1; s1; . . . , sn�1; �n; �n; sni
of states, actions, and permutations, starting and ending

with states such that: For all 0 � i < n, suppose si ¼ ðim; spÞ,
there exists a state pair ðim0; sp0Þ and �iþ1 2 G such that

im!�iþ1

im im0; sp!�iþ1

d sp
0 and siþ1 ¼ ð�iþ1ðim0Þ; �iþ1ðsp0ÞÞ ¼

repPairðim0; sp0; �iþ1Þ. In this way, function repPair “twists”

the original path explored in the usual refinement checking.

For example, there exists a twisted path hðt1; s1Þ; push inv:0;
ð0; 1Þ; ðt3; s3Þ; � ; ð0; 1Þ; ðt2; s31Þ, push inv:1; ð0; 1Þ; ðt4; s6Þi
in Fig. 3.
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To generate a representative state for each visiting
implementation state, we assume the existence of a function
rep such that, for each s 2 S, repðsÞ is a representative of s.
To perform symmetry reduction on Lim during lineariz-
ability checking, we restrict the definition of repPair using
rep as follows: repPairðim; sp; �Þ ¼ ðrepðimÞ; �ðspÞÞ such
that �ðimÞ ¼ repðimÞ.

Algorithm 4.2 is developed to perform on-the-fly lineariz-
ability checking with symmetry reduction. The underlined
text shows the differences compared with Algorithm 4.1.
Function Rep1 calculates a unique representative of each
visited state, i.e., Rep1ðsÞ ¼ ðs0; �Þ such that �ðsÞ ¼ s0. Each �
used in repPair can be stored through the explored path to
recover a twisted counterexample path to an actual path in
Lim. Assume a linearizability violated pair s ¼ ðim; ;Þ is
found and � is the current explored twisted path arriving at
s. � can be easily composed by concatenating all elements
popped off the stack pending in reverse order. Let � be
hs0; �1; �1; s1; . . . ; �n; �n; sni, then function recover is used to
“recover” it to an actual counterexample path in the original
product space. Formally, the function recover is defined as
follows:

recoverð�Þ ¼
�
s0; �1; �

�1
1 s1; . . . ;

�
��1

1 ��1
2 � � � ��1

n�1

�
�n;

�
��1

1 ��1
2 � � � ��1

n

�
sn
�
:

The following theorem (which is based on Lemma 2)
guarantees the soundness and completeness of Algo-
rithm 4.2. Algorithm 4.2 finds a twisted counterexample
path exactly when the refinement does not hold.

Lemma 2 [43]. Suppose function repPair maps each state pair
ðu; vÞ to ð�ðuÞ; �ðvÞÞ for some � 2 G. Then, for all paths �,
there is a path to state pair s ¼ ðim; spÞ if and only if there is a
repPair-twisted path �0 to state pair �ðsÞ ¼ ð�ðimÞ; �ðspÞÞ,
with recoverð�0Þ ¼ �ð�Þ, for some � 2 G.

Theorem 4 [43]. Suppose function repPair maps each state pair
ðu; vÞ to ð�ðuÞ; �ðvÞÞ for some � 2 G. Lim wT Dsp has a
counterexample path � if and only if it has a counterexample
repPair-twisted path �0 with recoverð�0Þ ¼ �.

Besides the above symmetry reduction, we observe that
in practice for a state pair ðim; spÞ, there may exist multiple
permutations �1; �2; . . . ; �n 2 G such that for every i in
f1; . . . ; ng : �iðsÞ ¼ repðimÞ, and there exists i; j : i 6¼ j;
�iðsÞ 6¼ �jðsÞ. That is, different permutations may produce
different twisted pairs with the same representative im-
plementation state for a state pair in Algorithm 4.2. To
check whether counterexample searching is sensitive to the
permutations chosen, we develop the following theorem.

Theorem 5. For any state s ¼ ðim; spÞ in the product space of
Lim and Dsp, if there exist �1; �2 2 G and �1 6¼ �2, then there
is a twisted path from �1ðsÞ to q if and only if there exists a
twisted path from �2ðsÞ to �ðqÞ, for some � 2 G.

Proof. We will prove that there is a twisted path � ¼ hs0 ¼
�1ðsÞ; �1; �1; . . . ; �n; �n; sni if and only if there exists a
twisted path �0 ¼ hs00 ¼ �2ðsÞ; �01; �01; . . . ; �0n; �

0
n; s
0
ni such

that q ¼ sn, and for every 0 � i � n, there exists � 2
G : �ðsiÞ ¼ s0i.

Necessary condition. Induction on j�j.

Basis. j�j ¼ 0. Then, � ¼ h�1ðsÞi. There is exactly one
twisted path �0 ¼ h�2ðsÞi. Thus, there exists � ¼ ��1

1 �2 2
G : �1�ðsÞ ¼ �2ðsÞ.

Induction hypothesis. Assume that the claim is true for
any twisted path � such that j�j � k.

Induction step. We show it also holds for all twisted
paths � where j�j ¼ kþ 1.

Consider a twisted path � of the form hs0 ¼ �1ðsÞ;
�1; �1; . . . ; �kþ1; �kþ1; skþ1i. Then, there is a transition
from sk to pre-skþ1 labeled � where skþ1 ¼ �kþ1ðpre-skþ1Þ.
From the induction hypothesis, there is a twisted path
�0 ¼ hs00 ¼ �2ðsÞ; �01; �01; . . . ; �0k; �

0
k; s
0
ki; �0kþ1; s

0
kþ1 such that

�ðskÞ ¼ s0k. By Theorem 3, there is a transition from
�ðskÞ to �ðpre-skþ1Þ labeled with �ð�Þ. So, s0kþ1 ¼
�0kþ1�ðpre-skþ1Þ¼ �0kþ1��

�1
kþ1ðskþ1Þ.

Sufficient condition. Similar. tu

An immediate corollary of Theorem 5 is shown as
follows, which is the foundation of our improvement.

Corollary 1. For any state s ¼ ðim; spÞ in the product space of
Lim and Dsp, if there exist �1; �2 2 G such that �1ðsÞ ¼ �2ðsÞ
and �1 6¼ �2, then there exists a counterexample twisted path
if and only if there exists a twisted path.

Based on the above results, we develop a new Algo-
rithm 4.3 to allow more state reduction. The underlined text
shows the differences compared with Algorithm 4.2.
Function Rep2 is defined as: Rep2ðsÞ ¼ ðs0; h�1; . . . ; �niÞ such
that for every i 2 f1; . . . ; ng : �iðsÞ ¼ s0. By Corollary 1, it is
sufficient to explore only one of the states ðs0; �iðspÞÞ. Thus,
if none of these states have been explored on line 11, one
state is pushed into pending on line 12.

Algorithm 4.2. Linearizability checking algorithm with

symmetry reduction

Procedure linearizability_sym1 ðLim; LspÞ
1: checked :¼ ;;
2: pending:pushððinitim; ��ðinitspÞÞÞ;
3: while pending 6¼ ; do

4: ðim; spÞ :¼ pending:popðÞ;
5: checked :¼ checked [ fðim; spÞg;
6: if sp ¼ ; then

7: return false

8: end if

9: for allðim0; sp0Þ 2 nextðim; spÞ do

10: ðrepIm0; �Þ ¼ Rep1ðim0Þ
11: if ðrepIm0; �ðsp0ÞÞ 62 checked then

12: pending:pushððrepIm0; �ðsp0ÞÞ;
13: end if

14: end for

15: end while

16: return true

Algorithm 4.3. Improved Linearizability checking

algorithm with symmetry reduction
Procedure linearizability_sym2 ðLim; LspÞ

1: checked :¼ ;;
2: pending:pushððinitim; ��ðinitspÞÞÞ;
3: while pending 6¼ ; do

4: ðim; spÞ :¼ pending:popðÞ;
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5: checked :¼ checked [ fðim; spÞg;
6: if sp ¼ ; then

7: return false

8: end if

9: for allðim0; sp0Þ 2 nextðim; spÞ do

10: ðrepIm0; h�0; �1; :::; �niÞ ¼ Rep2ðim0Þ
11: if 80 � i � nðrepIm0; �iðsp0ÞÞ 62 checked then

12: pending:pushððrepIm0; �0ðsp0ÞÞ;
13: end if

14: end for

15: end while

16: return true

In the following, we explain how Algorithm 4.3 works
step by step on the concurrent stack example. It is not
difficult to find that each pair of states in the symmetric
positions are equivalent states in Figs. 2 and 3, i.e., one can
be transformed to the other by process identifier permuta-
tion ð1; 2Þ, e.g., ð1; 2Þðt3Þ ¼ t2 . Further, we assume that each
colored state in Fig. 3 is the representative state among the
class of its equivalent states.

Starting from the initial state ðs1; t1Þ, we first nondeter-
ministically pick a transition to execute, the right one for
example. At the resultant state ðs3; t3Þ, we use function
repPair to twist it to get a new state to proceed. Because

repðs3Þ ¼ s2 ¼ ð1; 2Þðs3Þ;
repPairðs3; t3Þ ¼ ðrepðs3Þ; ð1; 2Þðt3ÞÞ ¼ ðs2; t2Þ:

Starting from the product state ðs2; t2Þ, we again nonde-
terministically pick one of these transitions, say the right
one, and get to ðs4; t4Þ. Because repðs4Þ ¼ s4, there is no need
to change t4. Again, if we pick the left transition from ðs4; t4Þ
and arrive at ðs28; t4Þ, we twist it to state ðs6; t4Þ. By
proceeding in this manner, we eventually explore all
colored states in the product space so that we succeed in
performing symmetry reduction on the implementation
LTS and preserve the validity of linearizability checking.

4.3 Optimization 2: Partial Order Reduction

A process performs an atomic action at each step to move
the system from one state to another. Partial order reduction
is an effective state space reduction technique for con-
current systems with independent actions. The motivation
is that the effect of independent concurrent actions is
irrelevant to their interleaving orderings. If the property of
interest does not depend on the intermediate states through
the execution traces of these actions, a number of equivalent
orderings of concurrent actions can be eliminated, which
often yields a good reduction on the state space.

In practice, most concurrent object algorithms have a low
degree of interprocess interaction and coordination for
scalability reason. Many program statements are local
computations or access disjoint locations of the shared data
object. This loose coupling potentially induces many
independent transitions and thus enables effective partial
order reduction on these algorithms. In this section, we
show how to perform partial order reduction for lineariz-
ability checking.

We adopt the recently proposed dynamic partial order
reduction technique called Cartesian partial order reduction
in [27] for linearizability checking for two reasons. First,

pointer variables are used frequently in concurrent object
algorithms. Static partial order reductions [35], [57], [26] fail
to identify their independence precisely and thus cause a
poor reduction on the state space. Second, concurrent
algorithms with optimistic or lazy synchronization [30,
chapter 9] put operation details within a loop. In the loop
body, it tests synchronization conflict with other processes.
If no conflict is found, the update will proceed; otherwise, it
will go back to the start of the loop and retry. Dynamic
partial order reduction [25] relies on a stateless search and
thus cannot handle systems with loops, while a Cartesian
one uses a stateful search and can handle loops.

For convenience, we describe the preceding notion of
path in a more succinct notation by omitting immediate
states, e.g., hs0; �1; �2; . . . ; �n; sni. A legal path of process P is a
path that has at least one transition and all its transitions are
executed by process P . Given an LTS L ¼ ðS; init; Act;!Þ,
for each s in S and � in Act, function �ðsÞ returns the set of
�-successors of s. That is, s0 2 �ðsÞ iff s!� s0.

The following defines the notion of actions being
independent, which is central for any partial order reduction.

Definition 7 (Independence). Given an LTS L ¼ ðS; init;
Act;!Þ and �, � 2 Act from different processes, � and � are
independent if for any s 2 S with �; � 2 enabledðsÞ: � 2
enabledð�ðsÞÞ , � 2 enabledð�ðsÞÞ, and �ð�ðsÞÞ ¼ �ð�ðsÞÞ.
� and � are dependent if � and � are not independent.

For instance, in Algorithm 3.2, any pair of statements of
concurrent read operations is independent. Their ordering
does not influence the execution result. In our setting, we
define that two actions are dependent if two actions access
the same variable, and at least one action writes the variable.

The standard semantics of a concurrent program can be
regarded as controlled by a special scheduler. The scheduler
nondeterministically picks one process to be executed after
each transition. Cartesian semantics is proposed as a new
operational semantics in cartesian partial order reduction
[27] to bypass many unnecessary context switches and
meanwhile to preserve soundness and completeness. It is
based on the notion of Cartesian vectors, which identifies for
a state a sequence of actions that each process can perform
without context switches from that state. The intuition
behind Cartesian semantics is when Cartesian semantics
starts the execution from a state s, it selects a sequence of
actions es for each process, which are all independent of
other process except for the last, and executes them. When
the process reaches the target state of the last action in es, it
starts the procedure again from this state.

Definition 8 (Cartesian Vector). In a concurrent system with
N processes P1; P2; . . . ; PN , a vector ðp1; . . . ; pNÞ 2 PathN is
a Cartesian vector from a state s if for each two processes Pi, Pj
such that i 6¼ j the following holds:

. The first state of pi is s;

. pi is a legal path of process Pi;

. 8t 2 pi; t0 2 pj: actions t and t0 are dependent) t and
t0 are the last actions of pi and pj, respectively.

Since visible actions affect specification states during
refinement checking, here we require that partial order
reduction is only used for invisible actions in the
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implementation model. That is, for a Cartesian vector
ðp1; . . . ; pNÞ, if a visible action � exists in any pi such that
1 � i � N , then � must be the last action in pi. Thus, we
consider a slightly modified version of the Cartesian
function 	 : S ! PathN to generate a Cartesian vector for
each visited state in [27], presented as Algorithm A.1 in
Appendix A. The Cartesian semantics generated by 	 is
formalized as a binary relation !	 , which only relates the
last states of Cartesian vectors and is transitively closed.

An important property of Cartesian semantics for
linearizability checking is described in the following
theorem, which says that if a state that violates lineariz-
ability is found with standard semantics, then this state can
be found with Cartesian semantics.

Theorem 6. For a Cartesian function 	 and a given state that
violates linearizability ðq; ;Þ, if s�

)ðq;;Þ, then s!	 ðq; ;Þ.
Proof. Given a state that violates linearizability ðq; ;Þ, there

exists a path � of the form hs ¼ s0; �1; �2; . . . ; �n; sn ¼
ðq; ;Þi. By a simple argument, we know that �n must be a
visible action.

We shall prove that s!	 q by induction on j�j.
Basis. j�j ¼ 0. The claim holds.
Induction hypothesis. Assume that the claim is true for

any path � such that j�j < n.
Induction step: Consider a path � of the form

hs ¼ s0 ¼ ðim; spÞ; �1; �2; . . . ; �n; sn ¼ ðq; ;Þi.
Let ðp1; p2; . . . ; pkÞ be the Cartesian vector that is

returned by 	ðimÞ. Suppose that �n is performed by
process u such that 1 � u � k. Because �n is visible, it has
to be the last action in pu.

Let i be the first occurrence of an action in � which
ends a path pj in 	ðimÞ, i.e., i 2 f1; . . . ; ng is the smallest
number for which there exists j 2 f1; . . . ; kg such that
hs0; �1; . . . ; �i; sii contains jpjj transitions of process Pj.
Thus, each am is invisible for 1 � m < i.

We distinguish between the following two cases:

Case 1. �i ¼ �n. In this case, �n is the only action

which ends a path in 	ðimÞ, for any s 2 �. From [27,

Lemma 2], we conclude that every two actions of

different processes in hs1; �1; . . . ; �i; sni are independent.

Therefore, by successively permuting pairs of adjacent

independent transitions we can convert � to a new path

s ¼ s0 �!	

�01;�
0
2;...;�n

s0n ¼ ðim0; sp0Þ. From [27, Corollary 1],

im0 ¼ q. As all actions except �n are invisible, sp0 ¼ ;
and thus sn ¼ s0n. So s!	 ðq; ;Þ.

Case 2. �i 6¼ �n. From [27, Lemma 2], we conclude that
every two actions of different processes in hs0; �1; . . . ;
�i; sii are independent. Therefore, by successively
permuting pairs of adjacent independent transitions we
can convert � to a new path hs ¼ s0; �

0
1; �

0
2; . . . ; �0n; s

0
n ¼

ðim0; sp0Þi that begins with jpjj actions of Pj. From [27,
Corollary 1], im0 ¼ q. Since every permuted action is
invisible, s0n ¼ sn. According to the definition of !	 ,
s0 !	 s

0
jpjj. From the induction hypothesis, we get

s0jpjj !	 sn. From pseudotransitivity in [27], s0 !	 sn,
i.e., s!	 ðq; ;Þ. tu

Furthermore, if a state that violates linearizability is
reached by a path in Cartesian semantics, it is straightforward

to show this path also exists in standard semantics. Therefore,
the following theorem can be established to guarantee the
correctness of applying Cartesian partial order reduction to
linearizability checking.

Theorem 7. A linearizability violated state is reachable in
standard semantics if and only if it is also reachable in
Cartesian semantics.

Algorithm 4.4 is an on-the-fly linearizability checking
algorithm with Cartesian partial order reduction. The
underlined text shows the differences compared with
Algorithm 4.1. Given X 2 Sd and an action �, the function
execðX;�Þ returns the successor state of executing � from
X, i.e., execðX;�Þ ¼ X0, such that X !� d X

0. Given a path
� ¼ hs ¼ s0, �1; �2; . . . ; �n; sni of a Cartesian vector 	ðsÞ, we
use lastActionð�Þ to denote �n and lastStateð�Þ for sn. To
prevent 	ðsÞ from generating infinite paths, 	ðsÞ stops
extending a path once a loop has been detected and marks
such a path as infinite. An infinite path from s can only
contain invisible actions since any visible action ends the
path as required. Therefore, this path is removed from
linearizability checking.

Algorithm 4.4. Linearizability checking algorithm with

partial order reduction

Procedure linearizability_por ðLim; LspÞ
1: checked :¼ ;;
2: pending:pushððinitim; ��ðinitspÞÞÞ;
3: while pending 6¼ ; do

4: ðim; spÞ :¼ pending:popðÞ;
5: checked :¼ checked [ fðim; spÞg;
6: if sp ¼ ; then

7: return false

8: end if

9: for all p 2 	ðimÞ do

10: if p is not marked as infinite then

11: im0 ¼ lastStateðpÞ;
12: sp0 ¼ execðsp; lastActionðpÞÞ;
13: if ðim0; sp0Þ 62 checked then

14: pending:pushððim0; sp0ÞÞ;
15: end if

16: end if

17: end for

18: end while

19: return true

As shown above, the key step of this approach is to
calculate the Cartesian vector for each visited state. So we
describe an execution of Cartesian function 	 from the
initial state of the concurrent stack example in the following
steps. We refer to the two sequences of transitions found for
a state as a Cartesian vector for that state. The transitions
enclosed in braces are executed atomically.

At the beginning, because the first actions of both
processes are invocation actions, which are visible, each
sequence of the Cartesian vector only contains its
invocation action.

After finding the two sequences, we nondeterministi-
cally pick one of them. For example, suppose we first
execute push inv:1. At the resultant state ðs3; t3Þ, the
Cartesian vector is:
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p1 : push inv:0;

p2 : ss :¼ H; fH :¼ H þ 1; ss :¼ H; g; push res:1:1:

Again, we nondeterministically pick one of these sequences
and execute it entirely without a context switch. Suppose
we choose to execute push inv:0 and get to the state ðs4; t4Þ.
The Cartesian vector is:

p1 : ss :¼ H; fH :¼ H þ 1; ss :¼ H; g;
p2 : ss :¼ H
Notice that the statement in p2 is dependent on the

statement fH :¼ H þ 1; ss :¼ H; g in p1:

If we let process 1 first execute its sequence from ðs4; t4Þ,
then at the resultant state ðs29; t4Þ the Cartesian vector is:

p1 : push res:0:1;

p2 : ss :¼ H; fH :¼ H þ 1; ss :¼ H; g; push res:1:2:

Hence, in this way, the Cartesian semantics saves nine
transitions and avoids storing 13 states, indicated by dashed
line as illustrated in Fig. 3.

4.4 Combining Symmetry Reduction and Partial
Order Reduction

The combination of symmetry reduction and partial order
reduction was first studied by Emerson et al. [22]. They
proposed an abstract framework for combining these two
reduction techniques based on both preserving simulation
relations, and provided model checking algorithms for
LTL-X and CTL*-X formula with simultaneous symmetry
and partial order reductions. Iosif [33] later adopted the
above algorithms for dynamic programs in which processes
and objects are created and destroyed with their on-going
executions.

In this section, we present an on-the-fly linearizability
checking algorithm (presented in Algorithm 4.5) that
combines symmetry reduction and Cartesian partial order
reduction simultaneously. There are two main reasons why
we design our own approach to combining symmetry
reduction and partial order reduction. One is due to the
difference between classical temporal logic and refinement
model checking. Their checking algorithms are different.
Further, the expressive power of LTL and refinement is
different. The relationship between refinement checking
and LTL model checking has been studied before [36], [39].
On one hand, refinement can specify properties which
cannot be specified using LTL, like “an a happens in every
other state” [62]. On the other hand, any LTL property can
be captured by refinement checking. In [36], Leuschel et al.
proposed an translation from LTL to CSP processes via
Bücci automata with some special treatment. The downside
of this approach is discussed in [44], “this approach is not
that useful in practice (because the complexity is on the
wrong side of the refinement check for FDR to be efficient,
and because it requires several tools to be applied in
sequence).” Thus, two methods are not interchangeable; one
cannot replace the other. The other reason is that the partial
order reduction approach applied in our setting is different
from the two related work. We use Cartesian partial order
reduction, which [22] and [33] use static approaches based

on ample sets. We need to find a Cartesian function that
works on the symmetry-reduced LTS instead of an ample
function for each state [9]. Due to this diversity, the
previous combination approaches do not suit it well for
our refinement checking.

Algorithm 4.5. Linearizability checking algorithm with
symmetry reduction and partial order

reduction

Procedure linearizability_both ðLim; LspÞ
1: checked :¼ ;;
2: pending:pushððinitim; ��ðinitspÞÞÞ;
3: while pending 6¼ ; do

4: ðim; spÞ :¼ pending:popðÞ;
5: checked :¼ checked [ fðim; spÞg;
6: if sp ¼ ; then

7: return false

8: end if

9: for allp 2 	ðimÞ do

10: if p is not marked as infinite

11: im0 ¼ lastStateðpÞ;
12: ðrepIm0; h�0; �1; :::; �niÞ ¼ Repðim0Þ;
13: sp0 ¼ execðsp; lastActionðpÞÞ;
14: if 80 � i � n : ðrepIm0;�iðsp0ÞÞ 62 checked then

15: pending:pushððrepIm0; �0ðsp0ÞÞ;
16: end if

17: end if

18: end for

19: end while

20: return true

The correctness of Algorithm 4.5 is established in the
following theorem.

Theorem 8. Algorithm 4.1 finds a linearizability violated
state ðq; ;Þ if and only if Algorithm 4.5 finds ðRepðqÞ; ;Þ.

Proof (Necessary Condition). Suppose Algorithm 4.1 finds
a path � that reaches s ¼ ðq; ;Þ. If j�j ¼ 0, it is trivial that
the claim holds. Otherwise, given a path � of length n of
the form hs0 ¼ ðinitim; initspÞ; �1; s1; �2; . . . ; sn ¼ ðq; ;Þi,
we shall prove that there exists a path � generated by
Algorithm 4.5 that reaches ðRepðqÞ; ;Þ.

By Theorem 6, there exists a path �c of the form hs00 ¼
ðinitim; initspÞ; �01; s01 ¼ ðim1; sp1Þ; �02; . . . ; s0n ¼ ðq; ;Þi with
Cartesian semantics (but not omitting the intermediate
actions and states of legal paths) that reaches s. By
Theorem 4, there exists a repPair-twisted path �r of the
form hs000 ¼ ðRepðinitimÞ; RepðinitspÞÞ; �01; �1; ðRepðim1Þ;
�1ðsp1ÞÞ, �1ð�02Þ; . . . ; s00n ¼ ðRepðqÞ; ;Þi. For any state s0k of
�c that is the first state of some legal path hs0k; �0kþ1;

s0kþ1; . . . ; �0kþt; s
0
kþti, for state �ðs0kÞ where � 2 G, its legal

path is h�ðs0kÞ; �ð�0kþ1Þ; �ðs0kþ1Þ; . . . ; �ð�0kþtÞ; �ðs0kþtÞi. Then,
we can create a path � of the form hs0; �1; s1; . . . ; sni from
�c and �r in the following way: For all 0 � i � n, if s0i ¼
ðimi; spiÞ is the first state of some legal path hs0i; �0iþ1;

s0iþ1; . . . ; �0iþt; s
0
iþtff, (in this case s00i ¼ ðRepðimiÞ ¼ 
iðimiÞ;


ðspiÞÞ where 
 ¼ �i�i�1 . . . �1), then for all 0 < m < t,
siþm ¼ 
ðs0iþmÞ, �iþmþ1 ¼ 
ð�0iþmþ1Þ, si ¼ s00i , and siþt ¼
s00iþt . So � is a path generated from Algorithm 4.5. Since
s00n must be the last state of some legal path, sn ¼ s00n.
Hence, Algorithm 4.5 finds ðRepðqÞ; ;Þ via �.
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Sufficient condition. Suppose Algorithm 4.5 finds a
path � that reaches s ¼ ðRepðqÞ; ;Þ. If j�j ¼ 0, it is trivial
that the claim holds. Otherwise, suppose that � ¼
hs0; �1; s1; . . . ; �n; sn ¼ si where n > 0. Any state in �
must be either the first state of some legal path, or any
state between the first and the last ones exclusively in the
path with Cartesian semantics. Pick any state si that is
the first state of some legal path �i ¼ hsi; �iþ1; siþ1; . . . ;
�iþt; siþti; by Lemma 2, there exists a repPair-twisted
path �0i ¼ hs0; �1; �1; s1; . . . ; �i; si; �iþ1; siþ1; . . . ; �iþt; siþti
where for all 0 � m � t: siþm ¼ repPairðsiþmÞ and for
all 0 < k � t: �iþk ¼ repPairð�iþkÞ. Because si and siþt
are the first and last states of �i, respectively, si ¼
repPairðsiÞ ¼ si and siþt ¼ repPairðsiþtÞ ¼ siþt. Then,
we replace �i by hsi; �iþ1; siþ1; . . . ; �iþt; siþti. We continue
to replace each legal path in � in this way and get a
repPair-twisted path that ends at ðRepðqÞ; ;Þ. Therefore,
by Theorem 4, Lim wT Dsp has a path that ends at ðq; ;Þ.
So the claim holds. tu

5 EXPERIMENTS

We have implemented our method in the PAT model

checker [51] and applied it to a number of concurrent

algorithms, including register—the K-valued register algo-

rithm12 in Section 3, counter—the concurrent counter

algorithm presented in Example 2, queue—a concurrent

nonblocking queue algorithm in [42, Fig. 3], buggy queue—an

incorrect queue algorithm [47] and SNZI—the first algo-
rithm for scalable nonzero indicators [20]. The processes
accessing the concurrent data structures are modeled as
calling all possible operations nondeterministically. Table 1
summarizes part of our experiments, where “-” means our
implementation ran out of memory, “(points)” means that
linearization points are given, and “Gain” means the
relative improvement on the number of states and time
consumed brought by the combination of symmetry
reduction and partial order reduction. All relevant experi-
ment information is available online [1].

From Table 1, we can see that the number of states and

running time increase rapidly with data size and the

number of processes. This is not surprising because model

checking linearizability is in EXPSPACE for both time and

space [2]. When linearization points are known, the

complexity is still EXPSPACE, but the state space reduces

significantly since the state spaces of implementation and

specification are smaller. This is reflected from the stack

examples with linearization points in Table 1.
From Table 1, we can see that the number of states and

running time increase rapidly with data size and the
number of processes. The results conform to theoretical
results [2]: Model checking linearizability is in EXPSPACE

for both time and space. When linearization points are
known, the complexity is still EXPSPACE, but the state space
reduces significantly since the state spaces of implementa-
tion and specification are smaller. This is reflected from the
counterexamples with linearization points in Table 1. The
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Experiment Results on a Server with Intel Xeon 4-Core CPU*2 and 32 GB Memory

12. We extend this example with multiple k readers and a single writer.
The correctness is verified using PAT.



consumed memory and time for the 4-valued register
algorithm are plotted in Fig. 4, those for the counter
algorithm of size 4 are in Fig. 5, and those for the counter
algorithm of size 4 with given linearization points are in

Fig. 6. For the case of the same algorithm and the same
number of processes, data are not available for some
checking algorithms as the memory consumptions for
running them were beyond the limit of our server.
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Fig. 4. Performance comparison for the 4-valued register algorithm.

Fig. 5. Performance comparison for the stack algorithm of size 4.

Fig. 6. Performance comparison for the stack algorithm of size 4 with given linearization points.



As can be seen from the figures, compared with the
original algorithm, the rates of increase for used memory by
the symmetry reduction, partial order reduction, and their
combination algorithms decrease significantly. Symmetry
reduction outperforms partial order reduction in line with
the increasing number of processes. The combining has the
lowest rate of memory increase. Further, it can be seen from
the table that the combination reduces the number of states
by more than 95 percent on average. Since the bottleneck in
this verification task is the memory consumption, the
significant improvement brought by the combination
postpones the manifestation of the state space explosion
problem till deeper levels and therefore allows the verifica-
tion to complete for some cases that could not complete
before, e.g., seven processes for 4-valued register and six
processes for counter of size 7.

On the other hand, the improvement on used time of
symmetry reduction, partial order reduction, and their
combination is not as desirable as that on used memory.
Symmetry reduction sometimes improves the running time
and sometimes not. So does partial order reduction. The
computational overhead of symmetry reduction stems from
checking whether the representative state of the orbit of a
visited state has been explored. For each state, we generate
all of its automorphisms and pick the lexicographically
smallest state as the canonical representative. Thus,
calculating canonical representative states is costly if there
are a large number of automorphisms. Take the counter
algorithm with linearization points of size 4 as an example.
The 7-process case has seven times the number of
automorphisms of the 6-process case, which slows down
the linearizability checking a lot. The overhead of partial
order reduction is due to dependency analysis between
transitions of different processes at each exploration step.
Although symmetry reduction (or partial order reduction)
by itself does not always improve running time, their
combination provides additional improvement, and thus
the overall overhead is well compensated by the time we
save by combining the two reductions in most cases.

As a result, the combination of both techniques works
better than both of them applied in isolation for most cases.
This reflects the fact that symmetry and partial order
reductions are two orthogonal strategies and can comple-
ment each other. The experiments show that our optimiza-
tion approach can significantly save time and space for
demonstrating absence of errors and at the same time it
does not sacrifice the capability of detecting bugs.

When the linearizability checking fails, a counterexample
trace is returned. In the buggy queue example, after
analyzing the counterexample trace, it suggests that the
dequeued data item is not the first one in the queue, which
violates the sequential specification of the queue object.

Experiments suggest that PAT is faster than FDR for
systems without variables [49], [61]. Modeling variables
using processes and lack of partial order and symmetry
reductions will make FDR even slower. Therefore, we skip
comparison with FDR on these examples.

6 RELATED WORK

Formal verification of linearizability has been studied
extensively since linearizability is a central property for

the correctness of concurrent algorithms. We discuss and
compare with previous approaches in the literature.

Manual proofs. Herlihy and Wing [31] coin the notion of
linearizability and present a methodology for verifying
linearizability by defining a function that maps every state
of a concurrent object to the set of all possible abstract values
representing it. Vafeiadis et al. [56] show how to apply a
rely-guarantee reasoning approach to verifying lineariz-
ability for a family of linked list implementations of a set that
employ various fine-grained synchronization techniques.
Neither approach requires statically determined lineariza-
tion points, but these manual proofs typically involve a long
and repetitive process and require strong expertise on the
specific algorithms. Further, there is a great possibility of
making subtle mistakes which are difficult to identify.

Using theorem provers. Much work has been done on
proofs using theorem provers [19], [10], [11], [13], [12]. In
these works, Input/Output automata (IOA) are used to
model (correct) abstract data structures and concrete
implementation algorithms. Linearizability is proven by
showing a simulation relation between the abstract auto-
mata and implementation automata. The simulation rela-
tion is defined in two parts: an abstraction relation relating
the abstract and concrete object values, and a step
correspondence relating the abstract and concrete program
counter values. The proofs have been mechanized using the
PVS theorem prover and a number of theories that embody
IOA definitions.

Derrick et al. describe a modular approach to establish-
ing linearizability in [15], [14], [16]. Their approach has two
parts. First, a generic theory is introduced that encodes
linearizability as a special case of data refinement. Local
proof obligations for each process are derived based on the
theory, and mechanically checked via the KIV theorem
prover to make sure that they are sufficient to guarantee
linearizability. Second, in practice, a forward simulation
relation is built between the concrete and abstract imple-
mentations to prove data refinement. How to construct
algorithm-specific simulation conditions is demonstrated
through the lock-free stack algorithm taken from [10] and
the lock-coupling list-based set algorithm taken from [56].
Still, this approach requires that linearization points be
statically identified. There are known algorithms which do
not satisfy this requirement. This motivates their very
recent work [17], which handles the case that a concrete
operation mapped to an abstract read-only operation may
have linearization points outside the process executing it.

However, theorem prover-based approaches are not
fully automatic, e.g., conversion to IOA and use of a
theorem prover like PVS require strong expertise. Move-
over, they constrain the positions of linearization points and
thus cannot be applied to all cases. Therefore, an often cited
drawback of theorem provers is that they require a great
amount of human effort, which hinders their widespread
adoption and usage. On the positive side, such tools can
reason about infinite state spaces and complicated data
structures in a much more effective way than model
checking, such that they can guarantee correctness of an
algorithm in all possible scenarios.
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Static analysis. Amit et al. [3] present a static analysis for
verifying linearizability of concurrent unbounded linked
data structures using a shape difference abstraction that
tracks the difference between two heaps. This approach
simultaneously analyzes the concurrent implementation
and an executable sequential specification (i.e., a sequential
implementation). The two implementations manipulate two
disjoint instances of the data structure. The analysis
maintains a partial isomorphism between the memory
layouts of the two instances. There are several limitations
for this approach:

1. every concurrent operation has a (specified) fixed
linearization point;

2. the approach verifies linearizability for a fixed but
arbitrary number of threads;

3. the approach assumes a garbage collected
environment;

4. this approach works well if the concrete heap and
the abstract heap have almost identical shapes.

Later, Manevich et al. [41] improved the shape analysis
above to handle a larger number of threads. The key idea is
to abstract the global heap by decomposing it into (not
necessarily disjoint) subheaps, abstracting away some
correlations between the subheaps. Decomposition allows
reusing subheaps that were decomposed from different
heaps, thus representing a set of heaps more compactly
(and more abstractly). The resultant algorithm is exponen-
tially faster than the one in [3], being polynomial in the
number of threads. Our initial empirical results confirm that
our algorithm is able to prove linearizability with 20 threads,
10 times more than in [3]. Recently, Berdine et al. [6] further
extend this direction to handle an unbounded number of
threads. Their algorithms are based on a new abstract
domain whose elements represent thread-quantified invar-
iants, i.e., invariants satisfied by all threads. We exploit
existing abstractions to represent the invariants. As a result,
our technique lifts existing abstractions by wrapping
universal quantification around elements of the base
abstract domain.

Vafeiadis [54] further improves this solution to allow
linearization points in different threads. Their main
limitation, like manual approaches, is that users need to
provide linearization points, which are unknown for some
algorithms.

This motivates Vafeiadis’s work [55] on automating the
entire verification process. That work defines the execution
of a concrete operation, which maps to the execution of an
abstract read-only operation, as a pure execution. It assumes
that the linearization points with intrinsic conditions or
residing within other processes can appear only in a pure
execution, similarly to [17]. For each pure execution, a
linearizability checker is instrumented into each program
point of all processes; for other executions, a checker is
instrumented to monitor only the statements of the
currently executing process. Then, an abstract interpreter
is used to check linearizabilty violations.

Model checking. Vechev and Yahav [58] provide two
methods for linearizability verification using model check-
ing techniques.

The first method explores, for every history, all possible

linearizations, trying to find one that satisfies the sequential

specification. Hence, its worst-case time is exponential in

the length of the history as it may have to try all possible

permutations of the history. As a result, the number of

operations they can check is only 2 or 3. In contrast, our

approach handles all possible interleaving of operations

given sizes of the shared objects. Because of partial order

reduction and symmetry reduction, our approach is more

scalable than theirs. The second method requires algorithm-

specific user annotations for linearization points, which

makes it easy to check whether it satisfies the sequential

specification. Hence, this method scales better than the first

one. However, it is not generic because not all algorithms

have explicit linearization points.
Burckhardt et al. [7] present an automatic linearizability

checker Line-Up based on the stateless model checker

CHESS. Given a deterministic sequential specification, Line-

Up is complete but only sound with respect to given inputs.

Meanwhile, they generalize the notion of linearizability to

handle blocked execution histories.
A new technique designed for concurrent linked-list

implementations has been proposed by Cern�y et al. [8]. A

common pattern in these implementations is that a list entry

has a data value from an infinite domain equipped only

with the equality and order testing. This pattern makes it

possible to represent list content as a data word in automata

theory. Cern�y et al. reduce the problem of verifying

linearizability to the reachability problem of method

automata, which simulate how the operations manipulate

a concurrent object. They prove that linearizability is

decidable for a bounded number of operations. The upside

of their approach is that it allows a concurrent object to be

stored in a singly linked unbounded heap where the

element stored in each location comes from an unbounded

data domain; the downside is that it is only capable of

checking the executions of two fixed operations due to the

severe state explosion problem.
As a coin has two sides, model checking approaches

have virtues and limitations. They significantly relax the

requirement on user expertise and effort. Most of them do

not rely on the knowledge of linearization points nor do

they require users to come up with hints to the algorithm in

question. The limitation is that the infamous state explosion

problem cripples their ability to guarantee the correctness

without bounding the data structures and processes in

parallel. Our reduction approach clearly does not eliminate

the state explosion problem, yet it postpones its manifesta-

tion till deeper levels.
In terms of modeling of linearizability, our approach is

based on the trace refinement of LTSs, which is similar to [2].

Our refinement checking algorithm is related to existing on-

the-fly behavioral equivalence and preorder checking algo-

rithms (e.g., [45], [18]). The nonatomic refinement defined in

[14] separates the data explicitly as state-based formalism

Object-Z. That modeling requires the knowledge of lineariza-

tion points, and also prevents automatic verification techni-

ques such as model checking from being used.
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7 CONCLUSION

In this work, we studied the formal verification of
linearizability using model checking techniques. The key
idea of this work is to construct a linearizable specification
and express linearizability as the trace refinement relation
between the specification and the target concurrent algo-
rithm. Based on whether the linearization points are known
or not, we defined two ways of using refinement relations
to express linearizability. Based on these definitions, we
developed a model checking algorithm for linearizability
verification. To further improve the performance, two
reduction techniques were proposed, i.e., dynamic partial
order reduction and symmetry reduction. Furthermore, we
proved that these two reductions are orthogonal to each
other and can be applied together. Experimental results
showed that our approach is capable of verifying practical
algorithms including two recent algorithms: the mailbox
problem and scalable nonzero indicators. This work is the
first published formal verification for them. The effective-
ness of the optimizations is confirmed by the experiments,
and combining the two optimizations can achieve better
reduction in general. Compared with other model checking
linearizability works, our approach requires no knowledge
of linearization points, but can significantly speed up the
verification if linearization points are given. We have also
built the algorithms in a practical model checker, PAT.

The main drawback for our approach is that model
checking can only work if the target system has a finite
number of states, which limits our approach to working
with bounded data structure and finite number of threads.
To tackle this problem, several directions are possible. First,
one can use abstraction techniques to reduce an infinite
number of threads to a small number, e.g., process counter
abstraction. The challenge here is how to find the right level
of abstraction and detect spurious counterexamples. Sec-
ond, shape analysis has been proven to be a successful
static analysis technique for verifying linearizability. We
plan to look at the possibility of incorporating this
technique in our model checking to handle unbounded
data size. The main idea is to use shape analysis as a kind of
data abstraction method to reduce an unbounded data
structure to finite shapes. The challenge is to prove that the
abstraction is sound.

APPENDIX

CARTESIAN FUNCTION

Let P1; P2; . . . ; Pk be the processes of the concurrent object
algorithms; �i denotes the action executed by process Pi.

Algorithm A.1. Algorithm for calculating cartesian vectors

on Lim
Procedure 	ðsÞ

1: for all s!�i s0 2 Tim do

2: add �i and s
0 to CV ½i�;

3: end for

4: extendable :¼ f1; . . . ; ng;
5: for all i 2 f1; . . . ; ng : lastActionðCV ½i�Þ is visible do

6: extendable :¼ extendable� fig;
7: end for

8: for all i; j 2 extendable : i 6¼ j ^ lastActionðCV ½i�Þ
is dependent on last ActionðCV ½j�Þ do

9: extendable :¼ extendable� fi; jg;
10: end for

11: while extendable 6¼ ; do

12: pick any i 2 extendable;
13: s :¼ lastStateðCV ½i�Þ;
14: ð�i; s0Þ :¼ nextTransðs; iÞ;
15: if 9j 6¼ i : �i is dependent on some action in CV ½j�

ðother than the lastÞ then

16: extendable :¼ extendable� fig;
17: else

18: for all j 6¼ i : �0i is dependent on

last ActionðCV ½j�Þ do

19: extendable :¼ extendable� fi; jg;
20: end for

21: if s0 2 CV ½i� ^ i 2 extendable then

22: mark CV ½i� as infinite;
23: extendable :¼ extendable� fig;
24: end if

25: if �i is visible ^ i 2 extendable then

26: extendable :¼ extendable� fig;
27: end if

28: add �i and s
0 to CV ½i�;

29: end if

30: end while

31: return CV

Helper function:

nextTransðs; iÞ ¼ ð�i; s0Þ : s!�i s0 2 Tim
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