
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2013

Modeling and verifying hierarchical real-time systems using Modeling and verifying hierarchical real-time systems using

stateful timed CSP stateful timed CSP

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Jin Song DONG

Yan LIU

Ling SHI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
SUN, Jun; LIU, Yang; DONG, Jin Song; LIU, Yan; SHI, Ling; and ANDRÉ, Étienne. Modeling and verifying
hierarchical real-time systems using stateful timed CSP. (2013). ACM Transactions on Software
Engineering and Methodology. 22, (1), 3:1-3:29.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4995

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4995&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jun SUN, Yang LIU, Jin Song DONG, Yan LIU, Ling SHI, and Étienne ANDRÉ

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4995

https://ink.library.smu.edu.sg/sis_research/4995

3

Modeling and Verifying Hierarchical Real-Time Systems Using
Stateful Timed CSP

JUN SUN, Singapore University of Technology and Design
YANG LIU, JIN SONG DONG, YAN LIU, LING SHI, and ÉTIENNE ANDRÉ, National
University of Singapore

Modeling and verifying complex real-time systems are challenging research problems. The de facto approach
is based on Timed Automata, which are finite state automata equipped with clock variables. Timed Automata
are deficient in modeling hierarchical complex systems. In this work, we propose a language called Stateful
Timed CSP and an automated approach for verifying Stateful Timed CSP models. Stateful Timed CSP is
based on Timed CSP and is capable of specifying hierarchical real-time systems. Through dynamic zone
abstraction, finite-state zone graphs can be generated automatically from Stateful Timed CSP models, which
are subject to model checking. Like Timed Automata, Stateful Timed CSP models suffer from Zeno runs,
that is, system runs that take infinitely many steps within finite time. Unlike Timed Automata, model
checking with non-Zenoness in Stateful Timed CSP can be achieved based on the zone graphs. We extend
the PAT model checker to support system modeling and verification using Stateful Timed CSP and show its
usability/scalability via verification of real-world systems.

General Terms: Algorithms, Languages, Verification

Additional Key Words and Phrases: Stateful Timed CSP, Zone Abstraction, Non-Zenoness, PAT

ACM Reference Format:
Sun, J., Liu, Y., Dong, J. S., Liu, Y., Shi, L., and André, É. 2013. Modeling and verifying hierarchical real-time
systems using stateful timed CSP. ACM Trans. Softw. Eng. Methodol. 22, 1, Article 3 (February 2013), 29
pages.
DOI = 10.1145/2430536.2430537 http://doi.acm.org/10.1145/2430536.2430537

1. INTRODUCTION

The correctness of safety-critical computer-based systems is crucial. Real-world sys-
tems often depend on quantitative timing. Modeling and verification of real-time sys-
tems are challenging research topics that have important practical implications. The
choice of language for real-time system modeling is an important factor in the success
of the entire system analysis or development. The language should cover facets of the
requirements and the model should reflect a system intuitively and exactly (up to ab-
straction of irrelevant details). It should have a semantic model suitable to study the
behaviors of the system and to establish the validity of desired properties.

Many languages have been proposed to model real-time systems, for instance, al-
gebra of timed processes [Nicollin and Sifakis 1994], Timed CCS [Yi 1991], Timed
CSP [Schneider 2000], etc. The most popular one is Timed Automata [Alur and Dill
1994; Lynch and Vaandrager 1996] and its variant Timed Safety Automata [Henzinger
et al. 1994]. Timed Automata are finite state automata equipped with real-valued

This article is a significant extension of Sun et al. [2009b].
Author’s address: J. Sun; email: sunjunhqq@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1049-331X/2013/02-ART3 $15.00

DOI 10.1145/2430536.2430537 http://doi.acm.org/10.1145/2430536.2430537

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:2 J. Sun et al.

clocks. They are powerful as they allow explicit representation of real-time through the
manipulation of clock variables. Real-time constraints are captured by clock constraints
on system transitions, setting or resetting clocks, etc. Verification tools for Timed Au-
tomata based models have proven to be successful, for instance, UPPAAL [Larsen et al.
1997], KRONOS [Bozga et al. 1998].

Models based on Timed Automata often have a simple structure. For instance, the
input models of the popular UPPAAL checker are networks of Timed Automata with no
hierarchy. While a simple structure may lead to efficient model checking, it may not be
ideal as designing and verifying hierarchical complex real-time systems are becoming
an increasingly urgent task due to the widespread applications and increasing complex-
ity of real-time systems. High-level requirements for real-time systems are often stated
in terms of deadline, timeout, and timed interrupt [Lai and Watson 1997; Dong et al.
1999; Lindahl et al. 2001]. In practice, system requirements are often structured into
phases, which are then composed in many different ways. Unlike Statecharts equipped
with clocks [Harel and Gery 1997] or timed process algebras [Nicollin and Sifakis 1994;
Yi 1991; Schneider 2000], Timed Automata lack high-level compositional patterns for
hierarchical design. Users often need to manually cast high-level requirements into
a set of clock variables with carefully calculated clock constraints. This process is te-
dious and error-prone. On the other hand, real-time system modeling based on timed
process algebras often suffers from lack of language features (e.g., shared variables) or
automated tool support.

In this work, we propose an alternative approach to model and verify real-time
systems. In particular, we make the following technical contributions.

—We propose a language named Stateful Timed CSP to model hierarchical real-time
systems. Stateful Timed CSP extends Timed CSP [Schneider 2000] with language
constructs to manipulate data structures in order to support real-world applica-
tions easily. More important, it supports a rich set of timed process constructs
to capture timed system behavior patterns, for instance, delay, deadline, timeout,
timed interrupt, etc.

—We develop a fully automatic method to model check Stateful Timed CSP models.
Different from Timed Automata, Stateful Timed CSP relies on implicit clocks. For
instance, a process that has a deadline is intuitively written as P deadline[d]. Intu-
itively speaking, an implicit clock starts ticking once process P is activated (i.e., P
has the control and is ready to perform some action) and P must terminate when
its reading is d. As a result, abstraction and verification techniques designed for
Timed Automata are not directly applicable. Inspired by the previous work on zone
abstraction [Dill 1989], we propose dynamic zone abstraction. The idea is to dynami-
cally create/prune clocks (only if necessary) to capture constraints introduced by the
timed process constructs. We prove that dynamic zone abstraction produces an ab-
stract model, that is, a zone graph, which is both finite-state and property preserving,
so that it is subject to temporal logic based model checking or refinement checking.

—We develop an approach to verify Stateful Timed CSP models with the assumption
of non-Zenoness, that is, infinitely many steps always take infinite time. Zeno exe-
cutions are unrealistic for obvious reasons and therefore must be ruled out during
verification. In the setting of Timed Automata, it is nontrivial to decide if a run of the
zone graph corresponds to a non-Zeno run [Tripakis 1999; Herbreteau et al. 2010].
We show that the zone graph in our setting can be used to detect non-Zeno runs so
that we can verify Stateful Timed CSP models with the assumption of non-Zenoness.

—Last, we enhance the PAT model checker [Sun et al. 2009a; Liu et al. 2011] with
the techniques and show its usability via modeling of complex systems as well as
automated verification of real-world and benchmark systems.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:3

The remainder of the article is organized as follows. Section 2 presents relevant def-
initions. Section 3 presents the syntax and operational semantics of Stateful Timed
CSP. Section 4 presents dynamic zone abstraction. Section 5 discusses how to per-
form model checking with the assumption of non-Zenoness. Section 6 discusses our
implementation in the PAT model checker. Section 7 reviews related work. Section 8
concludes the work and discusses future research direction.

2. PRELIMINARIES

Let R+ denote the set of nonnegative real numbers. Throughout the article, τ denotes
an unobservable event; � denotes the special event of process termination; ε ∈ R+
denotes the event of idling for exactly ε time units; � denotes the set of observable
events such that τ �∈ � and � ∈ �; �τ = � ∪ {τ }. Furthermore, the following naming
convention is adopted: e ∈ � denotes an observable event; a ∈ �τ denotes an observable
event or τ ; x ∈ �τ ∪ R+.

Definition 2.1. A labeled transition system (LTS) is a tuple L = (S, init, �τ , T)
where S is a set of states; init ∈ S is an initial state and T : S × �τ × S is a labeled
transition relation.

L is finite if and only if S is finite. Without loss of generality, we assume that an LTS
is always reduced so that every s ∈ S is reachable from init. We write s

x→ s′ to denote
(s, x, s′) ∈ T when T is clear from the context. An event a is enabled at state s if there
exists s′ such that s

a→ s′. State s is a deadlock state if and only if there is no enabled
events at s. A run of L is a sequence of alternating states/events 〈s0, a0, s1, a1, . . .〉 such
that s0 = init and si

ai→ si+1 for all i. The set of runs of L is written as runs(L).

Definition 2.2. A timed transition system (TTS) is a tuple T = (S, init, R+ ∪ �τ , T)
such that S is a set of states; init ∈ S is an initial state; T : S × (R+ ∪ �τ) × S is a
labeled transition relation.

There are two kinds of transitions in T , that is, event transitions s
a→ s′ and time transi-

tions s
ε→ s′. For simplicity, we write s

ε,a→ s′ or (s, (ε, a), s′) ∈ T to denote that there exists
s0 such that s

ε→ s0
a→ s′. State s is a deadlock state if and only if there do not exist ε, a

and s′ such that s
ε,a→ s′. A run of T is a sequence ρ of the form 〈s0, (ε0, a0), s1, (ε1, a1), . . .〉

such that s0 = init and si
εi ,ai→ si+1 for all i. Given ρ, we say that 〈s0, a0, s1, a1, . . .〉 is an

untimed run of T . The set of untimed runs of T is written as runs(T).

Definition 2.3. A run ρ = 〈s0, (ε0, a0), s1, (ε1, a1), . . .〉 is non-Zeno if and only if ρ is
infinite and (εi + εi+1 + · · ·) for all i is unbounded.

A run is Zeno if and only if it is not non-Zeno. That is, a run is Zeno if and only if it
contains infinitely many steps taken in a finite time interval. For obvious reasons, Zeno
runs are unrealistic. A TTS is nonempty if and only if it allows at least one non-Zeno run.

Definition 2.4. A time-abstract bisimulation relation between a TTS T =
(St, initt, �τ × R+, Tt) and an LTS L = (Su, initu, �τ , Tu) is a relation R ⊆ St × Su
satisfying the following condition.

C1. If (s0, s1) ∈ R and (s0, (ε, a), s′
0) ∈ Tt for some ε and a, then there exists s′

1 such that
(s1, a, s′

1) ∈ Tu and (s′
0, s′

1) ∈ R;
C2. If (s0, s1) ∈ R and (s1, a, s′

1) ∈ Tu for some s′
1, then there exists some ε and s′

0 such
that (s0, (ε, a), s′

0) ∈ Tt and (s′
0, s′

1) ∈ R;
C3. (initt, initu) ∈ R.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:4 J. Sun et al.

Fig. 1. Process constructs.

T time-abstract bisimulates L, written as T ≈ L, if and only if there exists a
time-abstract bisimulation relation between them. The following result is immediate,
that is, time-abstract bisimulation preserves untimed runs.

PROPOSITION 2.5. T ≈ L ⇒ runs(T) = runs(L).

3. SYNTAX AND OPERATIONAL SEMANTICS

In this section, we introduce Stateful Timed CSP, which is an extension of Timed CSP
proposed in Sun et al. [2009b].

3.1. Syntax and Informal Semantics

A Stateful Timed CSP model (hereafter a model) is a tuple S = (Var, initG, P) where
Var is a finite set of finite-domain global variables; initG is the initial valuation of the
variables and P is a timed process. A variable can be of a predefined type like Boolean,
integer, array of integers or any user-defined data type.1 Process P models the control
logic of the system using a rich set of process constructs. A process can be defined by the
grammar presented in Figure 1. For simplicity, we assume that P is not parameterized.

Process Stop does nothing but idling. Process Skip terminates, possibly after idling
for some time. Process e → P engages in event e first and then behaves as P. Note
that e may serve as a synchronization barrier, if combined with parallel composition.
In order to seamlessly integrate data operations, we allow sequential programs to
be attached with events. Process a{program} → P performs data operation a (i.e.,
executing the sequential program whilst generating event a) and then behaves as P.
The programmay be a simple procedure updating data variables (written in the form of
a{x := 5; y := 3}) or a complicated sequential program.2 A conditional choice is written
as if (b) {P} else {Q}. Process P|Q offers an (unconditional) choice between P and Q3.
Process P; Q behaves as P until P terminates and then behaves as Q immediately.
P\X hides occurrences of events in X. Parallel composition of two processes is written
as P‖Q, where P and Q may communicate via event synchronization (following CSP
rules [Hoare 1985]) or shared variables. Notice that if P and Q do not communicate

1Refer to PAT user manual on how to define a type in C# or Java.
2The detailed syntax for the sequential program can be found in PAT user manual.
3For simplicity, we omit external and internal choices [Hoare 1985] in the discussion.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:5

through event synchronization, then it is written as P ‖| Q, which reads as ‘P interleave
Q’. A process may be given a name, written as P =̂ Q, and then referenced through its
name. Recursion is allowed by process referencing. Additional process constructs (e.g.,
while or periodic behaviors) can be defined using the above.

In addition, a number of timed process constructs (marked with * in Figure 1) are
designed to capture common real-time system behavior patterns. Let d ∈ R+. Process
Wait[d] idles for exactly d time units. In process P timeout[d] Q, the first observ-
able event of P shall occur before d time units elapse (since process P timeout[d] Q
is activated). Otherwise, Q takes over control after exactly d time units. In process
P interrupt[d] Q, if P terminates before d time units, P interrupt[d] Q behaves ex-
actly as P. Otherwise, P interrupt[d] Q behaves as P until d time units and then Q
takes over. In contrast to P timeout[d] Q, P may engage in multiple observable events
before it is interrupted. Process P within[d] must react within d time units, that is,
an observable event must be engaged by process P within d time units. Urgent event
prefixing [Davies 1993], written as e � P, is defined as (e → P) within[0], that is, e
must occur as soon as it is enabled. In process P deadline[d], P must terminate within
d time units, possibly after engaging in multiple observable events. Notice that a timed
process construct is always associated with an integer constant d, which is referred to
as its parameter.

In the following, we apply Stateful Timed CSP to model two systems so as to show
that it is expressive enough to capture real-time systems.

Example. Let δ and ε be two constants such that δ < ε. Fischer’s mutual exclusion
algorithm is modeled as a model (V, vi, Protocol). V contains two variables turn
and counter. The former indicates which process attempted to access the critical
section most recently. The latter counts the number of processes accessing the
critical section. Initial valuation vi maps turn to -1 (which denotes that no process is
attempting initially) and counter to 0 (which denotes that no process is in the critical
section initially). Process Protocol is defined as follows.

Protocol =̂ Proc(0) ‖| Proc(1) ‖| · · · ‖| Proc(n)
Proc(i) =̂ if (turn = −1) { Active(i) } else { Proc(i) }
Active(i) =̂ (update.i{turn := i} → Wait[ε]) within[δ];

if (turn = i) {
cs.i{counter := counter + 1} →
exit.i{counter := counter − 1; turn := −1} → Proc(i)

} else {
Proc(i)

}
where n is a constant representing the number of processes. Process Proc(i) models a
process with a unique integer identify i. If turn is -1 (i.e., no other process is attempt-
ing), Proc(i) behaves as specified by process Active(i). In process Active(i), firstly turn
is set to be i (indicating that the i-process is now attempting) by action update.i. Note
that update.i must occur within δ time units (captured by within[δ]). Next, the process
idles for ε time units (captured by Wait[ε]). It then checks whether turn is still i. If so,
it enters the critical section and leaves later. Otherwise, it restarts from the beginning.

Quantitative timing plays an important role in this algorithm to guarantee mutual
exclusion, that is, mutual exclusion is not guaranteed if δ ≥ ε. One way to verify mutual
exclusion is to show that counter ≤ 1 is always true. We remark that the event names for
variable updates (e.g., update.i and cs.i and exit.i) not only improves readability but also
allows an alternative way of verification, that is, through trace refinement checking.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:6 J. Sun et al.

Example. A pacemaker is an electronic implanted device that functions to regulate
the heart beat by electrically stimulating the heart to contract and thus to pump blood
throughout the body. Quantitative timing is crucial to pacemaker. Common pacemakers
are designed to correct bradycardia, that is, slow heart beats. A pacemaker mainly
performs two functions, that is, sensing and pacing. Sensing is to monitor the heart’s
natural electrical activity, helping the pacemaker to gather information on the heart
beats and react accordingly. Pacing is when a pacemaker sends electrical stimuli, that
is, tiny electrical signals, to heart through a pacing lead, which starts a heartbeat. A
pacemaker can operate in many different modes according to the implanted patient’s
heart problem. A mode of the pacemaker is typically modeled as of the following form:
Heart ‖ Sensing ‖ Pacing where Heart models normal or abnormal heart condition;
Sensing and Pacing model the two functions. In the following, we present a simplified
model of the simplest mode, that is, the sense Atrial, pace Atrial, in Trigger (AAT)
mode.

The model contains one variable SA, which is a flag indicating whether it is necessary
to monitor atria (1 for necessary). Initially, SA is 0. The process is AAT , which is defined
as follows.

AAT =̂ Heart||Sensing||Pacing(LRI)
Sensing =̂ if (SA = 1) {

pulseA → senseA � Sensing
}
else {

pulseA → Sensing
}

Pacing(X) =̂ (senseA → paceA{SA := 0} → Skip) timeout[X] HelpPacing;
Wait[U RI];
(enableSA{SA := 1} � Pacing(LRI − U RI))

HelpPacing =̂ (stimu → paceA{SA := 0} → Skip) deadline[0],

where URI and LRI are two constants representing upper and lower rate interval, that
is, the fastest and slowest a normal heart can beat. For simplicity, we skip the details
of process Heart. Informally speaking, process Heart generates two events pulseA (i.e.,
atrium does a pulse) and pulseV (i.e., ventricle does a pulse) periodically for a normal
heart or with one of them missing once a while for an abnormal heart. Process Sensing
monitors heart pacing by synchronizing with Heart on pulseA. If SA is 1, it engages
in event senseA immediately once pulseA occurs. Initially, process Pacing awaits for
event senseA. If senseA occurs before X time units, action paceA occurs (and SA is
set to 0 so that sensing is paused for a while). If senseA is missing for X time units,
timeout happens and process HelpPacing is invoked. HelpPacing models the process
of the pacemaker generating an electrical stimuli (captured by event stimu) and then
performing action paceA. Note that HelpPacing must terminate before 0 time unit
(captured by deadline[0]), which means that it must immediately perform event stimu
and action paceA. Next, Wait[URI] occurs and later sensing is turned on again for the
next circle.

At the top level, the pacemaker model is a choice of 16 different modes. Each mode
is a parallel composition of the three components. Each component may have inter-
nally hierarchies due to complicated sensing and pacing behaviors. We skip the details
[Barold et al. 2004]. The complete pacemaker model can be found at [Sun et al.].

3.2. Formal Operational Semantics

In order to define the operational semantics of Stateful Timed CSP, we define the notion
of a configuration to capture the global system state during the system execution, which

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:7

is referred as a concrete configuration. This terminology distinguishes the notion from
the state space abstraction and abstract configurations that will be introduced later. A
concrete system configuration is a pair (V, P) where V is a variable valuation function
and P is a process. For simplicity, an empty valuation is written as ∅. A transition of
the system is in the form (V, P)

x→ (V ′, P ′) where x ∈ �τ ∪ R+, that is, a transition is
labeled with an event in �τ or a number in R+.

The operational semantics is defined systematically by associating a set of firing
rules with each and every process construct. The firing rules associated with the timed
process constructs are presented as examples in Figure 2.

—Rules wait1 and wait2 define the semantics of Wait[d]. Rule wait1 states that the
process may idle for an arbitrary amount of time ε such that ε ≤ d. Afterwards,
Wait[d] becomes Wait[d − ε] and the variable valuation is unchanged. Rule wait2
states that the process becomes Skip via a τ -transition whenever d is 0.

—Rules to1 to to4 define P timeout[d] Q. Rule to1 states that if an observable event e
can be engaged by P, changing (V, P) to (V ′, P ′), then (V, P timeout[d] Q) becomes
(V ′, P ′) so that Q is discharged. That is, P has performed an observable event before
timeout occurs. Rule to2 states that if d is 0, Q takes over control by a τ -transition.
Rule to3 states that if P performs a τ -transition, then Q and timeout operator remain
(since an observable event is yet to be performed). Rule to4 states that if P may idle
for less than or equal to d time units, so does P timeout[d] Q.

—Rules ti1 to ti4 define P interrupt[d] Q. Rule ti1 states that if event a (which may
be observable or τ , but not �) can be engaged by P, changing (V, P) to (V ′, P ′), then
(V, P interrupt[d] Q) can perform a as well. In contrast to rule to1, the interrupt
operator remains. Intuitively, it states that before P is interrupted, P behaves freely.
Rule ti2 states that if P may idle for less than or equal to d time units, so does
P interrupt[d] Q. Rule ti3 states that if P terminates before being interrupted, then
the whole process terminates. Rule ti4 states that if d is 0, Q takes over control by a
τ -transition.

—Rules wi1 to wi3 define P within[d]. Rule wi1 states that if an observable event e
occurs, then within is discharged, as the requirement is fulfilled. In contrast, rule
wi2 states that if instead event τ occurs, then within remains. Rule wi3 states that
if P can idle for ε time units, so does P within[d] as long as ε ≤ d.

—Rules dl1, dl2 and dl3 define P deadline[d]. P deadline[d] requires P to terminate
(marked by �) before d time units. Rule dl1 states that P can do whatever it can
before the deadline is expired. Rule dl2 states that if P terminates, then deadline is
discharged. Rule dl3 states if P can idle for ε time units, so does P deadline[d] as
long as ε ≤ d.

The rest of the rules are similarly defined [Sun et al. 2009b]. We remark the rules are
an extension of the operational semantics in Schneider [1995]. In particular, we handle
data states and extend Schneider [1995] with rules for timed process constructs like
within and deadline.

The following can be established immediately.

PROPOSITION 3.1. (1) If (V, P)
ε→ (V ′, P ′), then V ′ = V . (2) If (V, P)

ε0→ (V ′, P ′) and
(V ′, P ′)

ε1→ (V ′′, P ′′), then (V, P)
ε0+ε1→ (V ′′, P ′′).

Intuitively speaking, (1) states that time transitions do not modify variables and (2)
states that consecutive time transitions can be accumulated.

Definition 3.2. Let S = (Var, initG, P) be a model. The concrete semantics of S,
denoted as TS , is a TTS (S, init, � ∪ R+, T) such that S is a set of reachable concrete

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:8 J. Sun et al.

Fig. 2. Concrete firing rules where e ∈ � and a ∈ �τ .

system configurations; init = (initG, P) is the initial configuration; and T satisfies
((V, P), x, (V ′, P ′)) ∈ T if and only if (V, P)

x→ (V ′, P ′).

4. DYNAMIC ZONE ABSTRACTION

TS always has infinitely many states, even when all variables have finite domains.
For instance, assume S = (∅, true, P) where there is no variable and P is defined

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:9

as P =̂ (a → (P|c → Skip)); (b → Stop), it can be shown that the set of runs of S
constitutes an irregular language [Hoare 1985]. We thus restrict ourselves to a subset
of models, which we refer as regular Stateful Timed CSP models. A Stateful Timed CSP
model S is regular if and only if P is a process expression constituted by finitely many
process constructs, for every reachable configuration (V, P) of TS4. Given a regular
model S, there may still be infinitely many states in TS because parameters of timed
process constructs in a process (e.g., d in Wait[d]) can take infinitely many different
values. Intuitively, the constants capture the reading of the implicit clocks associated
with the processes. In the following, we abstract the exact value of the constants by
dynamic zone abstraction (initially proposed in Sun et al. [2009b]) so as to generate a
finite-state abstraction. We extend Sun et al. [2009b] with a discussion on how Stateful
Timed CSP is different from Timed Automata semantically in the end of this section.

4.1. From Implicit Clocks to Explicit Clocks

In Stateful Timed CSP, clocks are implicitly associated with timed process constructs.
A clock starts ticking once a timed process becomes activated. Before applying zone
abstraction, we associate clocks with time processes explicitly so as to differentiate
parameters associated with different timed process constructs. In theory, each timed
process construct is associated with one unique clock. Nonetheless, multiple timed
processes may be activated at the same time during system execution and therefore
can be associated with the same clock. For instance, assume that a process P is defined
as: P =̂ (Wait[5]; Wait[3]) interrupt[6] Q. There are at least three implicit clocks: one
associated with Wait[5] (say t1); one with Wait[3] (say t2); and one with P (because of
interrupt[6], say t3). Because Wait[5] and P are activated, clock t1 and t3 have started. In
contrast, clock t2 starts only when Wait[5] terminates. It is obvious that t1 and t3 always
have the same reading and thus one clock is sufficient. It is known that the fewer clocks,
the more efficient real-time model checking could be [Bengtsson and Yi 2003]. In order
to minimize the number of clocks, clocks are introduced at runtime and are shared by as
many processes as possible. In the following, we show how to systematically associate
clocks with timed processes. Intuitively, a clock is introduced if and only if one or
more timed processes have just become activated. For simplicity, we write Wait[d]t
(or P timeout[d]t Q, P interrupt[d]t Q, P within[d]t, P deadline[d]t) to denote that the
process is associated with clock t. Given a process P and a clock t, we define function
A to associate t with P. Figure 3 presents the detailed definition. Intuitively speaking,
A1 to A5 state that if a process is untimed and none of its subprocesses is activated,
then it is unchanged. A6 to A10 state that if a process is timed, then it is associated
with t and function A is applied to its activated subprocesses at the same time. Note
that if a timed process has already been associated with a clock t′, then it will not be
associated with the new clock. This is captured by A11–A15, where Wait[d]t′ denotes
that Wait[d] is associated with clock t′. If a subprocess is activated, then function A is
applied recursively, as captured by A7–10,12–19. The last rule A20 states that if P is
defined as Q, then A(P, t) can be obtained by applying A to Q.

Given a process P, we can obtain the set of clocks associated with P or any subprocess
of P. For instance, the clocks associated with P timeout[d]t Q contain t and the clocks
associated with P. Notice that there is no clock associated with Q because it is not
activated. This set is written as cl(P).

4This definition adopts the the idea of finite-state processes for Timed CSP as defined in Ouaknine and
Worrell [2002]. Formally, a Timed CSP process is a finite-state process if there are only finitely many states
reachable via transitions labeled with events or 1 (i.e., a time transition that takes 1 time unit). It is possible
to extend their definition to the setting of Stateful Timed CSP. Nonetheless, formally establishing that a
‘finite-state process’ can only reach finite process expressions is tedious and not the focus of this work.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:10 J. Sun et al.

Fig. 3. Clock activation.

4.2. Zones

The concrete firing rules presented in Figure 2 capture quantitative timing through
parameters of the timed processes. Inevitably, there are infinitely many constant val-
ues. In the setting of Timed Automata, it has been shown that zone abstraction allows
efficient model checking [Dill 1989; Behrmann et al. 1999; Bengtsson and Yi 2003].
Zone abstraction for Timed Automata, however, cannot be readily adopted due to the
difference between Stateful Timed CSP and Timed Automata. In the following, we
review necessary background on zones and zone operations before presenting how to
apply zone abstraction to Stateful Timed CSP models.

A zone is the conjunction of multiple primitive constraints over a set of clocks. A
primitive constraint is of the form t ∼ d or t1 − t2 ∼ d where t, t1, t2 are clocks; d is
a constant; and ∼ is either, ≥, = or ≤. A zone is the maximal set of clock valuations
satisfying the constraint. Given a clock valuation v, we write v ∈ D to denote that v is
in zone D. A zone is empty if and only if the constraint is unsatisfiable. We write cl(D)
to denote the clocks of D. A zone can be equivalently represented as a DBM (short for
Difference Bound Matrices [Dill 1989; Behrmann et al. 1999]). Let t1, t2, . . . , tn denote
n clocks and t0 denote a dummy clock whose value is always 0. A DBM representing
a constraint on the clocks contains n + 1 rows, each of which contains n + 1 elements.
Entry (i, j) in the matrix, denoted by Di

j , represents the upper bound on difference
between clock ti and tj , that is, ti − tj ≤ Di

j . A DBM thus represents the constraint:
ti − tj ≤ Di

j for all clock ti and tj such that 0 ≤ i ≤ n and 0 ≤ j ≤ n. The bound on
difference between ti and tj is captured by: −Dj

i ≤ ti − tj ≤ Di
j . Because t0 is always 0,

we have −D0
i ≤ ti ≤ Di

0, which is the bounds of clock ti.
In the following, we briefly introduce the relevant zone operations/properties and

its corresponding DBM implementation. Interested readers are referred to Dill [1989],
Behrmann et al. [1999], and Bengtsson and Yi [2003] for details.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:11

Fig. 4. Add clock.

—Calculate canonical form. In theory, there are infinitely many different timing
constraints representing the same zone. For instance, the clock valuations for
0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 and 0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 ∧ t2 ≤ 1000 are
exactly the same and hence they represent the same zone. Zones represented as
DBMs can be systematically compared if they are in their canonical forms. A DBM
is in its canonical form if and only if every entry Di

j is the tightest bound on dif-
ference between clock ti and tj . An important property of DBM is that there is a
relatively efficient procedure to compute a unique canonical form. If the clocks are
viewed as vertices in a weighted graph and the clock difference as the label on the
edge connecting two clocks, the tightest clock difference is the shortest path between
the respective vertices. Floyd-Warshall algorithm [Floyd 1962] thus can be used to
compute the tightest bound on clock differences and hence the canonical form. The
complexity of Floyd-Warshall algorithm is cubic in the number of clocks.

—Check satisfiability. It is essential to check whether a zone is empty or not. A zone
is empty if and only if its DBM representation, in its canonical form, contains an
entry Di

i such that Di
i < 0. Intuitively, it means that clock ti is constrained to satisfy

ti − ti < 0, which is impossible. Furthermore, it can be shown that a DBM in its
canonical form represents an empty zone if and only if D0

0 is negative.
—Add clocks. Clocks may be introduced during system exploration, as we have shown

in Section 4.1. Assume that the clock to be added is tk and the given DBM is in its
canonical form. Figure 4 shows how the DBM is updated with entries for tk. For all
i, Di

k is set to be Di
0 and Dk

i is set to be D0
i . Because tk is a newly introduced clock, it

must be equivalent to t0. The resultant DBM is canonical if the given DBM is.
—Prune clocks. In our setting, clocks may be pruned. Because entries in a canonical

DBM represent the tightest bounds on clock differences, pruning a clock ti is simply
to remove the i-row and i-column in the matrix. The remaining DBM is canonical,
that is, the bounds can not be possibly tightened with less constraints. Given a DBM
D and a set of clocks C, we write D[C] to denote the DBM obtained by pruning all
clocks other than those in C. In an abuse of notation, we write D[t] to denote the
constraint on t.

—Delay. Given a zone D, D↑ denotes the zone obtained by delaying for an arbitrary
amount of time. D↑ is obtained by changing Di

0 to ∞ for all i such that i ≥ 1.

4.3. Abstraction

In the following, we present dynamic zone abstraction for Stateful Timed CSP. First,
we define the notion of abstract system configurations.

Definition 4.1. An abstract system configuration is a triple (V, P, D), where V is a
variable valuation; P is a process; and D is a zone.

In order to systematically apply zone abstraction, we define a set of abstract firing
rules. The abstract firing rules eliminate concrete ε-transitions all together and use

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:12 J. Sun et al.

Fig. 5. Idling calculation.

zones to ensure a process behaves correctly with respect to timing requirements. To
distinguish from concrete firing rules, an abstract firing rule is written in the the form
of (V, P, D) x� (V ′, P ′, D′) where x ∈ �τ .

We first define a function idle, which, given a process (which has been associated with
clocks), returns the zone in which the process can idle. Figure 5 shows the detailed
definition. Rules idle1 to idle5 state that if the process is untimed and none of its
subprocesses is activated, then function idle returns true, which means that the process
may idle for an arbitrary amount of time. Rules idle6 to idle9 state that if subprocesses
of the process are activated, then function idle is applied to the subprocesses. For
instance, if the process is a choice (rule idle6) or a parallel composition (rule idle9) of
P and Q, then the result is idle(P) ∧ idle(Q). Intuitively, this means that process P|Q
(or P ‖ Q) may idle as long as both P and Q can idle. Rules idle10 to idle14 define the
cases when the process is timed. For instance, process Wait[d]t may idle as long as t is
less or equal to d. Last, idle15 defines the case for process referencing.

Figure 6 then exemplifies the abstract firing rules for the timed processes. The rest
of the rules are similarly defined [Sun et al. 2009b].

—Rule await defines the abstract semantics of Wait[d]. In contrast to the concrete
semantics, there is only one abstract rule. It states that a τ -transition occurs exactly
when clock t reads d. Intuitively, D↑ ∧ t = d denotes the exact moment when t reads
d. Afterwards, the process becomes Skip.

—Rules ato1, ato2 and ato3 define the abstract semantics of P timeout[d] Q. Rule ato1
states that if a τ -transition transforms (V, P, D) to (V ′, P ′, D′), then a τ -transition
may occur given (V, P timeout[d]t Q, D) if zone D↑∧D′∧t ≤ d is not empty. Intuitively,
this means that the τ -transition must occur before timeout occurs. Similarly, rule
ato2 ensures that the occurrence of an observable event e from process P occurs only
before timeout occurs. Rule ato3 states that timeout results in a τ -transition when
the reading of t is d. Constraint D↑ ∧ t = d∧ idle(P) ensures that process P may idle
until timeout occurs.

—Rules ait1, ait2 and ait3 define the abstract semantics of P interrupt[d] Q. Rule ait1
states that a transition (other than process termination) originated from P may occur
only if t ≤ d, that is, before interrupt occurs. Rule ait2 states that interrupt results

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:13

Fig. 6. Abstract Firing Rules.

in a τ -transition when the reading of t is d. Rule ait3 states that if P terminates
before interrupt occurs, then the whole process terminates.

—Rules awi1 and awi2 define the abstract semantics of P within[d]. Rule awi1 states
that if a τ -transition occurs within d time units, then the resultant process is of
the form P ′ within[d], which means that it is yet to perform some observable event
before d time units. Rule awi2 states that once an observable event occurs, the within
construct is removed.

—Rules adl1 and adl2 define the abstract semantics of P deadline[d]. Rule adl1 ensures
that all transitions of P must occur within d time units. Rule adl2 states that if P
terminates (by engaging in �), then deadline is removed.

Using the abstract firing rules, we can generate an abstract LTS that captures the
abstract semantics of a model.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:14 J. Sun et al.

Fig. 7. An abstract LTS and its Timed Automaton equivalent.

Definition 4.2. Let 〈t1, . . .〉 be a sequence of clocks. Let S = (Var, initG, P) be a
model. The time-abstract semantics of S, denoted as LS , is an LTS (S, init, �τ , T) such
that S is a set of valid abstract system configurations; init = (initG, P, true) is the
initial abstract configuration and T is the smallest transition relation such that: for
all (V, P, D) ∈ S, if t is the first clock in the sequence that is not in cl(P), and if
(V,A(P, t), D ∧ t = 0) a� (V ′, P ′, D′), then ((V, P, D), a, (V ′, P ′, D′[cl(P ′)])) ∈ T .

Because of zone abstraction, LS is also referred to as a zone graph. Informally, LS is
constructed as follows. Given an abstract configuration (V, P, D), first, a clock t that is
not currently associated with P is picked. The abstract configuration (V, P, D) is trans-
formed to (V,A(P, t), D∧ t = 0), that is, timed processes that just become activated are
associated with t and D is conjuncted with t = 0. Then, an abstract firing rule is applied
to get a target configuration (V ′, P ′, D′) such that D′ must not be empty (otherwise,
the transition is infeasible). Last, clocks that are not in cl(P ′) are pruned from D′
since those clocks are irrelevant to the behavior of P ′. Note that for all (V, P, D) ∈ S,
cl(P) = cl(D). The construction of LS is illustrated in the following example.

Example. Assume that a model S = (∅, true, P) such that

P =̂ (a → Wait[5]; b → Stop) interrupt[3] c → P

Intuitively, event b never occurs because interrupt always occurs first. The left part of
Figure 7 shows the LS (the right part depicts the equivalent model under the form of
a Timed Automaton, which will be explained in Section 5). Notice that transitions are
labeled with the clock that is associated with the just activated timed processes, an
event and a set of clocks that are pruned from the zone after the transition. The initial
configuration is c0 = (∅, P, true).

—Starting with c0, we apply A to P with t1 to get

c1 = (∅, (a → Wait[5]; b → Stop) interrupt[3]t1 c → P, t1 = 0)

Next, we can apply either rule ait1 or ait2. Applying rule ait1, we get

c2 = (∅, (Wait[5]; b → Stop) interrupt[3]t1 c → P, 0 ≤ t1 ≤ 3)

Applying rule ait2 to c1, we get c3 = (∅, c → P, t1 = 3). Note that clock t1 is irrelevant
after the transition. After pruning t1, we get c4 = (∅, c → P, true).

—Starting with c2, we apply A to (Wait[5]; b → Stop) interrupt[3]t1 c → P with t2 to
get

c5 = (∅, (Wait[5]t2 ; b → Stop) interrupt[3]t1 c → P, 0 ≤ t1 ≤ 3 ∧ t2 = 0)

Next, we can apply rule ait1 or ait2. Applying rule ait1 to c5, we get zone (0 ≤
t1 ≤ 3 ∧ t2 = 0)↑ ∧ 0 ≤ t1 ≤ 3 ∧ t2 = 5). By DBM operations, this zone can be
shown to be empty and therefore this transition is invalid. Intuitively, this is because
(0 ≤ t1 ≤ 3 ∧ t2 = 0)↑ is equivalent to 0 ≤ t1 − t2 ≤ 3. Apply rule ait2 to c5, we get

c7 = (∅, c → P, t1 ≥ 0 ∧ t2 ≥ 0 ∧ t2 ≤ 5 ∧ t1 = 3)

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:15

Note that both clocks are irrelevant and therefore can be pruned. The resultant
configuration is c4.

—Starting with c4, apply the rule for event prefixing, that is, c may occur at any time
in the future (refer to rule aev in Sun et al. [2009b]) to obtain the transition to c0.
Note that t1 is available and thus reused.

4.4. Stateful Timed CSP vs. Timed Automata

An obvious question is: what is the relationship between Stateful Timed CSP and
Timed Automata? In the following, we show that regular Stateful Timed CSP is equiv-
alent to Closed Timed Safety Automata with τ -transitions. In the original theory of
Timed Automata [Alur and Dill 1994], a Timed Automaton is a finite-state Büchi au-
tomaton extended with clocks. Büchi accepting conditions are used to enforce progress
properties. Timed Safety Automata was introduced in Henzinger et al. [1994] to specify
progress properties using local invariant conditions instead. In the following, we focus
on Timed Safety Automata and refer them simply as Timed Automata following the
literature. A Timed Automaton is closed if it has only closed invariant and enabling
clock constraints.

Ouaknine and Worrell [2002] show that finite-state Timed CSP processes are equiv-
alent to closed Timed Automata with τ -transitions. Because Stateful Timed CSP is
an extension of Timed CSP, it thus implies that Stateful Timed CSP is at least as
expressive as closed Timed Automata. Stateful Timed CSP extends Timed CSP in two
ways: shared variables and process constructs within and deadline. First, it has long
been known (see Hoare [1985] and Roscoe [2001], for example) that one can model a
finite domain variable as a finite-state process parallel to the one that uses it. The user
processes then read from, or write to, the variable by event synchronization. Second, it
can be shown that deadline and within can be translated to state invariants in Timed
(Safety) Automata. For instance, we have shown [Dong et al. 2008] that deadline can be
captured using clocks and state invariants, that is, if a process must terminate before d,
then every configuration before the process terminates is labeled with invariant x ≤ d
where x is clock that starts when P is activated. This implies that regular Stateful
Timed CSP is equivalent to closed Timed Automata with τ -transitions.

This result does not imply that Stateful Time CSP is not useful. Stateful Timed
CSP has advantages over Timed CSP, as it offers ease of modeling with the “syntactic
sugars.” Furthermore, there are useful properties about Stateful Timed CSP that are
not satisfied by Timed Automata in general. First, it can be shown that every clock
is bounded from above in Stateful Timed CSP (see the definition of idle in Figure 5
and abstract firing rules in Figure 6), which implies that unlike Timed Automata, zone
normalization [Rokichi 1993] is not essential in our setting. Second, the number of
clocks used in our graph is often less than that of the corresponding Timed Automaton
model, as shown in Section 6. Last, unlike Timed Automata, model checking with
non-Zenoness based on the zone graphs is feasible, as we show in the following section.

5. MODEL CHECKING WITH NON-ZENONESS

In this section, we show that Stateful Timed CSP models can be model checked based
on the abstract semantics. Compared to Sun et al. [2009b], we show in addition that
model checking non-Zenoness is feasible.

In order to apply model checking techniques, we first establish that LS is finite given
any model S.

THEOREM 5.1. LS is finite for any regular model S.

PROOF. By definition, LS is finite if and only if there are only finitely many abstract
configurations. The number of abstract configurations is bounded by #V × #P × #D

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:16 J. Sun et al.

where #V denotes the number of variable valuations; #P denotes the number of pro-
cesses; and #D denotes the number of zones. We show all of them are finite.

—#V is finite. All variables have finite domains by assumption.
—#P is finite. Notice that P is constituted by process names, events, the associated

clocks and parameters of the timed process constructs. Because processes are not
parameterized5, process names and events are finite. By assumption, every reach-
able process is constituted by only finitely many process constructs. Because clocks
are associated with timed process constructs, it implies that for every abstract con-
figuration (V, P, D), cl(P) is finite. By reusing clocks (as in Definition 4.2), it implies
that only finitely many clocks are necessary. Last, notice that all abstract firing rules
preserve parameters of timed process constructs and therefore the possible values
for parameters is finite. Finally, #P is finite.

—#D is finite. It is straightforward to show that every clock is bounded from above. It
implies that every entry of D (in its canonical form) is bounded. Further, every entry
of D is an integer constant and therefore #D must be finite.

The next theorem shows that LS preserves a large class of interesting properties.

THEOREM 5.2. TS time-abstract bisimulates LS for any model S.

PROOF. Let LS = (Sa, inita, �τ , Ta) and TS = (Sc, initc, R+ ∪ �τ , Tc). By definition, we
need to find a time abstract bisimulation relation R between Sa and Sc. We define R
as follows: for all (Vc, Pc) ∈ Sc; (Va, Pa, D) ∈ Sa, ((Vc, Pc), (Va, Pa, D)) ∈ R if and only if
Vc = Va and Pc is abstracted by Pa with D. Pc is abstracted by Pa with D if and only if
the following two conditions are satisfied.

—Pc differs from Pa only by the parameters of the timed process constructs and the
fact that Pa is associated with clocks, whereas Pc is not.

—For every timed process construct of Pc, let d be the associated parameter; let d′ be
the constant associated with the corresponding construct in Pa. If the construct is
not associated with a clock in P, then d = d′. If the construct is associated with clock
t in Pa, then t = d′ − d satisfies D[t].

For instance, if Pc = Wait[3]; Wait[5] and P = Wait[4]t; Wait[5], then P with zone
t ≤ 4 abstracts Pc. Next, we show that C1, C2 and C3 of Definition 2.4 are satisfied
by R. C3 is proved trivially. C1 and C2 are proved by structural induction, which are
exemplified using two cases where Pc is Wait[d] or P timeout[d] Q. Notice that the first
step of Definition 4.2 is to apply A to Pa. Let the resultant process be P ′

a and the result
zone be D′.

—If Pc is Wait[d] and ((Vc, Pc), (Va, Pa, Da)) ∈ R, P ′
a is Wait[d′]t such that t = d′

satisfies D′
a[t]. We first show that C1 is satisfied. By rule Wait1 and Wait2,

(Vc, Wait[d])
d,τ→ (Vc, Skip). By rule await, (Va, P ′

a, D′
a) τ� (Va, Skip, D↑

a ∧ t = d) and
thus (Va, P ′

a, D′
a) τ� (Va, Skip, D′) ∈ Ta where D′ = true (since cl(Skip) = ∅). It is

trivial to show (Vc, Skip) ≈ (Va, Skip, true). Further, ((Vc, Skip), (Va, Skip, true)) ∈ R.
Similarly, we can show that C2 is satisfied.

—If Pc is P timeout[d] Q, then P ′
a is P ′ timeout[d]t Qsuch that P is abstracted by P ′ with

D′. Assume (Vc, P)
ε,e→ (V1, P1) for some ε ≤ d. By rule to4 and to1, (Vc, Pc)

ε,e→ (V1, P1).
By induction hypothesis, (Va, P ′, D′) e� (V1, P ′

1, D′
1) such that ((V1, P1), (V1, P ′

1, D′
1)) ∈

R and (V1, P1) ≈ (V1, P ′
1, D′

1). By rule ato2, (Va, P ′
a, D′) e� (V1, P ′

1, D′
1 ∧ D↑ ∧ t ≤ d). By

5It is clear that this assumption can be relaxed to allow finite domain parameters.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:17

assumption, ε ≤ d and thus it is easy to show that P ′
1 with D′

1∧D↑∧t ≤ d abstracts P1.
Thus, C1 is satisfied. If (Va, P ′, D′) e� (V1, P ′

1, D′
1), (Va, P ′

a, D′) e� (V1, P ′
1, D′

1 ∧ D↑ ∧t ≤
d) by rule ato2. Because D′

1 ∧ D↑ ∧ t ≤ d is not empty by definition, the transition
(Va, P ′, D′) e� (V1, P ′

1, D′
1) must satisfy t ≤ d and therefore it must occur within

D′
1[t] − D′[t] time units. By induction hypothesis, there exists ε ≤ D′

1[t] − D′[t] such
that (Vc, Pc)

ε,e→ (V1, P1) and (V1, P ′
1, D′

1) ≈ (V1, P1). By rules to4 and to1, (Vc, Pc)
ε,e→

(V1, P1). It can be shown that P ′
1 with D′

1 ∧ D↑ ∧ t ≤ d abstracts P1 and thus, C2
is satisfied in the case. Similarly, we prove the case where (Vc, P timeout[d] Q)

ε,τ→
(V1, P1 timeout[d] Q) for some ε ≤ d or (Vc, P timeout[d] Q)

d,τ→ (V1, Q).

Other cases can be proved to satisfy C1 and C2 similarly. We thus conclude that R is
a time-abstract bisimulation between TS and LS so that TS and LS are time-abstract
bisimilar.

By Theorem 5.2, properties that are preserved by time-abstract bisimulation are pre-
served by LS and therefore can be model checked based on LS . In the following, we
take one class as an example and briefly discuss how it can be supported. Properties
concerning both states and events of infinite runs can be specified in SE-LTL [Chaki
et al. 2004], which is a linear temporal logic constituted by not only atomic state propo-
sitions but also events. SE-LTL is particularly interesting because Stateful Timed CSP
is both state-based and event-based. SE-LTL properties can be model checked using
an on-the-fly automata-based approach [Vardi and Wolper 1986]. Given an SE-LTL
formula φ, a Büchi automaton B equivalent to the negation of φ can be built using the
approach presented in Gastin and Oddoux [2001]. The synchronous product of LS and
B, which is also a Büchi automaton, is then computed. A run of the product is accepting
if and only if its projection in B is accepting. The problem of model checking S against φ
without non-Zenoness assumption is thus reduced to the standard emptiness problem
of Büchi automata [Vardi and Wolper 1986; Holzmann 2003].

Model checking with non-Zenoness is more complicated. A Stateful Timed CSP model
may contain Zeno runs. For instance, given a model (∅,∅, P deadline[1]) where P =̂ a →
P|b → Skip. If property ‘eventually event b occurs’ is verified without non-Zenoness,
then a counterexample with infinitely many a events will be generated. A close look
reveals that the counterexample is Zeno since infinitely many a events must occur
within 1 time unit. We thus need a method to check whether a run is Zeno or not.
By Theorem 5.2, for every concrete run ρ = 〈s0, (ε0, a0), s1, (ε1, a1), . . .〉 of TS , there is a
corresponding π = 〈s0, a0, s1, a1, . . .〉 in runs(LS). We say that ρ is an instance of π or
equivalently π abstracts ρ. If π fails certain property, then ρ can be presented as a
concrete counterexample. It is possible that all instances of π are Zeno so that they are
not considered as realistic counterexamples. An abstract run π is Zeno if and only if all
instances of π are Zeno. Otherwise, π is non-Zeno. Because Zeno runs are unrealistic,
system verification must be performed with the assumption of non-Zenoness, that is,
to verify properties against only non-Zeno runs. In the setting of Timed Automata, it
has been shown that it is highly nontrivial to decide if an abstract run is non-Zeno
or not (because zone abstraction fails prestability [Tripakis 1999]). In the following,
we show that zone graphs generated from Stateful Timed CSP models have unique
characteristics that allow us to establish whether a run is non-Zeno or not.

Notice that LS can be systematically translated into an equivalent Timed Automa-
ton. Let AS denote the Timed Automaton. Every state (V, P, D) of LS is translated into
a state of AS . Recall that a transition from a state (V, P, D) of LS is generated by associ-
ating a fresh t with P; applying a firing rule so that (V,A(P, t), D∧ t = 0) a� (V ′, P ′, D′)

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:18 J. Sun et al.

and lastly pruning unused clocks from D′. For each such transition, a corresponding
transition is introduced in AS such that it is labeled with event a and clock constraint
D′. Furthermore, all incoming transitions to the state (V, P, D) are labeled with a set of
resetting clocks {t}. For instance, the right part of Figure 7 shows the generated Timed
Automaton of the zone graph shown on the left.

The following is true about AS (but not Timed Automata in general): for every clock
t, assume φi and φ j are two constraints on t associated with two transitions along any
path starting and ending with a transition resetting t, then a valuation of t that satisfies
φi can always satisfy φ j by letting time elapse. This can be proved by looking at the
abstract firing rules and Definition 4.2. When a clock t is introduced, it is associated
with a maximum set of timed process constructs, which results in a maximum set
of constraints of the form t ≤ d or t = d. Later, when timed process constructs are
discharged through transitions, there are less and less constraints on t. In other words,
every clock acts as a count-down clock that cannot be modified or reset before it is
expired.

Next, we establish a necessary and sufficient condition to check whether an abstract
run is Zeno or not. Because LS is finite, an infinite run π of LS must visit a finite set
abstract configurations, denoted as inf (π), infinitely often. Let loopCLK(π) be the set
{x|∀(V, P, D) ∈ inf (π). x ∈ cl(D)}, that is, the clocks that are present in every con-
figuration that is visited infinitely often. A transition of LS is sometimes written in
the form (V, P, D) t,a,X� (V ′, P ′, D′) such that t is the introduced clock; a is the event
and X is the set of pruned clocks. Because a clock is introduced for every transition,
through D′[t], we can infer the time needed for the transition to occur. The transition
is instantaneous if and only if D′ ⇒ t = 0. Notice that a transition that is not instan-
taneous might in fact be forced to occur immediately with any delay. For instance, let
P =̂ (a → Wait[5]) deadline[5]; P. The transition labeled with a is not instantaneous
by definition. It is nonetheless constrained to occur immediately if we consider the loop
generated by P, that is, the run contains infinitely many event a, τ and � (which are
generated by Wait[5]).

THEOREM 5.3. Let S be a model; π be a run of LS . π is non-Zeno if and only if
loopCLK(π) = ∅ and not all infinitely visited transitions are instantaneous.

PROOF. Let ρ be a run of TS and π be the corresponding abstract run of LS .

ρ = s0
ε0,a0→ s1

ε1,a1→ · · · si
εi ,ai→ · · ·

π = c0
t0,a0,X0� c1

t1,a1,X1� · · · ci
ti ,ai ,Xi� . . .

ONLY-IF. We show that if ρ is non-Zeno, then loopCLK(π) = ∅. Assume that ti ∈
loopCLK(π). By definition, εi + εi+1 + · · · is unbounded. Therefore, the reading of ti
becomes unbounded. Because ti is never pruned, there must be some constraints on t
in every Dm such that m ≥ i. According to the abstract firing rules, the constraint must
be of the form tm = n or tm ≤ n where n is a constant. Because tm is unbounded, we
derive that tm > n and reach contradiction. Therefore, loopCLK(π) = ∅. Furthermore,
because ρ is non-Zeno, εi + εi+1 +· · ·+ εi+k > 0 and thus there must be a transition that
is not instantaneous.

IF. We show that if loopCLK(π) = ∅ and there is at least one infinitely often visited
transition, say (V, P, D) t,a,X� (V ′, P ′, D′), that is not instantaneous, then π is non-Zeno.
Because D′ does not imply t = 0, all clocks t′ in D′ must satisfy t′ ≤ d for some positive
integer d. Because the constraint on t′ can only get weakened (as we argue above),
strictly positive number of time units must be able to elapse at some transition. Because
loopCLK(π) = ∅, every clock is pruned (and reintroduced) before taking the transition

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:19

again. Let ρ be a run that takes the transition repeatedly with a nonzero delay. By Alur
and Dill [1994], ρ is progressive as all clocks are reset (which is equivalent to pruned
and reintroduced) infinitely often and strictly positive infinitely often. Therefore, ρ is
non-Zeno.

The next theorem follows immediately. Intuitively speaking, it allows us to solve the
emptiness problem of Stateful Timed CSP using methods based on finding maximal
strongly connected components (SCC). Given a set of states scc constituting an SCC,
let loopCLK(scc) denotes the set {x|∀(V, P, D) ∈ scc. x ∈ cl(D)}.

THEOREM 5.4. Let S be a model. TS is nonempty if and only if there exists a reachable
maximal SCC scc in LS such that loopCLK(scc) = ∅ and not all transitions connecting
two states in scc are instantaneous.

PROOF (ONLY-IF). Let π be a non-Zeno run of TS . Let scc be the set of states constituting
the maximal SCC that contains all states and transitions visited infinitely often by
π . If π is non-Zeno, loopCLK(π) = ∅ and therefore loopCLK(scc) = ∅. Furthermore,
the transition that is not instantaneous in π is contained in scc. (If) Let scc be the
maximal SCC that satisfies the condition. A run that traverses through every state
and transition of scc is non-Zeno by Theorem 5.3.

Given an SE-LTL formula φ, a Büchi automaton B equivalent to the negation of φ,
model checking with non-Zenoness assumption is to construct the product of B and LS
and then search for an accepting run of the product whose projection on LS is non-
Zeno. By Theorem 5.4, it is equivalent to searching for a particular maximal SCC scc.
Therefore, the problem can be solved by an algorithm that has a complexity linear in
the number of transitions in the product (e.g., based on Tarjan’s algorithm for finding
SCCs).

6. EVALUATION

System modeling and verification using Stateful Timed CSP have been implemented
in the PAT model checker [Sun et al. 2009a; Liu et al. 2011]. PAT is a self-contained
environment for system modeling, simulation and verification. It has an extensible
architecture that allows quick realization of new techniques for modeling, abstraction
or verification. Interested readers are referred to Liu et al. [2010, 2011]. The model
checker for Stateful Timed CSP is built as one plug-in module in PAT, which sup-
ports SE-LTL model checking and refinement checking.6 In the following, we evaluate
Stateful Timed CSP in two aspects: system modeling and verification.

6.1. Modeling

We illustrate system modeling in Stateful Timed CSP using a multilift system. The
system is chosen for two reasons. First, the system is hierarchical, real-time, and rich
in data states, which nicely demonstrates language features of Stateful Timed CSP.
Second, the lift system is a standard case study used to demonstrate the expressive
power of various specification techniques and languages. The user requirements and
behaviors of the system are intuitively clear, and therefore the readers can focus on
the modeling. Though inspired by Mahony and Dong [1998], our model is different
from Mahony and Dong [1998] in many aspects, for instance, our model uses shared
variables, whereas Mahony and Dong [1998] reliy mostly on processes and channels
communication; our model implements data operations using executable programs,
whereas data operations are abstract in Mahony and Dong [1998]; and probably most
important, our model is model checkable whereas Mahony and Dong [1998] is not.

6Readers are recommended to download PAT at http://www.patroot.com and try out the RTS module.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:20 J. Sun et al.

The lift system consists of a building, multiple lifts, and a central controller. In the
following, we present the lift system model incrementally in bottom-up manner, be-
ginning with models of the primitive components, which are then used to compose
complex components. Notice that the language supported by PAT is slightly differ-
ent from the previously presented notations for user’s convenience. For instance, syn-
chronous/asynchronous channels and constant definitions are supported. In the lift
system model, the following constants are relevant: NoOfFloors (the number of floors);
NoOfLifts (number of lifts); Off of value 0; U p of value 1; Down of value −1; and Both
of value 2.

A building consists of multiple floors and each floor is equipped with one button
panel on the wall so that a user can make an external request to traveling upwards or
downwards. A button can be pushed at any time. Once pushed, the button is on until
the requested service is provided. The status of the button (or equivalently the external
requests) is maintained in an array FloorButtons of length NoOf Floors. Each variable
in the array has four possible values: Of f (i.e., it is not on), U p (i.e., upward traveling
has been requested), Down (i.e., downward traveling downward has been requested) or
Both (i.e., both directions have been requested). The following models the building.

1. Press(f loor, direction) =̂ request. f loor.direction{
2. i f (FloorButtons[f loor] = None){
3. FloorButtons[f loor] := direction
4. }
5. else i f (FloorButtons[f loor] �= direction){
6. FloorButtons[f loor] := Both
7. }
8. } → Skip
9. T opFloor =̂ Press(NoOf Floors − 1, Down); T opFloor
10. GroundFloor =̂ Press(0,U p); GroundFloor
11. MiddleFloor(n) =̂ (Press(n, Down)|Press(n,U p)); MiddleFloor(n)
12. Building =̂ T opFloor ‖ GroundFloor ‖ (||NoOf Floors−2

x=1 MiddleFloor(x))

Lines 1 to 8 define process Press(f loor, direction), which models the process of pressing
a floor button, where parameters f loor and direction denote the requesting floor and
traveling direction respectively. Notice that direction has two possible values: U p (1) or
Down (−1). Event request. f loor.direction is the event of a user pressing a button at the
f loor to travel in the direction. It is associated with a program (from line 2 to 7), which
stores the request in the FloorButtons array. Line 9 models the top floor, where only
traveling downwards is possible. Line 10 models the ground floor where only traveling
upwards is possible. Line 11 models a middle floor, where traveling in both directions
are possible. Last, line 12 models the building, which is a parallel composition of all
floors. Notice that process Building is not timed since requests can arrive at any time.

Each lift consists of four components, that is, a door for allowing access to and from
the lift; a shaft for transporting the lift; an internal queue for determining the lift
itinerary; and a controller to coordinate the behaviors of the other components. The
following is a model of the door.

Door =̂ open → (Cycle; close → Skip) deadline[maxT ime]; Door
Cycle =̂ toOpen → opened → conf � Wait[minT ime]; Closing
Closing =̂ (closed → Skip) interrupt (sensor → toOpen → opened → Closing)

Process Cycle models the process of opening the door and later closing it. It is initiated
in process Door by the receipt of an open signal from the lift controller and completed
by sending a close signal. That is, events open and close must be synchronized by
the door and lift controller. Event conf is a signal from the door to the lift controller

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:21

to indicate that the door has been opened and thus relevant external/internal service
requests can be removed. After waiting for minT ime time units after the door is opened,
a signal close is sent to indicate that the door is to be closed. Process Closing models
the process of closing the door. If an interrupt is detected through event sensor before
the door is closed, the door is reopened and later closed again. Notice that the door
has many timing properties. For instance, signal conf must occur immediately because
of �. Furthermore, the deadline in process Door is used to ensure that a door cannot
remain opened forever. Notice that this is not exactly the case in reality. Nonetheless,
this simplifying assumption allows us to ignore unlikely (not still possible) scenarios
(e.g., an obstruction keeps the door open forever) and thus be able to verify liveness
properties (e.g., always eventually a lift will serve some request).

A shaft takes input from the controller and transports a lift from one floor to another.
The time required for transit depends on the distance to be traveled. It is modeled as
follows.

Shaf t(i) =̂ move?[id = i]id.n.dir → Wait[n ∗ movingT ime + delayT ime];
arrive � Shaf t(i)

Notice that move is a synchronous channel, which acts like a pair-wise synchronizing
event. The question mark denotes that this is a channel input. The variables id, n
and dir are place-holders for the received data. In particular, id indicates the intended
lift; n is the number of floor to move across; and dir is the direction of movement.
Condition id = i constrains that only channel inputs satisfying the condition are
received. Intuitively, it means that the shaft only picks up messages with the matching
identity. The feature is adopted from the Promela language [Holzmann 2003]. It can
be shown that our results in this work remain valid with channels. After receiving the
input, the shaft starts moving and later signals arrival through synchronizing event
arrive. The constant movingT ime is a constant denoting the time needed to travel
across one floor and delayT ime is a delay caused by the initial acceleration and final
braking of the lift. Notice that in this model, we assume that once a lift is assigned with
a destination, it will not be interrupted to serve a newly arrived request on its way. This
is a simplifying assumption made to keep the model small enough for presentation.7

Inside each lift, there is a button panel so that a user can make an internal request
to travel to a particular floor. The panel buttons are in one-to-one correspondence with
the floor numbers. The internal requests (or equivalently the status of the internal
panel buttons) are maintained in an array IntReq, which has dimension NoOfLifts ×
NoOfFloors. Entry IntReq[i][j] = true if and only if there is an internal request in i-lift
for j-floor.

InternalQ(i) =̂ intReq.0{IntReq[i][0] := 1} → InternalQ(i)|
intReq.1{IntReq[i][1] := 1} → InternalQ(i)| · · · |
intReq.(NoOfFloors − 1){IntReq[i][NoOfFloors − 1] := 1} → InternalQ(i)

The above models the internal queue of requests. The process generates all possible
internal requests using choices. Note that the removal of internal requests is not
modeled as a part of the above process but rather in the lift controller process, which
is shown below.

The following models a lift controller. The three parameters denote the lift identity,
its current floor and direction respectively. Process Li f tCtrl starts with sending a
compound message on channel check to the central controller, indicating that it is
ready to serve a request. The message consists of: f l, which is the floor that the lift is
at; dir, which is the traveling direction; and the floor that the lift is traveling to. The

7Refer to a different model of multilifts in PAT that models interruptible lifts.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:22 J. Sun et al.

latter is computed based on the internal requests using an externally defined function.
In PAT, external C# libraries are allowed in Stateful Timed CSP models so that the
models are simplified by encapsulating complicated data operations. In this example,
call is a reserved keyword for invoking an external function; the function name is
GetDesInt; and the rest are inputs to method GetDesInt. The function returns the next
internally requested floor in the traveling direction if one exists, or the nearest internal
request in the opposite direction, or -1 if there is no internal request.8

Li f tCtrl(i, f l, dir) =̂ check! f l.dir.call(GetDesInt, IntReq, f l, dir, NoOfFloors, i)
→ check?des → case {

des = f l : open → conf → ClearReq(i, f l, dir);
close → Li f tCtrl(i, f l, dir)

des > f l : move!(des − f l).U p → arrive → open →
conf → ClearReq(i, des,U p); close → Li f tCtrl(i, des,U p)

0 ≤ des < f l : move!i.(f l − des).Down → arrive → open →
conf → ClearReq(i, des, Down); close → Li f tCtrl(i, des, Down)

def ault : Wait[delayT ime]; Li f tCtrl(i, f l, dir)
}

The central controller is responsible for assigning external requests to specific lifts,
which is modeled as follows.

Controller =̂ check? f l.dir.des →
check!call(GetDesExt, FloorButtons, f l, dir, des, NoOfFloors) → Controller

Upon receiving the message from a lift, the central controller checks the pool of external
requests (which are stored in FloorButtons) and decides whether to assign an external
request to the lift. Function GetDesExt checks if there is an external request along the
way for the lift. If there is, it sends the new destination on channel check to the lift. If
the received des is −1, which means that there is no internal request for the lift, then
it assigns an external request on the lift’s current traveling direction. If there is no
request on the current direction, then it assigns a request on the opposite direction. If
there are no external requests, the message sent is −1.

Once the lift controller receives the new destination from the central con-
troller, its behaviors diverge, which are modeled using a ‘syntactic sugar’. Process
case {c0 : P0 c1 : P1 . . .} is equivalent to i f (c0){P0} else {i f (c1) {P1} else {· · · }}. That
is, the conditions c0, c1, . . . are evaluated one by one until one evaluates to true and
then the corresponding process is chosen. In particular, if there is an internal request
for the current floor or there is an external request from the current floor to travel
in the current direction (i.e., des = f l), then the door is opened to serve the request.
Otherwise, if the destination is above (below) the current floor, the shaft is commanded
to travel upwards for des − f l floors (downwards for f l − des floors) and then the door
is opened. Once the door is confirmed opened, by synchronizing conf , the requests are
cleared by ClearRequest, which is defined as follows.

ClearReq(i, f l, dir) =̂ clearRequest{
IntReq[i][f l] := 0;
i f (FloorButtons[f l] = dir){FloorButtons[f l] := None}
else{i f (FloorButtons[f l]! = None) {FloorButtons[f l] := −1 ∗ dir}}

} → Skip

Afterwards, the door is closed by signal event close and then the lift controller restarts.
If there are no internal requests or external requests (i.e., des = −1), then the lift

8Details of the C# methods are skipped as they are less interesting.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:23

Table I. Experiment Results

Model Property #St #Clock Z(s) NZ(s)
Pacemaker reachability 450K 2 21 21

Lift (2floor; 2lift) reachability 197K 4 54 53
Lift (3floor; 2lift) reachability 943K 4 310 305
Lift (2floor; 2lift) LTL 748K 4 346 305
Lift (3floor; 2lift) LTL 4.3M 4 6102 3948

Fischer*5 LTL 15K 5 1 1
Fischer*7 LTL 857K 7 229 105
Railway*4 LTL 2K 4 < 1 < 1
Railway*6 LTL 74K 4 6 6
Railway*8 LTL 4.3M 4 1536 1200
CSMA*6 LTL 14K 5 2 2
CSMA*9 LTL 295K 5 75 71

CSMA*12 LTL 4.7M 5 11475 9303
FDDI*4 LTL 46K 6 10 8
FDDI*5 LTL 6.4M 7 1461 1438

controller simply waits for some time and then restarts. Notice that in this modeling,
priority has been given to the internal requests. It is possible that a lift system is
designed otherwise.

Lift(i) =̂ (Shaf t(i) ‖ Door ‖ LiftCtrl(i, 0, Up) ‖ InternalQ(i))
\{open, conf, close, arrive};

A lift is then modeled as the parallel composition of the shaft, the door and the lift
controller and the internal queue. Notice that the synchronizing events between the
components are hidden from the environment. Last, the lifts are the interleaving of
all individual lifts and the lift system is composed of the interleaving of the lifts, the
central controller and the building.

Li f ts() =̂ ‖|NoOf Li f ts−1
i=0 Li f t(i)

System() =̂ Li f ts() ‖| CentralController() ‖| Building()

This model demonstrates how Stateful Timed CSP may be applied to model hierarchical
real-time systems step-by-step. The rich set of process constructs not only allow us to
capture real-time behaviors intuitively, without thinking about the clocks, but also to
build the system model incrementally from primitive system components.

6.2. Verification

In the following, we evaluate efficiency of our method in order to show that it is prac-
tically useful. Table I shows statistics of system verification using PAT. The data are
obtained with Intel� Xeon� CPU E5506 @2.13GHz and 32GB memory, on a 64-bit
Windows system. ‘-’ denotes that the experiment is aborted due to out of memory or
running more than 4 hours. The verified models include the pacemaker model, the lift
system, and benchmark real-time systems like Fischer’s mutual exclusion algorithm,
the railway control system [Yi et al. 1994], the CSMA/CD protocol [Bozga et al. 1998],
and the Fiber Distributed Data Interface (FDDI) [Larsen et al. 1997]. All models with
configurable parameters are available at [Sun et al.]. In the first column, the number
after the model name is the number of processes. LTL properties are verified with or
without the assumption of non-Zenoness. The verification time without non-Zenoness
is shown in column Z and the time with non-Zenoness is shown in column NZ. Column
#St shows the number states in the zone graphs. Column #Clock shows the maximum
number of clocks created during verification. Memory usage is skipped because PAT is

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:24 J. Sun et al.

Table II. Experiment Results

Model #Clocks Without Non-Zenoness
PAT UPPAAL PAT(s) UPPAAL(s) UPPAAL+τ -o(s)

Fischer*5 5 5 < 1 < 1 696
Fischer*6 6 6 7 1 -
Railway*6 4 6 2 < 1 -
Railway*7 4 7 15 6 -
CSMA*6 5 7 1 < 1 -
CSMA*8 5 9 11 5 -
CSMA*10 5 11 97 18 -

based on C# with dynamic garbage collection and therefore accurate memory usage is
hard to obtain.

A number of observations can be obtained from the data. First, PAT currently
handles in average about 20K states per second (i.e., the total number of visited
states—not new states—divided by the total number of seconds), which is reasonable
compared to existing model checkers [Holzmann 2003; Roscoe et al. 1995; Larsen et al.
1997]. Second, model checking with non-Zenoness has little computational overhead
and may be even more efficient. Compared to other work on model checking with
non-Zenoness [Tripakis 1999; Gómez and Bowman 2007; Herbreteau et al. 2010;
Herbreteau and Srivathsan 2010], this is a clear advantage. Third, for some models,
the number of clocks remains constant when the system size increases, for instance,
the railway control system and the CSMA/CD protocol. This is because clocks are
shared as much as possible in our approach.

In order to compare our method with the state-of-art real-time model checker, we
conducted experiments to compare performance of PAT (version 3.3) and UPPAAL (ver-
sion 4.1). For simplicity, all properties are reachability (without non-Zenoness). The
results are summarized in Table II, where column UPPAAL(s) shows the verification
time using UPPAAL, with all optimization techniques. Notice that UPPAAL outperforms
PAT in many cases. There are a number of reasons. First, our zone graphs are more
complicated than those of Timed Automata. The nodes in our zone graphs, that is,
the abstract configurations, are more complicated than those in UPPAAL as an abstract
configuration consists of a process expression. The process expression cannot be ab-
stracted as an array of numbers because the system structure in Stateful Timed CSP
varies through transitions. Furthermore, our zone graphs may contain more nodes due
to the extra τ -transitions introduced by the compositional process constructs, for in-
stance, the τ -transition generated by abstract firing rule ato3. Combined with parallel
composition, these τ -transitions may result in a large number of additional states. In
hand-crafted UPPAAL models, the τ -transitions are often removed by carefully manipu-
lating the clock guards or grouping clock guards and events into the same transition.
Removing the extra τ -transitions is highly nontrivial. In fact, we believe that they are a
price to pay in order to model hierarchical systems. Second, PAT is slower than UPPAAL

simply because some effective optimization techniques are currently missing. One par-
ticular example is extrapolation. The column UPPAAL + τ -o shows the verification time
using UPPAAL without extrapolation (and with the same extra τ -transitions so that the
models in PAT and UPPAAL have similar state spaces). The results show that PAT often
outperforms UPPAAL in this setting. This suggests that PAT could be more efficient with
similar optimizations in place. One last thing to notice is that in all the experiments,
PAT uses less clocks than UPPAAL. It remains as our future work to explore this fact
and UPPAAL’s powerful optimization techniques to improve PAT.

In summary, the reason why the current PAT implementation is useful is threefold.
First, Stateful Timed CSP is more suited to model hierarchical real-time systems than

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:25

Timed Automata. Second, PAT supports verification with non-Zenoness with little or no
extra cost. Last, PAT is reasonably efficient and supports alternative ways of specifying
properties (e.g., in SE-LTL, trace-refinement).

7. RELATED WORK

This work is related to research on real-time system modeling and verification.
Compositional specification for real-time systems based on timed process algebras
has been studied extensively. Examples include the algebra of timed processes named
ATP [Sifakis 1999; Nicollin and Sifakis 1994], the extension of CCS with real time [Yi
1991] and Timed CSP [Reed and Roscoe 1986; Schneider 2000]. Stateful Timed CSP is
an extension of Timed CSP. Different from timed process algebras, Stateful Timed CSP
integrates timed process constructs with complex data variables/operations in order
to model real-world systems. There has been a related line of research on integrating
timed process algebra with state-based specification languages [Mahony and Dong
2000; Butterfield et al. 2007]. One closely related language is called TCOZ [Mahony
and Dong 2000], which is an integration of Timed CSP and Object-Z. In TCOZ,
Object-Z is used to model data structures and operations. Different from previous work
on integrated formal specification, Stateful Timed CSP is designed to be executable
and model checkable. The key difference is that concrete executable programs instead
of pre/post-conditions are used to specify data operations. As a modeling language for
real-time systems, Stateful Timed CSP is related to Timed Automata [Alur and Dill
1994]. Remotely related modeling languages are Statecharts [Harel 1997] with clocks
and timed Petri nets [Ramchandani 1974], which are capable of modeling hierarchical
systems with real-time constraints.

There have been many approaches on building verification support for timed pro-
cess algebras. Development of tool support for ATP was evidenced in Nicollin et al.
[1992]and Closse et al. [2001]. In Yi et al. [1994], a constraint solving based verifi-
cation method was proposed to verify CCS + real time. In Brooke [1999], a theorem
proving approach for Timed CSP was discussed. In order to avoid the complexity of
developing a model checker from scratch, a number of translation-based approaches
have been studied. In our previous work [Dong et al. 2004; 2008], Timed CSP (as part of
TCOZ models) is translated to Timed Automata so that UPPAAL can be applied. In Dong
et al. [2006], Timed CSP is encoded into a constraint solver so as to verify reachability
properties. These approaches share the common problems with all translation-based
approaches. That is, the target tool UPPAAL is not designed for Timed CSP and there-
fore features of Timed CSP may not be effectively encoded or efficiently verified. For
instance, every timed process construct results in one fresh clock [Dong et al. 2006],
which resulted in using more clocks than necessary. Furthermore, reflecting verifica-
tion results back to the level of Timed CSP is not trivial. Ouaknine and Worrell [2002]
proved that through digitalization, Timed CSP models can be translated into CSP mod-
els and verified by CSP model checkers like FDR [Roscoe et al. 1995]. Compared to zone
abstraction adapted in this work, digitalization becomes ineffective when a model in-
volves largely different constants associated with timed processes. There has been little
verification support for integration of Timed CSP with other languages. To the best of
our knowledge, the PAT model checker is the first dedicated verification tool supporting
verification of hierarchical complex real-time systems with data structures/operations.

Research on verifying real-time systems have been focused on Timed Automata.
Several model checkers have been developed with Timed Automata or Timed Safety
Automata [Henzinger et al. 1994] being the core of their input languages [Larsen
et al. 1997; Bozga et al. 1998; Tasiran et al. 1996]. Zone abstraction was originally
introduced for Petri net [Berthomieu and Menasche 1983] and then adapted to the
framework of Timed Automata [Dill 1989]. Our zone abstraction is based on the zone

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:26 J. Sun et al.

abstraction developed in [Yi et al. 1994; Dill 1989]. In contrast to approaches based
on Timed Automata, our approach is capable of modeling and verifying hierarchical
systems. This work is closely related to work on Hierarchical Timed Automata [Jin
et al. 2007; David et al. 2001; Dong et al. 2008]. In Jin et al. [2007], formal definitions
for Hierarchical Timed Automata and their composition were defined. Furthermore,
compositional verification based on Multiset-LTS are discussed. Different from Jin
et al. [2007], our work offers an alternative approach based implicit clocks.

This work is related to research on verification with non-Zenoness assumption. Syn-
tactic conditions for Timed Automata to be free from Zeno runs have been identi-
fied [Tripakis 1999; Gómez and Bowman 2007]. The conditions are often sufficient
only [Bowman and Gómez 2006]. In the setting of Timed Automata, it has been shown
that it is not possible to determine if a run can be instantiated to a non-Zeno run given
only zone graphs. The solution involving adding one extra clock has been discussed
in [Tripakis 1999; Tripakis et al. 2005; Tripakis 2009]. Recently, it has been shown
that adding one clock may result in an exponentially larger zone graph [Herbreteau
et al. 2010; Herbreteau and Srivathsan 2010]. The remedy is to transform the zone
graph into a guess zone graph and require that all clocks that are bounded from above
must be reset infinitely often during a run and the run must visit a state such that
the clocks can be strictly positive [Herbreteau et al. 2010]. In this work, we show that
zone graphs generated from Stateful Timed CSP models are different as all clocks are
bounded from above and cannot be reset arbitrarily. As a result, detecting Zeno runs
based on zone graphs is feasible. In terms of tool support for model checking with
non-Zenoness, only UPPAAL and KRONOS allow some form of non-Zenoness detection.
UPPAAL relies on test automata [Aceto et al. 2003] and leads-to properties. The prob-
lem with this approach is that it is sufficient-only. KRONOS supports an expressive
language for specifying properties, which allows encoding of a sufficient and neces-
sary condition for non-Zenoness. Checking for non-Zenoness in KRONOS is expensive.
In comparison, checking non-Zenoness in our setting has a negligible computational
overhead.

8. CONCLUSION

In this work, we develop a self-contained approach for model checking hierarchical
complex real-time systems. In particular, we propose a modeling language named
Stateful Timed CSP, which extends Timed CSP with data components as well as ad-
ditional timed process constructs. We developed a fully automatic method to generate
finite-state abstraction from Stateful Timed CSP models. We show that the abstrac-
tion preserves interesting properties by proving that it is time-abstract bisimilar to
the original model. We then tackle the problem of non-Zenoness. We show that it is
possible to check non-Zenoness based on zone graphs so that properties can be verified
with the assumption of non-Zenoness. Last, our methods are implemented in the PAT
framework.

As for future work, because verification on CSP-based models has been traditionally
based on refinement checking [Roscoe 2005], we are currently investigating how to
check timed refinement relationship between two Stateful Timed CSP models with
the assumption of non-Zenoness. In addition, state space reduction techniques like
extrapolation, symmetry reduction and partial order reduction for Stateful Timed CSP
are to be studied.

REFERENCES

ACETO, L., BOUYER, P., BURGUEÑO, A., AND LARSEN, K. G. 2003. The power of reachability testing for timed
automata. Theor. Comput. Sci. 300, 1–3, 411–475.

ALUR, R. AND DILL, D. L. 1994. A theory of timed automata. Theor. Comput. Sci. 126, 183–235.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:27

BAROLD, S. S., STROOPBANDT, R. X., AND SINNAEVE, A. F. 2004. Cardiac Pacemakers Step by Step: An Illustrated
Guide. Blackwell Publishing.

BEHRMANN, G., LARSEN, K. G., PEARSON, J., WEISE, C., AND YI, W. 1999. Efficient timed reachability analysis
using clock difference diagrams. In Proceedings of the 11th International Conference on Computer Aided
Verification. Lecture Notes in Computer Science, vol. 1633. Springer, 341–353.

BENGTSSON, J. AND YI, W. 2003. Timed automata: Semantics, algorithms and tools. In Lectures on Concurrency
and Petri Nets. Lecture Notes in Computer Science, vol. 3098. Springer, 87–124.

BERTHOMIEU, B. AND MENASCHE, M. 1983. An enumerative approach for analyzing time Petri nets. In Proceed-
ings of the IFIP Congress. 41–46.

BOWMAN, H. AND GÓMEZ, R. 2006. How to stop time stopping. Formal Aspects Comput. 18, 4, 459–493.
BOZGA, M., DAWS, C., MALER, O., OLIVERO, A., TRIPAKIS, S., AND YOVINE, S. 1998. Kronos: A model-checking tool for

real-time systems. In Proceedings of the 10th International Conference on Computer Aided Verification.
Lecture Notes in Computer Science, vol. 1427. Springer, 546–550.

BROOKE, P. 1999. A timed semantics for a hierarchical design notation. Ph.D. thesis, University of York.
BUTTERFIELD, A., SHERIF, A., AND WOODCOCK, J. 2007. Slotted-circus. In Proceedings of the 6th International

Conference on Integrated Formal Methods. Lecture Notes in Computer Science, vol. 4591. Springer,
75–97.

CHAKI, S., CLARKE, E. M., OUAKNINE, J., SHARYGINA, N., AND SINHA, N. 2004. State/event-based software model
checking. In Proceedings of the 4th International Conference on Integrated Formal Methods. Lecture
Notes in Computer Science, vol. 2999. Springer, 128–147.

CLOSSE, E., POIZE, M., PULOU, J., SIFAKIS, J., VENTER, P., WEIL, D., AND YOVINE, S. 2001. TAXYS: A tool for the
development and verification of real-time embedded system. In Proceedings of the 13th International
Conference on Computer Aided Verification. Lecture Notes in Computer Science, vol. 2102. Springer,
391–395.

DAVID, A., DAVID, R., AND MÖLLER, M. O. 2001. From HUPPAAL to UPPAAL - A Translation from Hierarchical
Timed Automata to Flat Timed Automata.

DAVIES, J. 1993. Specification and Proof in Real-Time CSP. Cambridge University Press.
DILL, D. L. 1989. Timing assumptions and verification of finite-state concurrent systems. In Proceedings of

the International Workshop onAutomatic Verification Methods for Finite State Systems. Lecture Notes
in Computer Science, vol. 407. Springer, 197–212.

DONG, J. S., HAO, P., QIN, S. C., SUN, J., AND YI, W. 2004. Timed patterns: TCOZ to timed automata. In
Proceedings of the 3rd International Conference on Formal Engineering Methods. Lecture Notes in
Computer Science, vol. 3308. Springer, 483–498.

DONG, J. S., HAO, P., QIN, S. C., SUN, J., AND YI, W. 2008. Timed Automata Patterns. IEEE Trans. Software
Eng. 34, 6, 844–859.

DONG, J. S., HAO, P., SUN, J., AND ZHANG, X. 2006. A reasoning method for timed CSP based on constraint
solving. In Proceedings of the 8th International Conference on Formal Engineering Methods. Lecture
Notes in Computer Science, vol. 4260. Springer, 342–359.

DONG, J. S., MAHONY, B. P., AND FULTON, N. 1999. Modeling Aircraft Mission Computer Task Rates. In Pro-
ceedings of the World Congress on Formal Methods in the Development of Computing Systems. Lecture
Notes in Computer Science, vol. 1708. Springer, 1855.

FLOYD, R. W. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6, 345.
GASTIN, P. AND ODDOUX, D. 2001. Fast LTL to Büchi automata translation. In Proceedings of the 14th In-

ternational Conference on Computer Aided Verification. Lecture Notes in Computer Science, vol. 2102.
Springer, 53–65.

GÓMEZ, R. AND BOWMAN, H. 2007. Efficient detection of Zeno runs in Timed Automata. In Proceedings of the
5th International Conference on Formal Modeling and Analysis of Timed Systems. Lecture Notes in
Computer Science, vol. 4763. Springer, 195–210.

HAREL, D. 1997. Some thoughts on statecharts, 13 years later. In Proceedings of the 9th International Confer-
ence on Computer Aided Verification. Lecture Notes in Computer Science, vol. 1254. Springer, 226–231.

HAREL, D. AND GERY, E. 1997. Executable object modeling with statecharts. IEEE Comput. 30, 7, 31–42.
HENZINGER, T. A., NICOLLIN, X., SIFAKIS, J., AND YOVINE, S. 1994. Symbolic model checking for real-time systems.

Inf. Comput. 111, 2, 193–244.
HERBRETEAU, F. AND SRIVATHSAN, B. 2010. Efficient on-the-fly emptiness check for timed büchi automata. In

Proceedings of the 8th International Symposium on Automated Technology for Verification and Analysis.
Springer.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

3:28 J. Sun et al.

HERBRETEAU, F., SRIVATHSAN, B., AND WALUKIEWICZ, I. 2010. Efficient emptiness check for timed Büchi automata.
In Proceedings of the 22nd International Conference on Computer Aided Verification. Lecture Notes in
Computer Science, vol. 6174. Springer, 148–161.

HOARE, C. A. R. 1985. Communicating Sequential Processes. International Series in Computer Science.
Prentice-Hall.

HOLZMANN, G. J. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley.
JIN, X., MA, H., AND GU, Z. 2007. Real-time component composition using hierarchical timed automata. In

Proceedings of the 7th International Conference on Quality Software. IEEE Computer Society, 90–99.
LAI, L. M. AND WATSON, P. 1997. A case study in timed CSP: The railroad crossing problem. In Proceedings of

the International Workshop on Hybrid and Real-Time Systems. Lecture Notes in Computer Science, vol.
1201. Springer, 69–74.

LARSEN, K. G., PETTERSSON, P., AND WANG, Y. 1997. Uppaal in a nutshell. Int. J. Softw. Tools Technol. Trans. 1,
1–2, 134–152.

LINDAHL, M., PETTERSSON, P., AND WANG, Y. 2001. Formal design and analysis of a gearbox controller. Int. J.
Softw. Tools Technol. Trans. 3, 3, 353–368.

LIU, Y., SUN, J., AND DONG, J. S. 2010. Developing model checkers using PAT. In Proceedings of the 8th
International Symposium on Automated Technology for Verification and Analysis. Springer.

LIU, Y., SUN, J., AND DONG, J. S. 2011. PAT 3: An extensible architecture for building multidomain model
checkers. In Proceedings of the 22nd International Symposium on Software Reliability Engineering.
ACM.

LYNCH, N. A. AND VAANDRAGER, F. W. 1996. Action transducers and timed automata. Formal Asp. Comput. 8,
5, 499–538.

MAHONY, B. P. AND DONG, J. S. 1998. Network topology and a case study in TCOZ. In Proceedings of the 11th
International Conference of Z Users. Lecture Notes in Computer Science, vol. 1493. Springer, 308–327.

MAHONY, B. P. AND DONG, J. S. 2000. Timed communicating object Z. IEEE Trans. Soft. Eng. 26, 2, 150–177.
NICOLLIN, X. AND SIFAKIS, J. 1994. The algebra of timed processes, ATP: Theory and application. Inf. Comput.

114, 1, 131–178.
NICOLLIN, X., SIFAKIS, J., AND YOVINE, S. 1992. Compiling Real-Time Specifications into Extended Automata.

IEEE Trans. Soft. Eng. 18, 9, 794–804.
OUAKNINE, J. AND WORRELL, J. 2002. Timed CSP = closed timed safety automata. Electr. Notes Theor. Comput.

Sci. 68, 2, 142–159.
RAMCHANDANI, C. 1974. Analysis of asynchronous concurrent systems by timed Petri nets. Ph.D. thesis,

Massachusetts Institute of Technology.
REED, G. M. AND ROSCOE, A. W. 1986. A timed model for communicating sequential processes. In Proceedings

of the 13th International Colloquium on Automata, Languages and Programming. Lecture Notes in
Computer Science, vol. 226. Springer, 314–323.

ROKICHI, T. G. 1993. Representing and modeling digital circuits. Ph.D. thesis.
ROSCOE, A. W. 2001. Compiling shared variable programs into CSP. In Proceedings of PROGRESS Workshop.
ROSCOE, A. W. 2005. On the Expressive Power of CSP Refinement. Formal Aspects Comput. 17, 2, 93–112.
ROSCOE, A. W., GARDINER, P. H. B., GOLDSMITH, M., HULANCE, J. R., JACKSON, D. M., AND SCATTERGOOD, J. B.

1995. Hierarchical compression for model-checking CSP or how to check 1020 dining philosophers for
deadlock. In Proceedings of the 1st International Workshop on Tools and Algorithms for Construction
and Analysis of Systems. Lecture Notes in Computer Science, vol. 1019. Springer, 133–152.

SCHNEIDER, S. 1995. An operational semantics for timed CSP. Inf. Comput. 116, 2, 193–213.
SCHNEIDER, S. 2000. Concurrent and Real-Time Systems. John Wiley and Sons.
SIFAKIS, J. 1999. The compositional specification of timed systems: A tutorial. In Proceedings of the 11th

International Conference on Computer Aided Verification. Lecture Notes in Computer Science, vol. 1633.
Springer, 2–7.

SUN, J., LIU, Y., DONG, J. S., LIU, Y., AND SHI, L. Stateful timed CSP: Models and experiments.
http://www.comp.nus.edu.sg/˜pat/rts.

SUN, J., LIU, Y., DONG, J. S., AND PANG, J. 2009a. PAT: Towards flexible verification under fairness. In Proceed-
ings of the 20th International Conference on Computer Aided Verification. Lecture Notes in Computer
Science, vol. 5643. Springer.

SUN, J., LIU, Y., DONG, J. S., AND ZHANG, X. 2009b. Verifying stateful timed CSP using implicit clocks and zone
abstraction. In Proceedings of the 11th IEEE International Conference on Formal Engineering Methods.
Lecture Notes in Computer Science, vol. 5885. Springer, 581–600.

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

Modeling and Verifying Hierarchical Real-Time Systems Using Stateful Timed CSP 3:29

TASIRAN, S., ALUR, R., KURSHAN, R. P., AND BRAYTON, R. K. 1996. Verifying abstractions of timed systems. In
Proceedings of the 7th International Conference on Concurrency Theory. Lecture Notes in Computer
Science, vol. 1119. Springer, 546–562.

TRIPAKIS, S. 1999. Verifying progress in timed systems. In Proceedings of the 5th International AMAST
Workshop ARTS on Formal Methods for Real-Time and Probabilistic Systems. Lecture Notes in Computer
Science, vol. 1601. Springer, 299–314.

TRIPAKIS, S. 2009. Checking Timed Büchi Automata Emptiness on Simulation Graphs. ACM Transactions on
Computational Logic 10, 3, 1–19.

TRIPAKIS, S., YOVINE, S., AND BOUAJJANI, A. 2005. Checking timed Büchi Automata emptiness efficiently. Formal
Meth. Syst. Des. 26, 3, 267–292.

VARDI, M. Y. AND WOLPER, P. 1986. An automata-theoretic approach to automatic program verification (prelim-
inary report). In Proceedings of the Symposium on Logic in Computer Science. IEEE Computer Society,
332–344.

YI, W. 1991. CCS + Time = an interleaving model for real time systems. In Proceedings of the 18th Inter-
national Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science,
vol. 510. Springer, 217–228.

YI, W., PETTERSSON, P., AND DANIELS, M. 1994. Automatic verification of real-time communicating systems by
constraint-solving. In Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques. IFIP Conference Proceedings, vol. 6. Chapman & Hall, 243–258.

Received October 2010; revised April 2011, August 2011; accepted August 2011

ACM Transactions on Software Engineering and Methodology, Vol. 22, No. 1, Article 3, Pub. date: February 2013.

	Modeling and verifying hierarchical real-time systems using stateful timed CSP
	Citation
	Author

	TOSEM2201-03

