
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2014

TAuth: Verifying timed security protocols TAuth: Verifying timed security protocols

Li LI

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LI, Li; SUN, Jun; LIU, Yang; and DONG, Jin Song. TAuth: Verifying timed security protocols. (2014).
Proceedings of the 16th International Conference on Formal Engineering Methods, ICFEM 2014,
Luxembourg, November 3–5. 300-315.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4987

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4987&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

TAuth: Verifying Timed Security Protocols

Li Li1, Jun Sun2, Yang Liu3, and Jin Song Dong1

1 National University of Singapore, Singapore
2 Singapore University of Technology and Design, Singapore

3 Nanyang Technological University, Singapore

Abstract. Quantitative timing is often relevant to the security of systems, like
web applications, cyber-physical systems, etc. Verifying timed security protocols
is however challenging as both arbitrary attacking behaviors and quantitative tim-
ing may lead to undecidability. In this work, we develop a service framework to
support intuitive modeling of the timed protocol, as well as automatic verification
with an unbounded number of sessions. The partial soundness and completeness
of our verification algorithms are formally defined and proved. We implement
our method into a tool called TAuth and the experiment results show that our ap-
proach is efficient and effective in both finding security flaws and giving proofs.

1 Introduction

Timed security protocols are used extensively nowadays. Many security applications
[29,9,4] use time to guarantee the freshness of messages received over the network. In
these applications, messages are associated with timing constraints so that they can only
be accepted in a predefined time window. As a result, relaying and replaying messages
are allowed only in a timely fashion. It is known that security protocols and their manual
proofs are error-prone, which has been evidenced by multiple flaws found in existing
proved protocols [30,27,17]. It is therefore important to have automatic tools to formally
verify these protocols.

However, existing methods and tools for security protocol verification often abstract
timestamps away by replacing them with nonces. The main reason is that most of the de-
cidability results are given for untimed protocols [24,28]. Thus, the state-of-the-art se-
curity protocol verifiers, e.g., ProVerif [6], Athena [31], Scyther [13] and Tamarin [25],
are not designed to specify and verify time sensitive cryptographic protocols. Abstract-
ing time away may lead to several problems. First, since the timestamps are abstracted
as nonces, the message freshness checking in the protocol cannot be correctly specified.
As a consequence, attacks found in the verification may be false alarms because they
could be impractical when the timestamps are checked. Second, omitting the timestamp
checking could also result in missing attacks. For instance, the timed authentication
property ensures the satisfaction of the timing constraints in addition to the establish-
ment of the event correspondence. Without considering the timing constraints, even
though the agreement is verified under the untimed configuration correctly, the protocol
may still be vulnerable to timing attacks. Third, with light-weight encryption, which are
often employed in cyber-physical systems, it might be possible to decrypt secret mes-
sages in a brute-force manner given sufficient time. In applications where long network

S. Merz and J. Pang (Eds.): ICFEM 2014, LNCS 8829, pp. 300–315, 2014.
c© Springer International Publishing Switzerland 2014

TAuth: Verifying Timed Security Protocols 301

latency is expected, it is therefore essential to consider timing constraints explicitly and
check the feasibility of attacks.

Contributions. In this work, we provide a fully automatic approach to verify timed se-
curity protocols with an unbounded number of sessions. Our contributions are fourfold.
(1) In order to precisely specify the capabilities of the adversary, we propose a ser-
vice framework in which the adversary’s capabilities are modeled as various services
according to the protocol specification and cryptographic primitives. Thus, when the
protocol is vulnerable, there should exist an attack trace consisting of the services in
a certain sequence. (2) An automatic algorithm is developed in this work to verify the
timed authentication properties with an unbounded number of sessions. Since security
protocol verification is undecidable in general [11], we cannot guarantee the termina-
tion of our algorithm. We thus define partial soundness and completeness in Section 2.3
and prove that our algorithm is partially sound and complete in Section 3. (3) Having
time in security protocol verification adds another dimension of complexity. Thus we
propose the finite symbolic representation for the timing constraints with approxima-
tion. We prove that the protocol is guaranteed to be secure when it is full verified by our
algorithm. Additionally, when the protocol specification is in a specific form, we also
prove that our algorithm does not introduce false alarms. (4) A verifier named TAuth is
developed based on our method. We evaluate TAuth using several timed and untimed
security protocols [8,10,26,19,7,29]. The experiment results show that our approach is
efficient and effective in both finding security flaws and giving proofs.

Related Works. Evans et al. [16] introduced a semi-automated way to analyze timed
security protocols. They modeled the protocols with CSP and checked them with PVS.
In [23], Lowe proposed finite state model checking to verify bounded timed authenti-
cation. In order to avoid the state space explosion problem, protocol instances and time
window are bounded in the verification. Jakubowska et al. [18] and Corin et al. [12] used
Timed Automata to specify the protocols and used Uppaal to give bounded verifications.
Our method is different from theirs as our verification algorithm is fully automatic and
the verification result is given for an unbounded number of sessions.

The work closest to ours was proposed by Delzanno and Ganty [14] which ap-
plies MSR(L) to specify unbounded crypto protocols by combining first order multiset
rewriting rules and linear constraints. According to [14], the protocol specification is
modified by explicitly encoding an additional timestamp, which represents the protocol
initialization time, into some messages. Thus the attack could be found by comparing
that timestamp with the original timestamps in the messages. However, it is not clearly
illustrated in their paper how their approach can be applied to timed security protocol
verification in general. On the other hand, our approach could be directly applied to
crypto protocols without any manual modification to the protocol specification.

We adopt the horn logic which is similar to the one used in ProVerif [6], a very
efficient security protocol verifier designed for untimed cryptographic protocol, and
extend it with timestamps and timing constraints. However, the extension for time is
nontrivial. In ProVerif, the fresh nonces are merged under the same execution trace,
which is one of major reasons for its efficiency. When time is involved in the protocol,
the generation time of the nonces in the protocol becomes important for the verification.
Thus merging the session nonces under the same execution trace often introduces false

302 L. Li et al.

Table 1. Service Syntax Hierarchy

Type Expression
Timestamp(t) t

Message(m) g(m1,m2, ..., mn) (function)
a[] (name)
[n] (nonce)
v (variable)
t (timestamp)

Fact(f) 〈m, t〉 (timed communication)
e(m1, m2, ..., mn) (event)

Constraint(B) C(t1, t2, ..., tn)
Service(S) f1, f2, ..., fn −[B]→ f

Query(Q) accept(. . .)←[B]− init1 (. . .), . . . , initn(. . .)

alarms into the verification results. In order to differentiate the nonces generated in the
sessions, we encode the session nonces into the events engaged in the protocol and
use the events to distinguish them. Additionally, our approach takes care of the infinite
expansion of timing constraints, which is discussed in Section 3.1.

2 Protocol Specification Framework

We introduce the proposed protocol specification framework in this section. In the
framework, the security protocols and the cryptographic primitives are modeled as
various services accessible to the Adversary for conducting attacks. Generally, these
services receive inputs from the adversary and send the results back to the adversary
as output over the network. Timestamps are tagged to the messages to denote when
they are known to the adversary. We assume the adversary model presented in this
framework is an active attacker who can intercept all communications, compute new
messages and send any messages he obtained. For instance, he can use all the publicly
available functions including encryptions, decryptions, concatenations, etc. He can also
ask legal protocol participants to take part in the protocol when he needs. Thanks to the
introduction of time, key expiration and message compromise can also be specified by
adding additional services.

2.1 Service Syntax

In our framework, services are represented by a set of horn logic rules guarded by tim-
ing constraints. We adopt the syntax shown in Table 1 to define the services. Messages
could be defined as functions, names, nonces, variables or timestamps. Functions can
be applied to a sequence of messages; names are globally shared constants; nonces are
freshly generated values in sessions; variables are memory spaces for holding mes-
sages; and timestamps are values extracted from the global clock during the protocol
execution. A fact can be a message tagged by a timestamp denoted as 〈m, t〉, which
means that the message m is known to the adversary at time t. Otherwise, it is an event

TAuth: Verifying Timed Security Protocols 303

in the form of e(m1, . . . ,mn) where e is the event name and m1, . . . ,mn are the event
arguments. The events are used for specifying authentication properties and distinguish-
ing different sessions. B is a set of closed timing constraints assigned on the timestamp
pairs. Each constraint is in the form of t − t′ ∼ d where t and t′ are timestamps, d is
an integer constant (∞ is omitted), and ∼ denotes either < or ≤. We denote the maxi-
mum value of d in a timing constraint set B as max (B). For simplicity, when a timing
constraint t − t′ ∼ d ∈ B, we write d(B, t, t′) to denote the integer constant d, and
c(B, t, t′) to denote the comparator∼1. A service f1, f2, ..., fn −[B]→ f means that if
the facts f1, f2, ..., fn and the constraints B are satisfied, the adversary can invoke this
service and obtain f as the result.

2.2 Service Modeling

In the following, we show how to model the timed authentication protocols in our
framework. We illustrate the service modeling using a simple example called the Wide
Mouthed Frog (WMF) protocol [8] as described below.

A→ S :A, {tA, B, k}kA

S → B :{tS , A, k}kB

In the protocol, A and B are two users Alice and Bob, and S is a trust server who shares
different secret keys with different users. The goal of this protocol is to share a fresh
key k from Alice to Bob. kA is the secret key shared between server and Alice, and kB
is the corresponding secret key for Bob. k is a fresh session key generated by Alice,
which should be different in different sessions. tA is a timestamp generated by Alice.
Similarly, tS is a timestamp generated by the server. In the protocol, we assume that the
clock drift for every participants is negligible, so that the message freshness checking
is valid during the execution.

When the server receives the request from Alice, it checks its freshness by comparing
the tA with the current clock reading tS . If tA and tS satisfy the pre-defined constraint
C1, the server then sends the second message to Bob. Upon receiving the message from
the server, Bob decrypts it and compares tS with his clock reading tB . If the timestamp
checking C2 is passed and the message is properly formed, Bob then believes that k is
a fresh key shared with Alice. In fact, there exists an attack [3] to the protocol which is
resulted from the symmetric structure of the exchanged messages.

A→ S : A, {tA, B, k}kA

S → I(B) : {tS , A, k}kB

I(B)→ S : B, {tS , A, k}kB

S → I(A) : {tS′ , B, k}kA

I(A)→ S : A, {tS′ , B, k}kA

S → B : {tS′′ , A, k}kB

1 If a timing constraint is not specified exactly in this form, it should be possible to change the
constraint into this form. For instance, t− t′ > 3 can be changed into t′ − t < −3.

304 L. Li et al.

In the attack trace, the adversary I personates Bob, hijacks the second message and
sends it back to the server within the timing constraint C1. Then, the server would
treat it as a valid request from Bob and update the tS to its current clock reading. By
doing this repeatedly, the timestamp in the request can be extended to an arbitrary large
value. As a result, when Bob receives a message that passes the timestamp checking, the
request from Alice may not be timely any more. Hereafter, we assume that the server
and Bob check the freshness of the received messages with following timing constraints:
C1 = tS− tA ≤ 2 and C2 = tB− tS ≤ 2. Notice that in general, the constraints should
be set according to the protocol specification, network latency, etc.

Crypto Services. Cryptographic primitives are usually specified as services without
network latency. Generally, we have two types of crypto services, which are construc-
tors and destructors. Constructors are used to generate new messages such as con-
catenation and encryption, whereas destructors are used to extract messages from the
constructed messages. For instance, the constructor and the destructor for symmetric
encryption can be modeled as follows.

〈m, t1〉, 〈k, t2〉 −[t1 ≤ t ∧ t2 ≤ t]→ 〈encs(m, k), t〉 (1)

〈encs(m, k), t1〉, 〈k, t2〉 −[t1 ≤ t ∧ t2 ≤ t]→ 〈m, t〉 (2)

The service (1) means that if the adversary has a message m and a key k, this service
can generate the symmetric encryption for m by k, and the timing t of receiving the
encryption should be later than the timing t1 and t2 when m and k are known to the
adversary. The symmetric decryption service is similarly defined in service 2.

For some cryptographic primitives, additional constraints can be added for special
purposes. For instance, RSA encryption may consume non-negligible time to compute.
If the encryption time has a lower bound d, we could use the following constructor to
model the additional requirement on time.

〈m, t1〉, 〈pk, t2〉 −[t− t1 > d, t− t2 > d]→ 〈RSA(m, pk), t〉

Protocol Services. Protocol services are used to specify the execution of the protocol.
These services are directly derived from the protocol specification. Specifically, for
the WMF protocol, the server S answers queries from all its users. After receiving a
request from a user I , S extracts the message content and checks the timestamp. If the
timestamp is generated within 2 time units, S sends out the encryption of an updated
timestamp tS , the initiator’s name and the session key k under the responder’s shared
key. The service provided by the server can be specified with

〈encs((tI , R, k), key(I)), t〉, 〈I, t′〉 −[0 ≤ tS − tI ≤ 2 ∧ t ≤ tS ∧ t′ ≤ tS]→
〈encs((tS , I, k), key(R)), tS〉 (3)

in which key(U) represents the secret key shared between the server and the user U .
Since the keys are only shared with the user and the server, We do not treat the key
constructor as a public service. Besides, the names of the two participants should be
known to the adversary, so we have services for publishing their names.

−[]→ 〈A[], t〉 (4)

−[]→ 〈B[], t〉 (5)

TAuth: Verifying Timed Security Protocols 305

Event Services. In order to ensure the authenticity between participants, we introduce
two special events init and accept. The init event is explicitly engaged by the adversary
when he wants to start a new protocol session, while the accept event is engaged by the
protocol when the timed authentication is established successfully. According to [22],
the timed authentication is correct if and only if every accept event is emitted with its
corresponding init event engaged before, and the timing constraints should always be
satisfied. For the WMF protocol, the adversary engages an event init when he wants
Alice to start a session with R.

init(A[], R, [k], tA) −[]→ 〈encs((tA, R, [k]), key(A[])), tA〉 (6)

When the user Bob gets the message from the server, he decrypts it with his shared key
key(B[]) and checks its freshness. If the timestamp checking is passed and the initiator
is I , he then believes that he has established a timely authenticated connection under
session key k with I and engages an accept event as follows.

〈encs ((tS , I, k), key(B[])), t〉 −[tB − tS ≤ 2]→ accept(I, B[], k, tB) (7)

Additional Services. Introducing time allows to model systems which are not possible
previously. For instance, some applications require that the passwords are used only if
they are unexpired. One possible scenario is that the token token(s , pw , tk) can only
be opened within the lifetime [tk, tk + d] of the password pw.

〈token(s , pw , tk), t1〉, 〈pw , t2〉 −[tk ≤
{
t1
t2

}
≤

{
tk + d

t

}
]→ 〈s , t〉

If the adversary can obtain both of the token and the password within [tk, tk + d],
the secret s can be extracted from the token. Another possible service that could be
accessible to the adversary is the brute force attack on the encrypted messages, which
allows the adversary to extract the encrypted data without knowing the key. Suppose
the least time of cracking the crypto is d, the attacking behavior can be modeled with

〈Crypto(m, k), t〉 −[t′ − t > d]→ 〈m, t′〉.

For some ciphers like RC4 which is used by WEP, key compromise on a busy network
can be conducted after a short time. Given an application scenario where such attack is
possible and the attacking time has a lower bound d, we can model it as follows.

〈RC4 (m, k), t〉 −[t′ − t > d]→ 〈k, t′〉

Remarks. Even though the services specified in our framework can directly extract
the message from the encryption without the key and so on, a given protocol can still
guarantee correctness as long as proper timing checking is in place, e.g., authentication
should be established before the adversary has the time to finish the brute-force attack.

2.3 Security Properties

In this work, we focus on verifying that the authentication between the two participants
is timely, which means every accept event is preceded by a corresponding init event

306 L. Li et al.

satisfying the timing constraints. Thus we formalize the timed authentication property
by extending the definition in [22] as follows.

Definition 1. Timed Authentication. In a timed security protocol, timed authentication
holds for an accept event f with a set of init events H agreed on arguments encoded in
the events and the timing constraintsB, if and only if for every occurrence of f , all of the
corresponding init events in H should be engaged before, and their timestamps should
always satisfy the timing constraints B. We denote the timed authentication query as
f ←[B]− H . In order to ensure general timed authentication, the arguments encoded
in events should only be different variables and timestamps.

We remark that the timed authentication defined above is the non-injective agreement.
Since injective agreement is usually implemented by duplication checking, which is
unrelated to time, we do not discuss injective timed authentication [22] in this work.
Because the legitimate run of WMF protocols requires that the authentication should be
established within 4 time units, its query is modeled as follows.

accept(I, R, k, t)←[t− t′ ≤ 4]− init(I, R, k, t′) (8)

In Section 3, we present a verification algorithm to check the authentication. Since the
verification for security protocol is generally undecidable [11], our algorithm cannot
guarantee termination. Hence, we claim our attack searching algorithm as partial sound
and partial complete under the condition of termination (partial correctness).

3 Verification Algorithm

Given the specification formalized in Section 2, our verification algorithm is divided
into two phases. The attack searching service basis is constructed in the first phase so
that attacks can be found in a straight forward method in the second phase. Specifically,
every service consists of several inputs, one output and some timing constraints. When a
service’s input can be provided by another service’s output, we could compose these two
services together to form a composite service. In the first phase, our algorithm composes
the services repeatedly until a fixed-point is reached. When such a fixed-point exists, we
call it the guided service basis. However, the above process may not terminate because
of two reasons. The first reason is the infinite knowledge deduction. For example, given
two services m −[]→ h(m) and h(m) −[]→ h(h(m)), we can compose them to obtain
a new service m −[]→ h(h(m)), which could be composed to the second service again.
In this way, infinitely many composite services can be generated. The second reason
is the infinite expansion of timing constraints. For instance, assume we have S0 =
〈enc(t′, k), t1〉 −[t′′−t′ ≤ 2∧t1 ≤ t′′]→ 〈enc(t′′, k), t′′〉 and S1 = init(t, [k]) −[t′−
t ≤ 2∧t ≤ t′]→ 〈enc(t′, [k]), t′〉 in the service basis. When we compose S1 to S0, their
composition S2 = init(t, [k]) −[t′′ − t ≤ 4 ∧ t ≤ t′′]→ 〈enc(t′′, [k]), t′′〉 has a larger
range than S1. Besides, we could compose S2 to S0 again to obtain an even larger range,
so the service composition never ends. Since verification for untimed security protocol
is undecidable, we, same as state-of-the-art tools like ProVerif, cannot handle the first
scenario. We thus focus on solving the second scenario by approximating the timing
constraints into a finite set. The fixed-point is then called the approximated service

TAuth: Verifying Timed Security Protocols 307

basis. When the over-approximation is applied, false alarms may be introduced into
the verification result so that, generally, only partial completeness is preserved by our
attack searching algorithm. Finally, we present our attack searching algorithm in the
end of this section.

3.1 Service Basis Construction

In the first phase, our goal is to construct a set of services that allows us to find security
attacks in the second phase. In order to construct such a service basis, new services
are generated by composing existing services. In this way, the new composite services
can also be treated as services directly accessible to the adversary and the algorithm
continues until the fixed-point is reached, i.e., no new service can be generated. We use
the most general unifier to unify the input and the output.

Definition 2. Most General Unifier. If σ is a substitution for both messages m1 and
m2 so that σm1 = σm2, we say m1 and m2 are unifiable and σ is an unifier for m1

and m2. If m1 and m2 are unifiable, the most general unifier for m1 and m2 is an
unifier σ such that for all unifiers σ′ of m1 and m2 there exists a substitution σ′′ such
that σ′ = σ′′σ.

Since the adversary in our framework has the capability to generate new names and
new timestamps, when a service input is a variable or a timestamp that is unrelated to
other facts in a service, the adversary should be able to generate a random fact and use
it to fulfill that input. In this way, that input can be removed in the composite service.
Hence, we define service composition as follows. For simplicity, we define a singleton
as a fact of the form 〈x, t〉 where x is a variable or a timestamp.

Definition 3. Service Composition. Let S = H −[B]→ f and S′ = H ′ −[B′]→ f ′

be two services. Assume there exists f0 ∈ H ′ such that f and f0 are unifiable, their
most general unifier is σ and σB ∩σB′ �= φ. The service composition of S with S′ on a
fact f0 is defined as S◦f0S′ = clear(σ(H∪(H ′−{f0}))) −[sim(σB∩σB′)]→ σf ′, where
the function clear merges duplicated facts from the inputs and removes any singleton
〈x, t〉 where x does not appear in other facts of the rule, and the function sim removes
timestamps that are no longer used in the composite service.

When new composite services are added into the service basis, redundancies should
be eliminated from the service basis. As the timing constraints can be viewed as a set of
clock valuations which satisfy the constraints, they thus can be naturally applied with
semantic operations of set, e.g., B ⊆ B′, B ∩ B′, etc.

Definition 4. Service Implication. Let S = H −[B]→ f and S′ = H ′ −[B′]→ f ′

be two services. S implies S′ denoted as S ⇒ S′ if and only if ∃σ, σf = f ′ ∧ σH ⊆
H ′ ∧ B′ ⊆ σB.

When services are composed in an unlimited way, infinitely many composite services
could be generated. For instance, composing the symmetric encryption service (1) to
itself on the fact 〈m, k〉 leads to a new service encrypting the message twice, that is
〈m, t〉, 〈k1, t1〉, 〈k2, t2〉 −[. . .]→ 〈encs(encs(m, k1), k2), t

′〉, which can be composed

308 L. Li et al.

to the encryption service again. In order to avoid these service compositions, we adopt
a similar strategy proposed in [6] such that the unified fact in the service composition
should not be singletons. Moreover, the events in our system cannot be unified2, thus
we define V as a set of facts that should not be unified, consisting of all events and
singletons.

We denote β(α,Rinit) as the fixed-point, where Rinit is the initial service set and
α is a service approximation function adopted during the construction. In order to com-
pute β(α,Rinit), we first define Rv based on the following rules, where inputs(S)
represents the inputs of service S.

1. ∀S ∈ Rinit, ∃S′ ∈ Rv, S
′ ⇒ S;

2. ∀S, S′ ∈ Rv, S �⇒ S′;
3. ∀S, S′ ∈ Rv , if ∀fin ∈ inputs(S), fin ∈ V and ∃f �∈ V , S ◦f S′ is defined,
∃S′′ ∈ Rv, S

′′ ⇒ α(S ◦f S′).

The first rule means that every initial service is implied by a service inRv . The second
rule means that no duplicated service exists in Rv . The third rule means that for any
two services in Rv , if the first service’s inputs are in V and their composition exists,
their approximated composition is also implied by a service in Rv . These three rules
meansRv is the minimal closure of the initial service setRinit. Based onRv, we have

β(α,Rinit) = {S | S ∈ Rv ∧ ∀fin ∈ inputs(S) : fin ∈ V}.

In the latter part of this section, α will be instantiated with no-approximation and over-
approximation. (The detailed algorithm is available in the full paper version [1].)

For any service, it is derivable from a service basisR if and only if there is a deriva-
tion tree that represents how the service is composed.

Definition 5. Derivation Tree. Let R be a set of closed services and S be a closed
service, where a closed service is a service with its output initiated by its inputs. Let S
be a service in the form of f1, . . . , fn −[B]→ f . S can be derived from R if and only
if there exists a finite derivation tree defined as

1. edges in the tree are labeled by facts;
2. nodes are labeled by the services in R;
3. if a node labeled by S has incoming edges of fs

1 , . . . , f
s
n, an outgoing edge of

fs, and the timestamps among these facts satisfy the timing constraints Bs, then
S ⇒ fs

1 , . . . , f
s
n −[Bs]→ f s;

4. the outgoing edge of the root is the fact f ;
5. the incoming edges of the leaves are f1, . . . , fn.

Additionally, if all the timing constraints in the derivation tree form B, then the timing
constraints for S is sim(B), where sim removes timestamps that are no longer used.
We name this tree as the derivation tree for S onR.

Guided Service Basis. When no approximation is used in the service basis construction,
the fixed-point is called guided service basis denoted as Rguided = β(αguided,Rinit)
where, for any service S, αguided(S) = S. In such a case, we prove that a service can
be derived fromRguided whenever it can also be derived fromRinit, and vice versa.

2 init events only appear in the inputs and accept events only appear in the output.

TAuth: Verifying Timed Security Protocols 309

Theorem 1. For any service S in the form of H −[B]→ f where ∀fin ∈ H : fin ∈ V ,
S is derivable fromRinit if and only if S is derivable fromRguided.

Proof Sketch. Only if. Given a service, if it is derivable from the initial service set,
its derivation tree should exist. We thus compose the directly connected nodes in its
derivation tree and show that the new composite node is implied by a service in Rv .
When no directly connected nodes can be composed, we then prove that the rest of
the nodes are labeled by services in Rguided, which implies that this service is also
derivable fromRguided. If. On the other hand,Rguided does not introduce extra services
except for services derivable from Rinit, so the theorem is proved. The detailed proof
is available in the full paper version [1].

Approximated Service Basis. New timestamps are often introduced in the service com-
position. When no longer used timestamps are removed from the composite service, the
timing constraints can be deemed as extended for unification. On the other hand, given
two services with the same inputs and output but they have different timing constraints,
they may be indifferent if all of the different constraints have exceeded a ceiling. For in-
stance, if the password has a fixed lifetime, its usefulness for the adversary remains the
same when the password has already expired. Since these services can be deemed as the
same, we remove their exceeded timing constraints to generalize their expressiveness.
In this work, heuristically, we assume that every service is very likely to be used by the
adversary for at least once in the attack trace and the timing constraints in the query also
play important role in the reachability checking, so we set the ceiling as 1+

∑
max (B)

in which B comes from the initial service set and the query. For instance, in the WMF
protocol, the max(B) is 2 for both of the service (3) and (7), 0 for other initial services,
and 4 for the query, so we have the ceiling set as 9. We refer to the set of services with
the ceiling U as approximated service basisRapprox = β(αU

approx,Rinit). The service
approximation function αU

approx is defined as follows.

Definition 6. Service approximation. Let S = H −[B]→ f . We define the service
approximation with ceiling U as αU

approx(S) = H −[B′]→ f . For any two timestamps
t, t′ in the service S, if d(B, t, t′) ≤ U , then d(B′, t, t′) = d(B, t, t′) and c(B′, t, t′) =
c(B, t, t′); else if d(B, t, t′) > U , then d(B′, t, t′) is∞ and c(B′, t, t′) is <.

Since the timing constraints are enlarged after the approximation, false alarms may be
introduced into verification result. However, according to the experiment results shown
in Section 4, the false alarms could be prevented when the ceiling is properly config-
ured. On the other hand, whenever a timed protocol is verified as correct under the
approximation, it is guaranteed to be attack-free, which is the same as ProVerif.

Theorem 2. Let U be the ceiling. For any service S in the form of H −[B]→ f where
∀fin ∈ H : fin ∈ V , if S is derivable fromRinit, S is also derivable fromRapprox.

Proof Sketch. Since the timing constraints are only enlarged in the service basis, ac-
cording to Theorem 1, it is clear that Theorem 2 also holds. Due to the limitation of the
space, the detailed proof is available in the full paper version [1].

310 L. Li et al.

3.2 Query Searching

When the query is violated by a service in the service basis, we call it a contradiction
to the query. A service is a contradiction to the query if and only if its output event can
be unified to the query’s output, while it does not require all the predicate events in the
query or it has a larger timing range than the query constraints.

Definition 7. Contradiction. A service S = H −[B]→ f is a contradiction to the
query Q = f ′ ←[B′]− H ′ if and only if f and f ′ are unifiable with the most general
unifier σ and ∀σ′, σ′σH ′ �⊆ σH ∨ σB �⊆ σ′σB′.

If we rewrite the query Q into a service of Sq = H ′ −[B′]→ f ′, S is a contradiction
to Q if and only if f ′ and f are unifiable with the most general unifier σ and we have
σSq �⇒ σS. According to Definition 1, events in the query only contain variables and
timestamps that are different. Thus the accept event in Sq can be unified with any other
accept event. The contradiction checking could then be simplified to check whether S
outputs an accept event and satisfies Sq �⇒ S. Given the service basisR, we thus search
the attacks as follows. (The detailed algorithm is available in the full paper version [1].)

Rf = {S|S ∈ R, the output of S is an accept event ∧ Sq �⇒ S}

Rf consists of the contradiction instances. We prove its partial correctness as follows.

Theorem 3. Partial Soundness. Assume R is Rguided. Let Q be a query of f ′ ←[
B′]− H ′ and Sq = H ′ −[B′]→ f ′. There exists S derivable fromRinit such that S is
a contradiction to Q if there exists S′ ∈ R such that the output of S′ is an accept event
and Sq �⇒ S′.

Proof Sketch. According to Theorem 1, we have ∀S′ ∈ Rguided , S′ should be derivable
fromRinit, so any contradiction found in Rf is valid whenR is Rguided.

Theorem 4. Partial Completeness. Assume R is eitherRguided or Rapprox. Let Q be
a query of f ′ ←[B′]− H ′ and Sq = H ′ −[B′]→ f ′. There exists S derivable from
Rinit such that S is a contradiction toQ only if there exists S′ ∈ R such that the output
of S′ is an accept event and Sq �⇒ S′.

Proof Sketch. We need to prove that we can find the attack whenever it exists. Since for
any service there exists a derivation tree labeled by services inRguided (Rapprox resp.)
according to Theorem 1 (Theorem 2 resp.), we prove that if the service S is a contra-
diction to the query, the service Sr labeled to the root of the tree is also a contradiction
to the query. The theorem is thus proved. Due to the limitation of the space, the detailed
proofs for the above theorems are available in the full paper version [1].

Partial Soundness for Approximated Service Basis under Restriction. The partial
soundness is not guaranteed for our verification algorithm when approximated service
basis is used. However, when the initial services are specified in some restricted form,
even though the approximated service basis is over-approximated, the partial soundness
of our query searching algorithm can be proved as well. One possible restriction is that
for any two timestamps t and t′ in every initial service with B, d(B′, t, t′) is required

TAuth: Verifying Timed Security Protocols 311

to be no less than 0. If the ceiling is set to be larger than max (Bq) + 1 where Bq is
the timing constraints of the query, we prove the partial soundness of our verification
algorithm as follows. First, we prove that, under this restriction, for any service S in the
approximated service basis, we have a corresponding service S′ in the guided service
basis such that S = αU

approx(S
′). Second, when the contradiction instance setRf is not

empty for the approximated service basis, we prove the existence of a corresponding
attack instance in the guided service basis. According to the Theorem 1, the attack
found in the guided service basis is guaranteed to be valid. So the protocol indeed has
an attack and the following theorem is thus proved.

Lemma 1. Given an initial service set Rinit and a ceiling U . Every service in Rinit

satisfies the restriction that for any two timestamps t and t′ in the service with B,
d(B′, t, t′) is no less than 0. We have ∀S ∈ β(αU

approx,Rinit), ∃S′ ∈ β(αguided,Rinit)

such that S = αU
approx(S

′).

Theorem 5. Partial Soundness under Restriction. Assume R is Rapprox. Every ser-
vice in Rinit satisfies the restriction that for any two timestamps t and t′ in the service
with B, d(B′, t, t′) is no less than 0. If the ceiling U is set to be larger than max (Bq)+1
where Bq is the timing constraints of the query, R = β(αU

approx,Rinit). Let Q be a
query of f ′ ←[B′]− H ′ and Sq = H ′ −[B′]→ f ′. There exists S derivable fromRinit

such that S is a contradiction to Q if there exists S′ ∈ R such that the output of S′ is
an accept event and Sq �⇒ S′.

Due to the limitation of space, the proofs are available in [1]. We also indicate whether
this restriction is applicable to the experiments evaluated in Section 4.

Remarks. Given a protocol with a valid attack, there should exist a derivation tree
for that attack. Since we do not bound the number of events presented in a derivation
tree (a composite service), we effectively deal with an unbounded number of sessions.
The reason why our algorithm could work (i.e., terminate with correct result) is mainly
because of two reasons. First, different from the explicit attack searching, we do not
actively instantiate the variables in the services. So it becomes possible to represent
the infinite adversary behaviors with a finite number of services. Second, we made a
reasonable assumption in this work such that different nonces have different values. If
the same nonce is generated in two sessions, those two sessions should be the same.
Thus we merge them during the verification. As a consequence, even though we do not
abstract the nonces used in the protocol as ProVerif does, this assumption could help us
to find inconsistency in the service and remove the invalid ones from the service basis.

4 Implementation and Experiments

The flexibility and expressiveness of our service framework make it suitable for specify-
ing and verifying timed security protocols, for instance, timed authentication protocols
and distance bound protocols, etc. We have implemented our verifier TAuth in C++ with
about 8K LoC. All the experiments shown in this section are conducted under Mac OS
X 10.9.1 with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. The TAuth verifier and
the models shown in this section are available in [1].

312 L. Li et al.

Table 2. Verification results for timed authentication protocols

Protocol
Rguided Rapprox

�Ra Result Time �R Result Restrictionb Time
Wide Mouthed Frog [8] 26 Attack [21] 3ms 26 Attack SAT 4ms
Wide Mouthed Frog c [14] 19 Secure 3ms 19 Secure SAT 3ms
Wide Mouthed Frog Lowe [21] - - - 32 Secure SAT 8ms
CCITT X.509(1) [10] 35 Attack [2] 4ms 35 Attack SAT 3ms
CCITT X.509(1c) [2] 45 Secure 7ms 45 Secure SAT 7ms
CCITT X.509(3) [10] 111 Attack [8] 52ms 111 Attack SAT 51ms
CCITT X.509(3) BAN [8] 106 Secure 74ms 106 Secure SAT 70ms
NS PK [26] 50 Attack [20] 6ms 50 Attack SAT 6ms
NS PK Lowe [20] 51 Secure 8ms 51 Secure SAT 9ms
NS PK Lowe Na Compromise [15] 51 Secure 8ms 51 Secure SAT 8ms
NS PK Lowe Nb Compromise [15] 42 Attack [15] 3ms 42 Attack SAT 3ms
NS PK Lowe NC Time [15] 48 Secure 10ms 48 Secure UNSAT 10ms
SKEME [19] 77 Secure 73m 77 Secure SAT 74ms
Auth Range [7,9] 17 Secure 2ms 17 Secure UNSAT 1ms
Ultrasound Dist Bound [29] 35 Attack [30] 2ms 35 Attack UNSAT 2ms

a Overall service number generated in the verification.
b Whether the restriction is satisfied for the initial service specification.

We summarize some implementation choices in TAuth below. First, the timing con-
straints in the service are represented by Difference Bound Matrices (DBMs) [5]. Since
timestamps are unified and new timestamps are introduced in the service composition,
we use unique identifiers to distinguish the timestamps generated in the system so that
different timestamps have different identifiers among services. Second, events in a ser-
vice are merged when the encoded fresh nonces are evaluated to a same value. The
reason is that the value of nonces generated in the session should be random, so dif-
ferent fresh nonces should have different values. For instance, if the session key k is
initiated in the init event, init(A[], R1, [k]) and init(I, R2, [k]) should be merged and
the substitution {A[]/I,R1/R2} should be applied to the service. If such events cannot
be merged, the service is invalid. Third, we check the query contradiction on the fly
when new services are composed. Whenever we find a contradiction, we stop the veri-
fication process and report the security flaw. This optimization can potentially give the
early termination to the verification process when the protocol has security flaws.

Several different types of security protocols are analyzed in our experiments. In the
experiments, all the protocols are proved or dis-proved in a short time as summarized
in Table 2. For some protocols, the restriction mentioned in the Section 3.2 is appli-
cable, so that the attack is guaranteed to be correct whenever it can be found, which
is indicated in the table. Notice that, even though some protocols do not satisfy the
restriction, all the attacks found in the experiments are valid. First, untimed protocols
such as Needham-Schroeder series and SKEME are analyzed with TAuth. We use these
protocols to show that TAuth can work with untimed protocols. Additionally, timed pro-
tocols like CCITT series are also checked by TAuth. However, the attacks found in these

TAuth: Verifying Timed Security Protocols 313

protocols are untimed. Furthermore, timed authentication protocols like the WMF series
and the NS PK Lowe NC Time are correctly analyzed as well. We use these protocols
to demonstrate that our approach can work with timed protocols and find timed attacks.
Specifically, in the NS PK Lowe Nb Compromise version, the nonces generated by the
responder in the protocol could be compromised [15], so the adversary could perform
attacks to the protocol. Denning and Sacco [15] proposed a way to fix these security
flaws by checking the timestamps. In the NS PK Lowe NC Time version, we assume
that extra time is needed for the nonce compromise, so that freshness checking for the
messages could ensure the authentication is attack-free. Notice that the service approxi-
mation only works for WMF Lowe version [21] in our experiment, because it is the only
protocol that cannot be early terminated by the on-the-fly algorithm (it is attack-free)
and its timing constraints involve infinite expansion.

Moreover, we successfully analyze two distance bounding protocols, that are Auth
Range [7,9] and Ultrasound Dist Bound [29]. In the Auth Range protocol, the prover
wants to convince the verifier that he is within a pre-agreed distance with the verifier.
For instance, in a keyless entry system frequently adopted by cars, the prover is the
remote key and verifier is the car. In the Auth Range protocol, it is assumed that the
prover is honest and nothing can travel faster than light, so they could securely use
the travel time of radio signals to measure the distance. In the Ultrasound Dist Bound
protocol which has the same application scenario as the Auth Range protocol, the ver-
ifier uses radio signals to send requests while the prover uses ultrasound to return the
answers. Since ultrasound travels much slower than radio and other processing time is
negligible, the travel time of ultrasound dominates the whole protocol execution time.
However, this protocol does not require the prover to be honest, so the prover can send
his answer by either radio or ultrasound to others. When the adversary has a cooperator
near the verifier, he can send the answer to the cooperator by radio and ask the cooper-
ator to forward the answer by ultrasound to the verifier. As a consequence, the verifier
can be convinced that the prover is within the distance even though the prover is not.

Table 3. Comparison with other untimed protocol verifiers

Protocol Result TAuth ProVerif Scyther
NS PK Attack 6ms 6ms 200ms
NS PK Lowe Secure 8ms 5ms 177ms
NS PK Lowe Na Compromise Secure 8ms 5ms 170ms
NS PK Lowe Nb Compromise Attack 3ms 5ms 31ms

Finally, we compare our tool TAuth with other successful untimed protocol verifiers,
i.e., ProVerif [6] and Scyther [13]. The Needham Schroeder public key authentication
protocols except for its timed variant are chosen for the comparison as timestamps are
absent in these protocols. The comparison results are summarized in the Table 3. It
can be seen that TAuth is almost as fast as ProVerif. TAuth is slightly slower mainly
due to overhead on handling timing constraints. Thanks to the on-the-fly algorithm,
TAuth is faster than ProVerif in finding the attack for the Lowe Nb Compromise version.
Furthermore, TAuth is much faster than Scyther. Notice that Scyther could only verify

314 L. Li et al.

the Lowe version and Lowe Na Compromise version with a bounded number of sessions
while TAuth proves for infinitely many sessions.

5 Conclusions and Discussions

We present a service framework which can automatically verify the timed authentica-
tion protocols with an unbounded number of sessions. The partial correctness of our
approach have been formally proved in this work. The experiment results for four dif-
ferent types of scenarios show that our framework is efficient and effective to verify
a large range of timed security protocols. Even though we only check timed authen-
tication properties for security protocols in this work, our framework could be easily
extended to secrecy checking with timing constraints.

For future works, a throughout study on the termination of the algorithm would be
very interesting. Since the problem of verifying security protocols is undecidable in
general, we cannot guarantee the termination of our algorithm, but identifying the ter-
minable scenario for practical security protocol could help the general adoption of our
techniques. Our approach is inspired by the method used in ProVerif [6]. As is discussed
in Section 3, TAuth is as terminable as ProVerif when the service approximation is used.
However, the over-approximation also introduces false alarms. In order to remove the
false alarms, as is discussed in Section 3, we can apply some restriction to the spec-
ification so that the found attacks are guaranteed to be valid. However, the restriction
mentioned previously is quite restrictive because network latency, brute force attack,
etc. cannot be specified under that restriction. Hence, how to restrict the specification in
a practical way is another interesting future work direction.

Acknowledgements. The authors are grateful to Jun Pang, Jingyi Wang and the anony-
mous reviewers for valuable comments on earlier versions of this paper. This project is
partially supported by project IGDSi1305012 from SUTD.

References

1. TAuth tool and experiment models,
http://www.comp.nus.edu.sg/˜li-li/r/tauth.html

2. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic protocols. IEEE
Trans. Software Eng. 22(1), 6–15 (1996)

3. Anderson, R., Needham, R.: Programming satan’s computer. In: van Leeuwen, J. (ed.)
Computer Science Today. LNCS, vol. 1000, pp. 426–440. Springer, Heidelberg (1995)

4. Basin, D.A., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical proper-
ties of security protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16 (2011)

5. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: CSFW,

pp. 82–96. IEEE CS (2001)
7. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EUROCRYPT

1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)
8. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans. Comput.

Syst. 8(1), 18–36 (1990)

TAuth: Verifying Timed Security Protocols 315

9. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE Journal on Selected
Areas in Communications 24(2), 221–232 (2006)

10. CCITT. The directory authentication framework - Version 7, Draft Recommendation X.509
(1987)

11. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-notation for
protocol analysis. In: CSFW, pp. 55–69. IEEE Computer Society (1999)

12. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed model checking of security protocols.
In: FMSE, pp. 23–32. ACM (2004)

13. Cremers, C.J.F.: The scyther tool: Verification, falsification, and analysis of security proto-
cols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer,
Heidelberg (2008)

14. Delzanno, G., Ganty, P.: Automatic verification of time sensitive cryptographic protocols.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 342–356. Springer,
Heidelberg (2004)

15. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

16. Evans, N., Schneider, S.: Analysing time dependent security properties in csp using pvs.
In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS,
vol. 1895, pp. 222–237. Springer, Heidelberg (2000)

17. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and start
systems in modern cars. In: NDSS. The Internet Society (2011)

18. Jakubowska, G., Penczek, W.: Is your security protocol on time? In: Arbab, F., Sirjani, M.
(eds.) FSEN 2007. LNCS, vol. 4767, pp. 65–80. Springer, Heidelberg (2007)

19. Krawczyk, H.: Skeme: a versatile secure key exchange mechanism for internet. In: NDSS,
pp. 114–127. IEEE Computer Society (1996)

20. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol. Informa-
tion Processing Letters 56, 131–133 (1995)

21. Lowe, G.: A family of attacks upon authentication protocols. Technical report, Department
of Mathematics and Computer Science, University of Leicester (1997)

22. Lowe, G.: A hierarchy of authentication specification. In: CSFW, pp. 31–44. IEEE Computer
Society (1997)

23. Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal of Computer
Security 6(1-2), 53–84 (1998)

24. Lowe, G.: Towards a completeness result for model checking of security protocols. Journal
of Computer Security 7(1), 89–146 (1999)

25. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic anal-
ysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 696–701. Springer, Heidelberg (2013)

26. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of
computers. Commun. ACM 21(12), 993–999 (1978)

27. Rasmussen, K.B., Castelluccia, C., Heydt-Benjamin, T.S., Capkun, S.: Proximity-based
access control for implantable medical devices. In: CCS, pp. 410–419. ACM (2009)

28. Roscoe, A.W., Broadfoot, P.J.: Proving security protocols with model checkers by data inde-
pendence techniques. Journal of Computer Security 7(1), 147–190 (1999)

29. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Workshop on
Wireless Security, pp. 1–10. ACM (2003)

30. Sedighpour, S., Capkun, S., Ganeriwal, S., Srivastava, M.B.: Implementation of attacks on
ultrasonic ranging systems (demo). In: SenSys, p. 312. ACM (2005)

31. Song, D.X., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic security
protocol analysis. Journal of Computer Security 9(1-2), 47–74 (2001)

	TAuth: Verifying timed security protocols
	Citation

	tmp.1584006269.pdf.fjyo5

