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Automatic Early Defects Detection in Use Case Documents

Shuang Liu1, Jun Sun2, Yang Liu3, Yue Zhang2,
Bimlesh Wadhwa1, Jin Song Dong1 and Xinyu Wang4

1National University of Singapore
2Singapore University of Technology and Design

3Nanyang Technological University
4ZheJiang University

ABSTRACT
Use cases, as the primary techniques in the user requirement analy-
sis, have been widely adopted in the requirement engineering prac-
tice. As developed early, use cases also serve as the basis for func-
tion requirement development, system design and testing. Errors in
the use cases could potentially lead to problems in the system de-
sign or implementation. It is thus highly desirable to detect errors
in use cases. Automatically analyzing use case documents is chal-
lenging primarily because they are written in natural languages. In
this work, we aim to achieve automatic defect detection in use case
documents by leveraging on advanced parsing techniques. In our
approach, we first parse the use case document using dependency
parsing techniques. The parsing results of each use case are further
processed to form an activity diagram. Lastly, we perform defect
detection on the activity diagrams. To evaluate our approach, we
have conducted experiments on 200+ real-world as well as aca-
demic use cases. The results show the effectiveness of our method.

Categories and Subject Descriptors:.
D.2.1 [SOFTWARE ENGINEERING]: Requirements/Specifications

Keywords:.
Natural language processing; Use cases

1. INTRODUCTION
Use cases are the main technique for understanding user require-

ments, which have been widely adopted in the modern software
development life cycle over the last two decades. Each use case de-
scribes a sequence of interactions between a software system and
an external actor such that the actor is able to achieve some goal.
Collectively, use cases are used to define all the necessary system
activities that have significance to the users. As use cases are de-
veloped during a very early stage of the software development life
cycle, they also serve as the basis for developing detailed function-
al requirements, help in design development and validation, system
testing and maintenance. High quality use case documents can im-
prove the sustainability of software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642969.

Use case documents are usually written in natural languages,
which may inevitably introduce defects like inconsistency, redun-
dancy and incompleteness. Moreover, those defects are hard to
identify or verify due to their informal format. In the current prac-
tice, use case analysis is conducted manually, e.g., requirement ana-
lysts manually extract analysis models (e.g., state machine, activity
diagram) from use cases, and search for defects in the models or
validate them against test cases. Manual analysis is hardly ideal
as it requires a lot of human efforts and is often error-prone. As a
result, use cases are much less useful than they could or should be.

There are existing works on automatic analysis of use cases [7,
10, 6]. But still, we identify the following challenges which have
not been addressed satisfactorily. Firstly, actual use case documents
are often larger and more complex than those have been reported
in existing works [6]. For large use case documents, the diver-
sity of grammar rules and ambiguities presented in the document
raise great technical challenges in automatic “understanding” them.
Secondly, common problems in use cases are inconsistency and in-
complete flows. Existing approaches have so far mainly focused
on analyzing inconsistency problems [7, 6] and leave incomplete
flows unconsidered. Lastly, some existing approaches (e.g., [10,
6]) rely on users to provide use-case-specific templates for parsing,
which is ad-hoc and may require knowledge about shallow parsing
techniques.

In this work, we are motivated to provide automatic techniques
to identify defects in use case documents during the early stage of
system development. We attempt to answer the following research
questions. (1) How can we automate the process of extract use-
ful information from use case documents as much as possible? (2)
Can we formally define the common defects in use cases and de-
velop systematic methods to find those defects? (3) How can we
generalize the method to handle use case documents from different
domains, even when the documents are written by different people?
We contribute in the following three aspects. (1) We explore depen-
dency parsing technique to help understand use case documents.
We provide 8 rules based on general English grammar to analyze
the dependency parsing results. (2) We formally define common
consistency and integrity related defects in use cases and provide
algorithms to automatically check those defects. (3) We conduct
experiments with use case documents of 5 different systems from
different application domains. The results show that our method
can achieve good accuracy in analyzing sentences from different
domains as well as in finding defects.

Related Work Xiao et.al. [10] extracted Access Control Policies
(ACP) from software descriptions and checked the validity of the
policies against the use case steps within the same document. Se-
mantic patterns for ACP sentences are provided based on the man-
ually defined verb phrases and POS tags obtained from shallow
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Use Case 1: Receive the order with special group
Initiating Actor: Trader
Pre-Conditions 
1. The order is legal.
Main Flow
41. GSYS accepts the symbol of order.
42. Check the order.
43. If the order is legal, record values of the group.
44. Find the constraint in the system according to the group name. 
45. Save the order into database.
46. Price the order.
47. During the processing, it could create matches only when the 
constraints are permitted. For example, no match should be 
created if there is not enough cash in the group.
48. This ends the use case.
Alternative Flow
In step 3, if there is no such constraint in the system, the system 
will reject this order.
Post-Conditions
1. Order with special group is received by the system.

Figure 1: Example of Use Case Description

parsing. Gervasi and Zowghi [6] proposed to uncover inconsisten-
cies in natural language use case descriptions with formal reasoning
techniques. Propositional logic formulas are adopted to represent
facts, hypotheses and constrains, which are extracted from natural
language descriptions. Sinha et.al. proposed an analysis engine and
a prototype tool Text2Test [7] for use cases. Shallow parsing tech-
niques are used to analyze natural language sentences. Domain-
specific knowledge is required for annotating concepts and context
information. The works [10, 6, 7] depend on document-specific in-
formation, such as keywords, writing styles, etc. We explore to use
dependency parsing technique, which provides richer syntactic in-
formation and enables adjusting rules without any domain specific
information to be provided. Thus our approach is more adaptive.
Tan et.al. [8] focus on detecting inconsistencies between program
comments and the source code. Zhong et.al. [12] propose to infer
resource specifications from API documentations to detect resource
manipulation order problems. This kind of approaches handle nat-
ural language with limited patterns. Templates are usually used to
extract information from those natural language sentences.

2. PRELIMINARY
This section introduces the use case document template adopted

in our approach, and the UML activity diagram.
2.1 Use Case Document Template

There is no standard template for writing use case documents as
concluded by Fowler [5]. The choice of use case styles may be
highly project-dependent as affected by factors such as the criti-
cality and the number of people involved. It is recommended that
for small projects, a simple, casual use case template [4] can be
chosen. For large, life-critical projects, it is more appropriate to
use a hardened, fancier and fully-addressed template [4]. We fo-
cus on fully-addressed use cases since they are usually adopted by
large, life-critical projects. There is no universally adopted fully-
addressed use case template. However, it has been reported by
Cockburn [4] that “the readers almost universally select the single-
column, numbered, plain text, full sentence form”. Therefore, in
this work we focus on this most popular writing style in literature.
Figure 1 is one use case in a stock trading system document1 which
follows roughly the Cockburn style [4]. Note that our work does

1This is a real system used for real-time stock trading in the amount
of billions. The document is provided by our industry collaborator.
We omit sensitive keywords due to the confidentiality.

42 Check(Order)

43 Record(Value) 

44 Find(Constraint)

d44

45  Save(Order)

46  Price(Order)

a1   Reject (Order) 

d43 Some operation
[legal]

[not legal]

[no constraint]

[constraint]

Nf

41 Recieve(GSYS,Order)

Figure 2: Example Activity Diagram

not aim at handling all the possible writing styles of use cases. We
are rather interested in investigating advanced NLP techniques to
aid defects detection in use case documents. The issues caused by
different writing styles can be tackled by providing more robust
pre-processing steps. We formally define the concepts involved in
use case descriptions below.

DEFINITION 1 (ACTION). An action is defined as a tupleA ,
(vb, sub, obj), where vb, sub, obj are natural language phrases
representing the main verb, subject and object of the sentence.

For example in Figure 1, the action tuple of the first sentence in
main flow section is (check, _, order) (The subject is missing in
an imperative sentence).

DEFINITION 2 (PREDICATE). A predicate is defined as a tu-
ple P , (ar,R, a1, a2), where ar ∈ {1, 2} is the arity of the
predicate; R is the relation symbol of the predicate; a1 and a2 are
the arguments of the relation symbol.

The predicate can be monovalent or divalent, depending on the
structure of the sentence. Predicates of higher arity are not used
very frequently. Therefore we do not consider predicates with more
than two arities in our work. To gain an intuitive view, a mono-
valent predicate (1, is_legal, order)2 can be generated from the
sentence in the pre-conditions section in Figure 1.

DEFINITION 3 (SENTENCE). A sentence is defined as a tuple
S , (s#, α, c, ns, nj), where s# is the sentence number in the
corresponding section of the use case; α ∈ A is the action of the
sentence; c ∈ P is the guard condition for executing the sentence;
ns ∈ N and nj ∈ N are the logical previous and succeeding
sentence of the current sentence respectively.

For example the alternative flow sentence in Figure 1 correspond-
s to the following sentence structure: (a1, (reject, system, order),
(2, is_no, there, constraint), 3,−1). The number 3 indicates that
the current alternative flow step starts from main flow step 3. −1
indicates that there is no explicit assigned step after the current step,
then the flow goes to the next neighboring step.

DEFINITION 4 (USE CASE). A use case is defined as a tu-
ple UC , (UCName, PreC, PostC,MF,AF ), UCName is
the name of the use case; PreC ⊂ P and PostC ⊂ P are the
predicates extracted from sentences in the pre-condition and post-
condition sections; MF and AF are the list of sentences S in the
main flow and alternative flow sections of the use case.

2We use underline to replace spaces.
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Use Case 
Documents

sentences 
in dep-tree

activity 
diagram

use cases in 
sentence struct

4 build activity 
diagram

3 analysis of 
dep/ps trees

5 find 
defects

artifact

processing 
step

Phase I

Phase II

defect report

Dictionary

6 train dep
    parser

2.1 dependency 
parsing

use cases 
separated 

in sentences

1 Pre-
processing

2.2 phrase 
structure 
parsing

sentences 
in ps-tree

Trained 
dep parser

Optional Phase 

with Zpar

with trained 
dep parser

Figure 3: Overview of our approach
2.2 UML Activity Diagram

UML Activity Diagrams [2] are commonly adopted to describe
the event flows in use case documents for the purpose of coordinat-
ing low-level behaviors.

DEFINITION 5 (ACTIVITY NODE). An activity node is defined
as N , Na ∪ Nc where Na , (Nm,α) is action node and
Nc , (Nm, t) is the control node. Nm is the name for each
node. α ∈ A is the action associated with the action node. t ∈
{decision, final, initial} is the type of the control node.

In Figure 2, the rounded rectangles are action nodes. The dia-
mond, enriched circle and solid circle represent the choice node,
final node and initial node respectively. They are control nodes.

DEFINITION 6 (ACTIVITY EDGE). An activity edge is defined
as E , (sn, tn, g), where sn ∈ N , tn ∈ N and g ∈ P are the
source, target nodes and the guard condition of the activity edge.
The guard condition for an activity edge must be satisfied in order
to fire the corresponding edge.

DEFINITION 7 (ACTIVITY DIAGRAM). A UML activity dia-
gram is defined as AD , (ADName, PreC, PostC, AN , AE),
where ADName is the name of the activity diagram. AN ⊂ N
and AE ⊂ E are the set of activity nodes and activity edges in the
diagram. PreC ⊂ P and PostC ⊂ P are the pre-conditions and
post-conditions of the activity diagram.

In this work, we consider a subset of UML activity diagram fea-
tures which are related to control flows. The features which capture
object flows are not considered since our defects detection methods
utilize only the control flow information.

3. OUR APPROACH
The overview of our approach is illustrated in Figure 3. The rect-

angles represent artifacts that are produced as (intermediate/final)
processing results. The ellipses represent the processing steps. Our
method consists of two phases. In the first phase, we take a use
case document as input and parses each sentence in the document
into parse trees (dependency tree and phrase structure tree). The
second phase takes parse trees as input and generates a UML activ-
ity diagram for each use case. Afterwards, defects in the use cases
are checked. The output of our method includes the UML activity
diagrams and a defect report where all defects with horizontal links
to the original document are listed. There is also an optional phase
as enclosed in the dashed lined area. It provides a way to train
a domain-adaptive dependency parser to improve the accuracy of
dependency parsing. We discuss our approach in this section.

3.1 Pre-processing Use Case Documents
This step is conducted to filter noises from the input document

so as to improve the accuracy of the dependency parser. We re-
moves the irrelevant information and formatting symbols, such as

GSYS accepts the symbol of order
NNS VBP DT NN IN NN

ROOT

SUB

OBJ

NMOD NMOD PMOD

Figure 4: Example of a dependency tree
S
PPPP
����

NP

GSYS

VP
aaaa
!!!!

VBP

accepts

NP
PPPP
����

the symbol of order

Figure 5: Example of a phrase structure tree

parenthesized comments and bullets, which may affect the parsing
accuracy. The output text satisfies the following conditions.

(1) Each sentence is stored in a separate line.
(2) Each punctuation is preceded by a space.
(3) Step index number is stored in a separate line.
(4) Parenthesis are replaced by “–LBR–” or “–RBR–”.
(5) There is no empty line in the document.

3.2 Free Text Parsing
In this work, we leverage on ZPar [11], a statistical dependency

and phrase structure parser, for analyzing syntactic information.
Dependency Parsing The dependency parser (Step 2.1) is used to
extract bootstrap information for action tuples. It conducts statisti-
cal analysis on POS tags based on a large data set, which guarantees
that it provides more general results than directly analyzing POS
tags based on the templates extracted from the sample document.
The dependency parsing technique can also provide richer syntactic
details, i.e., the dependency relation between pairs of words, which
provide the subject, object and main verb information of a sentence
directly. The output format of the dependency parser is a dependen-
cy tree. Figure 4 shows the dependency tree for the first sentence
in the main flow section in Figure 1. The middle row is the original
sentence (in tokenized words). The last row is the Part-Of-Speech
(POS) tags of the corresponding words. The labeled links are de-
pendency relations between two words. For example, the link from
the word “GSYS” to the word “accepts” labeled with SUB repre-
sents that “GSYS” is the subject of “accepts”. The word “accepts”
is the ROOT, i.e., the main verb of the sentence.
Phrase-structure Parsing The phrase structure parser (Step 2.2) is
used to identify the modified/supplement information. It provides
a parse tree in which sentences are parsed into noun/verb phras-
es and sub-sentences based on the subordinating/modification rela-
tion, thus provides complete context information for an identified
word. The parsing result is a phrase structure tree as shown in Fig-
ure 5. The leaf nodes are the plain text tokens. The non-leaf nodes
are POS tags, where “S”, “VP”, “NP” represents a sentence, ver-
b phrase and noun phrase respectively. The phrase structure tree
is used in combination with the dependency tree in our analysis
phase to obtain more accurate results. For example in Figure 4, we
identify that the object is “symbol” from the dependency tree. The
phrase structure tree in Figure 5 provides the complementary infor-
mation that the “symbol” is an attribute of the “order”. This kind
of attributive information is useful in comparing action tuples.
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Table 1: Rules to Extract Action Tuples
Rules

Main Verb (1) HAVE {ROOT}+(NOT)+BE +(JJ&)+ VB&
(2) BE {ROOT}+(NOT)+ (JJ&) + VB&
(3) BE {ROOT} +(NOT)+ JJ& {PRD}
(4) MODAL {ROOT}+(NOT)+BE+(JJ&)+ VB&
(5) ROOT {PI=-1}

Subject (6) PI.L = ROOT{SUB}

Object (7) PI.L = ROOT{OBJ/PRD/PRP}
(8) PI.L = ROOT{SBAR/ VC/ VMOD}

Table 2: Templates to Extract Condition Predicates
Templates

EX*/NN*/PRP*[a1] MD*VB* (not/no)[R] (DT*JJ*)NN*/PRP*[a2] (.)*
EX*/NN*/PRP* [a1] MD*VB* (not/no) VB*[R] (.)*

EX*/NN*/PRP* [a1] MD*VB* (not/no) (DT) NN*/JJ* [R] (.)*

3.3 Analyzing Parse Trees
The goal of analyzing parse trees is to extract the sentence struc-

ture S as defined in Definition 3. The sentence step number (s#),
step start (ns) and join (nj) nodes are extracted based on keyword
matching. The methods to extract the action tuple α and the condi-
tion predicate c are discussed as follows.

Extract Action Tuples An action tuple, as defined in Definition 1,
contains a subject, an object and a main verb of a sentence. These
parts are immediately available in a dependency tree. For example,
in Figure 4, the dependency labels SUB, OBJ and ROOT indicate
that the subject, object and main verb are “GSYS”, “symbol” and
“accepts” respectively. However, dependency parsing suffers from
a common problem of natural language parsing, i.e., fragile to am-
biguities and noises. Thus relying only on the dependency labels
may not provide good accuracy due to the deviations in the depen-
dency trees caused by the diversity of sentence patterns, tenses and
subordinate structures. To improve the parsing accuracy, we (1)
provide 8 adjusting rules based on general English grammar. (2)
rely on the phrase structure parsing result to identify related con-
text information. The rules, shown in Table 1, are general in the
sense that they are based on natural language grammars and do not
contain any document-specific patterns or key words. There are 3
kinds of information, i.e., plain text, POS tags and dependency la-
bel, used in our rules. The plus symbol + composes constraints for
consecutive words. We use braces {} to represent compulsory in-
formation when more than one kind of information is used on one
word. Brackets () are used to represent optional information and
the slash / symbol is used to represent a choice among the candi-
dates. For example, rule (7) requires that the parent of the word
should be labeled as ROOT and the word itself should be labeled as
OBJ or PRD or PRP , both constrains are compulsory.

Extract Condition Predicates We notice that sentences which con-
tain conditions are often complex, e.g., with sub-clauses. The de-
pendency parser is likely to produce a random dependency tree,
especially for the condition sub-clause. We also notice that the con-
dition sub-clauses are usually written in simple formats. Therefore
we extract the condition predicates through template matching. For
example, to process the alternative flow sentence in Figure 1, our
method first truncates the condition-containing sub-clause, i.e., “if
there is no such constraint in the system”. The sub-clause matches
the first template in Table 2, and condition predicate (2, is_no, there,
constraint) is obtained.

3.4 Building Activity Diagram
The main idea to build an activity diagram is to link action tuples

with control flow information. There are two kinds of control flow
indicators. One is the control flow information, such as “go/jump

to step #”, that we identified by analyzing the content of a sentence.
The other is the structure of use cases, i.e., consecutive sentences
in each section of the use case represent the ordering in the control
flow. Sentences in the alternative flow section are the branch flows
of sentences in the main flow section. We build an activity diagram
for each use case based on the identified information in step 3. Fig-
ure 2 shows the activity diagram that is generated from the use case
in Figure 1 by our approach. The action node is labeled with the
step number and the action tuple extracted from the correspond-
ing sentence. The decision node (diamond) is labeled with the step
number of the sentence in which it is generated. The guards, edges
and nodes in dashed line in figure 2 represent the missing flow step
that our method detected. The main flow step labeled 47 in Figure 1
does not have a corresponding action node in the activity diagram
since it does not describe an action step, thus is removed during the
activity diagram building procedure.

3.5 Formal Definition for Use Case Defects
To guide our analysis towards finding defects in use cases, we

formally define the defects originally proposed by Törner et.al. [9]
and develop algorithms to systematically find them. Specifically,
we focus on defects which are objective and have high defect in-
tensity. The defects we focus on are defined below.

Inconsistent step numbering captures the situation where the sen-
tence numbers of main flow or alternative flow are not consistent.
This may lead to incorrect step referencing. For example in Fig-
ure 1, the step number 3 is missing in the main flow. As a result,
the alternative flow has referred to a non-existing main flow step.

DEFINITION 8 (D1). Given uc ∈ UC, if ∃s, (uc.MF.cont(s)
∨uc.AF.cont(s)) : (s.ns 6= NULL ∧ ¬uc.MF.cont(s.ns) ∧
¬uc.AF.cont(s.ns))∨ (s.nj 6= NULL ∧ ¬uc.MF.cont(s.nj)
∧¬uc.AF.cont(s.nj)), the use case is said to have inconsisten-
t step numbering defect. The function cont() checks whether the
item is a member of the list.

In some use cases, the starting step (in main flows) of the alterna-
tive flow is not clearly specified. This may lead to ambiguity when
merging the alternative flows with the main flow.

DEFINITION 9 (D2). Given uc ∈ UC, if∃s, uc.AF.cont(s) :
s.ns = NULL, then the use case contains the unclear alternative
flow starting step defect.

An overly-strong precondition is one such that inconsistencies
between the precondition and the guard conditions of an edge may
occur. For example in Figure 1, the sentence in the precondition has
already restricted the order to be legal, thus the second sentence of
the main flow, which checks the validity of the order, is redundant.

DEFINITION 10 (D3). The pre-condition of an activity dia-
gram ad is overly-strong if given an activity diagram ad ∈ AD,
∀prec ∈ ad.PreC, ∃e ∈ ad.AE : Conflict(e.g, prec), where
Conflict is a function deciding whether two predicates conflict.

Missing of alternative flows is the case when the main flow de-
fines some action under some specific condition, however not all
the other possible conditions are addressed. For example in Fig-
ure 1, step 43 in the main flow specifies the condition “if the order
is legal”. But it is not specified what if that condition does not hold.

DEFINITION 11 (D4). Given an activity diagram ad ∈ AD,
∀n ∈ ad.N, if n ∈ Nc ∧ n.t = decision ∧ OutG(n) = 1 . The
use case contains the missing alternative flow defect. OutG(n) ,
|e ∈ ad.E∧e.sn = n| returns the number of edges out going from
a given node. || is the cardinal number operation on a set.
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Algorithm 1: Check Unnecessary Strong Precondition
Input : ad: activity diagram
Output: whether find an over strong precondition or not

1 let n be the initial node
2 while There are unvisited nodes in ad do
3 mark n as visited
4 if n ∈ Na then
5 if InChangeStatusDict(n.α.vb) then
6 return false

7 if n ∈ Nc ∧ n.t = decision then
8 if guard condition of any edges outgoing from n is Conflict with any

p ∈ ad.PreC then
9 Report an over strong precondition defect

10 return true

11 set n to the next node following the edge in ad

12 return false

3.6 Finding Defects
Following the definitions in Section 3.5, we discuss each defect

finding method in details in this section.
Inconsistent step numbering (D1) is checked based on the use

case structure. We check all the sentences inMF andAF sections
of a use case. If we find an ns field referring to a sentence that is not
in MF ∪AF , an inconsistent step numbering defect is reported.

To detect an unclear alternative flow starting step (D2) defect,
we check all the sentences in the AF section of a use case. If we
find a sentence with its ns field not specified, an unclear alternative
flow starting step defect is reported.

The process of detecting unnecessary strong preconditions (D3)
is shown in Algorithm 1. The rationale is that the pre-condition
of a use case is the required initial status of the use case. If the
status is not changed by the action steps, it should be preserved.
The input to Algorithm 1 is an activity diagram ad. We traverse
the activity diagram ad (starting from the initial node) in the while
loop. For each node n, if it is an action node (line 4), we first check
whether the action verb n.α.vb associated with the node is a status-
changing verb (line 5). If yes, we stop and return false. Otherwise,
if it is a decision node (line 7), we further check all the predicates
associated with the edges outgoing from the decision node and see
whether they conflict with any precondition predicate of ad (line 8).
If yes, an over strong precondition defect is reported. We manually
defined a status-changing dictionary based on all the main verbs
in the action tuples that we extract in step 3 (in Figure 3). For
example, the action “Save the order” may change the status of the
order and “check the order” will not change the order status. The
manually dictionary defining process is liberated and reinforced by
referring to the WordNet [3] lexical database for English.

To detect missing alternative flows (D4), we traverse each activ-
ity diagram to check all the decision nodes and see whether they
have branch edges. If no branch edge is present for a decision node
with guard conditions, a missing alternative flow error is reported.

3.7 Training Dependency Parser
To handle the problem caused by document-specific factors, such

as grammar errors and specific sentence structures, we provide a
way to train a domain-adapted dependency parser. In the case of
the stock trading system, we manually labeled 6% of wrongly la-
beled sentences randomly selected from the document to train a
domain-adapted dependency parser. This is shown in the dashed
box (step 7) in Figure 3. The trained dependency parser will re-
place the ZPar dependency parser in the dependency parsing step.
This is an optional step in our overall procedure and is only needed
in order to achieve higher accuracy on document specific patterns.

Table 3: Accuracy of parsing
doc type # wrong # PC # correct # total prec

sts

Action(w/o) 155 22 137 314 43.6%
Action(w) 82 23 209 314 66.6%
Predicate 31 17 91 139 65.5%

as

Action(w/o) 105 52 131 291 45.0%
Action(w) 69 14 208 291 71.5%
Predicate 2 1 14 17 82.4%

4. EVALUATIONS
To test the applicability of our approach, we evaluate our meth-

ods with 219 use cases, which cover different application domains
(financial, health care, machinery, monitoring and e-commerce sys-
tems), adopted from real industry systems as well as academic pub-
lications. Due to the space constraints, we put all the experiment
data and the implementation information on our website [1].

4.1 Accuracy of Free Text Parsing
The accuracy of the free text parsing is measured by the accu-

racy of the action tuples and predicates generated. Table 3 shows
the evaluation results. The columns, from left to right, represent
the document used (“doc”); the evaluation type (“type”); the num-
ber of wrongly (“# wrong”), partially correctly (“# PC”) and cor-
rectly (“# correct”) identified action/predicate; the total number of
sentences (“# total”) and the precision (“prec”) of the correspond-
ing evaluation type. The precision is calculated by the formula
prec = #correct

#total
. An action tuple is identified as correct iff all

the three fields of it are correctly extracted. Due to the large num-
ber of sentences in the stock trading system, we randomly sampled
18% of the sentences in the document to check the accuracy.

To show how robust/extensible the dependency parsing can be,
we check the accuracy on identifying action tuples based only on
the dependency label. The results are shown in the “Action(w/o)”
rows in Table 3. We can see from the results that, even without
applying any of the adjusting rules, we can achieve more than 43%
accuracy on identifying action tuples. The accuracy of the analysis
results (Action(w)) with our provided adjusting rules is much high-
er. For the stock trading system, since it is written by non-native
English speakers, there are many grammar errors, which lead to the
incorrect result. The academic system documents are comparative-
ly well written, thus ZPar achieves a higher accuracy.

From the experiment results, we notice that (1) the rules used to
adjust extraction of action tuples are indeed useful. An increase in
accuracy of 23% for the stock trading system and 26.5% for the
those academic use cases is seen. (2) the rules are generalizable to
different documents written by different development groups. It is
promising to increase the accuracy by providing more rules.

4.2 Accuracy of the Activity Diagram Builder
The accuracy of the activity diagram building method is mea-

sured by (1) whether the nodes and edges are correctly generated
and linked in the activity diagram and (2) whether the guard con-
ditions are correctly associated with the edges that are correctly
generated in the activity diagrams. For the stock trading system,
166 out of 188 use cases have correct nodes and edges generat-
ed. All the guard conditions are correctly associated with those
edges. The use cases which do not have activity diagrams correctly
generated either contain alternative flow steps which do not have
clear starting steps; or have multiple conditions described within
one/consecutive steps. Actually, this kind of writing style is not
consistent with the majority of other use cases in the document,
which follow the Cockburn style. For the academic use cases, 30
out of 31 use cases are correctly generated.
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Table 4: Experiment Results of Defect Detection
ID If Ir If ∩ Ir prec rec
D1 18 18 18 100% 100%
D2 22 20 20 90.9% 100%
D3 19 21 19 100% 90.5%
D4 83 59 59 71.08% 100%

4.3 Accuracy of the Defect Finder
To evaluate the accuracy and effectiveness of our defect finding

methods, we adopt the standard metrics of precision (prec) and re-
call (rec). We define prec =

|If∩Ir|
If

and rec =
|If∩Ir|

Ir
, where If

represents the set of items automatically identified by our method
and Ir represents the set of defects that are manually detected from
the document, which act as the baseline in the evaluation.

Table 4 shows the evaluation results on the stock trading system.
22 alternative flow steps are detected with defect type D2, i.e., do
not have clear starting step number. Two of them are false positives.
The reason is because of the irrelevant sentence presented in that
step. Our method found 19 cases where the precondition is incon-
sistent with the guard conditions on the flow. Our manual detection
finds 21 such cases. The reason for the missing cases is that our
predicate extraction method fails to extract the correct predicates
for the two cases. For detecting missing alternative flows (D4), our
tool found 83 potential defects, out of which 59 are real defects.
The 24 false positives appear in 8 use cases, which have different
writing styles with the majority of the other use cases. Thus our
method failed to generate correct activity diagrams for those use
cases, which further leads to those false positives. Actually, the
document is loosely written such that use case pre-conditions and
post-conditions do not couple with each other well. Therefore there
are very limited information we can use to do the checking. This is
also the reason why the accuracy of the free text parsing does not
affect too much on the accuracy of the defects detection.

5. DICUSSIONS
There are some limitations, manual efforts and threads to validity

of our approach. We discuss them in this section.
Limitations We only assign coarse semantic meanings, such as
synonym/conflict/status-changing, to words in our method. This
may lead to missing of cases in defect checking. For example,
in Figure 2, the action (save, _, order) changes the status of the
order, but does not affect the legality of the order in this case.
However, our method will ignore all the branch conditions after
the (save, _, order) action node, since the verb “save” indicates
changes of status on order. Assigning fine-grained semantic mean-
ings to words may solve this problem.
Manual Efforts In our approach, there are three steps which may
require human intervention. (1) If the input use case document
does not follow the Cockburn writing style, some efforts of rewrit-
ing the use case document into the Cockburn style are needed. (2)
To decide conflict predicates, three domain-specific dictionaries,
i.e., the synonym dictionary, the conflict dictionary and the status-
changing verbs dictionary, need to be manually categorized. Our
method provides all possible candidates for the dictionaries based
on our automatically extracted subject, object and main verbs for
each sentence. Then the WordNet lexical database is inspected to
provide the preliminary dictionaries. Therefore the only manual ef-
fort is to check and decide the dictionaries based on the preliminary
dictionaries. (3) If a user wants to train a domain-adaptive parser,
manual efforts on labeling sentences into dependency trees are re-
quired. However, this step is optional in our approach. Our method
achieves good accuracy without the training process.

Threats to validity (1) In the evaluation, we manually inspect
each kind of defects and use the manual inspection results as the
baseline. The manual defects detecting is subjective to the experi-
menter’s understanding. To reduce this factor in our evaluation, the
documents are checked by two PhD students in School of Comput-
ing, NUS, who have requirement engineering and natural language
processing background. (2) For the stock trading system, since it
has more than 1700 sentences, we did not check all the sentences
when evaluating the accuracy of free text parsing. To reduce the
possible threads to validity caused by this, we randomly sampled
18% of the sentences and manually inspect the results.

6. CONCLUSION AND FUTURE WORK
In this work, we proposed a method to automatically detect de-

fects in use case documents. Our method leverages on dependence
parsing technique which allows document-independent rules to be
provided and is more adaptable to documents of different writing
styles than shallow parsing techniques. We formally defined com-
mon use case defects. The evaluation with 5 different use case
documents shows that our method is effective in finding possible
defects. Our method provides horizontal links to the original docu-
ment to enable easy manual validation.

For future works, we explore to enrich our method by consid-
ering semantic level meanings, which may improve the conflict
checking precision as discussed in Section 5. Another possible di-
rection is to investigate statistical classification models, e.g. logistic
regression, to improve the accuracy of action tuple extraction.
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