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Learning Assumptions for Compositional
Verification of Timed Systems

Shang-Wei Lin, �Etienne Andr�e, Yang Liu, Jun Sun, and Jin Song Dong

Abstract—Compositional techniques such as assume-guarantee reasoning (AGR) can help to alleviate the state space explosion

problem associated with model checking. However, compositional verification is difficult to be automated, especially for timed systems,

because constructing appropriate assumptions for AGR usually requires human creativity and experience. To automate compositional

verification of timed systems, we propose a compositional verification framework using a learning algorithm for automatic construction

of timed assumptions for AGR. We prove the correctness and termination of the proposed learning-based framework, and experimental

results show that our method performs significantly better than traditional monolithic timed model checking.

Index Terms—Automatic assume-guarantee reasoning, model checking, timed systems

Ç

1 INTRODUCTION

MODEL checking [10], [32] is one of the most successful
formal verification techniques because it can be auto-

matically applied if the following two inputs are given: a
system model describing the system behavior and a property
specifying what the system should satisfy. However, model
checking suffers from the state space explosion problem [10],
[32] because the number of states increases exponentially
with the number of components involved.

To alleviate the state space explosion problem, assume-
guarantee reasoning (AGR) [12], [17], [31], a well-known com-
positional technique, has been applied to model checking.
The most common proof rule used in AGR is the following
non-circular assume-guarantee (AG-NC) rule:

Given a system with two components modeled by M1

andM2 and a property ’, the AG-NC proof rule tells us that
if M1 can satisfy a property ’ under an assumption A and

M2 can guarantee the assumption A, then we can conclude
that M1 kM2 satisfies ’. However, the assumption A in
AGR usually requires nontrivial human creativity and expe-
rience. Thus, practical impact of AGR is limited if the
assumption A is not automatically constructed.

Cobleigh et al. [13] proposed a framework that can gener-
ate assumptions for AGR automatically using the L� algo-
rithm [5]. This framework is guaranteed to terminate when
the verification problem M1 kM2 � ’ is either proved or
disproved with a counterexample. To infer the assumption
needed by AGR, the L� algorithm is not the only solution.
Bobaru et al. [7] adopted the abstraction-refinement paradigm
[11]. The assumption A is constructed as an abstraction of
M2. If M1 k A � ’ holds, then M1 kM2 � ’ can be con-
cluded. If M1 k A � ’ does not hold, A is refined by the
counterexample given by model checking until a conclusive
result can be concluded.

However, these frameworks are only applicable to
untimed systems. The demand for compositional model
checking of timed systems is even greater than that of
untimed systems because the state space explosion problem
is graver in timed model checking. As a solution, we pro-
pose an automatic learning-based compositional verifica-
tion framework for timed systems.1 We focus on timed
systems modeled by event-recording automata (ERAs) [3],
which is a determinizable class of timed automata. ERAs
are as powerful as timed transition systems [3], [19] and are
sufficiently expressive to model many interesting timed sys-
tems. The proposed framework consists of a compositional
verification flow based on the AG-NC proof rule and uses a
learning algorithm to automatically generate timed assump-
tions for AGR. The verification flow is designed as a two-
phase process. It generates untimed assumptions first,
which guarantees the sequence of events on assumptions is
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correct. Then it refines untimed assumptions into timed
ones, which guarantees that the occurrences of events on
assumptions satisfy time constraints. We prove the correct-
ness and termination of the learning-based compositional
verification framework for timed systems. Experimental
results show that the proposed framework performs signifi-
cantly better than traditional monolithic timed model check-
ing [3] that constructs the timed global state space based on
zone abstraction. Our contributions can be summarized as
follows:

� We propose a learning-based compositional verifica-
tion framework for timed systems. To the best of our
knowledge, this is the first work of fully automated
compositional verification for timed systems.

� Our compositional verification framework is based
on a novel algorithm that we proposed for learning
ERAs. This algorithm is particularly efficient in the
context of our framework where the models of the
system components are available.

� We prove the correctness of the proposed framework
and show that it is always terminating.

� We implement the proposed framework as a self-
contained toolkit and evaluate its scalability, useful-
ness, and reliability via a variety of systems.

The rest of this paper is organized as follows. Section 2
introduces background knowledge. Section 3 presents the
TL� algorithm for learning ERAs. The proposed learning-
based compositional verification framework is described in
Section 4. The experiment results are given in Section 5.
Related works are discussed in Section 6. The conclusion
and the future work are given in Section 7.

2 PRELIMINARIES

We give some background knowledge about timed lan-
guages and event-recording automata in Section 2.1. The
proposed algorithm for learning ERAs is inspired by the L�

algorithm, which we recall in Section 2.2.

2.1 Background Knowledge

Let S be a finite alphabet. We use � to denote the empty
word. A timed word over S is a finite sequence wt ¼ ða1; t1Þ
ða2; t2Þ . . . ðan; tnÞ of symbols ai 2 S for i 2 f1; 2; . . . ; ng that
are paired with nonnegative real numbers ti 2 Rþ such that
the sequence t1t2 . . . tn of timed stamps is nondecreasing.
For a timed word wt, we can obtain its untimed word,
denoted by utðwtÞ, by discarding all the time stamps, i.e.,
utðwtÞ ¼ a1a2 . . . an. Given another alphabet S0, we use wt#S0
to denote the timed word obtained by removing from wt all
pairs ðai; tiÞ such that ai 62 S0.

For every symbol a 2 S, we use xa to denote the event-
recording clock [3] of a. Intuitively, xa records the time
elapsed since the last occurrence of a, i.e., once a occurs,
clock xa is reset. We use CS ¼ fxa j a 2 Sg to denote the set
of event-recording clocks over S. A clock valuation
g : CS 7! Rþ is a function assigning a nonnegative real num-
ber to an event-recording clock.

A clocked word over S is a finite sequence wc ¼ ða1; g1Þ
ða2; g2Þ . . . ðan; gnÞ of symbols ai 2 S for i 2 f1; 2; . . . ; ng that
are paired with clock valuations gi such that g1ðxaÞ ¼ g1ðxbÞ

for all a; b 2 S and giðxaÞ ¼ gi�1ðxaÞ þ giðxai�1Þ when 1 <
i � n and a 6¼ ai�1. Each timed word wt ¼ ða1; t1Þ
ða2; t2Þ . . . ðan; tnÞ can be naturally transformed into a
clocked word cwðwtÞ ¼ ða1; g1Þða2; g2Þ . . . ðan; gnÞ where
giðxaÞ ¼ ti if aj 6¼ a for 1 � j < i; giðxaÞ ¼ ti � tj if there
exists aj such that aj ¼ a for 1 � j < i and ak 6¼ a for
j < k < i. For example, the timed word ða; 1Þðb; 3Þða; 7Þ can
be transformed into a clocked word ða; g1Þðb; g2Þða; g3Þ such
that g1ðxaÞ ¼ g1ðxbÞ ¼ 1, g2ðxaÞ ¼ 2, g2ðxbÞ ¼ 3, g3ðxaÞ ¼ 6,
and g3ðxbÞ ¼ 4.

An atomic clock constraint h is defined as h ¼ xa �
n j xa � xb � n where xa; xb 2 CS, �2 f< ;�;�; > g, and
n 2 N. A clock constraint f is a conjunction of atomic clock
constraints. We say h 2 f if h is one of the conjuncts of f. An
atomic clock guard t is defined as t ¼ xa � n where xa 2 CS,
�2 f< ;�; > ;�g, and n 2 N. A clock guard g is a conjunc-
tion of atomic clock guards. We say t 2 g if t is one of the
conjuncts of g.

A clock constraint f identifies a jSj-dimensional polyhe-
dron ½½f		 
 ðRþÞjSj, whereas a clock guard g identifies a
jSj-dimensional hypercube ½½g		 
 ðRþÞ jS j . We use GS to
denote the set of clock guards over CS.

A guarded word over S is a sequence wg ¼ ða1; g1Þ
ða2; g2Þ . . . ðan; gnÞ where ai 2 S and gi 2 GS for all i 2
f1; 2; . . . ; ng. The sub word of wg, denoted by ½wg	ji , is the
sequence ðai; giÞðaiþ1; giþ1Þ . . . ðaj; gjÞ for 1 � i � j � n.
Given a clocked word wc ¼ ða1; g1Þða2; g2Þ . . . ðan; gnÞ and a
guarded word wg ¼ ða1; g1Þða2; g2Þ . . . ðan; gnÞ, we use
wc � wg to denote gi � gi for all i 2 f1; 2; . . . ; ng.

Given a clock constraint f, if f is satisfiable, there is a
unique canonical clock constraint, denoted by CanðfÞ,
among all the clock constraints identifying the polyhedron
½½f		, obtained by closing f under all consequences of pairs of
conjuncts in f. For example, given a constraint f1 : 0 � xa �
3 ^ 0 � xb � 2, its canonical form is Canðf1Þ : 0 � xa � 3 ^
0 � xb � 2 ^ �3 � xb � xa � 2.

For a clock constraint f, we define the reset of an event-
recording clock xa in f, denoted by f½xa 7! 0	, as Canðf0Þ
where f0 is obtained from CanðfÞ by removing all con-
junctions where xa is included, and adding the conjunct
xa � 0. For example, f1½xa 7! 0	 : xa ¼ 0 ^ 0 � xb � 2 ^ 0 �
xb � xa � 2.

For a clock constraint f, we define the time elapsing of
f, denoted by f", as Canðf00Þ where f00 is obtained from
CanðfÞ by removing all clock upper bounds. For exam-
ple, time elapsing of f1 is f1" : 0 � xa ^ 0 � xb ^ �3 �
xb � xa � 2.

Given a guarded word wg and a clock constraint f, the
strongest postcondition of wg given a precondition f, denoted
by spðf; wgÞ, is defined inductively as follows: spðf; �Þ ¼ f;
spðf; wgða; gÞÞ ¼ ððspðf; wgÞ ^ gÞ½xa 7! 0	Þ ". We often omit
the initial clock constraint f0 ¼

V
a;b2Sðxa ¼ xbÞ, i.e.,

spðwgÞ ¼ spðf0; wgÞ.
The target model in this work, event-recording automata,

is formulated in Definition 1, and the parallel composition
between two ERAs is formulated in Definition 2.

Definition 1 (ERA). An event-recording automaton M ¼
ðS; L; L0; d; LfÞ consists of a finite input alphabet S, a finite
set L of locations, a set of initial locations L0 
 L, a set of
accepting locations Lf 
 L , and a transition function d : L�
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S�GS 7!2L. We use l �!a½g	 l0 to denote l0 2 dðl; a; gÞ for
l; l0 2 L, a 2 S, and g 2 GS. An ERA is deterministic if

jL0j � 1 and jdðl; a; gÞj � 1, and if both dðl; a; g1Þ and
dðl; a; g2Þ are defined and g1 6¼ g2, then ½½g1		 \ ½½g2		 ¼ ; where
g1; g2 2 GS. A deterministic ERA is complete ifS

gi2fg j dðl;a;gÞ6¼;g½½gi		 ¼ ½½true		 for all l 2 L and a 2 S.

Note that in ERAs each event-recording clock xa 2 CS is
implicitly and automatically reset when a transition with
event a is taken. Fig. 1a shows an example of a deterministic
ERAM1.

Given an ERA M ¼ ðS; L; l0; d; LfÞ, a clocked word wc ¼
ða1; g1Þða2; g2Þ . . . ðan; gnÞ is accepted by M if there exists a

sequence of transitions l0 ���!a1½g1	
l1 ���!a2½g2	 � � � ���!an½gn	

ln on M

such that l0 2 L0, ln 2 Lf , and gi � gi for all i 2 f1; 2; . . . ; ng.
A timed word wt is accepted by M, if its clocked word wc is

accepted by M. The timed language accepted by M, denoted

by LðMÞ, is the set of timed words accepted by M. We give

in Fig. 1a an ERA M1 that accepts the timed language

ða; t1Þðb; t2Þða; t3Þðb; t4Þ . . . such that t1 ¼ 1, t2i � t2i�1 ¼ 2 and

t2iþ1 � t2i ¼ 1, and we give in Fig. 1b an ERA M2 that

accepts the timed language ðb; t1Þðb; t2Þ . . . such that t1 � 3

and tiþ1 � ti � 3. For a timed language L, we can obtain its

untimed language, denoted by utðLÞ, by collecting all the

untimed words of L, i.e., utðLÞ ¼ futðwtÞ jwt 2 Lg.
Definition 2 (Parallel composition). Given two ERAs

Mi ¼ ðSi; Li; L
0
i ; di; L

f
i Þ for i 2 f1; 2g, their parallel compo-

sition is the ERA M1 kM2 ¼ ðS1 [ S2; L1 � L2; L
0
1 � L0

2;
d; Lf

1 � Lf
2Þ where the set of event-recording clocks becomes

CS1
[ CS2

and the transition relation d is defined as follows
where ½½g1		 \ ½½g2		 6¼ ;:

ðl1; l2Þ �!a½g1^g2	ðl01; l02Þ if l1 �!a½g1	 l01 and l2 �!a½g2	 l02
ðl1; l2Þ �!a½g1	 ðl01; l2Þ if l1 �!a½g1	 l01 and a =2 S2

ðl1; l2Þ �!a½g2	 ðl1; l02Þ if l2 �!a½g2	 l02 and a =2 S1:

8>><
>>:

Figs. 1a and 1b give two deterministic ERAs M1 and M2,
respectively, and their parallel compositional M1 kM2 is
shown in Fig. 1c.

In this work, we assume timed models and properties are
all represented using ERAs. Given two ERAs M1 and M2

whose alphabets are S1 and S2, respectively, M1 satisfies M2,
denoted by M1 �M2, if LðM1Þ#S2


 LðM2Þ where
LðM1Þ#S2

¼ fwt#S2
jwt 2 LðM1Þg. Figs. 1a and 1b give two

ERAsM1 andM2 such thatM1 �M2.

2.2 The L� Algorithm
The L� algorithm [5], [34] is a formal method to learn a mini-
mal DFA (with theminimal number of locations) that accepts
an unknown language U over an alphabet S. During the

learning process, the L� algorithm interacts with a Minimal
Adequate Teacher (Teacher for short) to make two types of
queries: membership queries and candidate queries. A mem-
bership query for a string s is a functionQm such that if s 2 U ,
then QmðsÞ ¼ 1; otherwise, QmðsÞ ¼ 0. A candidate query for
a DFA M is a function Qc such that if LðMÞ ¼ U , then
QcðMÞ ¼ 1; otherwise, QcðMÞ ¼ 0. During the learning pro-
cess, the L� algorithm stores themembership query results in
an observation table ðS;E; T Þwhere S 
 S� is a set of prefixes,
E 
 S

� is a set of suffixes, and T : ðS [ S � SÞ � E 7! f0; 1g is
a mapping function such that if s � e 2 U , then T ðs; eÞ ¼ 1;
otherwise, i.e., s � e =2 U , then T ðs; eÞ ¼ 0, where s 2 ðS[ S �
SÞ and e 2 E. In the observation table, the L� algorithm cate-
gorizes strings based on Myhill-Nerode Congruence [21], as
formulated in Definition 3.

Definition 3 (Myhill-Nerode congruence). For any two
strings s; s0 2 S

�, we say that they are equivalent, denoted
by s  s0, if s � r 2 U , s0 � r 2 U , for all r 2 S

�. Under the
equivalence relation, we can say s and s0 are the representing
strings of each other with respect to U , denoted by s ¼ ½s0	r
and s0 ¼ ½s	r.
The L� algorithm always keeps the observation table

closed and consistent. An observation table is closed if for all
s 2 S and a 2 S, there always exists s0 2 S such that
s � a  s0. An observation table is consistent if for every two
elements s; s0 2 S such that s  s0, then ðs � aÞ  ðs0 � aÞ for
all a 2 S. If the observation table ðS;E; T Þ is closed and con-
sistent, the L� algorithm constructs a corresponding candi-
date DFA C ¼ ðSC; LC; l

0
C; dC; L

f
CÞ such that SC ¼ S, LC ¼ S,

l0C ¼ f�g, dCðs;aÞ ¼ ½s � a	r for s 2 S and a 2 S, and Lf
C ¼

fs 2 S jT ðs; �Þ ¼ 1g. Subsequently, L� makes a candidate
query for C.

If QCðMÞ ¼ 0, i.e., LðCÞ 6¼ U , then Teacher gives a coun-
terexample sce. The counterexample sce is positive if sce 2
U n LðCÞ, or negative if sce 2 LðCÞ n U . The L� algorithm
then analyzes the counterexample sce to find the witness
suffix. For two strings that are classified by L� into an
equivalence class, a witness suffix is a string that when
appended to the two strings provides enough evidence for
the two strings to be classified into two different equiva-
lence classes under the Myhill-Nerode Congruence. Given
an observation table ðS;E; T Þ and a counterexample sce

given by Teacher, we define an i-decomposition query of sce,
denoted by Qi

mðsceÞ, as follows: Qi
mðsceÞ ¼ Qmð½ui	r � viÞ

where sce ¼ ui � vi is a decomposition of sce such that
juij ¼ i, and ½ui	r is the representing string of ui in S with
respective to LðCÞ. The witness suffix of sce, denoted by
WSðsceÞ, is the suffix vi of the decomposition of sce such
that Qi

mðsceÞ 6¼ Q0
mðsceÞ. Once the witness suffix WSðsceÞ is

obtained, L� uses WSðsceÞ to refine the candidate DFA C
until LðCÞ ¼ U . The pseudo-code of the L� algorithm is
given in Algorithm 1.

We use an example to illustrate how the L� algorithm
works to learn a minimal DFA accepting an unknown
language. Suppose the unknown language U ¼ ðajbjcÞ � a�
over S ¼ fa; b; cg needs to be learned. Initially, S and E
are initialized to f�g and then the membership queries
of �, a, b, and c are performed. At this point, the obser-
vation table with S ¼ f�g, E ¼ f�g is shown in Fig. 2a.
The observation table now is not closed because there is

Fig. 1. Event-recording automata and timed language.
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no s 2 S such that a  s. Therefore, a is added into S,
and then the membership queries of aa, ab, and ac are
performed respectively. At this point, the observation
table with S ¼ f�; ag, E ¼ f�g is closed as shown in
Fig. 2b. The corresponding DFA M1 is shown in Fig. 2c.
The candidate query of M1 is performed.

However, Teacher gives a negative counterexample abc
that is accepted by M1 but not in U . The L� algorithm ana-
lyzes the negative counterexample abc to get the witness
suffix as follows: Q0

mðabcÞ ¼ 0. Q1
mðabcÞ ¼ Qmð½a	r � bcÞ ¼

QmðabcÞ ¼ 0, Q2
mðabcÞ¼Qmð½ab	r � cÞ ¼ Qmð� � cÞ ¼ QmðcÞ ¼

1 6¼ Q0
mðabcÞ. After analyzing the counterexample abc, the

witness suffix is c. So, c is added into E, and the member-
ship queries of c, ac, bc, cc, aac, abc, and acc are performed.
The observation table now with S ¼ f�; ag, E ¼ f�; cg is
shown in Fig. 3a. However, the observation table is not
closed because there is no s 2 S such that ab  s. So, ab is

added into S, and then the membership queries of aba, abb,
abc, abac, abbc, and abcc are performed. At this point, the
observation table with S ¼ f�; a; abg, E ¼ f�; cg is closed as
shown in Fig. 3b. The corresponding DFA M2 is shown in
Fig. 3c and LðM2Þ ¼ U .

Assume S is the alphabet of the unknown regular lan-
guage U and the number of states of the minimal DFA is n.
The L� algorithm needs n� 1 candidate queries and OðjSj
n2 þ n log mÞ membership queries to learn the minimal
DFA, where m is the length of the longest counterexample
returned by Teacher. Angluin [5] proved that as long as the
unknown language U is regular, the L� algorithm will learn
a complete minimal DFA M such that LðMÞ ¼ U in at most
n� 1 iterations.

3 A LEARNING ALGORITHM FOR ERAS

This section is devoted to the TL� algorithm. Inspired by the
L� algorithm, we develop a TL� algorithm, introduced in
Section 3.1, to learn event-recording automata that accept
timed languages. An example for illustrating the TL� algo-
rithm is given in Section 3.2. Further discussions are given
in Section 3.3. The correctness and termination of TL� are
proved in Section 3.4.

3.1 The TL� Algorithm
In order to infer an ERA accepting an unknown timed lan-
guage, the proposed TL� algorithm deals with guarded
words. Before we get into the details, let us define the accep-
tance of a guarded word by an ERA.

Given a guarded word wg, we use LðwgÞ to denote the set
of timed words wt that are contained in wg. That is, LðwgÞ ¼
fwt j cwðwtÞ � wgg, e.g., Lðða; xa � 2ÞÞ represents the timed
language fða; tÞ j t � 2g.
Definition 4 (Acceptance of guarded words). Given an ERA

M ¼ ðS; L; l0; d; LfÞ, a guarded word wg ¼ ða1; ĝ1Þða2; ĝ2Þ
. . . ðan; ĝnÞ is accepted by M, denoted by LðwgÞ 
 LðMÞ, if
there exists a sequence of transitions l0 �!a1½g1	 l1 �!a2½g2	 � � � �!an½gn	

ln

on M such that l0 2 L0, ln 2 Lf , and ½½ĝi		 
 ½½spð½wg	i�11 Þ		 \
½½gi		 for all 1 � i � n, where ½wg	01 ¼ �.

Fig. 4 gives an example of the acceptance of guarded
words. The guarded word ða; trueÞ is accepted by the ERA
M as shown in Fig. 4a, and the two guarded words ða; xa �
2Þ and ða; xa > 2Þ are accepted by the ERA M 0 as shown in
Fig. 4b. Note that the guarded word ða; xa � 3Þ is not
accepted by M 0 because ½½xa � 3		 6
 ½½xa � 2		 and ½½xa �
3		 6
 ½½xa > 2		, while the guarded ða; xa � 1Þ is accepted by
M 0 because ½½xa � 1		 
 ½½xa � 2		.

One may find that according to Definition 4, there
might be a situation where we can construct two equiva-
lent ERAs such that there exists a guarded word
accepted by one but not the other. Fig. 4 shows such a
case where M and M 0 are equivalent, and ða; trueÞ is

Fig. 2. L� Observation table and candidate DFAM1.

Fig. 3. L� Observation table and candidate DFAM2.

Fig. 4. Acceptance of guarded words.
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accepted by M but not accepted by M 0. This situation is
not a problem because we define timed language on
timed words instead of guarded words. Although M
and M 0 accept different guarded words, they accept the
same timed language ða; tÞ where t � 0.

Given a timed language UT accepted by an ERA MUT
, the

proposed TL� algorithm interacts with a timed Teacher to
make two types of queries: timed membership queries for
guarded words and timed candidate queries for ERAs. Fig. 5
shows the interaction between the TL� algorithm and the
timed Teacher. Note that our TL� algorithm is a black-box
learning algorithm since only the Teacher knows about the
timed language UT to be learned. TL� views the Teacher as
a black box and constructs an ERA according to the query
results from the Teacher.

A timed membership query for a guarded word wg is a func-
tion QmT such that QmT ðwgÞ ¼ 1 if wg is accepted by MUT

;
otherwise QmT ðwgÞ ¼ 0. A timed candidate query for an ERA
M is a functionQcT such thatQcT ðMÞ ¼ 1 if LðMÞ ¼ UT ; oth-
erwise, QcT ðMÞ ¼ 0 and a guarded word as a counterexam-
ple will be given by the Teacher. A guarded word
counterexample wg is negative if LðwgÞ 
 LðMÞ and
LðwgÞ 6
 UT . A guardedword counterexamplewg is positive if
LðwgÞ 
 UT andLðwgÞ 6
 LðMÞ.

The idea behind the TL� algorithm is to first learn a
DFA M accepting U , the untimed language of UT , i.e.,
U ¼ utðUT Þ, and then to refine the DFA M into a timed
version, i.e., an ERA. Although the timed refinement
may sometimes only add constraints on the transitions,
it usually changes the structure of M by adding more
locations and transitions. Indeed, it is well-known that
adding constraints on the transitions of M is not suffi-
cient in general to accept the timed language UT . How-
ever, we still consider a two-phase algorithm consisting
of an untimed learning phase and a timed learning phase.
The reasons are as follows: (1) not all events are
restricted by time conditions, and (2) if an event is
restricted by time conditions, we do not want to actively
guess all the possible time conditions for the event,
which increases the number of membership queries
exponentially and slows down the learning process.
Instead, we passively assume the event is not restricted
by any time condition and deduce the conditions from
the counterexamples given by the Teacher. Algorithm 2
shows the pseudo-code of the TL� algorithm. The details
are described in the following.

Untimed learning. In this phase, the L� algorithm is
used to learn a DFA M accepting the untimed language
U with respect to UT (Line 1 of Algorithm 2). The obser-
vation table ðS; E; T Þ constructed in the learning process
of L� is preserved before starting the timed learning
phase (Line 2).

Timed learning. In this phase, the TL� algorithm tries to
refine the DFA M learned in the untimed learning phase
into an ERA. The untimed alphabet S is extended into a
timed alphabet ST 
 S�GS such that the observation table
obtained from the untimed learning phase becomes a timed
one. The results of membership queries for guarded words
are stored in the timed observation table. This phase con-
sists of the following steps:

1. Perform a candidate query for the ERA M (Line 4). If
the answer is “yes”, M accepts the language UT to be
learned, andM is returned (Line 21).

2. If the answer to the candidate query for M is “no”
with a counterexample ða1; g1Þða2; g2Þ � � � ðan; gnÞ, TL�
splits prefixes (rows) and suffixes (columns) in the
observation table as follows. If a prefix p or a suffix e
in the observation table has a substring of the form
ðai; gÞ for some i 2 f1; 2; . . . ; ng and ½½gi		 \ ½½g		 6¼ ;,
then ½½g		 is partitioned using gi such that
½½g		 ¼ ½½gi		 [G where G ¼ fĝ1; ĝ2; . . . ; ĝmg is obtained
by ½½g		 � ½½gi		 using DBM subtraction [27], [28]. The
prefix p is split into fp̂0; p̂1; p̂2; . . . ; p̂mg where ðai; giÞ
is a substring of p̂0 and ðai; ĝjÞ is a substring of p̂j for
all j 2 f1; 2; . . . ;mg (Line 10). Similarly, the suffix e is
also split into fê0; ê1; ê2; . . . ; êmg where ðai; giÞ is a
substring of ê0 and ðai; ĝjÞ is a substring of êj for all
j 2 f1; 2; . . . ;mg (Line 11). Then the observation table
is updated by performing timed membership queries
QmT ðp̂j � êjÞ for all j 2 f0; 1; 2; . . . ;mg (Line 12).

3. If the observation table ðS;E; T Þ is not closed, i.e.,
there is a prefix s � a with no s0 2 ST such that
ðs � aÞ  s0, then s � a is added into S (Lines 13-14).
The observation table is updated by performing the
timed membership queries QmT ðs � a � bÞ for all
b 2 ST (Line 15).

Fig. 5. Interaction between TL� and Teacher.
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4. Analyze the counterexample p to find the witness
suffix (Line 16). We define an i-decomposition query
of p, denoted by Qi

mT ðpÞ, as follows: Qi
mT ðpÞ ¼

QmT ðsi � viÞ where p ¼ ui � vi is a decomposition of p
such that juij ¼ i and ui  si for some si 2 S. The
witness suffix of p, denoted byWSðpÞ, is the suffix vi
of p such that Qi

mT ðpÞ 6¼ Q0
mT ðpÞ. If there is a witness

suffix vi, i.e., jvij > 0, then vi is added into the set of
suffixes E (Lines 17-18). Then the observation table
is updated by the timed membership queries
QmT ðs � viÞ and QmT ðs � a � viÞ for each s 2 S and a 2
ST (Line 19).

5. Construct the ERA M ¼ ðSM;LM; l0M; dM;Lf
MÞ corre-

sponding to the observation table ðS;E; T Þ such that
SM ¼ ST , LM ¼ S, l0M ¼ f�g, dMðs;aÞ ¼ ½s � a	r for
s 2 S and a 2 ST , and Lf

M ¼ fs 2 S jT ðs; �Þ ¼ 1g. Go
to Step 1 (Line 20).

3.2 An Example

We use an example to illustrate the TL� algorithm. Suppose
the timed language UT to be learned is accepted by the ERA
A1 as shown in Fig. 6a. In the untimed learning phase, L� is
used to learn the DFA M1, as shown in Fig. 6c, accepting the
untimed language a�, and the observation table ðS;E; T Þ
obtained by L� is shown in Fig. 6b. At this time, S ¼ fag,
S ¼ f�g, and E ¼ f�g.

In the timed refinement phase, TL� first modifies the
alphabet and the observation table into a timed version, i.e.,
ST ¼ fða; trueÞg, S ¼ fð�; trueÞg, and E ¼ fð�; trueÞg. The
current timed observation table T2 is shown in Fig. 6d.
Then, TL� performs the timed candidate query for the first
candidate ERA M1. However, the answer to the candidate
query is “no” with a negative counterexample ða; xa < 1Þ.
Because there is a prefix ða; trueÞ in the observation such
that ½½xa < 1		 \ ½½true		 6¼ ;, the prefix ða; trueÞ is split into
ða; xa < 1Þ and ða; xa � 1Þ, and the timed membership
queries for ða; xa < 1Þ and ða; xa � 1Þ are performed,
respectively. The current observation table T3 is shown
in Fig. 7a. However, T3 is not closed because there
is ða; xa < 1Þ with no s 2 S such that s  ða; xa < 1Þ, so
ða; xa < 1Þ is added into S and the membership queries for
ða; xa < 1Þða; xa < 1Þ and ða; xa < 1Þða; xa � 1Þ are per-
formed, respectively. The closed observation table T4 and
its corresponding ERA M2 are shown in Figs. 7b and 7c,

respectively. At this time, S ¼ fða; xa < 1Þ; ða; xa � 1Þg,
S ¼ fð�; trueÞ; ða; xa < 1Þg, and E ¼ fð�; trueÞg.

In the second iteration of the timed refinement phase,
TL� performs the timed candidate query for M2. However,
the answer is still “no” with a positive counterexample
ða; xa ¼ 1Þ. Because there are two prefixes ða; xa � 1Þ and
ða; xa < 1Þðxa � 1Þ in the observation table ðS;E; T Þ such
that ½½xa ¼ 1		 \ ½½xa � 1		 6¼ ;, the prefix ða; xa � 1Þ is split
into ða; xa ¼ 1Þ and ða; xa > 1Þ, and the prefix
ða; xa < 1Þðxa � 1Þ is split into ða; xa < 1Þðxa ¼ 1Þ and
ða; xa < 1Þðxa > 1Þ, respectively. The timed membership
queries for the new prefixes are performed. The current
closed observation table T5 and its corresponding ERA
M3 are shown in Figs. 8a and 8b, respectively. At this
time, S¼fða; xa < 1Þ; ða; xa ¼ 1Þ; ða; xa > 1Þg, S ¼ fð�; trueÞ;
ða; xa < 1Þg, and E ¼ fð�; trueÞg.

In the third iteration of the timed refinement phase, TL�

performs the timed candidate query for the ERA M3. How-
ever, the answer is still “no” with a negative counterexample
p ¼ ða; xa ¼ 1Þða; xa ¼ 1Þ. This time, no prefix or suffix in the
observation table has to be split. TL� analyzes the counterex-
ample as follows. Q0

mT ðpÞ ¼ QmT ðða; xa ¼ 1Þða; xa ¼ 1ÞÞ ¼ 0:
Q1

mT ðpÞ ¼ Q1
mT ð½ða; xa ¼ 1Þ	rða; xa ¼ 1ÞÞ ¼ QmT ðða; xa ¼ 1ÞÞ

¼ 1 6¼ Q0
mT ðpÞ: Thus, we have awitness suffix v ¼ ða; xa ¼ 1Þ,

and v is added into the set E. Then the membership queries
for s � ða; xa ¼ 1Þ for all s 2 S are performed. The closed
observation table T7 and its corresponding ERA M4 are
shown in Figs. 9a and 9b, respectively. At this time,
S ¼ fða; xa < 1Þ; ða; xa ¼ 1Þ; ða; xa > 1Þg, S ¼ fð�; trueÞ;
ða; xa < 1Þ; ða; xa ¼ 1Þg, andE ¼ fð�; trueÞ; ða; xa ¼ 1Þg.

In the fourth iteration of the timed refinement phase, TL�

performs the timed candidate query for the ERA M4 again.
However, the answer is still “no” with a positive counterex-
ample p ¼ ða; xa ¼ 1Þða; xa ¼ 3Þ. Three prefixes ða; xa > 1Þ,
ða; xa < 1Þða; xa > 1Þ, and ða; xa ¼ 1Þða; xa > 1Þ in the
observation table T7 have to be split, and the new split pre-
fixes are shown in Fig. 10a. The timed membership queries
for the new split prefixes concatenated with e for all e 2 E
are performed. Then the TL� algorithm analyzes the coun-
terexample. Since Q0

mT ðpÞ ¼ Q1
mT ðpÞ ¼ Q2

mT ðpÞ, there is no

Fig. 7. Timed refinement 1.

Fig. 8. Timed refinement 2.

Fig. 6. Untimed learning phase.

Fig. 9. Timed refinement 3.
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witness suffix for p. The closed observation table T8 is
shown in Fig. 10a, and its corresponding ERA M5 is con-
structed as shown in Fig. 10b. At this time, S ¼ fða; xa <
1Þ; ða; xa ¼ 1Þ; ða; 1 < xa < 3Þ; ða; xa ¼ 3Þ; ða; xa > 3Þg, E ¼
fð�; trueÞ; ða; xa < 1Þ; ða; xa ¼ 1Þg, and E ¼ fð�; trueÞ; ða;
xa ¼ 1Þg.

In the fifth iteration of the timed refinement, TL� per-
forms the timed candidate query for M5. This time, Teacher
says that LðM5Þ ¼ UT , and the learning process of the TL�

algorithm is finished.

3.3 Discussion Regarding the Teacher

Since TL� is a black-box learning algorithm, one may find
that the guidance of the Teacher affects the learning of TL�.
Thus, we give a discussion for the guidance of the Teacher
in this section. Note that the reason for the discussion here
is that the proposed TL� is a generic algorithm, which is not
limited to our setting and might be used in different con-
texts for learning ERAs. Let us consider a timed language
accepting timed words ða; tÞ where t � 3. In the untimed
learning phase, TL� performs the L� algorithm to learn a
DFAM accepting the untimed word a, as shown in Fig. 11a.
When the Teacher answers the timed candidate query for
A2, if it returns a beautiful negative counterexample
ða; xa > 3Þ, the alphabet a is split into ða; xa � 3Þ and ða;
xa > 3Þ, and the final learned ERA A3 is as shown in
Fig. 11b.

What if the Teacher is not friendly? That is, Teacher
always gives counterexamples whose time constraints are
not exactly the boundary guards. Let us consider the above
example again. Suppose Teacher gives a negative counter-
example ða; xa > 5Þ instead of ða; xa > 3Þ when answering
the timed candidate query of M. The alphabet a is split into
ða; xa � 5Þ and ða; xa > 5Þ, and both of them are not
accepted. After this, Teacher can only return positive coun-
terexamples of the form ða; xa � cÞ where �2 f< ;�g and
c � 3. Let us suppose that Teacher gives the positive coun-
terexamples in the worst way. It gives a positive counterex-
ample ða; xa � 1Þ which causes the split of the alphabet a
into ða; xa � 1Þ, ða; 1 < xa � 5Þ and ða; xa > 5Þ where only
ða; xa � 1Þ is accepted. And Teacher gives another positive
counterexample ða; xa � 2Þ, which causes the split of
the alphabet as: ða; xa � 1Þ, ða; 1 < xa � 2Þ, ða; 2 < xa � 5Þ
and ða; xa > 5Þ, where ða; xa � 1Þ and ða; 1 < xa � 2Þ
are accepted. Then Teacher gives the final positive

counterexample ða; xa � 3Þ, which causes the split of the
alphabet as: ða; xa � 1Þ, ða; 1 < xa � 2Þ, ða; 2 < xa � 3Þ,
ða; 3 < xa � 5Þ and ða; xa > 5Þ, where ða; xa � 1Þ,
ða; 1 < xa � 2Þ and ða; 2 < xa � 3Þ are accepted. The final
learned ERA is as shown in Fig. 12.

We can observe that with a friendly Teacher, unneces-
sary alphabet split can be avoided, while with a bad
Teacher, unnecessary split might occur, but they are
always in the same class (leading to the same state), as
shown in Fig. 12. However, even with the worst Teacher,
the alphabet split will be approaching the boundary as
illustrated in the above example and in Fig. 12. Recall
from Section 2.1 that the constant in a clock constraint is
necessarily an integer.

In our setting of compositional verification based on the
TL� algorithm (c.f. Section 4), we implement the Teacher by
model checking, and the boundary time constraint is speci-
fied either in the models or in the property, i.e., a friendly
Teacher, which avoids unnecessary split—this is also con-
firmed by our experiments.

3.4 Termination and Correctness

Given a timed language UT accepted by a deterministic ERA
A ¼ ðS; L; l0; d; LfÞ, TL� learns an ERA to accept UT . After
the untimed learning phase, each untimed alphabet ða;
trueÞ, a 2 S, may be split according to the guard condition
of the counterexamples returned by Teacher. With a
friendly Teacher, each untimed word ða; trueÞ will be split
into jGAj guarded words, where GA is the set of clock zones
partitioned by the clock guards appearing in A. For exam-
ple, the clock guard appearing in A3, as shown in Fig. 11b,
is xa > 3, so GA3

¼ fxa � 3; xa > 3g.
With a bad Teacher, the number of alphabet split is more

than jGAj. For each event a 2 S, if ða; trueÞ needs to be split,
Teacher will give a negative counterexample ða; gÞ and g is
of the form ða; xb � c!Þ or ða; xb �0 c Þ, where b 2 S,
�2 f< ;�g, �02 f> ;�g, and c!; c 2 N . Basically, c! and
c are the upper and lower bounds of the clock xb, respec-
tively. We can construct a set of regions with respect to c!
and c , denoted by R$c . For example, given c!¼ 3 and
c ¼ 1, Rc ¼ fxb ¼ 1; 1 < xb < 2; xb ¼ 2; 2 < xb < 3; xb ¼
3; xb > 3g. Thus, with a bad Teacher, each event a 2 S
might be split at most jCSj � jR$c j times.

Fig. 10. Timed refinement 4.

Fig. 11. Learning guided by a friendly Teacher.

Fig. 12. Learning guided by a bad Teacher.
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Let % ¼ maxfjGAj; jCSj � jR$c jg. In general, each member-
ship query of untimed word ða; trueÞ gives rise to at most %
timed membership queries. In total, TL� needs to perform
OðjSj � % � jLj2 þ jLjlogjpjÞ timed membership queries, where
p is the counterexample given by the Teacher. We will show
in Theorem 1 that TL� needs to perform OðjLj þ % � jSjÞ can-
didate queries.

Lemma 1. Given a closed and consistent observation table
ðS;E; T Þ, any deterministic ERA consistent with T has at
least jSj locations.

Proof. We first define a row in the observation table. If
p 2 S [ ðS � SÞ is a prefix (row) of the table, we use
rowðpÞ to denote the function f : E 7! f0; 1g which is
defined by fðeÞ ¼ T ðp � eÞ for e 2 E. Let M ¼ ðS; L; l0;
d; LfÞ be an ERA consistent with T . We then define
f 0ðsÞ ¼ dðl0; sÞ for every s 2 S. For any two s1; s2 2 S, we
have rowðs1Þ 6¼ rowðs2Þ implying that there exists e 2 E
such that T ðs1 � eÞ 6¼ T ðs2 � eÞ. Since M is consistent with
T , exactly one of dðl0; s1 � eÞ and dðl0; s2 � eÞ is in Lf imply-
ing that dðl0; s1Þ and dðl0; s2Þ are distinct locations. Thus,
f 0ðsÞ takes on at least jSj values implying that M has at
least jSj locations. tu

Theorem 1. The TL� algorithm is correct and terminates in a
finite number of iterations.

Proof. The correctness is based on the fact that the TL� algo-
rithm returns an ERA only if it accepts the unknown
timed language UT . Let A ¼ ðS; L; l0; d; LfÞ be an ERA
accepting UT . In each iteration, the TL� algorithm either
adds a row into S in the observation table ðS;E; T Þ or
splits a clock guard of an event a 2 S into at least two
disjoint clock guards. Since the observation table should
be consistent with A (otherwise, the Teacher must have
given wrong answers to the membership queries), TL�

adds at most jLj rows into S. Lastly, each untimed alpha-
bet ða; trueÞ splits at most % times. Thus, the TL� algo-
rithm terminates after OðjLj þ % � jSjÞ iterations. tu

Theorem 2. The ERA learned by the TL� algorithm has the mini-
mal number of locations.

Proof. Given a closed and consistent observation table
ðS;E; T Þ, TL� constructs an ERA M exactly with jSj loca-
tions. By Lemma 1, we can conclude thatM has the mini-
mal number of locations. tu
From the above arguments, we can conclude the follow-

ings: even if the teacher is bad, i.e., it gives on purpose coun-
terexamples as little helpful as possible, as long as the it
answers the membership and candidate queries correctly,
our TL� algorithm can learn an ERA with the minimal num-
ber of locations to accept the unknown timed language and
terminate in a finite number of iterations.

4 AN AUTOMATIC COMPOSITIONAL VERIFICATION

FRAMEWORK FOR TIMED SYSTEMS

This section is devoted to an automatic learning-based com-
positional verification framework for timed systems. The
proposed framework is introduced in Section 4.1. An exam-
ple is given in Section 4.2 for illustrating the framework.
The correctness and termination of the framework are
proved in Section 4.3.

4.1 Automatic Verification Framework

To learn an ERA accepting a timed language, the TL�

algorithm needs the guidance of the Teacher to answer
membership and candidate queries. Thus, to use TL� to
automatically generate the assumption for AGR, the pro-
posed framework has to play the Teacher role to answer
the membership and candidate queries needed by TL�. In
the proposed compositional verification framework, we
adopt model checking to answer the queries from TL�.
Fig. 13 shows the big picture of the TL� algorithm, the
Teacher, and model checking. Note that the Teacher itself,
played by model checking, is a white-box setting since it
knows the component models and the property. How-
ever, the Teacher is still a black box to the TL� algorithm.

Fig. 14 shows the overall flow of the learning-based
compositional verification for timed systems based on the
AG-NC proof rule. It consists of two phases, namely
untimed verification phase for constructing the untimed
assumption (environment) for M1 to satisfy the property,
and timed verification phase for refining the untimed
assumption into a timed one and concluding the result of
the timed verification.

The target ERA to be learned by TL� is theweakest assump-
tion Aw under whichM1 satisfies ’, i.e., for any environment
E,M1 k E � ’ iff E � Aw. To guide TL� to learn the weakest
assumption Aw, model checking is used to answer the mem-
bership and candidate queries needed by TL�. Although the
target ERA for TL� is the weakest assumption Aw, the pro-
posed framework terminates as soon as compositional verifi-
cation gets conclusive results, which is often before the
weakest assumption Aw is learned. The details of the learn-
ing-based compositional verification framework are
described as follows. Note that the alphabet of the assump-
tion ranges overSA ¼ ðSM1

[ S’Þ \ SM2
.

Untimed verification phase. In this phase, the L� algorithm
[5] is used to learn an untimed assumption according to the
AG-NC proof rule such that ðM1Þut k ðM2Þut � ð’Þut is
proved or disproved. We use ðM1Þut to denote the untimed
version of M1, i.e., all the time constraints on transitions are
ignored. The L� algorithm constructs a candidate DFA A
after several untimed membership queries. The answer to
an untimed membership query for an untimed behavior s is
positive only if the behavior s does not violate the property
ð’Þut when interacting with ðM1Þut, i.e., s 62 LððM1Þut k
ðM’ÞutÞ. This is basically an emptiness problem of LðMs k
ðM1Þut k ðM’ÞutÞ where Ms is a DFA accepting all the pre-
fixes of s. For an untimed behavior s ¼ a1a2 . . . an, we can
easily construct Ms as shown in Fig. 15a. The emptiness
problem can be checked by model checking.

The candidate query for A is answered by the Qc algo-
rithm, as given in Algorithm 3. If ðM1Þut k ðM2Þut � ð’Þut

Fig. 13. Model checking plays the teacher role.

144 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 2, FEBRUARY 2014



is disproved in this phase with a untimed counterexam-
ple p, we have to check whether it is a real timed counter-
example, i.e., p 2 LðM1 kM’Þ and p 2 LðM2Þ. If yes, we
can conclude M1 kM2 6� ’. If not, we cannot conclude
anything here and the flow goes to the timed verification
phase.

Timed verification phase. In this phase, the TL� algorithm is
used to learn the timed assumption A according to the AG-
NC proof rule such that M1 kM2 � ’ is proved or dis-
proved. The TL� algorithm constructs a timed assumption
A after several timed membership queries. The answer to
the timed membership query for a guarded word s is posi-
tive only if the behavior s does not violate the property ’

when interacting with M1, i.e., LðsÞ 6
 LðM1 kM’Þ. Basi-
cally, this is an emptiness problem of LðMs kM1 kM’Þ
where Ms is an ERA such that all the prefixes of s are
accepted by Ms . For a guarded word s ¼ ða1; g1Þða2;
gnÞ . . . ðan; gnÞ, we can easily construct Ms as shown in
Fig. 15b. The emptiness problem can be checked by timed
model checking.

The candidate query of the timed assumption A is
answered by the QcT algorithm, as given in Algorithm 4.
The details are described in the following:

1. If M1 k C � ’ and M2 � C, we can conclude
M1 kM2 � ’ (Lines 1-2 of Algorithm 4).

2. If M1 k C 6� ’, a counterexample p is given (Line 12).
We check whether the untimed trace ðpÞut is also an
untimed counterexample. If yes, the sequence of
events is wrong no matter how it is restricted by
time constraints and the projected counterexample
p#S is returned as a negative counterexample (Lines
13-14). If not, the sequence of events is allowed but
the time constraints of events lead to an error. The
strategy of refining the time constraints is as follows.
Given any clock constraint h in spðpÞ, if any event of
the counterexample makes h unsatisfiable, then p

will not violate the property ’ anymore (see Theo-
rem 3). Suppose the projected counterexample is
p#S ¼ ða1; g1Þða2; g2Þ � � � ðam; gmÞ. For simplicity, we
always select the clock constraint h ¼ xam�1 � xam� c
representing the time difference between the occur-
rences of am�1 and am. If am is not performed in

Fig. 14. Flow of compositional verification framework for timed systems.

Fig. 15. Prefix-accepting automata.
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½½xam�1� c 		, then h becomes unsatisfiable. Thus,
the negative counterexample ða1; g1Þða2; g2Þ � � � ðam;
xam�1 � cÞ is returned to the TL� algorithm (Lines
15-19).

3. If M1 k C � ’ but M2 6� C, a counterexample p is
given. We check whether LðpÞ 
 LðM1 kM’Þ. If yes,
we can conclude M1 kM2 6� ’ (Line 5). If not, p is a
positive counterexample. Note that each time a coun-
terexample is returned to TL�, some events in the
alphabet S might be split. We want to reduce the
split as much as possible. Thus, before directly
returning p to TL�, we try to find a counterexample
p0 similar to p but with less split of events in S. First,
we obtain a normalized behavior p0 w.r.t. S by
replacing each event/guard pair ða; gÞ appearing in
p with ða; g0Þ 2 S and ½½g		 
 ½½g0		 (Line 7). We consider
a behavior s1 � s2 where s1 ¼ ðp0Þi1 is a prefix of p0

and s2 ¼ ðpÞniþ1 is a suffix of p for i from n� 1 to 1
and n ¼ jpj. If Lðs1 � s2Þ 6
 LðM1 kM’Þ for some
1 � i � n� 1, then s1 � s2 is a better candidate than p

(Lines 8-9). Otherwise, p is returned (Line 10).

Theorem 3. Let p ¼ ða1; g1Þða2; g2Þ � � � ðan; gnÞ be a guarded
word. Given any clock constraint h 2 spðpÞ of the form xai�
xaj � c for some i and j, 1 � i < j � n, we can obtain
p0 ¼ ða1; g1Þ � � � ðaj; xai�cÞ � � � ðan; gnÞ and ai 6¼ aj 6¼ ak for
all k, j < k � n such that ½½spðpÞ		 \ ½½spðp0Þ		 ¼ ;.

Proof. Let � be the complement of �where the complement
of < ;�;�; > is �; > ; < ;�, respectively. xai � xaj rep-
resents the time difference between the occurrences of ai
and aj for some i and j, 1 � i < j � n. If aj is performed
when xai�c in p0 such that ak 6¼ ai and ak 6¼ aj for all k,

j < k � n, then xai � xaj is not changed after ai and aj
are performed and xai � xaj�c 2 spðp0Þ. Since ½½xai � xaj�
c		 \ ½½xai � xaj� c		 ¼ ; and xai � xaj� c 2 spðpÞ, we can
conclude ½½spðp0Þ		 \ ½½spðpÞ		 ¼ ;. tu

4.2 An Example

We use an example to illustrate the proposed framework.
Fig. 16 shows an I/O system [13] consisting of two compo-
nents, INPUT and OUTPUT. There are four events, input,
send, output, and ack in the system. The pairs of event-
recording clocks and their corresponding events are:
xi : input, xs : send, xo : output, and xa : ack. The model of
the INPUT component is shown in Fig. 16a. INPUT per-
forms an input event within one time unit once it receives
an ack event from OUTPUT. Subsequently, it performs a
send event to notify OUTPUT that an input event has been
performed and waits another ack event from OUTPUT. The
model of the OUTPUT component is shown in Fig. 16b.
After receiving a send event, OUTPUT performs an output
event within one time unit and then performs an ack event
within one time unit after the output event. The system
property ’, as shown in Fig. 16c, is that input and output
events should alternate and the time difference between
every two consecutive events should not exceed five time
units. The negation of the property is given in Fig. 16d
where t is the error location, and we assume that the nega-
tion of the property is specified by users.

We skip the details on the untimed verification phase,
which can be found in [13]. After the untimed verification
phase, the untimed assumption A2, as shown in Fig. 17b,
is learned by L� to prove ðINPUTÞut k ðOUTPUTÞut � ð’Þut.
We remark the assumption as A2 instead of A1 because it is
the second assumption generated in the untimed verifica-
tion phase. For simplicity, we omit non-accepting locations
of ERAs in the following. The untimed observation table of

Fig. 17. Untimed assumption A2.

Fig. 16. Models and property of the I/O system.
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A2 is shown in Fig. 17a. The flow goes to the timed verifica-
tion phase, and the untimed observation table is modified
into a timed version.

In the first iteration, the timed candidate query for A2 is
performed and the result is negative because INPUT k
A2 6� ’ with a counterexample p ¼ ðinput; xa � 1Þðsend;
xi � 1Þðoutput; xi > 5Þ. The counterexample projected to
SA is p0 ¼ ðsend; trueÞðoutput; trueÞ. The strongest post con-
ditions spðpÞ are as follows: xo ¼ 0, xs > 4, xi > 4, xa > 5,
0 � xi � xs � 1, 0 � xa � xs � 2, 0 � xa � xi � 1, xs � xo >
4, xi � xo > 5, and xa � xo > 5. We select xs � xo > 4, and
ðsend; trueÞðoutput; xs > 4Þ is returned to TL�. The observa-
tion table is split according to the returned counterexample
as shown in Fig. 18a and its corresponding ERA A3 is shown
in Fig. 18b.

In the second iteration, the timed candidate query for A3

is performed and the result is negative because
INPUT k A3 6� ’ with a counterexample p ¼ ðinput; xa �
1Þðsend; xi � 1Þðoutput; xs � 4Þðoutput; xs � 4Þ whose pro-
jection to SA is p0 ¼ ðsend; trueÞðoutput; xs � 4Þðoutput; xs �
4Þ. Because ðpÞut 2 LððM1Þut k ðM’ÞutÞ, the negative counter-
example p0 is returned to TL�. After analyzing p0, TL� adds
the witness suffix s2 ¼ ðoutput; xs � 4Þ into the set E as
shown in Fig. 19a. The corresponding ERA A4 is shown in
Fig. 19b.

In the third iteration, the timed candidate query for A4 is

performed and the result is still negative with a positive

counterexample p ¼ðsend; trueÞðoutput; xs � 1Þðack; xo � 1Þ.
The normalized counterexample w.r.t. SA is p0 ¼ ðsend; trueÞ
ðoutput; xs � 4Þ ðack; trueÞ. A better counterexample

ðp0Þ21 � ðpÞ33 ¼ ðsend; trueÞðoutput; xs � 4Þðack; xo � 1Þ is

returned to TL�. The observation table is split according to

the positive counterexample as shown in Fig. 20a, and the

third timed assumption A5 is constructed as shown in

Fig. 20b.
In the fourth iteration, the result of the timed candi-

date query for A5 is positive since INPUT k A5 � ’ and

Fig. 18. First timed assumption.

Fig. 19. Second timed assumption.

Fig. 20. Third timed assumption.
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OUTPUT � A5. By the AG-NC proof rule, the I/O sys-
tem satisfies the timed property ’ is concluded, and the
verification framework is finished. Although the size of
the assumption A5 is bigger than OUTPUT in this small
example, our experiments in Section 5 shows that the
proposed framework performs well in large scale
systems.

4.3 Correctness and Termination

Theorem 4. AG-NC for ERAs is sound and complete.

Proof. Given two system models M1, M2 and a property ’

represented by ERAs, to establish the soundness, we
want to prove that ðM1 k A � ’Þ ^ ðM2 � AÞ ! ðM1 k
M2 � ’Þ. Let us prove this by contradiction. Assume
M1 kM2 6� ’, which implies that there exists a guarded
word p such that LðpÞ 
 LðM1Þ, LðpÞ 
 LðM2Þ, and
LðpÞ 
 Lð’Þ. Because M2 � A, therefore LðM2Þ 
 LðAÞ,
which implies LðpÞ 
 LðAÞ. Thus we can conclude that
M1 k A 6� ’ because LðpÞ 
 LðM1Þ, LðpÞ 
 LðAÞ, and
LðpÞ 
 Lð’Þ, which contradicts to the promise M1 k
A � ’. To establish the completeness, given any two
ERAs M1 and M2 and a property ’ such that
M1 kM2 � ’, we can always choose M2 as the assump-
tion A to satisfy the rule because M1 kM2 � ’ and
M2 �M2. tu

Theorem 5. The proposed learning-based compositional verifica-
tion is sound and complete.

Proof. Our framework answers candidate queries needed
by TL� according to the AG-NC proof rule, i.e., it con-
cludes M1 kM2 � ’ when both M1 k A � ’ and M2 � A
hold. By Theorem 4, the AG-NC proof rule is sound for
ERAs, which implies our framework is sound. On the
other hand, our framework returns a counterexample p

only if LðpÞ 
 LðM1 kM’Þ and LðpÞ 
 LðM2Þ, which
implies that M1 kM2 6� ’. Given any two ERAs M1 and
M2 and a property ’ such that M1 kM2 � ’, our frame-
work learns an assumption as M2 in the worst case,
which implies our framework is complete. tu

Theorem 6. The proposed learning-based compositional verifica-
tion terminates.

Proof. The proposed framework consists of two phases. The
overall framework is terminating because both phases
are terminating. In [13], it has been already proven that
the untimed verification phase is terminating. Here, we
only have to prove that the timed verification phase is
terminating. In any iteration of the timed verification
phase, our framework either concludes whether
M1 kM2 � ’ holds and then terminates, or continues by
providing counterexamples to the TL� algorithm. Since
the target ERA to be learned by TL� is the weakest
assumption Aw, by the correctness and termination of
TL� in Theorem 1, it eventually constructs Aw in some
iteration. In this iteration, Aw will pass the check
M1 k Aw � ’ according to the definition of the weakest
assumption. We then check whether M2 � Aw holds. If
M2 � Aw, then M1 kM2 � ’ is concluded, and the frame-
work terminates. If M2 6� Aw, then M1 kM2 6� ’ is con-
cluded, and the framework also terminates and returns a
counterexample LðpÞ 
 LðM2Þ n LðAwÞ. tu

Generalization. The proposed compositional framework for
verifying timed systems is presented in the context of two
components. If a system consists of n components modeled
by M ¼ fM1;M2; . . . ;Mng where n � 3, one intuitive
approach to generalize our framework is to partition the
components into two higher level components to fit the AG-
NC proof rule, e.g., if n ¼ 4, we can obtain H1 ¼M1 kM2

and H2 ¼M3 kM4 and apply our approach on H1 and H2.
Another way is to recursively apply the AG-NC proof rule,
which constitutes the following generalized AG-NC proof
rule for n components for n � 2:

M1 k A1 � ’

M2 k A2 � A1

..

.

Mn�1 k An�1 � An�2
Mn � An�1

M1 kM2 k . . . kMn � ’:

Currently, we adopt the first approach to partition com-
ponents into two groups. However, we found that the ways
of partitioning components affect the verification result sig-
nificantly. An investigation [14] reported that finding the
best partition is hard. In our implementation, we use a heu-
ristic that collects in H1 the components containing the
events specified in the property, and the heuristic yielded
good performance in most of the cases in our experiments.

5 EXPERIMENTAL RESULTS

The proposed learning-based compositional verification
framework for timed systems has been implemented in the
PAT model checker [36] such that PAT can automatically
generate the assumptions for assume-guarantee reasoning
when verifying timed systems modeled by ERAs. To dem-
onstrate the feasibility and benefits of the framework, three
applications were modeled and verified.

� GSS. A gas station system [18] consists of five com-
ponents: one operator, one queue, one pump, and
two customers. Two customers can fill gas at this gas
station. Properties require that customers should be
served in order and that each customer can start fill-
ing gas within three time units after payment.

� Flexible manufacturing system (FMS). A flexible
manufacturing system [33] produces blocks with a
cylindrical painted pin from raw blocks and raw
pegs. It consists of 14 devices: three conveyors, two
mills, a lathe, a painting device, six robots, and an
assembly machine. The devices are connected
through nine buffers, and the capacity of each buffer
is one. We modeled the FMS system in a constructive
way such that four versions of models have been
obtained, namely FMS-1 (the simplest one), FMS-2
(the medium one), FMS-3 (a complex one), and FMS-
4 (the most complex one). Properties require that
each buffer should not overflow or underflow and
that output of each buffer should be within three
time units after its input.

� AIP. The AIP manufacturing system [24] produces
two products from two different materials. It consists
of ten components: an I/O station, three transport
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units, two assembly stations, three external loops,
and a central loop. Properties require that the routes
of the two materials should be opposite and output
of each loop should be within three time units after
its input.

The ERA models of the applications, the verified proper-
ties, and the PAT model checker can be found in [1]. Tables
1, 2, 3, 4, 5, 6 show the detailed verification results for each
property of the three timed systems using the proposed
approach and traditional monolithic timed model checking
that constructs the timed global state space based on zone
abstraction, respectively. The experimental results were
obtained by running the PAT model checker on a 64-bit
Windows 7 machine with a 23:4 GHz Intel(R) Core(TM) i7-
2600 processor and 8 GB RAM.

As mentioned in the end of Section 4.3, for a system with
more than two components, the way of partitioning them

into two groups (M1 and M2) affects the verification result
significantly. Thus, we also compare the results of applying
our partition heuristic (c.f. Section 4.3) with those without
any heuristic. We randomly generate five different parti-
tions, and calculate the average results for the compositional
approaches with and without our partition heuristic. The
randomly generated partitions and the detailed verification
results for each partition can be found in [1].

For the results of GSS and FMS-1 in Tables 1 and 2, the
system size in terms of the number of locations is small and
our compositional approach does not outperform the mono-
lithic approach and even consumes more memory because
of the overhead of learning iterations.

For the results of the FMS-2 system, as shown in Table 3,
the compositional approach without the partition heuristic
outperforms the monolithic in most of the cases expect
Specs 2, 4, and 6. In Spec 2, the randomly generated

TABLE 1
Verification Results of GSS

TABLE 2
Verification Results of FMS-1

TABLE 3
Verification Results of FMS-2

TABLE 4
Verification Results of FMS-3
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partitions are not good, and it takes eight times of candidate
queries in average to learn the assumption, which is even
worse than the monolithic approach. With our partition
heuristic, it only takes one candidate query to learn the
assumption, which significantly speeds up the verification
process. In Specs 4 and 6, the properties are violated. If the
verified property is violated, the monolithic verification
might find a counterexample faster than the compositional
approach because of the on-the-fly technique, which termi-
nates the verification once a counterexample is found to
avoid constructing the whole state space.

For the results of the FMS-3 system as shown in
Table 4, the compositional approach without the partition
heuristic outperforms the monolithic one in all cases
where the properties are satisfied because the learning
iterations compensate for the large global state space such
that the verification time and the memory usage are sig-
nificantly reduced. In addition, with the partition heuris-
tic, the verification time and memory usage are even
further reduced dramatically.

For the results of the FMS-4 system as shown in
Table 5, the monolithic approach cannot even finish the
verification for each satisfied properties using 8 GB
memory, while the compositional approach without the
partition heuristic can finish the verification for all prop-
erties except for Spec 7. In the case of Spec 7, two ran-
domly generated partitions are not good and cannot be
verified by the compositional approach without the par-
tition heuristic using 8 GB memory. With the partition
heuristic, the total verification time only takes less than
36 seconds, and the maximal memory usage is less than
82 MB, which is a significant improvement.

The verification results for AIP are shown in Table 6.
For Spec 9, the compositional approach without the par-
tition heuristic performs seriously worse than the mono-
lithic one because some generated partitions are very
bad, which need 45 candidate queries in average (each
of which requires model checking). Again, the partition
heuristic improves the performance significantly. We can
observe that the way of partitioning components really
dominates the performance of the learning-based compo-
sitional verification.

We also compared the verification time between our
approach and UPPAAL [2]; however, we do not list the veri-
fication time of UPPAAL for the AIP system because
UPPAAL does not support events on transitions so that the
AIP system cannot be modeled in UPPAAL. Our composi-
tional approach with the partition heuristic outperforms
UPPAAL in all cases. For FMS-4, UPPAAL cannot even ver-
ify the satisfied properties using 8 GB memory.

6 RELATED WORK

Model checking [10], [32] suffers from the state space explo-
sion problem, especially for timed systems. To alleviate the
problem, Pnueli first proposed the assume-guarantee para-
digm [31] to verify system components individually and
use the individual verification results to deduce additional
properties of the system. Clarke et al. [12] used interface
processes to model the abstract environment for a compo-
nent, which is much smaller than the real one, such that the
state space is reduced. For formal verification that is not
based on model checking, Xu et al. [37] proposed a proof
system based on the assume-guarantee paradigm for

TABLE 6
Verification Results of AIP

TABLE 5
Verification Results of FMS-4 (ROM: Run Out of Memory)
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verifying shared variable concurrent programs. Henzinger
et al. [20] reported several case studies about applying
assume-guarantee reasoning on real world systems.

For model checking of timed systems, Laroussinie and
Larsen [23] proposed a technique to transform the property
w.r.t. individual components one by one using quotient
construction such that the global state space need not be
generated, but the minimization for the transformed prop-
erty is needed because repeated quotient constructions lead
to an explosion on the transformed property.

Cobleigh et al. [13] proposed a framework that generates
the abstract environment of components automatically
using the L� algorithm [5]. This work is a pioneer of auto-
mating the untimed compositional verification based on
learning techniques. Consequently, several improvements
[9], [15], [35] have been proposed to further reduce the com-
plexity. These improvements focus on reducing the size of
the alphabet during learning, which dominates the time
complexity of the membership query in the L� algorithm.
Inspired by Cobleigh et al. [13], Lin and Hsiung [26] pro-
posed a compositional synthesis framework which can help
a system designer to automatically synthesize component
models to satisfy the given property based on the L� algo-
rithm and causality semantics.

Barringer et al. [6] also used the L� algorithm to learn
assumptions automatically for AGR with the circular and
symmetric (AGC) proof rule as shown in Fig. 21. In contrast
to the AG-NC proof rule, the components of the system do
not have to be grouped when applying the AGC proof rule.
However, the number of premises to be proved in the AGC
proof rule and the number of assumptions to be learned
increase linearly with the number of the components. To
reduce the number of premises and assumptions, Nam and
Alur [30] proposed a method to automatically group the n
components into m groups, where m < n, by reducing the
problem to the hypergraph partition problem. Alur et al. [4]
proposed a symbolic implementation of AGR for the AGC
proof rule. They used binary decision diagrams (BDD) [8] to
symbolically encode the observation table maintained by
the L� algorithm.

However, the works based on the L� algorithm men-
tioned above are only applicable for untimed systems. To
infer timed assumptions for AGR, a learning algorithm
for timed models is needed. Grinchtein et al. [16] pro-
posed three algorithms TL�sg, TL

�
nsg, and TL�s for learning

ERAs. Their learning algorithms deal with timed words,
while our TL� algorithm deals with guarded words. Theo-
retically, they are not comparable since the target words
to be dealt with are different. More specifically, the learn-
ing problem handled by Grinchtein et al. [16] is more dif-
ficult because the interface between the learning
algorithm and the Teacher is based on timed words and

the learning algorithm has to actively infer the time con-
dition of each event.

We briefly introduce the TL�sg algorithm here to see how
TL�sg and TL� perform in the context of the goal of this work,
compositional verification. Grinchstein et al.’s TL�sg algo-
rithm consists of two components, namely a learner and an
assistant, as shown in Fig. 22. The learner acts almost like
the L� algorithm except that it interacts with the assistant
instead of the Teacher and asks membership queries for
guarded words instead of untimed words. The assistant
translates a membership query for a guarded word into sev-
eral membership queries of timed words and forwards
these translated membership queries to the Teacher. After
getting the results of membership queries of timed words
from the Teacher, the assistant returns the result of the
membership query for the guarded word to the learner
according to the results from the Teacher.

Let us use the example in Section 3.2 for illustration. Sup-
pose the timed language to be learned is accepted by the
ERA as shown in Fig. 6a. The TL�sg algorithm assumes that
the maximum constant of the clock guard, K, is known
(here, K ¼ 3). Note that our TL� algorithm does not make
this assumption. For each event, TL�sg actively guesses all
possible guards for the event. In this example, all the possi-
ble guards for event a are as shown in the first 2-11 rows in
Fig. 23. For the membership query of the guarded word
ða; 1 � xa � 3Þ, the assistant performs the membership
queries for the following timed words: ða; 0Þ, ða; 1Þ, ða; 2Þ,
ða; 3Þ, and ða; 4Þ. According to the results from the Teacher,
the assistant finds that 1 � xa � 3 is not the sharpest guard
[16] for event a (the sharpest guard is xa ¼ 1). Thus, the
assistant answers “no” to the learner for the guarded word
ða; 1 � xa � 3Þ. The final closed observation table is as
shown in Fig. 23, and the final learned ERA is as shown in
Fig. 10b.

From the example, we can observe that the number of
membership queries increases exponentially toK, the maxi-
mum constant [16]. If we change K from 3 to 1;000 in this
example, Grinchstein et al.’s TL�sg algorithm requires a huge
number of membership queries, which makes it unsuitable
to be used in compositional verification setting. This is
because the learning problem in the context of composi-
tional verification is not as difficult as that in [16]. In our set-
ting of using TL� to learn timed assumptions for AGR, the
Teacher can be the most friendly one since the component
models are transparent to model checking.

Gheorghiu et al. [15] used the abstraction-refinement par-
adigm [11] to infer the necessary alphabet of the untimed
assumption A for AGR. Howar et al. [22] also used the para-
digm on the alphabet for inferring abstract automata with

Fig. 22. Interaction between TL�sg and Teacher.

Fig. 21. The AGC proof rule.
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respect to given concrete behavior such that determinism is
preserved. Our TL� algorithm may benefit from the abstrac-
tion refinement paradigm if the alphabet of the ERA to be
learned can be smaller.

7 CONCLUSION AND FUTURE WORK

Assume-guarantee reasoning can help to alleviate the state
explosion problem. However, constructing assumptions for
AGR usually requires human creativity and experience. To
automate compositional verification for timed systems, we
propose a framework consisting of a learning algorithm and
a timed teacher. The algorithm, TL�, automatically learns
the timed assumption by asking membership and candidate
queries, and the timed teacher answers the queries based on
the AG-NC proof rule of AGR. With the proposed frame-
work, compositional verification for timed systems is fully
automated, and the state explosion problem can be effec-
tively alleviated. In the future, we plan to extend the TL�

algorithm with one-phase learning instead of two phases
and to investigate the differences between them. We also
plan to use different techniques to generate the assumptions
as well as to extend the framework using other proof rules
of AGR.
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