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ABSTRACT

Non-determinism in concurrent or distributed software systems (i.e.,
various possible execution orders among different distributed com-
ponents) presents new challenges to the existing reliability analy-
sis methods based on Markov chains. In this work, we present a
toolkit RaPiD for the reliability analysis of non-deterministic sys-
tems. Taking Markov decision process as reliability model, RaPiD
can help in the analysis of three fundamental and rewarding aspects
regarding software reliability. First, to have reliability assurance on
a system, RaPiD can synthesize the overall system reliability given
the reliability values of system components. Second, given a re-
quirement on the overall system reliability, RaPiD can distribute
the reliability requirement to each component. Lastly, RaPiD can
identify the component that affects the system reliability most sig-
nificantly. RaPiD has been applied to analyze several real-world
systems including a financial stock trading system, a proton therapy
control system and an ambient assisted living room system. The is
available at http://fse22.gatech.edu/cfp/demos

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Model checking, Reliability

Keywords

reliability analysis, Markov Decision Process, non-determinism

1. INTRODUCTION

Nowadays, virtually any industry, e.g., automotive, avionics, oil,
telecommunications and banking, is highly dependent on computer
systems for their automated functioning. Failures would damage
the reputation of the system operators, and potentially lead to losses
in capitals or even human lives. To prevent those losses, performing
reliability analysis on the system before its deployment is highly
desirable. Thus, tools for assisting reliability analysis are in an
overwhelming need to help project managers in project planning
such as risk mitigation, resource allocation in testing phase, and
strategy appraisal.

Existing approaches on reliability analysis, together with the as-
sociated tools, fall into two categories: black-box approaches [7]
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and white-box approaches [3, 9]. The black-box approaches treat a
system as a monolith and evaluate its reliability using testing tech-
niques. They use the observed failure information to predict the
reliability of software based on several mathematical models. On
the contrary, the white-box approaches assume that the reliability
of each system component is known and evaluate software relia-
bility analytically based on the model of the system architecture.
Typical models include discrete or continuous time Markov chains
(DTMCs, CTMCs) [3, 9]. Those approaches assume the system is
deterministic, i.e., given the same inputs, the outputs of the system
are always the same. Thus, in their reliability models, the transi-
tion probabilities among components are assumed to be known. All
those approaches assume that there is only one probability distribu-
tion for the possible usage of a component.

However, as software becomes more complex and often oper-
ates in a distributed or dynamic environment, the execution orders
among software components are hard to measure prior to the soft-
ware deployment (i.e., exhibiting non-deterministic behaviors). For
example of a system with two servers running in a distributed en-
vironment, the execution frequency of each server depends on the
specific runtime task that is required from external. Without priori
knowledge on tasks, no statement can be made about the likelihood
with which sever is selected. In fact, non-determinism also exists
in many other modern software, e.g., a cloud computing system
within which multiple processes aim to access shared resources and
a pervasive system within which the software intensively interacts
with environments or human behaviors.

In order to cope with those non-deterministic behaviors, we pro-
pose to perform reliability analysis based on a system model in the
form of a Markov decision process (MDP), a popular formalism to
model both probabilistic and non-deterministic behaviors [5]. To-
wards this goal, in this work, we present a toolkit called RaPiD
(Reliagbility Prediction and Distribution) to assist automatic reli-
ability analysis. Using probabilistic model checking techniques,
e.g., (parametric) reachability checking, three fundamental and highly
important reliability issues can be investigated in RaPiD for non-
deterministic systems: (1) RaPiD can synthesize the overall system
reliability given the reliability values of system components; (2)
given a reliability requirement on the overall system, RaPiD can
distribute the reliability requirement to each component; and (3)
RaPiD can identify the component that affects the system reliability
most significantly. To further enhance the efficiency and scalabil-
ity of reliability analysis, RaPiD incorporates various techniques,
i.e., strongly connected components elimination to solve the slow
convergence issue in probability computation, and abstraction and
refinement on the communications between distributed systems to
alleviate the state explosion issue. For its applications, RaPiD has
been used for the reliability analysis of several real-world systems.
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Figure 2: RaPiD overview: (a) reliability prediction; (b) reliability distribution; (c) sensitivity analysis

2. TOOL OVERVIEW

RaPiD is a self-contained reliability analysis toolkit, which con-
sists of three main components, i.e., Editor, Parser, and Reliability
Analyzers. Fig. 1 shows the architecture of RaPiD. In the graph-
ical editor, a system model for reliability analysis (i.e., reliability
model) is first created, from which the explicit model, i.e., MDP, is
then automatically obtained by the parser. The core algorithms for
reliability analysis are in the reliability analyzers including reliabil-
ity predictor, reliability distributor and sensitivity analyzer. After
the analysis, RaPiD presents results in a text report or a graphical
plot. In the following, we introduce the reliability model and then
present the workflow for the three reliability analyzers.

2.1 Reliability Model

Extended from Cheung’s model [3], the model for reliability
analysis in our setting is an MDP M that can be built from system
architecture and user environments. It can support the modeling of
both probabilistic and non-deterministic behaviors. In this model,
states and transitions are two key elements constructed as follows.
States Each system component C'is a self-contained piece of codes

that can be independently designed, implemented, and tested. Each
system component represents a state in MDP. In addition, there are
two absorbing states: a state of Success and a state of Failure. A
simple model is demonstrated in Fig. 3. For compact reliability
model presentation, we skip the Failure state. Instead, a node la-
belled as C'(R.) is used to denote a component C' with a probabil-
ity of R, to transit to the successive components, and a probability
of 1 — R to reach Failure state.

Transitions The transition probability in a probability distribution
at each edge represents the usage information, e.g., P;;, is the
probability from component ¢ to component j, given that compo-
nent ¢ does not fail. An MDP can have more than one probability
distributions at a state. This feature enables RaPiD to model all
possible operating environments/situations explicitly. RaPiD sup-
ports the modeling of failure handling mechanism in the system,
where the transition with probability 1 — Rc leads to a failure
recovering state instead of the Failure state. Taking Server;
in Fig. 3 as an example, its reliability can be read off from the
graph as 0.9972 and it has two outgoing transitions labeled with
action 7. If Server; terminates successfully, it has a probabil-
ity 0.584 of going to Exit, and a probability 0.416 of going to
database D B. If Server; fails, it goes to Serversy, which serves
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Servery (0.9972)
7, 0.584

Eait(1) Success(1)

©

7,0.416
Serverg (0.9972) DB(0.9811)

Figure 3: A reliability model

as a backup server for Server:. This backup transition is denoted
by the dash line in the figure.

2.2 Reliability Analysis

With different input knowledge and requirements, RaPiD can
readily address three different questions on software reliability.

e “What is the overall system reliability if the reliability of
each component is known, considering all possible user be-
haviors, and unreliable factors?”

This is the problem of reliability prediction. This question is to
be answered necessarily before system deployment since end users
would prefer to know how reliable the system is. The reliability
value of each component and an MDP model of system are required
for predicting the overall system reliability. Reliability prediction
is equivalent to checking the probability that the system never fails.
It is then transformed into a problem of calculating the probability
of reaching accepting nodes from an initial state to a goal state s on
an MDP model M, denoted as Pr(M, s). Here, RaPiD performs
value iteration approach [2] to compute the reachability probabil-
ities. Unlike DTMC approaches, the result here is a probability
range due to the non-deterministic behaviors. The upper bound is
the system reliability corresponding to the best scenario in the sys-
tems, whereas, the lower bound corresponds to the worst scenario.

e “What is the reliability required on a certain component if
there is a requirement on overall system reliability?”

This is the problem of reliability distribution. Addressing this issue
is useful because we can have specific quantitative requirements on
the selection of software and hardware components, whose qual-
ities are often cost-sensitive. The reliability distribution analysis
shown in Fig. 2(b) needs two inputs: (1) a reliability requirement
R on the overall system; (2) a parametric MDP model M. RaPiD
considers only memoryless schedulers that have already been proven



to be enough for probability reachability analysis in MDPs [2].

Given a scheduler ¢, we can obtain the system reliability (i.e., Pr(M., s))

as a polynomial function of x and its associated inequality, e.g.,
0.5z" + 0.164352° + 0.054022° + --- > R. To solve the con-
straints on an individual component, RaPiD uses Newton’s method,
due to its fast convergence rate to the solution/root. RaPiD calcu-
lates the lower bounds on x for finitely many schedulers among
which the maximum value gives us the minimum requirement on
component reliability.

e “Which component is most critical to system reliability among

all system components?”

The answer can be addressed via sensitivity analysis. This analysis
is essential to improve the overall system reliability effectively with
limited resource. For example, if a system is shown to be not reli-
able enough based on current components, it is desirable to prior-
itize the components such that reliability improvement of a higher
priority component would result in better improvement on overall
system reliability. Sensitivity analysis requires all component re-
liabilities to be known in advance and an indication on which one
of those components needs to be evaluated, as shown in Fig. 2 (c).
The sensitivity A; of component ¢ with reliability R; is defined as
a partial derivation of system reliability R, i.e., A; = %ﬁf’s).
Here, Pr(M, s) are polynomials obtained via reliability distribu-
tion. RaPiD has equipped with polynomial solvers to solve these
differential equations.

2.3 Enhancements

We have developed two techniques to enhance the efficiency and
scalability in reliability analysis.

Efficiency We improve the efficiency of reachability checking, which

is fundamental in our reliability analysis. It is known that existing
approaches on reachability analysis for Markov models are often
inefficient (i.e., slow convergence) when a given model contains
a large number of states and loops. In RaPiD, we implemented
strongly connected components (SCCs) elimination methods, and
actively removed redundant probability distributions by finding
convex hull [11, 6].

Scalability We improve the scalability of reliability prediction, in
particular, for distributed systems. RaPiD can support the mod-
eling of parallel composition of a set of MDPs and its associated
refinement checking. Our method relies on probabilistic model
checking techniques, which is limited to small scale distributed
systems. In RaPiD, we improve the probabilistic model check-
ing through abstraction and reduction, which control the commu-
nications among different distributed local systems and actively
reduce the size of each system.

2.4 Assumptions and Threads to Validity

This work shares the same assumptions with the conventional
component-based reliability analysis [4]. It assumes that there is
statistical independence among failures of the components. More-
over, in our reliability analysis, we assume that any component’s
failure will eventually result in the failure of the system. Self-
recovery/repair scenarios are not considered as failure cases, and
these scenarios can all be modeled in RaPiD.

3.

RaPiD is implemented to provide a friendly user interface to
draw reliability models and fully automated methods to the reli-
ability analysis (i.e., reliability prediction, reliability distribution,
and sensitivity analysis). It has approximately 6.5K lines of C#
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Table 1: Reliability
Name (#Schedulers)
Min. Reliability
Max. Reliability

prediction for the three models
M1(1) M2(5 M3(160)
0.95568 0.95401  0.73149
0.95568 0.95568  0.96257
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Figure 4: Reliability distribution results for M2b

1.00

code. It uses a number of MATLAB (version 2009a) libraries to
support powerful mathematical calculations, as well as graph plot-
ting functions. Starting from 2012, RaPiD has come to a stable
stage with solid testing and has been applied to analyze several
real-world systems. The tool (along with a screencast illustrating
its usage) is available at [1].

4. EVALUATION
4.1 Practical Case Studies

So far, RaPiD has been successfully used in reliability analysis of
three real-world systems. Due to space limitation, we only present a
small part of evaluation results for demonstration. The detailed de-
scriptions and comprehensive evaluation results are available at [1].

Call Cross System (CCS) It is from our industrial collaborator,
a financial software solution provider. CCS is a stock trading sys-
tem accepting order flow in a global operating environment. Using
RaPiD, six different models of CCS system that vary only on the
‘uncertainty’ degree of the deployment environment (i.e., M1, M2
and M3) and the existence of back-up servers (i.e., M1b, M2b and
M3b), are evaluated via reliability prediction and reliability distri-
bution. As the reliability of a system changes with the dynamic
operating environment, reliability prediction results in RaPiD are
the maximum and minimum reliabilities as listed in Table 1. From
the table, we can find that the difference between maximum and
minimum reliabilities becomes larger when the number of non-
deterministic choices (i.e., ‘uncertainty’) increases from M1 to M3.
For reliability distribution, the reliability requirement is generated
on each component, as well as the plots of system reliability versus
component reliability as shown in Fig. 4 for model M2b. Relia-
bility requirement is shown as the dashed horizontal line and dis-
tributed reliability requirements are determined at the intersection
points. A comparison of the six models is shown in Fig. 5. We
observe that the system reliability indeed becomes higher by intro-
ducing a backup server, but with the increase of component reliabil-
ity, the gain of system reliability by introducing the backup server
decreases. Readers are referred to [5] for more details.

Therapy Control System (TCS) It is from the Burr Proton Ther-
apy Center that provides a radiation therapy facility associated with
a hospital in Boston. Given the requirement on system level reli-
ability, it is desirable to generate concrete reliability requirements
for newly developed components so that they are contracted prop-
erly. The reliability analysis was conducted during an upgrading of
TCS. The challenge in applying RaPiD was that there was no pre-
cise information on transition probabilities. As a result, transitions
in the system have been modeled as non-deterministic transitions
only. The results are shown in Fig. 6. We have shown that RaPiD
can still obtain some useful results [5]. For example, although there
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Figure 6: Reliability analysis result for TCS

are 2,592 schedulers, only three different system reliabilities (in
terms of polynomials of the component reliability) exist. By fur-
ther analyzing the corresponding schedulers reported by RaPiD, we
can identify three typical workflows of the system that result in the
three scenarios, respectively.

Ambient Assisted Living System (AAL) It is a smart health-
care system named AMUPADH for elderly people with dementia
in a nursing home in Singapore. This system is highly interactive
that it can automatically react according to users’ behaviors. With
6 months trial deployment, the system turned to be highly unreli-
able and fail frequently. Thus, reliability analysis has been carried
out with RaPiD on different usage scenarios. Reliability prediction
results are presented in Table 2, which show that the overall system
reliability can hardly reach 0.5. Given system reliability require-
ment, the distributed requirement on sensors’ reliabilities are listed
in Table 3. From the sensitivity analysis, we have identified that
the overal system reliability can be improved most effectively by
improving the Wi-Fi network. Details are referred to an industrial
case study report in [10].

4.2 Performance and Scalability

RaPiD is efficient in our case studies. The reliability prediction
took 0.03 seconds for the CCS, and the reliability distribution took
42 seconds for the CCS (with 160 schedulers) and 628 seconds for
the TCS (with 2,592 schedulers). To further test the scalability of
RaPiD, we evaluate RaPiD’s reliability prediction and distribution
using 5 benchmark MDP models as well as randomly generated
models (with 1K to 50K states and the number of states for having
multiple transitions are sampled from a uniform distribution). The
results show that RaPiD can handle 14K states per second on av-
erage (with termination threshold defined by a relative difference
of 1.0E-6) in calculating reachability probability. Reliability distri-
bution (with a bound 600 on the number of terms in the obtained
polynomial) is slightly slower due to maintaining/updating/solving
the polynomial functions. All above data are obtained using a PC
with Intel® Core(TM) i7 CPU at 2.80 GHz and 8 GB of RAM.

S. CONCLUSION

This paper presents a toolkit RaPiD, which is a self-contained
toolkit for reliability analysis. Unlike other reliability analysis toolk-
its [8, 12] that only work for deterministic systems, RaPiD can
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Table 3: Distributed reliability requirements on sensors
Req. R [ UWB | SBTL | SNS | STL | TNO | WiW

04 0.854 | 0904 | 0913 | 0911 | 0911 | 0911
’ 0.886 | 0.938 | 0.941 | 0.923 | 0.923 | 0.923
05 0914 | N.A. | 0965 | 0.963 | 0.963 | 0.963
’ 0996 | N.A. | 0995 | 0.994 | 0.994 | 0.994

Time (s) | 345 | 2.68 | 3.86 | 1.87 | 11.00 | 2.35

work for the analysis of non-deterministic systems that may be ex-
posed to various possible operating environments. Although RaPiD
uses probabilistic model checking techniques, unlike general prob-
abilistic model checkers, RaPiD is tailored to software reliability
analysis. In particular, it provides fully automated solutions to re-
liability prediction and reliability distribution problems as well as
sensitivity analysis. RaPiD has been successfully applied for the re-
liability analysis of real-world systems such as a financial system,
a therapy control system and a smart living room system.
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