
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2014

GPU Accelerated counterexample generation in LTL model GPU Accelerated counterexample generation in LTL model

checking checking

Zhimin WU

Yang LIU

Yun LIANG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WU, Zhimin; LIU, Yang; LIANG, Yun; and SUN, Jun. GPU Accelerated counterexample generation in LTL
model checking. (2014). Proceedings of the 16th International Conference on Formal Engineering
Methods, ICFEM 2014, Luxembourg, November 3–5. 413-429.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4988

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

GPU Accelerated Counterexample Generation in LTL
Model Checking

Zhimin Wu1, Yang Liu1, Yun Liang2, and Jun Sun3

1 Nanyang Technological University, Singapore
2 Peking University, China

3 Singapore University of Technology and Design, Singapore

Abstract. Strongly Connected Component (SCC) based searching is one of the
most popular LTL model checking algorithms. When the SCCs are huge, the
counterexample generation process can be time-consuming, especially when
dealing with fairness assumptions. In this work, we propose a GPU accelerated
counterexample generation algorithm, which improves the performance by par-
allelizing the Breadth First Search (BFS) used in the counterexample generation.
BFS work is irregular, which means it is hard to allocate resources and may suf-
fer from imbalanced load. We make use of the features of latest CUDA Com-
pute Architecture-NVIDIA Kepler GK110 to achieve the dynamic parallelism
and memory hierarchy so as to handle the irregular searching pattern in BFS. We
build dynamic queue management, task scheduler and path recording such that
the counterexample generation process can be completely finished by GPU with-
out involving CPU. We have implemented the proposed approach in PAT model
checker. Our experiments show that our approach is effective and scalable.

1 Introduction

The LTL model checking problem is known as the emptiness checking of the product
between M and A¬ϕ, where M represents the model and A¬ϕ represents the Büchi
automaton that expresses the negation of an LTL property ϕ. The emptiness checking
is to detect if there exists an execution path in the product that can be accepted by
the Büchi automaton. There are two main streams of LTL model checking approaches:
nested Depth First Search (NDFS) and Strongly Connected Component (SCC) search,
where the latter one is more suitable to handle fairness assumptions.

SCC based verification algorithms aim to find an SCC with at least one accepting
state. If such SCC exists, it means that there is a run that can be accepted by the A¬ϕ,
i.e., the violation of the LTL property ϕ. To generate a counterexample in such case
is to produce an infinite path π = ρ1ρ2ρ3, which consists of three parts: a path ρ1
from the initial state to a state s in the SCC, a path ρ2 from the s to an accepting
state a in the SCC and a loop ρ3 that starts and ends at a. To generate such a path,
currently, some algorithms [12,6] work on DFS-related solution with high complexity.
Some work on BFS-related solution, such as in [5], which focus on building the minimal
size counterexample to deal with the memory constraint.

In this paper, we propose an approach that has the potential to accelerate the coun-
terexample generation process using GPU. The problem here is equivalent to building a

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 413–429, 2014.
c© Springer International Publishing Switzerland 2014

414 Z. Wu et al.

solution to improve the performance of BFS with path recording. Compared with multi-
core CPU architecture, GPU typically has a lot more cores and high memory bandwidth,
which potentially provides high parallelism. Because the number of nodes in each layer
of BFS is changing, it makes the resource allocation and the load balancing a challeng-
ing task in in GPU-based BFS searching. In the CUDA programming model, CPU will
launch the kernel in GPU with static grid and block structures, which result in the lack
or waste of compute resources. In previous research such as CUDA IIIT-BFS [7], it is
necessary to launch the kernel each time when the BFS starts a new layer. It is costly and
even slower than CPU-BFS in some cases. To deal with this problem, CUDA UIUC-
BFS [9] has been proposed based on a hierarchical memory management solution. It
builds a three-level queue for BFS to avoid consequent kernel launching, which offers
certain speedup. But it is still a static method that cannot adjust according to the task
size. Furthermore, there is no load balance approach in it.

In this work, we propose an almost CPU-free BFS based path generation process
by leveraging on the new dynamic parallelism feature of CUDA. The key problem
addressed is the number of tasks during BFS based path generation is dynamically
changing. In this paper we propose four contributions. (1) Compared to related works
of parallelizing BFS for model checking problems, our approach is totally CPU-Free.
Existing related works allocate GPU resources in a static way. The resources can be re-
allocated only by CPU when the execution of a kernel ends and launches a new kernel.
For irregular graphs, it is costly and not flexible. Our approach presents a runtime re-
source adjustment approach for BFS and can be tailored for model checking problems.
(2) We propose an approach to build dynamic parent-child relationship and a dynamic
hierarchical task scheduler for dynamic load balancing. (3) We develop a three-level
queue management to fit the dynamic parallelism and dynamic BFS layer expanding.
Based on it, we propose a dynamic path recording approach, which helps duplicate
elimination in BFS at the same time. Hierarchical memory structure of GPU is fully
utilized for data accessing. (4) We implement our approach in PAT model checker and
evaluate them to show the effectiveness of our approach.

Related Works. In the area of model checking, as the verification problem can be
transformed to a graph search problem, there have been many works on accelerating
model checking algorithms with CUDA. [3] focuses on the duplicate detection in exter-
nal memory model checking. It utilizes GPU to accelerate sorting process in duplicate
detection in BFS and builds a delayed duplicated detection on GPU. In [1], the authors
propose a design of maximal accepting predecessors algorithm for accelerating LTL
model checking in GPU. [4] accelerates the state space exploration for explicit-state
model checking by utilizing GPU to do the breadth-first layered construction. [2] shows
how the LTL model checking algorithms can be redesigned to fit on many-core GPU
platforms so as to accelerate LTL model checking. [13] focuses on the on-the-fly state
space exploration in GPU and proposes several options to implement this. All these
research has proved CUDA compute architecture can be well utilized in solving model
checking problems. In this paper, different from previous research in which most are
based on a static way to allocate computing resource in advance and involve CPU fre-
quently, we build an approach for counterexample generation which can completely put

GPU Accelerated Counterexample Generation in LTL Model Checking 415

Algorithm 1. Counterexample Generation Algorithm
Input: init, SCC , →
Output: πce

1 πce ← Init2SCCBFS(init, SCC,→);
2 πce ← πce

� Path2AccBFS(πce, SCC,→);
3 πce ← πce

� SelfLoopBFS(πce, SCC,→);

the work to execute in GPU and dynamically fit the feature of BFS. Then the dynamic
parallelism and memory hierarchy from latest CUDA Architecture-Kepler GK110 and
its corresponding GPU device serve as the basis of our design.

2 Background

LTL Model Checking and Counterexample Generation. LTL model checking is to
verify that a model satisfies a property expressed in LTL, which has been shown to be
equivalent to checking the non-emptiness of the product between a Büchi automaton
(which is the negation of the LTL property) and a system model. A Büchi automaton
can be defined as a tuple A = (B, T , bi,F) where B represents a finite set of states;
T ⊆ B×B represents the set of transition between states; bi ∈ B represents the initial
state, and F ⊂ B is a set of accept states. An infinite input sequence can be accepted
by a Büchi Automaton if there exists an execution path that will visit an accept state
infinitely often. Let AP be a set of atomic propositions. The system model can be
represented with a Kripke StructureM = (S, I,R,L) where S is a finite set of states;
I ⊂ S is the set of initial states, R ⊆ S × S is the transition set and L is a labeling
function: L : S → 2AP . Given a Büchi automaton A and a Kripke StructureM, their
product is defined as P = (B×S,→, {bi}×I), where→⊆ (B×S)× (B×S) is the
product of T andR.

Based on the definitions above, the non-emptiness checking is to search whether
there exists an infinite run π such that π reaches a state (b, s) infinitely often and b ∈ F .
This is equivalent to detecting if a run contains a loop and (b, s) is included in the
loop. For SCC based LTL model checking, the process is to detect an SCC containing
an accepting state. When such an SCC is detected, it can be concluded that the model
violates the LTL property. Counterexample generation process then start to produce a
trace to reflect the errors in the model.

There are many counterexample generation algorithms [12,6,5], mostly using BFS
searching to find the shortest counterexamples. Therefore, a way to accelerate BFS,
combined with counterexample generation requirement, will work for these solutions.
In this paper, we choose the counterexample generation algorithm (Algorithm 1) as
the basis for our design. There are three inputs, init is an initial state in P ; SCC is a
list that contains all nodes belong to the SCC; → is the outgoing transition relation of
each node in P . Strictly speaking, this transition relation is made up of the current ex-
plored transitions during the SCC searching process. Algorithm 1 contains three steps.
(1) Init2SCCBFS is to find the path from init to any state in the SCC using BFS. (2)
Path2AccBFS is to find the path from the SCC state found with Init2SCCBFS to the
nearest accepting state. (3) SelfLoopBFS is to find a loop that starts from the accepting

416 Z. Wu et al.

...
SMX15

SMX2
SMX1

64KB Shared Memory/L1 Cache
48KB Read-Only Data Cache

Warp Scheduler

Disp Disp

CC C

CC C
CC C

DP Unit

DP Unit

DP Unit

... 16

... 16

Register File
L/S SFU

L/S SFU

L/S SFU

... 16

CC C

CC C
CC C

DP Unit

DP Unit

DP Unit

... 16

... 16

CC C

CC C
CC C

DP Unit

DP Unit

DP Unit

... 16

... 16

L/S SFU

L/S SFU

L/S SFU

... 16

Warp Scheduler

Disp Disp

Warp Scheduler

Disp Disp

Warp Scheduler

Disp Disp

Fig. 1. Kepler-CUDA Hardware Model

state. πce is the returned counterexample run, which is the concatenation of the three
path during the process. All these three steps are BFS based. In this paper, we will
deal with accelerating these three steps in GPU with CUDA and merging them into one
algorithm.

GPU and CUDA Architecture-Kepler. With its high parallel computational capability
and wide memory bandwidth, GPU can speedup large scale data processing. CUDA is a
parallel computing platform and programming model [11] designed for NVIDIA GPUs.
As shown in Fig. 1, NVIDIA Kepler GK110 is the new GPU Computing Architecture.

On the hardware level, a GPU consists of tens of streamed multiprocessors (SMX),
each of which contains a lot of streamed processors (CUDA cores, marked as C in
Fig. 1), instruction units and hierarchical memory. Streamed processor is the most basic
processing unit in GPU. The hierarchical memory design is common in CUDA architec-
ture, which contains Global Memory (GM), Constant Memory (CM), Texture Memory
(TM), Shared Memory (SM) and Local Memory (LM) (i.e., registers). The access rates
of these memories are in the descending order: GM<CM/TM<SM<LM. SM can be
used to exchange data within an SMX, and GM is used to exchange data among SMXs.
For the use of the other memories, readers can refer to [11]. The hierarchical memory
is critical for GPU programming as it determines the data access cost.

On the software level, applications developed with CUDA are launched by CPU and
running on GPU. The running application is called kernel. Each kernel runs the same
program in many independent data-parallel light weight threads [10]. In CUDA runtime
environment, threads are organized into three levels:warp, block and grid. Warp is the
most basic execution and scheduling unit in CUDA. A warp usually contains 32 threads.
A streamed processor only handles one warp at a time. A block contains several warps,
which must be executed in the same SMX. Grid is the combination of blocks. The block
size and the grid size are configured when launching the grid from CPU.

Compared with previous versions, Kepler GK110 comes with four significant up-
dates. (1) The new multiprocessor architecture. Kepler GK110 owns 15 SMX units
in general. Each SMX contains 192 CUDA cores. The number of warp schedulers in-
creases to 4, which means 4 warp threads can be started together. (2) The Hyper-Q,
which is to enable multiple parallel CPU tasks to launch work in a single GPU simul-
taneously. Hyper-Q can dramatically increase GPU utilization and reduce CPU idle

GPU Accelerated Counterexample Generation in LTL Model Checking 417

Outgoing
SCC

StartID
Init2SCCBFS SelfLoopBFS

Outgoing
ACC

SCCStartID
Reach SCC Path2AccBFS

Outgoing
ACC

ACCID
Reach An Acc

Input

Input

Input
GPU-Based

BFS

Replace

Parent
Kernel

Launch

BFS until
overload

ReturnDetect Terminate State:
END

LaunchGlobal Path
Record

Host(CPU) Counterexample
Generation

CUDA(GPU) Path Generation

Child
Kernel

Partial
Overload

Global
OverloadTask Steal

New
Child

Path
Record

Fig. 2. Overall Design

time [10]. (3) Dynamic parallelism, which is the key feature we utilize in this paper,
enables the kernel running in GPU to launch a new kernel to finish other works with-
out involving CPU. Its presentation can be referred to page 143 in [11]. The kernel
launched from CPU is called parent kernel. One thread in parent grid can launch a
Child Kernel. When the execution of the child kernel completes, it will stop and return
to its parent. With this feature, the application running on GPU can make full use of the
resource by dynamically launching new kernels. It can help developers to put the whole
application to GPU for execution, which is efficient and cost effective. (4) The updated
memory hierarchy. It introduces a 48KB cache for data known to be read-only during
the execution.

3 CUDA Accelerated Counterexample Generation

The overall design of our approach is presented in Fig. 2. Host (CPU) counterexample
generation represents the process in Algorithm 1. We build a general path generation
approach to reach the target of function Init2SCCBFS, Path2AccBFS and SelfLoopBFS
in Algorithm 1 based on different input. Our approach for handling the BFS based path
generation is presented as CUDA (GPU) Path Generation. The complete counterexam-
ple generation process in Algorithm 1 can be replaced by executing GPU-based BFS
for three times.

Our approach consists of two parts: Parent Kernel and Child Kernel. The overall
process is described as follows. CPU launches the Parent Grid to execute Parent Kernel.
Parent Kernel starts the BFS based path generation to generate one or more new layers
of tasks. When the task size exceeds the thread number in Parent Grid, it launches Child
Grid to execute Child Kernel. Child Kernel starts to do path generation and records path
data. After generating a layer, the task scheduler will check whether any warp or block
being overload. We define overload as the number of tasks exceeds the thread number in
the GPU or no more tasks can be added to the BFS queue. Tasks rescheduling will start
to do load balancing within the Child Kernel. If the whole Child Grid is overloaded, it
will return to Parent. Child Kernel stops running. Resources of Child Grid are released.
Parent Kernel reallocates tasks, launches a new Child Grid to execute Child Kernel

418 Z. Wu et al.

and distributes tasks to it. The process continues until the “goal” being reached. The
“goal” means terminating condition. The relationship between Parent Grid and Child
Grid is dynamically adjusted according to the number of tasks. In order to maximize
the parallelization, in default, each thread is asked to do the BFS and path recording
for one state in BFS queue. It means that the number of tasks in each layer of BFS will
decide the number of threads needed, so as to decide the structure of Child Grid. This
dynamic relation ends at the time the process of our approach ends.

The dynamic parallelism is used to deal with the dynamic task size so as to make the
execution flexible. Other features of CUDA programming model and Kepler GK110,
such as the hierarchy memory, are integrated into each part. Our solution utilizes the
latest GPU features to provide a novel counterexample generation solution.

3.1 Detailed Approach

We present Algorithm 2 and Algorithm 3 in this section for Parent Kernel and Child
Kernel based on the process in Fig. 2. They follow the CUDA dynamic parallelism
programming model presented in pages 141 to 159 in [11]. Note that in CUDA, there
are build-in objects blockIdx and threadIdx to record the ID of block and the ID of

Algorithm 2. CudaParentCounterexampleGeneration Algorithm
Input: init, TerminatingCondition,→

1 inblocktid = threadIdx.x; inwarptid = inblocktid%32;
2 Define: WarpQueue,WarpPathQueue in SM;
3 if inblocktid = 0 then
4 WarpQueue[0].enqueue(init); WarpPathQueue[0].enqueue((−1, init));

5 CUDA-API: synthreads();
6 while TRUE do
7 if WarpQueue[inwarptid] �= ∅ then
8 S ← WarpQueue[inwarptid].Dequeue();
9 Shared Code with MemoryOption = SM

10 if inwarptid = 0 then
11 if |WarpQueue| > WARPQUEUE SIZE then
12 Intra Warp task transfer;

13 if inblocktid = 0 then
14 if |TasksInBlock| > InitialT then
15 break;

16 else
17 Inter Warps task transfer;

18 CUDA-API: synthreads();
19 if ¬TerminatingCondition(anyState) then
20 if inblocktid = 0 then
21 ChildSizeCalculation(EXPAND LEVEL);
22 write WarpPathQueue to GM;
23 write WarpQueue to GM with Duplicate Elimination;

24 while ¬TerminatingCondition(anyState) do
25 if inblocktid = 0 then
26 Generate Tasks Distribution Offset;
27 Launch ChildKernel, Transfer tasks in GM to Child Grid;
28 CUDA-API:cudaDeviceSynchronize(): //If Child returns to Parent;

29 CUDA-API: synthreads();

GPU Accelerated Counterexample Generation in LTL Model Checking 419

thread in each block. But there is no object to represent the ID of threads in warp. It can
be calculated directly as the warp is built in sequence, means that threads with index
0 ∼ 31 will be warp 1.

To simplify the presentations of the two algorithms, we abstract the common part in
both of two algorithms in List. 1.1. It corresponds to lines 9 in Algorithm 2 and lines 8.
The details will be introduced together with the algorithms.

Algorithm 2 corresponds to the Parent Kernel executed in Parent Grid, named by Cu-
daParentCounterexampleGeneration. It focuses on the task schedule and parent-child
relation management. In Algorithm 2, the input variable init means the initial state.
TerminatingCondition is a Boolean function which decides whether the algorithm
should terminate at the current state. The condition in our approach means that the
path generation process reaches any target state in the target states set, which can be
be an SCC or an accept state list based on the input of each process in Algorithm 1.
Line 1 presents two types of thread ID mentioned above. Line 2 presents the two types
of queues used in the algorithm. WarpQueue is an array of queues that represents
the task queue for each thread. WarpPathQueue has the same structure, which is to
record the path to the target state. They are all allocated dynamically in SM. The details
structure and operation rules can be referred to Sec. 3.2 and 3.4. Lines 3 and 4 are the
first step of path generation. The initial state and initial path record are added to the
queue of the first thread in the block. Here the path record is a tuple with two compo-
nents: (Predecessor, StateID). The function shown in lines 5, 18 and 29 is CUDA
build-in API for intra-block synchronization [11]. The loop from line 6 to line 17 is
the major path generation process in Parent Kernel. The condition to break the loop is
that Parent Grid being overloaded. Line 7 means that the thread works when its queue
is not empty. In line 8, the thread will get task S from its queue, then line 9 mentions
the Shared Code, which is the abstraction of the BFS and counterexample generation
related work. The Shared Code is presented in List. 1.1.

Listing 1.1. Shared Code

1 if(TerminatingCondition(anyState)){
2 write WarpPathQueue[inwarptid] to GM;
3 broadcast to other threads through MemoryOption;
4 Iterativebacktracking → FullPath;
5 break;
6 }
7 Snew = NewLayerTaskGeneration(S);
8 if (|WarpPathQueue[inwarptid]| = WARPPATHQUEUE SIZE){
9 write WarpPathQueue to GM;

10 WarpPathQueue[inwarptid].enqueue({S, Snew});
11 }
12 WarpQueue[inwarptid].enqueue(Snew);
13 if(inwarptid = 0){
14 Transfer tasks among queues in WarpQueue;
15 }

In List. 1.1, line 1 is the target state detection. When the path generation of any
thread reaches any state in the target states set, path records stored in WarpPathQueue
in SM will be copied back to GM (using atomic operation atomicAdd) in line 2
and this information will be broadcasted through MemoryOption in line 3. For Al-
gorithm 2, MemoryOption is set to SM. Then other threads will stop running and
the thread which detects the terminating condition will deal with backtracking to

420 Z. Wu et al.

generate the full path in line 4. Successors generation in line 7 is based on S and →.
In line 12, new successors Snew will be added to the queue of corresponding thread in
WarpQueue. Lines 8 to 10 are to record path information. Path records will be stored
in WarpPathQueue in SM firstly, when the element number in the queue exceeds
the constant WARPPATHQUEUE SIZE, it will be copied back to GM (using atomic
operation atomicAdd). The record in GM can also work as the preparation for future
duplicate elimination, which will be detailed in Sec. 3.4. At the beginning, only thread
0 has tasks in its queue. So lines 13 and 14 are to involve other threads in the same warp
by transferring tasks to threads with empty queue, which is done in central mode by the
first thread in a warp.

Back to Algorithm 2, lines 10 to 12 perform load balancing within a warp. The
constant WARPQUEUE SIZE means the configured size of each queue in the array
WarpQueue. Lines 13 to 17 are the inter-warps load balancing and the checking of
Parent Grid being overload. The constant INITIAL T means the thread number in Par-
ent Grid. Lines 20 to 23 work on the calculation of Child Grid size and transfer data
from SM to GM so as to transfer data from Parent Kernel to Child Kernel. Note that
line 23 shows that a duplicate elimination approach takes action when copying back
the content in task queue from SM to GM, which utilizes the path record information
in GM. Details are also shown in Sec. 3.4. Line 26 shows that Parent Kernel needs to
calculate the task distribution offset, which records the tasks storage index in GM for
each block in Child Grid. Constant EXPAND LEVEL means the times of INITIAL T
threads for Child Grid. Finally, lines 27 and 28 are the process to launch Child Grid.
The loop from lines 24 to 28 is the loop in which Parent Kernel working as a scheduler
to reallocate Child Grid to execute Child Kernel iteratively. This loop breaks only when
the path generation detects any target state.

Algorithm 3 corresponds to the Child Kernel executed in Child Grid in Fig. 2.
Functionally, it works on the path generation and the task schedule approach is also
implemented in it. In Algorithm 3, variables or functions with the same name as in
Algorithm 2 have the same meaning. The tasks in GM and the Distributionoffset
generated in Algorithm 2 are the inputs. In line 1, globaltid represents the first thread
among all blocks. Line 2 defines two variables in GM for communication among threads
in different blocks. A loop from lines 3 to 32 is the major executing process. The break
conditions of the loop are that path generation detects any terminal states or the whole
Child Grid being overloaded. Lines 4 and 5 are for each warp to get its own tasks and
push to the queue of each thread in balance. This is based on the Distributionoffset.
Lines 6 to 8 are shared code with MemoryOption being SM+GM. The full path gen-
erated will be “returned” to Parent Kernel through GM. Lines 10 to 22 are the intra
warp and inter-warps load balancing. Lines 23 to 32 are the process to check if the
whole Child Grid being overloaded and whether inter-blocks load balancing is needed.
These three load balancing approaches make up the complete hierarchical task schedul-
ing. And they can be regarded as three levels schedule: Warp level, means task adjust-
ment among threads in a warp; Block level, means task adjustment among blocks of
Child Grid ; Grid level means returning the control to parent. Block level and Grid level
need to copy the content in task queue to GM with the duplicate elimination approach.
It decides at which level task scheduling will be taken dynamically. Lines 24 and 32

GPU Accelerated Counterexample Generation in LTL Model Checking 421

Algorithm 3. CudaChildCounterexampleGeneration Algorithm
Input: Tasks, DistributionOffset, TerminatingCondition,→

1 globaltid = blockDim.x ∗ blockIdx.x+ threadIdx.x;
2 Define WarpQueue,WarpPathQueue in SM Child return2Parent, ChildSynNeed in GM;
3 while ¬TerminatingCondition(anyState) or Child return2Parent do
4 if inwarptid = 0 and interblockstaskschedulehappens then
5 WarpQueue[0...31].enqueue(GetTasks(Tasks, DistributionOffset));

6 while WarpQueue[inwarptid] �= ∅ do
7 S = WarpQueue[inwarptid].dequeue();
8 Shared Code with MemoryOption = SM + GM

9 CUDA-API: synthreads();
10 if inwarptid = 0 then
11 if |WarpQueue[0...31]| > WarpQueueSize then
12 InWarpadjustment = true;

13 if TasksInWarp > 32 then
14 InBlockadjustment = true;
15 Ats = AvailableTaskSize;

16 if inblocktid = 0 then
17 if TasksInBlock > ThreadNumInBlock then
18 ChildSynNeed = TRUE;

19 else if TasksInBlock ≤ ThreadNumInBlock and InWarpadjustment = true then
20 Intra Warp task transfer;

21 else
22 Inter Warps task transfer⇐ Ats;

23 CudaInterBlocksSyn();
24 if ChildSynNeed = TRUE then
25 if globaltid = 0 then
26 if TasksInChild > ThreadNumInChild then
27 Child return2Parent = TRUE;
28 write WarpQueue to GM;

29 else
30 write WarpQueue to GM;
31 Inter Blocks Task Scheduler;

32 CudaInterblocksSyn();

represent the invocation of the inter blocks synchronization interface. It is not CUDA
built-in API. This will be described in following parts.

Specifically, Algorithm 2 is designed to be executed among threads in a block, while
Algorithm 3 is to be executed among threads in multi blocks. This is because Parent
Kernel focuses on task rescheduling while Child Kernel focuses on the path generation.

Some other functions are cited for Algorithm 2 and 3: function CudaQuicksort uti-
lizes the dynamic parallelism feature of CUDA [11] to do quick sort for preprocessing
the target states set. CudaInterBlocksSyn refers to the algorithm mentioned in [14]. It is
for inter-blocks synchronization as CUDA does not supply API for this.

Synchronization and Atomic Operation. In our algorithm, synchronization happens
in each layer expanding by default as the algorithm need to do load balancing. After any
task scheduling, synchronization is needed to make sure that each thread gets its own
tasks correctly. In previous algorithms, the atomic operation can be used to work as the

422 Z. Wu et al.

Global M
em

ory
Shared M

em
ory

WarpQueue

Parent

GQueue

VGQueue

Map

Warp-level parallel Write

Read&Write

Build

ChildBlock

Warp
Queue

Warp
Queue

Warp
Queue

Warp Warp Warp... ...

ChildBlock
...

Read
Central
Build

Fig. 3. Dynamic Three-level Queue Management

a lock. When some threads want to write the same memory address at the same time,
only the first one which calls the lock will get the access right and others will discard
their write operations and continue their executing.

3.2 Dynamic Three-Level Queue Management

As discussed in Sec. 2, GM can be read or written by all blocks running in different
SMX, and SM is just available to blocks running in the same SMX. Read or write
operations in SM cost much less than operations in GM. But the size of SM is much
smaller than GM. Since our algorithm refers to huge data size, we cannot avoid access-
ing GM. However, as our tasks are distributed to the parallel threads, we can utilize SM
to accelerate local data accessing. Considering that our algorithm is building dynamic
Parent-Child relationship, we need a dynamic task distribution. We build a dynamic
hierarchical queue to utilize the hierarchical memory. In order to fit our dynamic paral-
lelism design, we build a three-level queue management approach, shown in Fig. 3. The
first level queue is stored in SM, i.e., WarpQueue in Algorithm 2 and 3. The second
level queue is stored in GM, denoted as GQueue. The third level queue is also stored
in GM, named Virtual Global Queue, denoted as V GQueue. For simplicity, we denote
GQueue and VGQueue as GM in Algorithm 2 and 3.

Here, as there are many threads working together, the problem of read-write conflict
when parallel threads write or read at the same time is necessary to be considered in
the queue structure and the design of task schedule approach. One potential solution is
to use lock or atomic operation to prevent conflict, which will lead to a huge cost with
frequently write requests at the same time. Another potential solution is to use lock-
free structure is preferred. We take two types of lock-free structures into consideration:
first, as mentioned, the Kepler GK110 contains four warp schedulers in a single SMX,
i.e., 4 warps can run in parallel. We build a lock-free queue with 4 sub-queues so as to
avoid the conflict. However, it is hardly feasible because the warp scheduling in GPU
is not visible to us. Therefore we adopt the design as showed in Fig. 3. In each block,
no matter in Parent Grid or Child Grid, we make the first-level queue in SM a dynamic
sub-queue set based on the warp number in one block. As shown in Fig. 4 part A, each
WarpQueue consists of 32 queues, which is due to the size of warp so as to make it
lock-free. As we want to guarantee one thread holds only one expanding task, if the
task size in a block exceeds the number of threads, the tasks will be re-scheduled and
transferred to GQueue in GM.

GPU Accelerated Counterexample Generation in LTL Model Checking 423

D4 D5 D6 D7 D8 D9

VGQueueD1 D2 D3 D4 D5 D6 D7 D8 D9

Child Block Child Block

D10

D10

OFFSET OFFSET

GQueue PART B

...

Q1
Q2

Q30
Q31
Q32

W1T1
W1T2

W1T30
W1T31
W1T32

...

Q1
Q2

Q30
Q31
Q32

W1T1
W1T2

W1T30
W1T31
W1T32

...

PART A

...

Q1
Q2

Q30
Q31
Q32

W1T1
W1T2

W1T30
W1T31
W1T32

Fig. 4. Structure of WarpQueue, GQueue and VGQueue

In Fig. 3, GQueue is built at the first time when Parent Grid launches a Child Grid,
it is also a group of array shown in Fig. 4, part B. As the Parent Grid communicates
with Child Grid via GM, which is also the way blocks communicate with each other,
it is used to transfer tasks to Child Grid and used by Child Kernel to execute. In fol-
lowing execution, GQueue stores the tasks when blocks being overloaded or the task
reschedule among the blocks in Child Grid is needed. As in the global view, the tasks
stored in the GQueue is not continuous, V GQueue, shown in Fig. 4, is dynamically
built as the third level and it is used for sequential accessing tasks data. This three-level
queue follows the rules of dynamic parallelism, aiming at building a flexible way of
data accessing and improving the performance. It works for the task schedule and can
completely match the Parent-Child structure.

3.3 Dynamic Hierarchical Task Schedule

As the task size during the execution dynamically changes, unbalanced load or overload
will happen frequently, especially for an irregular graph. Launching kernel is an expen-
sive work. So we cannot rearrange the structure of Child Grid at each time that the
unbalanced load happens. Flexible task scheduling methods are necessary. Combined
with our path generation problem, there are several conditions that the program needs
to do task scheduling in hierarchical level. Algorithm 2 lines 10 to 17 and Algorithm 3
lines 10 to 32 are related to these:

– The first time to launch Child Grid from Parent Grid. When Parent Kernel finishes
some layers of BFS-related path generation and makes that Parent Grid cannot hold
more tasks, the Parent Grid needs to launch Child Grid and schedules initial tasks
to Child Grid and used by Child Kernel.

– The inside warp task transfer to make each thread has tasks in its queue. When each
warp begins the execution after getting tasks, it needs to guarantee that each thread
is involved in the path generation procedure.

– When the whole tasks in a warp make a warp overload, it needs to do inter warps
task transfer. This is similar to the inside warp data transfer.

– When the tasks in a block make it overload, inter blocks task rescheduling will
occur.

424 Z. Wu et al.

Parent Level
Child Level

Parent

Child
Block 0

Child Block

Warp

Warp

Warp

...

Global Memory-G_Queue

Initial
Allocate Task

Overload

Overload Mark
Tasks data

Central Inter-blocks
task reschedule

Tasks Data
New Arrangement

Shared Memory-task queue

Global Memory-V_G_Queue
If Child Overload Mark

Parent Central Task
reschedule

Launch New
Child

Fig. 5. Dynamic Hierarchical Task Schedule-block and grid level

– When the whole tasks in the Child Grid make it overloaded, Child Kernel will
stop executing and the control will return to Parent Grid to rearrange the Child grid
so as to reschedule the tasks. This and the inter blocks one are shown in Fig. 5.
Both the inter blocks schedule and the Parent Grid schedule utilize GQueue and
V GQueue GM to redistribute tasks. While inter warps or inside warp schedule is
based on SM.

These make up a hierarchical fine-grained task scheduling. As many steps are in
SM, it can make full use of the fast access feature. And only Child Grid being over-
loaded will cause the structure of Child Grid to be rearranged. In common, we will
arrange the grid size of child bigger than needed at the beginning, to set the constant
EXPAND LEVEL so as to make the size of grid and block bigger than required, i.e.,
INITIAL T×EXPAND LEVEL in Algorithm 3. The EXPAND LEVEL will based on
the restriction of GPU architecture, which will be mentioned in Sec. 4. It is to make a
compromise between resource cost and rescheduling cost. As the decision to do which
level task rescheduling is due to the runtime task size, our design is a Dynamic Hierar-
chical Task Schedule method.

Note that after each layer of path generation, the overload detection will occur. This,
together with the terminating condition detection, are in a central mode. This is to get
rid of frequent communication among threads. When the whole block is overloaded
and needs to copy tasks in each WarpQueue back to GQueue, each warp will do its
own transfer, makes it a parallel data transfer. Here, the targets of task scheduling are
to balance workload in each warp/block and to allocate enough resources for future
execution.

3.4 Dynamic Duplicate Eliminated Path Recording

Our algorithm is to deal with the counterexample generation, where path recording is
necessary. Path recording should also be parallelized. As our approach performs BFS,
the counterexample path is updated in each layer. Note that our path recording is to
record the visited state ID and its first Predecessor. The “first Predecessor” means the
firstly recorded predecessor. In fact, our algorithm is to find a path to reach the target
set, So one predecessor for one state is enough to generate a complete path. Take Fig. 6

GPU Accelerated Counterexample Generation in LTL Model Checking 425

as example, record (2, 4) and record (3, 4) will not be recorded together, just (3, 4) is
recorded as it is reached earlier.

Combined with our previous design, the path recording is happening in two lev-
els: (1) warp level in SM, each warp owns a WarpPathQueue, which is mentioned
in Sec. 3.1. (2) block level in GM, path recording will be taken under three con-
ditions: When the number of records in WarpPathQueue exceeds the configured
WARPPATHQUEUE SIZE, it is executed independently in each warp and mentioned
in line 9 in List. 1.1. Another two conditions are that path recording is taken be-
fore the task being copied back to GM or after the terminating condition being de-
tected, mentioned in lines 22 in Algorithm 2 and line 9 in List. 1.1. The structure for
path recording in this level is two arrays. One is the path recording array, the in-
dex of array represents the ID of state and the value represents the predecessor. The
other is the predecessor visited array, different from the first array, its value rep-
resents if the corresponding state is visited. The example of this procedure can be
shown in Fig. 6. When the record (1, 2) is copied back to GM, it will be recorded as
path recording array[2] = 1 then predecessor visited array[1] = true. And for
record (n, 3), as predecessor visited array[3] = true, this record will be discarded.
But predecessor visited array[n] will be marked true. Atomic operations are used
for writing these two arrays.

We call this approach Dynamic Duplicate Eliminated Path Recording. The duplicate
elimination here does not mean duplicate path record elimination. It is for duplicate
BFS tasks elimination. When the tasks being copied back to GQueue, it should first
detect if the corresponding value of task state in predecessor visited array is true. If
so, this state will not be copied back to GM for following task reschedule. So it reaches
the duplicate elimination target to some extent. It is mentioned in Algorithm 2 and 3
when the algorithms proceed to write WarpQueue to GM.

When the terminal states being detected, we need to generate the full path, which
is mentioned in line 4 in List. 1.1. The process start from the target state reached by
path generation process, marked as s. The iteration is started to find predecessor of
s by getting value prec(s) = predecessor visited array[s]. This terminates when
predecessor visited array[s] = Init. We generate the full path by recording each
prec(s) during the iteration. Atomic operation is also needed in getting the full path
as we only need one path. Overall, our path recording also fits the idea of dynamic
parallelism.

WarpPathQueue WarpPathQueue

...

Path Recording Array

Predecessor visited array

1 2 3 n-1

1

2

n

3

2

3

3

4

2

4

n-1

n

PrecID

NodeID

...

True True True TrueTrue...
1 3

1

nn-1

4

2

2 3 n-1 n

x X

G
lobal M

em
ory

Shared M
em

ory

Fig. 6. Block-level Path Recording

426 Z. Wu et al.

Table 1. Parameters in the Algorithms

Parameter Meaning Default Value
INITIAL T The thread number of parent 32

WARPQUEUE SIZE The length of queue in WarpQueue 32
WARPPATHQUEUE SIZE The length of queue in WarpPathQueue 32

EXPAND LEVEL The times of thread number to expand compared to statistic requirement 2

4 Experiments and Evaluation

We evaluate our algorithms in two aspects. Firstly, we test the performance of our dy-
namic CUDA counterexample generation with models in different size and structures.
Secondly, we analyze the effects of GPU parameters to our algorithms and discuss
the limitation of the algorithms. We also propose two optimization options. The ba-
sic implementation of our algorithm uses C++. The system model is from PAT model
checker [8]. Our experiments are conducted using a PC with Intel(R) Xeon(R) CPU
E5-2620 @ 2.00GHz and a Tesla K20c GPU @ 2.6 GHz with 5GB global memory, 13
SMXs and totally 2496 CUDA cores.
Performance Analysis. To analyze the performance, we choose the classic dinning
philosophers problem (DP) as the input model. We use different process number to get
different SCC size. The four GPU parameters used in the algorithms and their default
value are shown in Table 1. The value of the parameters should be controlled in a fixed
range based on hardware specifications. Their influence on our task schedule and their
restrictions will be discussed in next section.

Based on the default configuration, our algorithms succeed in generating the coun-
terexample for the verification of DP model in sizes from 5 to 8. We record the execution
time for each process in Parent Kernel (Algorithm. 2), as well as the execution time of
Child Kernel (Algorithm. 3). Firstly, Fig. 7 shows the distribution of the execution time
for each BFS work in Algorithm. 1. Init2SCCBFS, Path2AccBFS and SelfLoopBFS are
the three steps mentioned in Sec. 2. We can see that the first path generation costs
more than the other two. This is because the → (outgoing transition table) for the first
path generation is bigger as it contains all transitions generated during the model ver-
ification. So schedule, dynamic expanding and data transfer cost more. When doing
scc → acc → accloop, the → is much smaller as we are preprocessing to eliminate
non-SCC states in the→.

We choose the data from the Parent Kernel execution of Init2SCCBFS path gen-
eration, as well as the total cost of Child Kernel execution. We get the results of the
execution time percentage of each part, as shown in Table 2: Schedule means the task
schedule; Search means the BFS with path recording; Prepare means the queue build-
up for launching Child Grid ; And Child means the execution time of Child Kernel. we
can see Child Kernel will take charge of the highest percentage during the counterex-
ample generation. In Parent, its major cost is on the initial schedule and the preparation
for the child expanding. We can see the costs of each part are balanced among different
size of tasks. The experimental results match the design of our algorithms.

Evaluation and Limitation. As shown in Table 1, there are four constants which af-
fect the performance. We mentioned their meaning in Sec. 3.1. Firstly, The value of

GPU Accelerated Counterexample Generation in LTL Model Checking 427

0

5

10

15

20

25

30

35

40

45

DP S=8 DP S=7 DP S=6 DP S=5

Pe
rc

en
ta

ge

processes number of model

Cost distribution

SelfLoopBFS

Path2AccBFS

Init2SCCBFS

Fig. 7. Distribute of cost in three path generation

Table 2. Performance Analysis

Processes TotalSize SCCSize AccSize Schedule Search Prepare Child DataTrans Total
5 348 120 36 20.7% 20.6% 20.5% 34.8% 0.57 9.3
6 1013 508 112 21.9% 22% 23.3% 30.8% 0.6 8.3
7 3420 2047 365 20.7% 20.6% 22.6% 35.5% 0.64 16.2
8 12339 7980 1195 24.4% 24.2% 25.4% 26.8% 1.01 19.7

INITIAL T is due to the structure of the state space of the model. If the model’s width
is always short, setting a large INITIAL T can reduce the chance to launch Child Grid.
Too large value will waste a lot of resources when the Child is working on the ma-
jor process. Secondly, based on our algorithm design, the hierarchical task scheduler is
based on the grid size, means the number of threads. However, as the task size of each
layer during the path generation of an irregular graph is unknown, if the size of one
layer is larger than the remaining space of the WarpQueue, the task reschedule may oc-
cur, which is costly. So for the models with irregular state space, WARPQUEUE SIZE
will affect the performance. Thirdly, as the path records in warp level need to be copied
back to GM when the |WarpPathQueue| exceeds the WARPPATHQUEUE SIZE. So
set a large value to WARPPATHQUEUE SIZE will definitely reduce the cost. At last,
EXPAND LEVEL, as we mentioned, if we just set the exact size of Child Grid accord-
ing to the realistic requirement, it may cause the Child being overloaded soon and the
Parent do rescheduling again. EXPAND LEVEL is to make the compromise. It decides
how much more resources to be allocated to the Child.

However, the size of the queue needs to be bounded. All above are restricted by the
size of SM in each SMX. As described in Sec. 2, the size of chip memory in each SMX
is 64KB. According to max SM per multiprocessor, only 48KB are available for SM.
Before we launch the kernel, we need to decide how many SMs a block can use. In our
algorithms, each item in the queue is an int. We represent the total shared memory cost
as MemC, as defined below:

MemC =sizeof(int)× (|WarpQueue|+ |WarpPathQueue|)
× PG(INITIAL T)× EXPAND LEVEL

(1)

It requires MemC < 48KB. PG(INITIAL T) denotes the statistic required size of
resources (thread number), which starts from INITIAL T. This is a dynamic variable
so we combine the (PG(INITIAL T)× EXPAND LEVEL) to be MaxWarpsize.
We can learn from equation (1) that these parameters are conditioned by each other.

428 Z. Wu et al.

Considering the restriction of CUDA architecture, the available size of SM is set before
launching the kernel. If queue size described above is too large, the number of threads in
one block will be restricted. During the execution, data in WarpQueue is flushed in each
layer as old data being visited, and the size of data in WarpPathQueue is increasing all
the time. so the constants WARPPATHQUEUE SIZE and WARPQUEUE SIZE will
decide the extra GM accessing times. In fact, the value of all these parameters should
be decided based on the structure of model.

The values of these parameters are also related to the grid level task schedule (Parent
Grid launch Child Grid) in our design. We take the default setting in Table. 1 as an
example. Suppose the total task size currently is Ttotal. The structure of Child Grid,
means blocks number in grid, is marked as Bc. In default, we guarantee each block
in Child Grid starts with tasks Ts = 32, equals to the thread number in a warp. Then
Bc = Ttotal÷Ts(+1). With the setting, each block will owns ExpandLevel×Ts = 64
threads, means 2 warps. With these, total shared memory cost in a block T CB will
be: T CB = 64 × (WarpQueueSize + WarpPathQueueSize) × sizeof(int) =
16384bytes. Compared with MemC, it means two more warps can be added in a single
block. and Bc ≤ 13(SMX number). So the max threads number available under this
setting will be 1664, means if any layer in a graph contains more than 1664 states, the
schedule cannot work.

In summary, due to the restriction of SM size in CUDA, our approach does not work
well for graph with large branching nodes. A solution to this problem can be using more
global memory, or building united memory space with host memory, which has been
proposed in the new CUDA 6.0.

Optimization Options. The experiments show that our approach is scalable in dealing
with the counterexample generation problem. In our CUDA Dynamic Path Generation
algorithm, the task schedule, as well as the queue building, take a substantial on the
total cost. Based on this, we present two optimization options as follows. (1) According
to [4], GPU works fast on short data. So building a compact graph representation to
represent the model can improve the performance significantly. (2) Reduce the times
of scheduling and global memory accessing. These can be done by applying latency
task schedule, making each thread hold more tasks and performing the load balance
after several layer expanding. The low cost intra block and warp level task schedule
should take majority parts, means to increase the threshold to do inter-blocks or parent
level schedule. These potential optimizations are important in the improvement of our
algorithm and can be easily supported based on current design.

5 Conclusion

In this work, we proposed a CUDA Dynamic Counterexample Generation approach
for SCC-based LTL model checking. We designed the dynamic queue management,
hierarchical task scheduler and the dynamic parent-relation, path recording scheme by
adopting the new features of dynamic parallelism of CUDA. The experiments show
that our algorithm can be scalable in solving the counterexample generation problem.

GPU Accelerated Counterexample Generation in LTL Model Checking 429

In future work, we plan to optimize this algorithm to build a space-efficient encoding
for the task data and path record data in order to save resources.

Acknowledgement. This work is supported by “Formal Verification on Cloud” project
under Grant No: M4081155.020 and “Verification of Security Protocol Implementa-
tions” project under Grant No: M4080996.020.

References

1. Barnat, J., Brim, L., Ceska, M., Lamr, T.: CUDA Accelerated LTL Model Checking. In:
ICPADS, pp. 34–41. IEEE (2009)

2. Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing Fast LTL Model Checking Algorithms
for Many-core GPUs. In: JPDC, pp. 1083–1097 (2012)

3. Edelkamp, S., Sulewski, D. Model Checking via Delayed Duplicatedetection on The GPU.
In Technical Report 821. Dekanat Informatik, Univ. (2008)

4. Edelkamp, S., Sulewski, D.: Efficient Explicit-State Model Checking on General Purpose
Graphics Processors. In: van de Pol, J., Weber, M. (eds.) Model Checking Software. LNCS,
vol. 6349, pp. 106–123. Springer, Heidelberg (2010)

5. Gastin, P., Moro, P.: Minimal Counterexample Generation for SPIN. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 24–38. Springer, Heidelberg (2007)

6. Gastin, P., Moro, P., Zeitoun, M.: Minimization of Counterexamples in SPIN. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 92–108. Springer, Heidelberg (2004)

7. Harish, P., Narayanan, P.J.: Accelerating Large Graph Algorithms on the GPU Using CUDA.
In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873,
pp. 197–208. Springer, Heidelberg (2007)

8. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidel-
berg (2009)

9. Luo, L., Wong, M., Hwu, W.-M.: An Effective GPU Implementation of Breadth-first Search.
In: DAC, pp. 52–55. ACM (2010)

10. Nvidia Corporation. Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110 (2012)

11. Nvidia Corporation. Nvidia CUDA C Programming Guide 5.5 (2013)
12. Schwoon, S., Esparza, J.: A Note on On-the-Fly Verification Algorithms. In: Halbwachs, N.,

Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)
13. Wijs, A., Bošnački, D.: GPUexplore: Many-core on-the-fly state space exploration using

gPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413,
pp. 233–247. Springer, Heidelberg (2014)

14. Xiao, S., Feng, W. Inter-block GPU Communication via Fast Barrier Synchronization. In:
IPDPS, pp. 1–12. IEEE (2010)

	GPU Accelerated counterexample generation in LTL model checking
	Citation

	tmp.1584006247.pdf.Tt7Pc

