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SCC-Based Improved Reachability Analysis
for Markov Decision Processes�

Lin Gui1, Jun Sun2, Songzheng Song3, Yang Liu3, and Jin Song Dong1

1 National University of Singapore, Singapore
2 Singapore University of Technology and Design, Singapore

3 Nanyang Technological University, Singapore

Abstract. Markov decision processes (MDPs) are extensively used to model sys-
tems with both probabilistic and nondeterministic behavior. The problem of cal-
culating the probability of reaching certain system states (hereafter reachability
analysis) is central to the MDP-based system analysis. It is known that existing
approaches on reachability analysis for MDPs are often inefficient when a given
MDP contains a large number of states and loops, especially with the existence of
multiple probability distributions. In this work, we propose a method to eliminate
strongly connected components (SCCs) in an MDP using a divide-and-conquer
algorithm, and actively remove redundant probability distributions in the MDP
based on the convex property. With the removal of loops and parts of proba-
bility distributions, the probabilistic reachability analysis can be accelerated, as
evidenced by our experiment results.

1 Introduction

Markov decision processes (MDPs) are extensively used to model a system with both
non-determinism and probabilistic behavior. One fundamental task in probabilistic
model checking is to decide the probability of reaching a set of target states in an
MDP. We refer to this as the reachability analysis problem. A discrete time Markov
chain (DTMC) can be considered as a special form of MDPs with unique reachabil-
ity probability since it has only one probability distribution at each state. For general
MDPs, there are multiple probability distributions in a state, and thus the practical in-
terests for the reachability analysis focus on the maximum and minimum reachability
probabilities.

Given an MDP and a set of target states, a variable can be created for each state to
present the probability of that state reaching the target states. There are two main meth-
ods to calculate or approximate the values of these variables [4]. One method encodes
the probabilistic reachability problem into a linear optimization problem where each
probability distribution is encoded into an inequality. Thus, the goal is to maximize or
minimize the sum of the variables. It should be noted that the state-of-the-art linear
solvers are limited to small systems. However, a practical MDP model is often resulted
from parallel composition of several MDPs/DTMCs, which would have an even larger
number of states.
� This project is partially supported by project IDD11100102A/IDG31100105A from SUTD.
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Fig. 1. Running examples of (a) an MDP and (b) an acyclic MDP

The other method is based on value iteration by finding a better approximation itera-
tively until the result satisfies a certain stopping criterion, and performs generally better
in system with a large number of states [4]. The approximation of the variable of a state
needs to be updated whenever any of its successive states are changed. When there are
loops in an MDP, this approach tends to require many iterations before converging to a
value, and thus lead to slow convergence. Fig. 1(a) shows an example of a simple MDP
with loops among states s1, s2 and s3. Suppose the task is to calculate the probability
of reaching state s4 from state s0. If the approximation in s2 is updated during the kth

iteration, the approximation in s1 will be updated during the (k + 1)th iteration as s2
is successive to s1. The update of s1 will trigger s3 to update its value subsequently,
which requires s2 to be updated again. This iteration can only be stopped by enforcing
a stopping criterion, thus one major issue associated with such an approach is that the
difference between the approximated and ‘actual’ probabilities remains unknown even
after the iteration is stopped [9]. On the other hand, in an acyclic MDP in Fig. 1(b),
each state will be visited only a few rounds for backward calculation without iterations.
In this case, the exact maximum and minimum probabilities can be calculated without
the necessity of approximation. Therefore, we are motivated to improve reachability
analysis by removing loops in an MDP.

Some foundation has been established by recent works on the elimination of strongly
connected components (SCCs) in DTMC [3,2,13]. To remove the loops, SCCs are first
identified, and the transition probabilities from every input to output states of each SCC
are calculated. The loops can then be removed by connecting the inputs to the outputs
with the computed probability transitions (i.e., abstraction of SCC). After all the SCCs
are abstracted, the whole model becomes acyclic. With such an acyclic set of states,
value iteration can be used to calculate the probability from initial states to the target
states. Although this approach works for DTMCs, eliminating loops in an MDP is par-
ticularly challenging due to the existence of multiple probability distributions. In an
MDP, the number of memoryless schedulers increases exponentially with the number
of the states that have multiple probability distributions. During the abstraction of a
group of states, a probability distribution must be calculated under different memory-
less scheduler in the group. As a result, the total number of probability distributions
can increase exponentially after abstraction. Therefore, directly applying the existing
approaches [3,2,13] to MDPs is often infeasible.

To overcome this challenge, we propose a divide-and-conquer algorithm to remove
loops in an MDP. For each SCC in the MDP, we first construct partitions, i.e., each state
in the SCC forms a partition. By solving sets of linear equations, new probability dis-
tributions can be calculated from each partition to replace the loops without varying the
overall reachability probabilities. With the new equivalent probability distributions, the
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new partition will be free of loops, and have the same reachability probabilities with the
original model. We repeatedly merge a few partitions into one partition, and eliminate
loops in this new partition by performing the above abstraction until only one partition
is left in the SCC. After the reduction for all the SCCs, the remaining acyclic MDP can
be solved efficiently via the value iteration approach. After this reduction, the maximum
and minimum reachability probabilities of the reduced MDP remain unchanged as com-
pared with those of the original MDP. As introduced earlier, reducing states in SCCs of
an MDP may result in exponentially many probability distributions, and our algorithm
is thus designed to eliminate redundant or infeasible probability distributions on-the-fly
to achieve better performance. The underlying observation is that, a probability distri-
bution will not affect the maximum or the minimum reachability probability, if it is not
a vertex of the convex hull of a set of probability distributions. Our contributions are
three-fold and are summarized as follows.

1. To tackle the problem of slow convergence, we propose a divide-and-conquer ap-
proach to eliminate SCCs in an MDP. Our approach works on the partitions and
can effectively avoid generating large number of schedulers.

2. To reduce the cost of loop eliminations within each partition of an MDP, we remove
redundant nondeterministic choices/probability distributions based on convex hull
theory.

3. The new approach has been implemented in our model checking framework PAT [15],
and two practical case studies (i.e., software reliability assessment and tennis tour-
nament prediction) have been conducted to show its effectiveness.

2 Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes. (MDPs) are popular choices to model a system exhibiting
both probabilistic and nondeterministic behavior [4]. Given a set of states S, a probabil-
ity distribution (PD) is a function u : S → [0, 1] such that Σs∈Su(s) = 1. The PD can
also be expressed in the vector form as u, and Distr(S) denotes the set of all discrete
probability distributions over S. The formal definition of MDP is introduced as follows.

Definition 1 (Markov Decision Process). A Markov decision process is a tupleM =
(S, init, Act, Pr) where S is a set of states; init ∈ S is the initial state; Act is an
alphabet; and Pr : S ×Act→ Distr(S) is a labeled transition relation. #$

Without loss of generality, in this work, we assume that MDP has an unique initial state
and is always deadlock free. It is known that we can add a self-looping transition with
a probability of 1 to a deadlock state without affecting the calculation result [4]. A state
without any outgoing transitions to other states is called an absorbing state, which has
only a self-loop with a probability of 1. An example of MDP is shown in Fig. 1(a),
where states s4 and s5 are both absorbing states, denoted by circles with double lines,
and state s0 is the initial state. Given a state s, we denote the set of probability distri-
butions of s as Us, s.t., Us = {Pr(s, a)|a ∈ Act}. An infinite or a finite path in M is
defined as a sequence of states π = s0, s1, · · · or π = s0, s1, · · · , sn, respectively, such
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that ∀i ≥ 0 (for finite paths, i ∈ [0, n− 1]), ∃a ∈ Act, Pr(si, a)(si+1) > 0. An MDP
is nondeterministic if any state has more than one probability distribution. As a special
MDP, a discrete time Markov chain (DTMC) has only one event (and one probability
distribution) at each state, and thus is deterministic.

Similar to [3,2,13], in an MDPM = (S, init, Act, Pr), we define inputs and outputs
of a group of states K ⊆ S as follows.

Inp(K) = {s′ ∈ K | ∃s ∈ S\K, ∃a ∈ Act · Pr(s, a)(s′) > 0},
Out(K) = {s′ ∈ S\K | ∃s ∈ K, ∃a ∈ Act · Pr(s, a)(s′) > 0}.

Here, the set of input states of K, Inp(K), contains the states in K that have incoming
transitions from states outsideK; and the set of output states ofK, Out(K), contains all
the states outside K that have direct incoming transitions from states in K. In addition,
without loss of generality, if a group contains the initial state init, we include init to its
input states (with an imaginary transition leading to init from outside). Furthermore,
given a set K, if a state is not an input state, we call it as an inner state. We can elimi-
nate all the inner states by calculating the direct transition probabilities from Inp(K) to
Out(K). This process is called abstraction. It eliminates all loops inK, and meanwhile,
preserves the maximum and minimum reachability probabilities from inputs to the out-
puts of K. There are known algorithms in [2,13] to perform the abstraction. However,
they are only applicable to DTMCs. In this work, we extend the abstraction to MDPs.

Schedulers. A scheduler is used to resolve the non-determinism in each state. Intu-
itively, given a state s, an action is first selected by a scheduler. Once an action is
selected, the respective PD is also determined; and then one of the successive states is
reached according to the probability distribution. Formally, a memoryless scheduler for
an MDP M is a function σ : S → Act. At each state, a memoryless scheduler always
selects the same action in a given state. This choice is independent of the path that
leads to the current state. In the following, unless otherwise specified, the terms ‘sched-
ulers’ and ‘memoryless schedulers’ are used interchangeably. An induced MDP, Mσ,
is a DTMC defined by an MDP M and a scheduler σ. A non-memoryless scheduler is
the scheduler that can select different action in a given state according to the execution
history.

Strongly Connected Components. A set of states C ⊆ S is called strongly connected
in M iff ∀s, s′ ∈ C, there exists a finite path π = 〈s0, s1, · · · , sn〉 satisfying s0 =
s ∧ sn = s′ ∧ ∀i ∈ [0, n], si ∈ C. Strongly connected components (SCCs) are the
maximal sets of the strongly connected states. All SCCs can be automatically identified
by Tarjan’s approach [16], with a complexity ofO(n+l), where n and l are the numbers
of states and transitions, respectively. In Fig. 1(a), {s0}, {s4}, {s5} and {s1, s2, s3} are
the SCCs in the model. We define SCCs as trivial if they do not have any outgoing
transitions (e.g., {s4}, {s5}) or are not involved in loops (e.g., {s0}, an SCC of one
single state without any loop). As a result, {s1, s2, s3} is the only nontrivial SCC in
Fig. 1(a). An MDP is considered acyclic if it contains only trivial SCCs. An example
of an acyclic MDP is shown in Fig. 1(b). Note that an acyclic MDP may still have
absorbing states, but it does not affect the computation of reachability probabilities.
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2.2 Probability Reachability Analysis in MDPs

One fundamental question in quantitative analysis of MDPs is to compute the proba-
bility of reaching target states G from the initial state. Noted that with different sched-
ulers, the result may be different. The measurement of interest is thus the maximum and
minimum reachability probabilities. The maximum probability of reaching any state
in G is denoted as Pmax(M |= ♦G), which is defined as: Pmax(M |= ♦G) =
supσ P (Mσ |= ♦G). Similarly, the minimum is defined as: Pmin(M |= ♦G) =
infσ P (Mσ |= ♦G), which yields the lower bound of the probability of reaching
G. The supremum/infimum ranges over all and potentially infinitely many schedulers.
Rather than considering all schedulers, it suffices to consider only memoryless sched-
ulers, in order to obtain maximum and minimum reachability probabilities [4].

In the following, with the MDP in Fig. 1(a), we demonstrate how to numerically
calculate the maximum probability of reaching any state in G from the initial state.
The minimum probability can be obtained similarly. Here, state s0 is the initial state,
and G contains a single target state s4. Let V be a vector such that, given a state s,
V (s) is the maximum probability of reaching G from a state s. For instance, V (s0) is
the maximum probability of reaching G from the initial state. First of all, V (s) = 1,
for all s ∈ G. Using backward reachability analysis, we can identify the set of states
X = {s0, s1, s2, s3, s4} such that G is reachable from any state in X ; and a set of
states Y = {s5} from where G is unreachable, i.e., V (s) = 0 for ∀s ∈ Y . There-
fore, V (s4) = 1 and V (s5) = 0. There are two main approaches on calculating the
reachability probabilities for states X \G, i.e., {s0, s1, s2, s3}.

Linear Programming. The method encodes each probability distribution (PD) for a
state in X \G into a linear inequality. This is defined as

V (s) �
∑

t∈S
P (s, α)(t) · V (t), for s ∈ X \G (1)

with an additional constraint V (s) ∈ [0, 1], and the goal is to minimize the sum of
V . Taking state s2 for example, there is a unique PD {0.5 �→ s1, 0.1 �→ s3, 0.4 �→ s4},
which can be encoded as: V (s2) � 0.5V (s1) + 0.1V (s3) + 0.4V (s4). Noted that state
s1 has three PDs, thus three inequalities are required. V (s0) is then obtained by solving
such linear programming using standard algorithms.

Value Iteration. This method iteratively builds an approximation of V based on the
previous approximation. Let V i be the i-th approximation. For ∀s ∈ X \ G, we have
V 0(s) = 0; V i+1(s) = max{

∑
t∈S Pr(s, a)(t) · V i(t) | a ∈ Act(s)}. For example, at

the 1st iteration, V 1(s2) = 0.5V 0(s1)+ 0.4+0.1V 0(s3) = 0.4 and the others remains
unchanged; at the 2nd iteration, V 2(s1) = max{0.1V 1(s2) + 0.9V 1(s3), 0.5V

1(s2)
+0.5V 1(s3), 0.9V

1(s2) + 0.1V 1(s3)} = 0.36, V 2(s0) = 0.2; at the 3rd iteration,
V 3(s0) = 0.38 and V 3(s3) = 0.2V 2(s1) = 0.072; at the 4th iteration, since the
value of state s3 has been updated in the previous round, V 4(s1) and V 4(s2) shall be
computed again and the similar iterations repeat. Notice that states s1, s2 and s3 form a
loop, within which an update of any state will trigger the updates of other states in the
next few iterations. After 39 iterations, V 39(s0) is calculated to be 0.74627.
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It can be shown that for every state s, V i+1(s) � V i(s) and we can obtain V in the
limit, limi→∞ V i = V . In reality, it may take many iterations before V i converges and
thus value iteration is often stopped when the absolute/relative difference between two
successive iterations falls below a certain threshold ε. The number of iterations required
is related to the subdominant eigenvalue of the transition matrix [14]. Each iteration
involves a series of matrix-vector multiplications, with a complexity of O(n2 · m) in
the worst case, where n is the number of states in S and m is the maximum number of
actions/distributions from a state. However, as stressed in [9], value iteration does not
guarantee the resulting values to be within ε of the true answer. Although theoretically
guaranteed precisions are base on the denominators of the (rational) numbers, it is still
unclear if these are practically applicable.

3 SCC Reductions on Markov Decision Processes

As both approaches based on solving linear programming and value iteration have their
own limitations, we propose a new approach to abstract away the loops in each strongly
connected component (SCC) of an MDP based on a divide-and-conquer algorithm, and
then apply value iteration to the resulting acyclic MDP. Without loops, the calculation
of reachability probabilities will be faster, and also will be more accurate than the pure
value iteration case with an unspecified amount of errors.

Reducing SCCs in an MDP while preserving the results of reachability analysis is
highly nontrivial, and may lead to extra schedulers and an exponential increase in the
number of probability distributions (PDs) if not handled properly. In this work, the
proposed divide-and-conquer algorithm works on partitions; hence effectively avoids
the generation of extra PDs. Moreover, we can further reduce the redundant PDs based
on the convex property.

In the following, we will use a running example to illustrate the main idea of the
divide-and-conquer approach, and then present the overall algorithm and detailed
methodologies on performing state abstraction in an MDP, followed by its optimiza-
tion on the reductions of probability distributions.

3.1 A Running Example

To reduce an SCC, our reduction approach starts from adding each state in the SCC into
a new partition. It then divides these partitions into groups. For each group, it eliminates
loops within the group and merges its components into a new partition. We call this
process abstraction. This step repeats until the whole SCC becomes one partition, which
is guaranteed to be free of loops. In this part, we demonstrate our main idea with a
running example that transfers the MDP in Fig. 1(a) to the acyclic MDP in Fig. 1(b).
The execution of each step is demonstrated in Fig. 2.

First, the states {s1, s2, s3} are identified as the only nontrivial SCC in the MDP,
and there are three partitions, i.e., {s1}, {s2}, {s3}, labeled using different grayscale in
Fig. 2(a). LetΛbe the set of all current partitions in the SCC, i.e.,Λ= {{s1}, {s2}, {s3}}.
We then divide Λ into two groups, as enclosed by dashed lines, such that the partitions
{s1} and {s2} form one group, and {s3} alone forms the other.
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Fig. 2. A running example of transforming the MDP in Fig. 1(a) to the acyclic MDP in Fig. 1(b)

Subsequently, abstraction is performed on both groups. The main idea of the ab-
straction is to eliminate loops in the group by connecting the inputs and outputs using
equivalent non-redundant probability distributions (PDs). In the first step, we need to
remove the redundant probability distributions in each partition of the group. Recall
that each PD can form a linear constraint according to Eq. (1) in Section 2.2. According
to the PDs in Fig. 2(a), it can be proved that the constraint from PD b of state s1 is
redundant as it can be represented by a linear combination of the constraints from PDs
a and c. As a result, PD b can be removed. The updated MDP is shown in Fig. 2(b).

The second step of the abstraction is to calculate the equivalent PDs. In the present
case, partition {s1} has two actions and partition {s2} has only one action, thus there
are two (2 · 1) schedulers in total. We define σ1 as the scheduler selecting PD a at
partition {s1}, based on which a set of linear equations can be formed as

V (s1) = 0.1V (s2) + 0.9V (s3); V (s2) = 0.5V (s1) + 0.1V (s3) + 0.4V (s4) (2)

Similar definition applies to scheduler σ2 for PD c, we have

V (s1) = 0.9V (s2) + 0.1V (s3); V (s2) = 0.5V (s1) + 0.1V (s3) + 0.4V (s4) (3)

To eliminate the transitions between s1 and s2, we need to first select a particular sched-
uler, and then perform Gauss Jordan elimination. Under the selection of scheduler σ1,
we can have the following new transitions based on Eq. (2),

V (s1) =
4

95
V (s3) +

91

95
V (s4); V (s2) =

11

19
V (s3) +

8

19
V (s4) (4)

Similarly, with the selection of σ2, we have the following based on Eq. (3),

V (s1) =
36

55
V (s3) +

19

55
V (s4); V (s2) =

3

11
V (s3) +

8

11
V (s4) (5)
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As a result, the updated PDs can be established based on Eq. (4) and Eq. (5). As illus-
trated in Fig. 2(c), a new partition can then be formed by grouping states s1 and s2, and
states s3 and s4 continue to serve as outputs. Each state (s1 or s2) in the new partition
now has two PDs (i.e. a and c), which appears to create a larger number (2 · 2 = 4) of
schedulers. However, it should be noted that the newly generated PDs in s2 are derived
based on the choice of scheduler in s1 and thus not independent. For example, Eq. (4)
and (5) are derived based on Eq. (2) and (3), respectively. That means a scheduler selects
action a in s1 and action c in s2 is equivalent to a non-memoryless scheduler in the orig-
inal MPD (with both selections of a and c at s1). Therefore, two of the four schedulers
in the new partition are equivalently non-memoryless and thus redundant for obtaining
the maximum and minimum reachability probabilities (please refer to Section 2.2). Ef-
fectively, the number of schedulers to be handled in the new partitions remains as two.
To easily allocate these schedulers, we denote the PDs for s1 and s2 obtained from the
same set of equations by the same index or the same action name. Thus, given a parti-
tion, a scheduler only selects an index or an action, which means the PD with that index
or action will be selected at each state. Similarly, we can obtain the abstraction on the
other partition {s3}. The resulting MDP as shown in Fig. 2(c) has only two partitions
(Λ = {{s1, s2}, {s3}}) in the SCC, both of which are free of loops and redundant PDs.

To finally achieve a single partition, another round of grouping and abstraction needs
to be performed. There are now two partitions, and we combine them into one group
as shown in Fig. 2(d). As explained above, during the calculation of the maximum
and minimum reachability probabilities, partition {s1, s2} can be described using two
schedulers, and the other partition {s3} has only one scheduler. Therefore, the total
number of schedulers within the group is two (i.e., 2 ·1). Let σ3 be a scheduler selecting
the PD of action a, i.e., σ3({s1, s2}) = a, and σ4 be the other scheduler selecting the PD
with action c, i.e., σ4({s1, s2}) = c. A set of linear equations can be formed similarly as
Eq. (2) and (3), and the solutions connect the input states s1 and s2 directly to the output
states s4 and s5. With such a new partition, the inner state s3 can be removed from the
MDP. Up to this point, there is only one partition left and our reduction finishes. The
final acyclic MDP is shown in Fig. 2(e).

3.2 Overall Algorithm

The overall algorithm for SCCs reduction is presented in Algorithm 1. It is based on a
divide-and-conquer approach that works on partitions of an MDP. Given a set of states
S, a partition E is a subset of S such that

⋃
i Ei = S; and ∀Ei, Ej, Ei �= Ej , Ei ∩ Ej =

∅. Given an MDP M = (S, Sinit, Act, Pr) and target states G ⊂ S, Algorithm 1
removes all loops inM (i.e., resulting an acyclic MDPM′) and computes reachability
probabilities inM′. We remove loops according to the following steps.
– Line 1 finds all SCCs by Tarjan’s approach [16], and adds all nontrivial SCCs to C.

Lines 2–12 present the divide-and-conquer procedure for each SCC in C. Let Λ be
a set of partitions of an SCC. Initially, each state of SCC forms a partition in Λ, as
shown in lines 3–4.

– Lines 5–12 perform the divide-and-conquer in the partitions of Λ until there is only
one partition left. Within each round, line 6 first divides all the partitions Λ into
several groups, denoted by A. Here, the groups are formed dynamically that each
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Algorithm 1. SCC Reduction in an MDP via Divide-and-Conquer
input : An MDPM = (S, sinit, Act, P r), target states G ⊆ S
output: P(M |= ♦G)

1 M′ =M; C := the set of all nontrivial SCCs inM′;
2 for each D ∈ C do
3 Λ := ∅; //to record a set of partitions
4 ∀s ∈ D, Λ := Λ ∪ {{s}}; //each state is a partition initially
5 repeat
6 Divide Λ into a set of groups of partitions denoted as A;
7 Λ′ = ∅;
8 for each J ∈ A do
9 E ′ = Abstraction(J ); //J is a set of partitions

10 Λ′ = Λ′ ∪ E ′;
11 Λ = Λ′;
12 until |Λ| == 1;

13 return V alueIteration(M′, G) ;

has relatively small number of output states. Each element J in A is a group of
partitions. There is always a group containing more than one partitions unless there
is only one partition in A. Next, lines 8–10 remove loops and the inner states in each
J through Abstraction() method, which takes a group of partitions as the input and
returns a new acyclic partition that can represent the previous group. As a result,
after each round, the number of partitions decreases and loops inside each partition
are eliminated. Details for the abstraction process will be presented in Section 3.3.

– After the iteration terminates, the resulting MDP becomes acyclic. The standard value
iteration method, detailed in Section 2.2, can then be applied to calculate the proba-
bility from the initial state to the target states efficiently.
As we can see, in order to support the divide-and-conquer algorithm for MDPs, the

overall algorithm incorporates methods like abstraction and PD reduction. In the fol-
lowing parts, we will introduce details of these two methods.

3.3 States Abstraction

Given a set of partitions, denoted byJ , the abstraction process removes the inner states
in each partition, and merges all partitions into a new partition, denoted by E ′. The
detailed algorithm of abstraction is presented in Algorithm 2. It takes J as the input
and returns a new acyclic partition E ′. The procedure works as follows.
– The first step, as shown in lines 1–7, is to reduce redundant PDs in each partition. As

demonstrated in Section 3.1, within a partition, the PDs of the same index are origi-
nated from the same scheduler in the original model. Thus, they are not independent
and can only be removed if they are all redundant. The detailed operations are as fol-
lows. For each partition, we use a Boolean set I to record whether a PD is redundant.
Initially, line 2 sets all elements in I to false. For each state of the partition, line 4
gets all indices of the non-redundant PDs, and line 5 sets the respective elements in
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Algorithm 2. Abstraction
input : A set of partitions of states J in an MDP
output: A new partition E ′

//step 1: remove redundant PDs in each partition
1 for each E ∈ J do

//I is to record whether a PD is non-redundant
2 Let I be a set of Boolean variables initialized with false;
3 for each s ∈ E do
4 Indices := indices non-redundant PDs of s;
5 for each index ∈ Indices do I′[index] =: true; ;
6 I = I′;
7 for each s ∈ E do Update PDs according to I;;

//step 2: calculate new PDs from inputs to outputs
8 K =

⋃
E∈J E ;

9 ∀s ∈ Inp(K) ·U′
s := ∅;

10 Σ := all the schedulers in J based on partitions;
11 for each σ ∈ Σ do
12 calculate PDs from Inp(K) to Out(K) according to σ;
13 Let us be the calculated PD of a input state s;
14 ∀s ∈ Inp(K) ·U′

s := U′
s ∪ {us};

//step 3: form a new partition
15 E ′ = Inp(K) ;
16 ∀s ∈ E ′, replace PDs of s by U′

s; //re-connect Inp(E ′) to Out(E ′)
17 return E ′;

I to true. Here, the non-redundant PDs can be identified by finding the vertices of
the convex hull, detailed in Section 3.4. After the for loop in lines 3 - 6, a false in
I means the corresponding PD in each state is redundant. As a result, line 7 removes
the respective PDs at the indices for all states.

– Line 8 combines states in all partitions of J into one group K. The second step is
to calculate new PDs from Inp(K) to Out(K) for all schedulers. Line 9 creates an
empty set for each state in Inp(K), which is used to store new PDs. Line 10 finds
all the schedulers in J and assigns them to Σ. As reviewed in Section 2.1, for any
given state, a scheduler is used to select a PD, and the total number of the schedulers
is exponential to the number of states. As mentioned, within a partition, the PDs with
the same index are not independent, we thereby create a scheduler in such a way that
it can only select PDs with the same index at all states in the partition. This can avoid
the generation of extra schedulers by including all the combinations of PDs. Lines 11
–14 calculate the new equivalent PDs by calculating the transition probabilities, from
Inp(K) to Out(K). For each scheduler σ, we calculate the probabilities from any
input to output states in the DTMCKσ , which can be done by the standard algorithm,
e.g., Gaussian Jordan elimination. Line 14 adds the new PDs to each state.

– Since the sets of PDs from Inp(K) to Out(K) have been obtained, the inner states
of K are then redundant for the calculation of reachability probabilities. As a result,
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line 15 creates a new partition E ′ by adding only the inputs states of K, and updates
the PDs of each state in E ′ by U′

s. The new partition E ′ is free of loops.

3.4 Reduction of Probability Distributions Based on Convex Hull

Within a set of probability distributions (PDs), if a PD can be represented by a convex
combination of the other PDs, we call it a redundant PD. As demonstrated, PD b in
Fig. 1(a) is redundant as it can be represented by a combination of 50% of PD a and
50% of PD b. It can be proved that the redundant PDs are irrelevant to the maximum
and minimum reachability probabilities [6].

There are two scenarios that might introduce redundant PDs. One is during system
modeling. For instance, PDs could be originated from a set of working profiles (mod-
eling complex system environment) and some of working profiles are indeed redundant
for calculating the maximum or minimum probability. The other is during the removal
of the inner states within a group of states K. The equivalent PDs are created to connect
inputs to outputs of K, the number of those is equal to the total number of schedulers in
K. As a result, there could be redundant PDs, especially when obtained PDs of a state
have only a few successive states. In fact, the number of PDs of a state can be mini-
mized and replaced by a unique and minimal set of PDs. If we consider PDs as a set of
points in a Euclidean space and each successive state in a PD provides a dimension in
the Euclidean space, finding the set of non-redundant PDs is equivalent to the problem
of identifying all the vertices of the convex hull of all the PDs. This has been already
proved in [6]. In the following, we have a brief review on the convex hull property.

The convex hull of a set Q of points, denoted by CH(Q), is the smallest convex
polygon or polytope in the Euclidean plane or Euclidean space that contains Q [8].
Mathematically, the convex hull of a finite point set, e.g., Q = {q1, · · · ,qn}, is a set
of all convex combinations of each point qi assigned with a coefficient ri, in such a
way that the coefficients are all non-negative with a summation of one; i.e., CH(Q) =
{
∑n

i=1 ri · qi|(∀i : ri � 0)∧
∑n

i=1 ri = 1}. We denote the set of vertices of a convex
hull as VCH(Q). Each qi ∈ VCH(Q) is also in Q, but it is not in the convex hull of
the other points (i.e., qi /∈ CH(Q \ {qi})). In other word, the points VCH(Q) are the
essential points that generate all the other points in CH(Q) via a convex combination.
Given a set of n points (Q) in d-dimension, the algorithms to determine the vertices
of the convex hull are also known as the redundancy removal for a point set Q in Rd.
This problem can be reduced to solvingO(n) linear programming problems with many
polynomial time algorithms available [6].

To further accelerate the calculation, we adopt an approximation algorithm proposed
by Bentley et al. [5], who use the convex hull of some subset of given points as an
approximation to the convex hull of all the points. Here, a user-defined parameter β
controls degree of approximation. For instance, in xy-plane, we first divide the area be-
tween the minimum and maximum (i.e., extreme) values in x-dimension into ‘strips’,
with a width of β. We then select the points with the extreme values in y-dimension
within each strip, and the points with x-dimension extreme. Last, we construct the con-
vex hull based on these selected points (in the worst case, there are only 2(1/β + 2)
points). Here, β specifies the relative approximation error; i.e., any point outside the
approximate hull is within β distance of the ‘true’ hull, as proved in [5]. Hence, a larger
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β implies a faster calculation but a coarser approximation. In terms of reachability anal-
ysis, the schedulers, after approximation, are only a subset of original ones. Ignoring
some of the PDs means the maximum or minimum reachability probability will be a
safe approximation; i.e., the maximum probability is smaller than the ‘true’ maximum,
and the minimum probability is larger than the ‘true’ minimum.

3.5 Termination and Correctness

In this section, we discuss the termination and the correctness of our approach.

Theorem 1. Given a finite states MDP, Algorithm 1 always terminates.

Proof : Given a finite number of states, the for loop in Algorithm 1 always terminates
as the number of SCCs is finite. The theorem can then be proved by showing (1) the
repeat loop can terminate and (2) Abstraction() can also terminate.

For (1), the proof for the one state SCC is trivial. For an SCC having more than one
states, there are at least one group in A that has more than one partition, which can be
merged into one new partition through Abstraction(). The total number of partitions is
guaranteed to decrease after each round of the repeat loop. Thus the termination condi-
tion |Λ| == 1 can always be fulfilled. For (2), the abstraction, as in Algorithm 2, always
terminates because all for loops work on a finite set of elements. As both conditions are
fulfilled, the theorem holds. #$

Theorem 2. Given a finite states MDP, Algorithm 1 always produces an acyclic MDP.

Proof : To prove the theorem, it is equal to show that Algorithm 1 can remove all loops in
each SCC. As proved above, Algorithm 1 always transfers each SCC into one partition,
the theorem can be proved by showing that the abstraction process always returns a
loop-free partition. Assuming a set of partitions J are the input, Algorithm 2 always
creates a new partition by recalculating the probability distributions from Inp(J ) to
Out(J ). As Inp(J ) ∩ Out(J ) = ∅, the new partition is guaranteed to be acyclic.
Therefore, the theorem holds. #$

As Algorithm 1 always terminates with an acyclic MDP, our approach can always
provide an accurate result. Recall that loops in each SCC of the MDP are resolved by
solving sets of equations, which is based on an accurate method. Further, we could trade
off a certain level of accuracy for better performance with approximate convex hull.

4 Implementation and Evaluation

We implement the algorithm in our model checking framework PAT [15]. As the only
difference between the ordinary and our proposed value iteration methods is the algo-
rithm of reachability analysis, it is fair to check the effectiveness of the new method
through direct comparison of their performance. Hereafter, we refer the implementa-
tions with and without our approach as PAT(w) and PAT(w/o), respectively. For the
value iteration method, we use the default stopping criterion in PAT, i.e., the maximum
ratio of difference is 1E-6. For the new approach, we set the maximum number of par-
titions in a group to 3, and the parameter for convex hull approximation to 0.001. The



SCC-Based Improved Reachability Analysis for Markov Decision Processes 183

Fig. 3. A reliability model, the states su and sf are copied for a clear demonstration

testbed is an Intel Xeon� CPU at 2.67 GHz with 12 GB RAM. All related materials,
including the tools, models, and evaluation results, are available at [1]. We perform an
analysis on two case studies: one is software reliability assessment model and the other
is tennis tournament prediction model. Both systems have many probability transitions
and loops, thus may encounter slow convergence issue especially when the systems
become large. Thus, we evaluate how our new approach can benefit those cases.

4.1 Case Study on Software Reliability Assessment

Reliability and fault tolerance are central concerns to many software systems. The re-
liability problem can be transferred into a reachability problem in an MDP [10,12]. In
this case study, we model a system that undergoes n tasks and then standbys at the
initial state. Each task is exposed to a certain probability of failure or self-recovering
situation, before successfully transferring to the next task or service. A highly ab-
stracted reliability model is shown in Fig. 3, which consists of n + 2 states, i.e., {sf ,
su, s0, s1, · · · , sn−1}, representing different system status. The failure state sf is the
state that the system fails, and the success state su is the state that the system finishes
a requirement successfully. Each state si transits to sf with a probability of p1; to su
with a probability of p2; to itself with a probability of p3; and otherwise, to the next
state s(i+1)%n. Multiple sets of values for {p1, p2, p3} are considered. We then perform
reachability analysis, e.g., computing the maximum probability of reaching state su,
under different scale by varying the parameters n and m, where n controls the number
of states and m is the number of probability distributions of each state.

The experiments are summarized in Table 1. The number of states being generated
is approximately equal to n; Trans. represents the total number of transitions in the
model; Pmax represents the maximum reachability probability; and T ime represents
the total time spent on the verification. We have the following observations.
– The overall verification time of the new approach (PAT(w)) is much less than that

of the previous approach (PAT(w/o)). Three factors here can affect the rate of value
iteration in this model: (1) the self-loops at each state si; (2) the large SCC formed
by {s0, s1, · · · , sn−1}; and (3) the various probability distributions in the model.
Our approach reduces loops prior to value iteration, as detailed in Section 3. With
PAT(w), the resulting acyclic MDP consists of only three states, s0 (the only input of
the SCC), and sf and su (the outputs of the SCC). Thus, time spent on value iteration
can almost be negligible (less than 0.001s). In addition, due to the PD reductions
based on the convex hull, our reduction approach can work under many probability
distributions without much overhead, as evidenced by the cases with m = 10.
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Table 1. Comparison between PAT with and without SCC reduction for reliability model

Parameters PAT (w/o) PAT (w)
m n #Trans. Pmax Time(s) Pmax Time(s)

4

40 0.6K 0.499985 0.03 0.500000 0.01
400 6K 0.499999 0.22 0.500000 0.13
20K 320K 0.499999 547.52 0.500000 55.97
40K 640K 0.499999 1389.55 0.500000 314.73

10

40 2K 0.499985 0.04 0.500000 0.11
400 16K 0.499999 0.41 0.500000 0.20
20K 800K 0.499999 894.34 0.500000 111.62
40K 1600K 0.499999 2168.04 0.500000 597.44

# States ≈ n

– The result obtained from the new approach is closer to the true value. Through man-
ual analysis, we know that 0.5 is the accurate result. In fact, our reduction approach
removes loops by solving a set of linear equations, which yields accurate results.
As mentioned above, the resulting model is an acyclic MDP of only three states, on
which value iteration stops naturally without using any stopping criterion. On the
other hand, the ordinary value iteration approach keeps iterating over loops until a
stopping criterion is met, thus the result is an approximation.
The experiment above considers only one SCC in the reliability model. However,

often, a system may have a large number of SCCs in its reliability model. Our prelimi-
nary result shows that, with the increase of SCCs, the total time increases exponentially
for the ordinary value iteration approach, while remains at a low level with our ap-
proach [1]. This is because our approach resolves each SCC independently while the
ordinary approach has to iterate over all SCCs until converging to a stable result.

4.2 Case Study on Tennis Tournament Prediction

A tennis match is won when a player wins the majority of prescribed sets. At a score
of 6 - 6 of a set, an additional ‘tiebreaker’ game is played to determine the winner
of the set. In this case study, we model a 7 point tiebreaker. Our model encodes the
outcomes of individual player’s actions (e.g., serve and baseline) according to the past
scoring profiles available at http://www.tennisabstract.com, and predicts
the winning probability for one player against the other. In particular, we predict the
game between two tennis giants Federer and Nadal. A play wins the set if he wins one
tiebreaker, or best of 3 (or 5) tiebreakers. Thus, we analyze all the three situations. For
each situation, we calculate four probabilities: (a) Federer scores the first point in any
tiebreaker; (b) Nadal scores the first point in any tiebreaker; (c) Federer wins the set;
and (d) Nadal wins the set.

The verification results are shown in Table 2. # represents the numbers of tiebreak-
ers; Pro. represents the properties to be verified; #States and #Trans. represent the
total numbers of states and transitions in the system, respectively; Pmin/Pmax records
the minimum/maximum reachability probability; and B and V record the time costs
on building the MDP model (for PAT(w), it includes the additional time spent on SCC
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Table 2. Comparison between PAT with and without SCC reduction for tennis prediction model

# Pro. #States #Trans.
PAT (w/o) PAT (w)

Pmin Pmax B (s) V (s) Pmin Pmax B (s) V (s)

1

a 15K 26K 0.4585 0.5077 0.16 0.01 0.4585 0.5077 0.22 0.00
b 15K 26K 0.4923 0.5415 0.14 0.01 0.4923 0.5415 0.24 0.00
c 17K 30K 0.4678 0.4786 0.19 13.44 0.4678 0.4786 0.58 0.33
d 17K 30K 0.5214 0.5322 0.16 13.34 0.5214 0.5322 0.50 0.32

3

a 62K 108K 0.7877 0.8075 0.66 64.72 0.7877 0.8075 1.55 2.94
b 62K 108K 0.8116 0.8303 0.64 65.54 0.8116 0.8303 1.48 2.96
c 71K 123K 0.4576 0.4649 0.74 133.89 0.4576 0.4649 1.95 9.32
d 71K 123K 0.5351 0.5424 0.72 133.03 0.5351 0.5424 1.98 8.45

5

a 141K 278K 0.9194 0.9271 1.42 266.26 0.9194 0.9271 3.66 23.25
b 141K 245K 0.9332 0.9401 1.43 265.80 0.9332 0.9401 3.65 23.35
c 160K 279K 0.4486 0.4554 1.58 434.29 0.4486 0.4554 4.37 41.65
d 160K 278K 0.5446 0.5514 1.53 428.62 0.5446 0.5514 4.32 36.93

reduction) and on value iteration, respectively. Notice that the summation of these two
time costs is the total time spent on the verification. We have the following observations.

Comparing the time costs in B and V columns, for the ordinary approach, though the
time for building an MDP model is very short, the verification time increases quickly
when the size of system becomes large. On the other hand, with slightly longer time
spent on model building, our new approach reduces the value iteration time signifi-
cantly. This is because the new approach removes all SCCs prior to value iteration and
the probability computation is thereby accelerated. In this case study, both approaches
generate the same results up to four decimal points.

5 Related Work and Conclusion

In recent years, some approaches [11,7,3,2,13] have been proposed to improve proba-
bility reachability calculation. The key idea is to reduce iterations on the state space.
[11,7] improve value iteration in MDPs by backward iterating over each SCC in topo-
logical order, i.e., an SCC will not be visited until the reachability probabilities of all
its successive SCCs converge. However, since it requires iterating over each SCC (i.e.,
SCC-based value iteration), this approach only alleviates the slow convergence prob-
lem to a certain degree without completely solving the problem. Compared to their
SCC based value iteration approach, our approach eliminates SCCs and produces an
acyclic MDP where the standard value iteration is applied. Moreover, our reduction on
each SCC is independent to others, so that multi-cores or distributed computers can be
directly applied, which can make the verification even faster.

The approaches [3,2,13] are on SCCs elimination by connecting inputs to outputs of
an SCC with equivalent probability transitions. But they are only applicable to DTMCs.
In particular, the algorithms proposed in [2] and [13] can both work with large SCCs.
[2] iteratively searches for and solves the smallest loops within an SCC. [13] uses a
divide-and-conquer algorithm that iteratively divides an SCC into several smaller parts
and resolves loops in each part. However, eliminating loops in an MDP is particularly
challenging due to the existence of many probability distributions. To the best of our
knowledge, there has been no previous work on SCC reductions for MDP. Instead of a
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simple extension of the divide-and-conquer for DTMC in [13], our divide-and-conquer
algorithm for MDP is carefully designed to avoid generation of extra schedulers. To
further accelerate the elimination of loops, we actively detect and remove redundant
probability distributions of each state based on the convex hull property.

Conclusion. In this work, we have proposed a divide-and-conquer algorithm to elim-
inate SCCs in MDPs, for achieving an efficient reachability analysis. To cope with
the non-determinism in MDPs, our divide-and-conquer algorithm is designed to work
on partitions. Initially, each state in an SCC is considered as a partition. The parti-
tions are repeatedly merged together until there is only one left. During the abstraction,
loops within a partition are replaced by equivalent probability distributions between in-
puts and outputs. The convex hull property is applied to further reduce the redundant
probability distributions. We have implemented this algorithm in a model checker PAT.
The evaluation results on two practical case studies show that our method can improve
reachability analysis.
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