
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2014

Towards formal modelling and verification of pervasive Towards formal modelling and verification of pervasive

computing systems computing systems

Yan LIU

Xian ZHANG

Yang LIU

Jin Song DONG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LIU, Yan; ZHANG, Xian; LIU, Yang; DONG, Jin Song; SUN, Jun; BISWAS, Jit; and MOKHTARI, Mounir.
Towards formal modelling and verification of pervasive computing systems. (2014). Lecture Notes in
Artificial Intelligence. 8780, 62-91.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4981

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4981&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4981&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yan LIU, Xian ZHANG, Yang LIU, Jin Song DONG, Jun SUN, Jit BISWAS, and Mounir MOKHTARI

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4981

https://ink.library.smu.edu.sg/sis_research/4981

Towards Formal Modelling and Verification
of Pervasive Computing Systems

Yan Liu1(B), Xian Zhang1, Yang Liu2, Jin Song Dong1, Jun Sun3,
Jit Biswas4, and Mounir Mokhtari5

1 School of Computing, National University of Singapore, Singapore, Singapore
{yanliu,zhangxi5,dongjs}@comp.nus.edu.sg

2 School of Computer Engineering,
Nanyang Technological University, Singapore, Singapore

yangliu@ntu.edu.sg
3 Singapore University of Technology and Design, Singapore, Singapore

sunjun@sutd.edu.sg
4 Networking Protocols Department,

Institute for Infocomm Research, Singapore, Singapore
biswas@i2r.a-star.edu.sg

5 CNRS-IPAL, Institut TELECOM, Paris, France
Mounir.Mokhtari@it-sudparis.eu

Abstract. Smart systems equipped with emerging pervasive computing
technologies enable people with limitations to live in their homes inde-
pendently. However, lack of guarantees for correctness prevent such sys-
tem to be widely used. Analysing the system with regard to correctness
requirements is a challenging task due to the complexity of the system and
its various unpredictable faults. In this work, we propose to use formal
methods to analyse pervasive computing (PvC) systems. Firstly, a for-
mal modelling framework is proposed to cover the main characteristics of
such systems (e.g., context-awareness, concurrent communications, lay-
ered architectures). Secondly, we identify the safety requirements (e.g.,
free of deadlocks and conflicts) and specify them as safety and liveness
properties. Furthermore, based on the modelling framework, we propose
an approach of verifying reasoning rules which are used in the middle-
ware for perceiving the environment and making adaptation decisions.
Finally, we demonstrate our ideas using a case study of a smart health-
care system. Experimental results show the usefulness of our approach in
exploring system behaviours and revealing system design flaws such as
information inconsistency and conflicting reminder services.

1 Introduction

Pervasive computing(PvC) aims to provide people with a more natural way to
interact with information and services by embedding computation into the envi-
ronment as unobtrusively as possible [1,2]. With the rapid increase of ageing
population in all industrialised societies which raised serious problems, smart

c© Springer-Verlag Berlin Heidelberg 2014
R. Kowalczyk and N.T. Nguyen (Eds.): TCCI XVI, LNCS 8780, pp. 62–91, 2014.
DOI: 10.1007/978-3-662-44871-7 3

Towards Formal Modelling and Verification of Pervasive Computing Systems 63

healthcare systems equipped with PvC technology are greatly needed to assist
the independent living of elderly people. Such systems make it possible for
elderly people to stay in their homes longer and manage everyday tasks without
significant burden for their caregivers [3]. PvC systems are context-aware and
adaptable to the evolving environment [4]. The changes in the environment are
monitored and recorded in the system as contexts. If a particular event happens,
the system is able to adapt itself to the changes. As shown in Fig. 1, a typical
PvC system usually involves sensors to monitor environment changes, a residen-
tial getaway to translate the raw sensor data to low-level contexts, an inference
engine to aggregate these contexts and perform user activities recognition and a
reminder service to render a proper reminder for a proper user. Consequently, the
heterogeneity of technology and massive ad hoc interactions among layers make
PvC systems highly complicated [5]. Additionally, various environment inputs
and unpredictable user behaviours cause the system behaviours beyond control,
especially when multiple users are interacting with the system simultaneously.

Fig. 1. A typical PvC system

Therefore, it is a challenging task to guarantee the correctness of such sys-
tems. Traditional validation methods such as simulation and testing have their
limitations in performing this task. By nature, these methods only cover partial
system behaviours based on the selected scenarios. Nevertheless, it is costly and
time consuming to perform testing on practical systems which may require all

64 Y. Liu et al.

sensors to be deployed and normal persons to act like real users. Furthermore, it
is impossible to generate all kinds of environment inputs and simulate the user
behaviours, especially when more than one users are interacting with the system.
Last but not least, if an error is found, it is very hard to pinpoint the source since
faults could appear in multiple layers such as the hardware fails to response, a
reasoning rule is falsely defined or a bug is in the software system.

In order to overcome these limitations, we propose to use formal methods in
the early design stage to analyse PvC systems. By a proper abstraction of the
system, we are able to formally describe the system behaviours and user actions
using current modelling constructs. Based on the modelling, the correctness and
safety requirements can be formally specified as properties that are verifiable
against the model. Existing verification techniques are reused to validate the
properties by an exhaustive search of the complete system states. Counterexam-
ples are generated to give clues for debugging. The contributions of our work are
four-folds as explained below.

Firstly, we propose a framework to formally model the system design and the
environment inputs. Important characteristics of PvC systems such as context-
awareness, layered architecture and concurrent communications are discussed.
Modelling patterns for these features are provided and illustrated with exam-
ples. In this work, we adopt CSP# [6] as the exemplar modelling language for
its rich set of syntax and many extensions. Dong et al. [7] and Coronato et al. [8]
proposed to model such systems using TCOZ [9] and Ambient Calculus [10]
respectively. Although these languages are good at modelling the communica-
tions and mobility features respectively, the support for modelling hierarchical
structures is limited. Most importantly, there is very little tool support for these
languages, which limits the usage and applicability of their approaches.

Secondly, we propose critical properties and their specification with regards
to the correctness requirements from stakeholders (system designers and end
users). In the state of art, Arapinis et al. in [11] proposed some critical require-
ments of a homecare system. For instance, “Sensors are never offline when a
patient is in danger” or “If a patient is in danger, assistance should arrive within
a given time”. In our work, we classify the critical requirements into safety prop-
erties (nothing bad happens) and liveness properties (something good eventually
happens). Furthermore, formal specification patterns of these properties are pro-
posed. As a result, we can verify the critical properties against the system design
model by using automatic verification techniques like model checking [12]. Hence,
design flaws can be detected at the early design stage.

Thirdly, based on the modelling framework, we propose an approach of auto-
matic rules verification. Rules in PvC systems play a critical role. They are used
to aggregate and reason the context data and decide on the adaptation deci-
sions. As shown in Fig. 1, based on the contexts that person in the shower room,
using shower tap and tap on for 30 min, the abnormal behaviour, “showering
too long” is recognised. The rule defined for this behaviour is triggered and the
adaptation decision is to prompt a reminder asking the person to stop showering.
Generally speaking, these rules decide the responsive behaviours of the system

Towards Formal Modelling and Verification of Pervasive Computing Systems 65

to the users. Thus, it is essential to assure the correctness of these rules. In the
literature, there is very limited work, e.g., [13,14] on rules verification in PvC
domain. Most of these existing works are not directly applicable to our system.
It is because they are limited to syntactic checking of relations between rules.
The contribution of our work lies in redefining rule anomalies based on their exe-
cution behaviours and detecting these anomalies with the changing knowledge
base.

Stakeholders:
Nurses,
Engineers

Collecting
Descriptions

Modelling
Framework:
EnvModel ,
SystemModel

Collecting
Requirements

Property
Specification:
Safety ,
Liveness

Model
Checkers

Good
behaviours

Bad
behaviours

counterexamples

Fig. 2. Formal analysis workflow

Finally, we demonstrate the usefulness of our approach using a case study
of a smart healthcare system for mild dementia patients, AMUPADH [15]. A
typical workflow of this formal analysis process is shown in Fig. 2. We start
the project with collecting requirements through multiple visits to the nursing
home and interviews of nurses/doctors. From discussions with system design-
ers, we learn that AMUPADH is a typical PvC system which incorporates sen-
sors and a reasoning engine to understand the patients’ intentions and provides
reminder services to help them. Additionally, AMUPADH has a multi-person
sharing environment which exhibits additional complexity in terms of concur-
rent interactions. Then, we model the user behaviours and system design based
on our modelling framework using CSP# language. Critical properties such as
deadlock freeness, guaranteed reminder service and conflicting reminders tests
are verified using PAT model checker [16] Multiple unexpected bugs such as
information inconsistency are exposed.

Rest of the paper are organised as Sect. 2 introduces the motivating example
AMUPADH system; Sects. 3 and 4 demonstrates our modelling framework of
PvC systems and specifications of critical requirements for verification; Sect. 5
presents the rules verification using our modelling framework. Case study on
AMUPADH comes in Sect. 6. Section 7 discusses the related work while Sect. 8
concludes the paper with future directions.

66 Y. Liu et al.

2 A Motivating Example: AMUPADH - An Ambient
Assisted Living System for Dementia Healthcare

Dementia is a progressive, disabling, chronic disease common in elderly people.
Elders with dementia often have declining short-term memory and have difficul-
ties in remembering necessary activities of daily living (ADLs). However, they
are able to live independently or in assisted living facilities with little super-
vision. Ambient Assisted Living (AAL) systems equip the environment with a
spectrum of computation and communication devices that seamlessly augment
human thoughts and activities. AMUPADH is an AAL system deployed in a
Singapore Based nursing home, Peaceheaven Nursing Home1. It is able to mon-
itor the patients’ behaviours using activity recognition techniques (sensors and
reasoning rules) and offer help to the patients (prompt reminders through actu-
ators such as speakers etc.).

Fig. 3. An overview of the smart bedroom system

2.1 System Overview

The architecture of the system is shown in Fig. 3. The system is deployed in a
room with two beds and a shower room. Different kinds of sensors are deployed to
capture environment changes. For instance, the pressure sensor under a mattress
is used to detect whether the bed is empty or occupied. Sensors communicate
with the middleware via wireless network. The controller in the middleware
translates sensor signals into low-level contexts from which high-level contexts
are inferred by the reasoning engine. This reasoning task is performed based on
a set of predefined rules written in Drools2 which is a rule language based on
First Order Logic. Evaluation of these rules is triggered by a sensor message or
periodically by a timer. In the case that a rule is satisfied, the system will adapt
to a new state by updating internal variables or invoking reminder services. For
example, if the activity of patient sleeping on a wrong bed is recognised, the
system will prompt a reminder requesting him to use his own bed.
1 Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.
2 Drools Expert: http://www.jboss.org/drools/drools-expert.html

Towards Formal Modelling and Verification of Pervasive Computing Systems 67

Bedroom

Bathroom & Toilet

I

I

I I
Bed 1 Bed 2

P P

M
V

Legend: RFID Reader Pressure Sensor

Motion Sensor Vibration Sensor
(Shake)

I P

M V

V

Fig. 4. Sensor layout in the bedroom

2.2 Sensors

In AMUPADH, four types of sensors are deployed in the bedroom and shower
room to monitor the activity of dementia patients as shown in Fig. 4.

– RFID Reader is for identification and tracking. There are two readers placed
beside the doors to detect who has entered the rooms respectively and two
attached to each bed to identify who is using the bed. Each patient is wearing
an RFID tag placed in a wrist band.

– Pressure Sensor is placed under the mattress of each bed to detect activities
in bed, e.g., sitting or lying.

– Shake Sensor can detect vibration. They are attached to water pipe and
soap dispenser for sensing the usage of water tap and soap respectively.

– Motion Sensor (A.K.A. passive infrared sensor (PIR)) can measure infrared
light radiating from objects in its range. It is used to detect the presence of
the patient in the shower room.

2.3 Controller

In the Controller, contexts are managed and inferenced. It has two components
i.e., the Main Interface interprets the sensor signals and triggers the evaluation
of all rules when a sensor message arrives; the Context Checker evaluates all rules
every 5 min. The value is carefully tuned by system engineers in consideration
of energy saving and slow user movements in AMUPADH system. The context
checker is an additional step to make sure the consistency of contexts. The
rules are written in Drools and evaluated by the business rule engine, Drools
Expert. They are specified with a name, a condition formed of predicates and
the adaptation actions. For example, the rule for detecting sitting bed for too
long is specified as follows.

68 Y. Liu et al.

rule "personA sat on Bed A for too long (30mins)"

when

Sensor(id == "pressureBedA", pressureState ==

Sensor.pressure_state.SITTING, duration > 30)

$x : XMPPInterface()

then

$x.SendData("ACTIVITY.error."+"SitBedTooLong"+"." +"personA");

end

The condition of this rule consists of three context variables: the sensor’s id ,
status and timer. This rule can be interpreted as: the message ACTIVITY .error .
SitBedTooLong .personA will be delivered to the reminding system if the SITTING
status of pressure sensor on bed A has lasted for more than 30 min. The messages
are sent out via a shared bus. The full set of 23 rules used in the system is listed
in [17].

2.4 Reminding System

The reminding system in the application layer activates/deactivates reminders
based on the incoming messages from Controller . For example, if the message
is ACTIVITY .error .SitBedTooLong .personA, the reminding system decodes it
and knows patient A (named Jim) has sleeping problems. Thus it invokes a
speaker and prompts ‘Jim, you have been sitting on bed for a long time, please
go to sleep’. This reminder will be continuously repeated until proper actions
have been taken. If the prompts reach the maximum number, an alert will be
sent to nurses.

3 A Modelling Framework for PvC Systems

The general picture of a PvC system is shown in Fig. 5. The system adopts a
layered design and seamless interacts with the environment. Modelling of a PvC
systems involves not only the modelling of important features of each important
component but also the modelling of the environment inputs which play an
important role in PvC systems but is often ignored in most system models.

3.1 Modelling Environments

PvC systems seamlessly interact with the environments and acquire context
inputs from the users and objects like TVs and Beds. PvC systems are often
driven by the environment context change (we call it scenario here). For exam-
ple, a person entering an empty room will trigger the lights to be switched on;
or when the system detects the time is 9:00pm, a take-medicine-reminder will be
sent to the patient. Thus, it is important to model the scenarios with the system
design. Meanwhile, the scenario model is also important for generating mean-
ingful counterexamples so as to alleviate the burden of analysing verification
results.

Towards Formal Modelling and Verification of Pervasive Computing Systems 69

Fig. 5. Architectures of PvC systems

Modelling Activities and Environment Objects. User behaviours are various and
usually unpredictable. For most PvC systems, we can observe that: (1) the sys-
tem usually targets a certain group of activities and ignores other irrelevant
ones; (2) relevant user activities are determined but the order of them is unpre-
dictable. For instance, after entering a room, a person may directly go to sleep or
he could possibly enter the shower room for other activities. In practice, targeted
activities can be provided by system designers. We use a shower room scenario
to demonstrate the modelling patterns.

In the shower room, a user performs many activities such as wandering or
turning on the shower tap. These activities can be modelled as events which
are abstractions of the observations. For example, an activity represented as
event exitShowerRoom is an observation of the user’s behaviour of leaving the
shower room. However, it requires more advanced language constructs such as
non-deterministic choices to model all possible orders of activities. We explain
the idea using a CSP# model of the shower room scenario. All the possible
activities the patient can do in the room are modelled as different choices and
they are enclosed into a process named PatientShowerRoom.

PatientShowerRoom() = exitShowerRoom → PatientOutside()

� turnOnTap → PatientShowerRoom()

� turnOffTap → PatientShowerRoom()

� wandering → PatientShowerRoom()

� useSoap → PatientShowerRoom();

Here, the operator � represents the non-deterministic choice. It operates this
way that the process PatientShowerRoom randomly chooses an activity such as
turnOnTap to execute. Then it may transfer control to itself again and choose

70 Y. Liu et al.

useSoap to execute. It is guaranteed that all possible orders of activities are
generated using state space exploration techniques like model checking.

However, there might exist some unrealistic orders of events. For example,
there is a sequence which contains two consecutive events of turnOnTap. Obvi-
ously, the patient cannot perform turning tap on activity again if the tap is
turned on already. In order to eliminate such cases, we need to model these con-
straints such that the patient’s behaviour is synchronised with the status of the
object being used. In fact, it is essentially the problem of modelling synchro-
nous behaviours. We propose to use event synchronisation in CSP# and give an
example of shower tap model in the following. Other ways of modelling such as
using a global variable or synchronous channels are also possible.

ShowerTap() = turnOnTap → turnOffTap → ShowerTap();

Env() = PatientShowerRoom() ‖ ShowerTap();

The constraint of using tap behaviours is modelled as if turnOnTap event hap-
pens, it will be disabled until the turnOffTap activity is performed. The two
processes PatientShowerRoom and ShowerTap are composed to be a complete
model of the environment, Env . Here, the operator ‖ denotes parallel composi-
tion. Its operational semantic says that the executions of the composed processes
must be synchronised on common events appearing in all of them. Interested
readers can refer to [6] for more details. Here, the turnOnTap event becomes a
common event between the two processes.

Modelling Location Transitions. While modelling the patients behaviours, we
divide the activities according to the locations where they can be performed.
In the PatientShowerRoom model, if the event exitShowerRoom is engaged, the
process will pass control to the PatientOutside process. Thus, only activities
outside can be selected to run while activities in the shower room are disabled.
This modelling approach is to reflect the location transitions in the model and
to generate realistic sequences of activities.

Modelling Multiple Users. In multiple-user sharing environment, the activities
that different users can perform in a certain location are usually the same. How-
ever, in some cases, these activities need to be differentiated. For example, in
AMUPADH, the system tracks different patients using RFID tags. Thus, the sit-
ting on bed behaviour performed by patient1 and patient2 are different from the
system’s point of view. We model this requirement using the process parameters
and events with indexes. In the following, we provide the behaviour model of the
patient using bed where identify information is important.

PatientBed(i) = sitOnBed.i → PatientBed(i)

� lieOnBed.i → PatientBed(i)

� leaveBed.i → PatientBed(i);

Parameter i in process PatientBed(i) represents the identity of the patients.
This identity variable is also attached to events so as to differentiate the activities
performed by different patients.

Towards Formal Modelling and Verification of Pervasive Computing Systems 71

3.2 Modelling System Design

PvC systems share the features such as layered architecture and concurrent
communications. In the following, we discuss these common features and their
modelling layer by layer.

Modelling Sensor Layer. There are a lot of interesting problems in this layer.
First of all, there are different communication patterns like synchronous com-
munication or asynchronous message passing. These communications form the
basic functionality of sensors. Additionally, different sensors have different fre-
quencies of sending messages. For example, RFID reader sends a signal to system
every 1 s while pressure sensor sends every 10 s. This issue may cause the sys-
tem to make wrong adaptations since the information of the environment may
not be completely refreshed at some time point. Finally, sensors have limited
power supply and may fail from time to time. These two problems regarding the
different sending rates and unstable working conditions of sensors create many
uncertainties in PvC systems.

Nonetheless, problems might also exist in the wireless network such as mes-
sage loss. We skip this part since research of model checking wireless networks
has been done extensively in the literature [18]. The details about signal encod-
ing/decoding and message transmission via wireless networks are abstracted
away for simplicity in our work.

Modelling Concurrent Interactions. Sensors interact with the environment by
detecting events and report sensed contexts by transmitting signals to middle-
ware. The behaviours of detecting and transmitting can be abstracted to two
modelling patterns which are synchronous events and message passings respec-
tively. Event synchronisation has been introduced in Sect. 3.1. As for message
passing, there are different modelling patterns in different languages. Some lan-
guages support synchronous channels through which the sending and receiving
events are synchronised. In other languages, broadcast channels or asynchronous
channels with buffers are supported. In the following, we model the shake sensor
using a synchronous channel.

channel port 0;

Shake_Sensor() = (turnOnTap → port!Shake.UnStationary → Skip

� turnOffTap → port!Shake.Stationary → Skip

); Shake_Sensor();

Here, port is the synchronous channel defined for the shake sensor to commu-
nicate with middleware. Shake, UnStationary and Stationary are integer con-
stants representing the sensor’s ID and possible statuses. In the model, the shake
sensor sends out the signal UnStationary when the tap is turned on. Note that
CSP# supports multi-process synchronisation that the event turnOnTap can be
synchronised in all three processes.

Modelling Frequency. Sensors are tuned to have different sending rates due to
their functionalities and the purpose of saving energy. However, if the rates

72 Y. Liu et al.

are not carefully calculated, the system may work incorrectly. To analyse these
behaviours, we propose to use timed modelling languages such as Stateful Timed
CSP (STCSP) [19]. Timed Automata (TA) [20] is not suitable in this case
because the hierarchal modeling is not supported in TA. The modelling pat-
tern of sending rates using STCSP would be as follows.

FSR_Sensor() = (sitOnBed � port!FSR.Sitting � Skip

� lieOnBed � port!FSR.Lying � Skip

� leaveBed � port!FSR.Empty � Skip

� nothing � port!FSR.Empty � Skip

); Wait[10]; FSR_Sensor();

Here, operator � denotes the urgent event in its left hand side which cannot
be interleaved by other timed events. Wait [t] is the syntax to model the process
idling for t time units. The above process models the periodic sensing behaviours
of the pressure sensor which senses the pressure on the bed for every 10 time
units. Its status is transmitted immediately after the sensing.

Modelling Sensor Failures. Sensors have limited accuracy that they may fail to
detect certain events. They could also run out of battery and fail to send the
signals. Intuitively, we model this with probabilistic modelling constructs, e.g.,
Probabilistic CSP# (PCSP#) [21], Probabilistic Timed Automata (PTA) [22].

RFID_Reader() = enterBedroom.1 → port!RFID.PersonA → Skip

� enterBedroom.2 → port!RFID.PersonB → Skip;

MalSensor() = pcase{ 9: RFID_Reader()

1: fail → Skip }; MalSensor();

Here, pcase is a syntax for modelling probabilities. 9 and 1 are probability
weights here. This process models that the RFID reader works correctly with
probability of 90 %.

In summary, different issues in the sensor layer can be modelled using differ-
ent language constructs. Notice that the two modelling languages (i.e., STCSP,
PCSP) we adopted are both extensions of CSP# language. As demonstrated in
above examples, our intention is that it is easy to start with a simple model and
extend it with richer features with minimum efforts.

Modelling Middleware Layer. As shown in Fig. 5, middleware performs
the tasks of managing and reasoning contexts as well as making adaptation
decisions. Messages received from sensors will trigger an update of the system
knowledge/contexts. The status of a sensor is one kind of contexts. Context vari-
ables are modelled using shared variables in supporting modelling languages.

Furthermore, the reasoning engine performs reasoning by evaluating prede-
fined rules whose conditions are propositions of context variables. A common
practice for specifying rules is to use guarded processes or if-else statements.
The following example models the rule in Sect. 2.3 in CSP#:

Towards Formal Modelling and Verification of Pervasive Computing Systems 73

Rule() = if(sensors[Pressure_Sensor] == SITTING &&

Duration[Pressure_Sensor] > 30){
res!Act.SitTooLong.PersonA → Skip};

Finally, an adaptation decision will be made based on the reasoning results
and sent to the application layer to execute. This again can be modelled by
message passing patterns. For the above example, if the rule which interprets
that someone is sitting on bed for more than 30 time units, a message will be
sent to the application layer through the channel res.

Modelling Application Layer. Application layers vary according to different
implementations. However, we may only care about the responsive actions which
will affect the end users. Thus we focus on modelling of how the adaptation
decisions are executed. For instance, in the AMUPADH system, the reminding
system is modelled as follows:

Reminder() = res?status.rid.pid → (

[status == Act]ActivateReminder(rid,pid)

�[status == Deact]DeactReminder(rid,pid)); Reminder();

ActivateReminder(rid,pid) = update{reminder[rid][pid] = true} → Skip;

By decoding the message received from the middleware, the workflow of
reminder system diverts according to the status command. If it is an Act com-
mand, the system activates reminder rid to patient pid by calling Activate-
Reminder(rid , pid) process. Similar logic applies for deactivating a reminder.

3.3 Compose a Complete Model

In PvC systems, different components in different layers cooperate to fulfil the
system goals. However, how to model this cooperate relations are left to be dis-
cussed till now. From a careful study, we discover that in PvC systems, there
are three common types of relationships between system components which
are sequential, independent and concurrent relations. Sequential relation means
the execution of the components is strictly sequential according to the workflows
of the system. Components that are completely unrelated to each other execute
independently. As for concurrently related components, they have synchronised
behaviours. These relations can be well supported in hierarchical languages such
as CSP#. Respectively, these three relations can be modelled as sequential,
interleave and parallel compositions using operators ; , ||| and ‖ respectively.
Examples here may reuse some process names in above models. Note that paral-
lel composition has been introduced in modelling activities in the environment.

Sensors() = Shake_Sensor() ||| FSR_Sensor();

Middleware() = ContextManager(); ReasoningEngine(); AdaptationManager();

Here, since each sensor in the environment works independently, the sensor
layer model Sensors() is composed by the interleave operator. On the other

74 Y. Liu et al.

hand, in the middleware layer, the three components are executed sequentially
as determined in the workflow. Therefore, the middleware model Middleware()
is composed using sequential operator.

Choosing a Modelling Language. The above mentioned modelling patterns are
supported in most modelling languages of CSP family. It is also possible to be
translated to other formalisms e.g., Timed Automata. When it comes to unify
concurrent modelling with probabilistic or real time modelling or both, there
exists some approaches. For example, in PAT framework, CSP# supports for
modelling concurrent system behaviours; PCSP# extends CSP# with proba-
bilistic behaviour modelling, it is suitable to model failures in PvC systems;
RTCSP# extends CSP# with real time constructs which can be used to model
the periodic sensing behaviour; and finally PRTS which integrates both proba-
bilistic and real time modelling constructs under one roof. However, it is impor-
tant to choose a proper modelling language according to different targets. For
example, CSP# is most suitable for reasoning concurrent behaviours of PvC
systems while PRTS will be an over cure. We may also argue that it requires
minimal effort to extend a CSP# model to an PCSP# model and likewise.

4 Scenario Verification

After system engineers finished the design of a PvC system, they are often asked
to provide guarantees for correctness and safety requirements. They may be
asked to answer general questions like “Is the system free of conflict adapta-
tions?” or “Will the services deliver when they are supposed to?”. These high
level requirements cannot be validated against the system thoroughly using tra-
ditional techniques like testing. However, they can be specified and verified using
formal methods. For example, using model checking technique, the first question
can be verified in the following steps. First, define the conflict adaption scenario
as a state; secondly, using reachability verification algorithms to exhaustively
search the system state space to see if such a state is reachable. In this section,
we discuss the critical properties and propose their specification patterns.

4.1 Desirable Properties

Properties regarding the good behaviours of the systems are desirable.

Deadlock Freeness. Deadlock freeness is one of the important safety require-
ments and should be assured before checking any liveness properties. Deadlock
is a situation that the system reaches a state where no more actions can be per-
formed. It can lead to serious consequences such as falling of the patient is not
being alerted to a nurse. Deadlock checking is supported in most model checkers.

Towards Formal Modelling and Verification of Pervasive Computing Systems 75

Guaranteed Services. Well designed application services determine funda-
mental responsive behaviours of pervasive healthcare systems. For example, in
a smart meeting room, upon detection of some one entered the room, a service
will be scheduled to run that it will invoke an actuator to automatically turn
on the lights. Effectiveness of these services is an important measurement of the
system for the sake of users. To specify this requirement, we propose patterns of
liveness properties using Linear Temporal Logic (LTL). For example,

�(PatientWandering → � LeaveRoomReminder)

Here, � and � are operators in LTL which read “always” and “eventually”.
This formula specifies the property meaning “Always when PatinetWandering
situation happens, the service LeaveRoomReminder will be eventually delivered”.

The services are usually required to be delivered in bounded time. Obviously,
it is certainly undesirable if the reminder is sent too late that even the patient
has left the room. To specify the bounded liveness properties, one can use Timed
Computational Tree Logic (TCTL) which extends CTL with clock constraints.
The other possible solution is to bound the target system model with deadline
semantics in some real time modelling languages such as STCSP.

Security. Since PvC systems carry lots of environment information including
the user’s confidential profiles, it is critical to protect privacy. Leakage of infor-
mation can compromise the safety of the user and his or her belongings. For
instance, food delivery person should not have access to the patients medical
profile. Properties to describe security problem can be specified in many kinds
of logics such as LTL. For example,

�(FoodDeliveryPerson → not (� AccessPatientProfile))

Model checking techniques for security problems are proposed in papers such
as [23].

4.2 Testing Purposes

To test the system after being deployed is cumbersome considering the reengi-
neering workload. Fortunately, those unwanted scenarios can be specified in prop-
erties and checked using reachability verification algorithms.

System Inconsistency. Failures of sensors and wireless networks may cause
contexts of the environment in the system to be out of date. Thus system knowl-
edge can be inconsistent with actual environments. By defining such conflicting
states, you can test again the system model to see if such a state is reachable.

76 Y. Liu et al.

Conflicting/False Services. To guarantee the services being eventually deliv-
ered is not enough. It is also important to check if these services are sent prop-
erly. Some problems have been reported by domain experts such as conflicts of
reminders [24]. These problems are especially common in multi-user systems.
For example, in AMUPADH, two conflicting reminders are prompted at the
same time that one asks the patient to leave shower room while the other asks
the patient to use soap to continue showering. This causes the confusion of the
patient and could agitate them. Another scenario is that the reminder is sent to
the wrong person. These problems can be specified in reachability properties.

5 Rules Verification

PvC systems are widely applied in healthcare domain, especially in the area of
assistive living. In fact, it is challenging to automatically recognise activities of
assisted people and to render adequate assistive services. In the current litera-
ture, rule based system design is adopted that it is able to provide dependable
assistance services based on sensors integrated into the living ambient environ-
ment [25,26]. In such systems, rules are manually defined by system engineers
based on observations from doctors and caregivers. As introduced in Sect. 2.3, a
rule consists of a name, a condition field and an action field. In the condition, a
certain activity to be monitored is defined based on contexts such as status of
sensors, duration of sensor readings or system flag variables. The assistive service
is an adaptation decision which is defined in the action field. During the rea-
soning process, all the rules will be evaluated based on the current contexts and
actions will be executed upon the satisfaction of the rule’s condition. Working
in such a fashion, rule based system is able to intelligently recognise activities
of users and adapt to their needs accordingly.

However, the correctness of the rules remains a non-trivial problem. Anom-
alies such as duplication, unreachable condition and conflicts widely exist in rule
bases. Due to rule engineer may have limited knowledge of assisted user, incor-
rect or vague rules may be defined which will impair the system’s capability in
determining activities. The accuracy of activity information is lowered that it
may further result in a lack of service to be offered. What’s more, unreliable
rules would also provide a misleading reflection of the actual situation, which is
unacceptable in mission-critical or urgent scenarios. Besides, to verify relatively
large rule repositories is considerably laborious. Therefore there is a need to con-
struct an approach that is able to verify and ensure the specificity of rules, and
to also provide evidence of the erroneous rules.

In this work, we propose the definition and specification of rule anomalies
according to their behaviours and influence on the system behaviour (instead
of using common definitions based on the syntax and semantics). By reusing
the system model constructed in Sect. 3, we are able to detect rules anomalies
feasibly using existing model checking algorithms. In the following, we list the
three types of rule anomalies.

Towards Formal Modelling and Verification of Pervasive Computing Systems 77

5.1 Non-reachable Rules

Non-reachable rules are trivial as some rules’ conditions are never satisfied during
all system runs. These rules can be unintentionally introduced by rule developers.
Although the system’s correctness is unaffected, they add complexity to the
model and slow down the rules evaluation process. On the other hand, it could
be the reason that a critical context used in the rule condition is always not
available. This, in fact, means the system fails to detect certain events in the
environment. For example, in the scenario of detecting the usage of cupboard,
the rule defined for this behaviour is never fired because the sensor engineers
forget to deploy a reed switch sensor (which is used for detecting open/close
action). In such a case, detecting these rules will reveal critical problems of the
system.

Detection of non-reachable rules can be done by reachability checking. Based
on the system model, we analyse all the system states for each rule individually
to see whether its condition can be satisfied or not. The pattern proposed for
expressing this property is as follows.

assert rule SBTLAA.condition reachable

We take the rule in Sect. 2.3 as an example. The rule name is represented as
rule SBTLAA (where SBTL AA stands for sitting on bed too long for person
A on Bed A). By defining its condition as a state, we try to assert whether this
specific state is reachable or not. During the verification process, each system
state will be compared to see if there is a match by using existing reachabil-
ity checking algorithms. Non-reachable rules are better to be eliminated before
checking other rule anomalies.

5.2 Redundant Rules

Redundant rules are occurrences of multiple rules firing together at same system
states and producing non-conflicting system results. In fact, the rule system is
usually maintained by multiple engineers, even end-users. It is often the case that
they put similar rules into the system such as similar condition with different
parameters or different actions. Redundant rules will increase the complexity
of the rules and slow down the rule execution process. Furthermore, redundant
rules create redundant information that blows up memory easily.

We define two kinds of redundant rules, duplicated rules and subsuming rules.
The former refer to rules that always fire together at the same time and have
a non-conflicting actions. Identical rules where their conditions and actions are
both the same is considered as one special case of duplication. The latter applies
to the case that one rule is always fired with the other rule where their actions
are not contradict. Thus, the scenario covered by the first rule is included in the
second one.

Redundant rules can be specified as LTL formulae. By the above definition,
we propose the specification patterns in LTL as follows:

78 Y. Liu et al.

�(rule1.condition → rule2.condition) (1)

�(rule2.condition → rule1.condition) (2)

In the example, if (1) and (2) both turns out to be true, then we say rule1
and rule2 are duplicates. If only one of them is true, for instance, (1) is true,
then rule1 is subsumed by rule2 where the scenarios at which rule1 satisfies is
covered by rule2 as well.

5.3 Conflicting Rules

Conflict anomalies focus on the actions of rules. In a particular state, two rules
both fires but with contradicting actions triggered. Then, they are considered as
conflicting rules. This type of anomalies is usually not because of careless human
errors, but because of limitations in the rule design. In fact, engineers define
rules based on their limited knowledge of the actual user behaviour. However,
it is impossible for them to figure out all the scenario. Especially in the case of
dementia patient caring, the abnormal behaviour is beyond the imagination of
normal people. Thus, contradictions often happen in the system. Furthermore,
conflict rules are critical but difficult to detect. They could cause the user to
be confused which may be harmful to their health or even life. But conflicting
situations are not easily revealed during lab testing where only selected scenarios
are tested. Thus, using advanced techniques such as model checking which can
simulate every possible behaviour of user and perform complete search of state
space are favourable.

In an attempt to reuse existing techniques, we detect conflicting rules in two
ways: (1) we perform verification of Sect. 5.2. Based on the verification result,
we inspect the actions of the redundant rules to find conflicting cases; (2) by
defining impermissible sets which contains contradict knowledge, we check if such
occasion can be reached during the system run. Note that, since the contexts only
kept in the knowledge base of rule systems, contradictory contexts must imply
contradicts in the rules. By performing reachability checking, we are able to find
conflicts with witness traces revealing the rules which lead to the conflicting
state. We take an example in AMUPADH system.

impermissible set (Loc PersonA = ShowerRoom, Status PersonA = Sleeping)

assert impermissible set reachable

In the example, we define an impermissible set says person in the shower
room and person sleeping cannot be true at the same time. These two contexts
both are high level contexts that are generated by rules. Thus, if two elements
in the impermissible set becomes true at the same time in the model, the two
rules which generate them must be conflicting in a particular scenario.

In [27], a rule modelling approach based on language translation is con-
structed to automate the process of rules verification. The correction strategies
for rule anomalies are also proposed.

Towards Formal Modelling and Verification of Pervasive Computing Systems 79

OS- Outside
BR- Bedroom
SR- Shower
Room

OSstart

BRBED SR

openBedroomDoor
closeBed-
roomDoor

enterBedroom

openBedroomDoor
closeBedroom-
Door openShow-
erRoomDoor
closeShower-
RoomDoor

exitBedroom

enterShowerRoom

sitOnBed

wandering
turnOnTap
turnOffTap
pressSoap
openShowerRoomDoor
closeShowerRoomDoor

exitShowerRoom

sitUp
lyDown

leaveBed

Fig. 6. Patient behaviours

6 Case Study: Formal Analysis of AMUPADH

The proposed approach is applied to analyse AMUPADH. We adopt CSP# mod-
elling language since it supports most of the modelling patterns in the framework.
Important properties are specified in reachability semantic and LTL formulae.
PAT model checker is chosen to parse the model, build up the system state space
and verify these properties. Experiment results are listed and unexpected bugs
are reported.

Open Close

enterBedroom
exitBedroom

closeBedroomDoor

openBedroomDoor

(a) Bedroom Door behaviour

Empty Sitted Lied

sitOnBed

leaveBed

lyDown

sitUp

leaveBed

(b) Bed behaviour

Fig. 7. Surrounding environment

6.1 System Modelling

In this section, we model the environments and the system design using our
framework and use Labeled Transition Systems (LTS) for demonstration.

80 Y. Liu et al.

Environment Model. As shown in Figs. 6 and 7. These LTSs can be generated
using simulation function of PAT. In Fig. 6, there are four possible locations
that a patient can reside. The transition edges between states are labeled with
patient’s activities.

This patient model should be synchronised with objects within the surround-
ing environment. The objects that are modelled include doors of bedroom and
washroom, beds and washroom taps. The behaviour models of the doors and
beds are shown in Figs. 7a and b respectively.

Sensor Model. Different sensors are used in AMUPADH to monitor specific
behaviours of the patients. For example, pressure sensors attached to the bed
mattresses are for monitoring how the patients use the beds. The information
captured by sensors is passed from sensors to the controller via a synchronised
channel port . Every sensor possesses multiple unique states when made available
to the system. Figure 8 shows the modelling of sensors using the bed RFID
readers and bed pressure sensors as mentioned in Sect. 2.2. Then, we combine
all processes of sensors to one process Sensors using composition patterns.

Sensors()=Rfid_Bedroom() ||| (Rfid_Beds() ‖ FSR_Sensors())

||| (Rfid_ShowerRoom() ‖ PIR_ShowerRoom()) ||| ShakeSensors();

Empty

Occupied

Reasoning
Engine

sitOnBed.i leaveBed

lyDown

port!Empty

port!i

(a) Bed RFID Reader

Empty

Occupied

Reasoning
Engine

sitOnBed.i leaveBed

lyDown

sitUp

port!Empty

port!Lying

port!Sitting

(b) Bed Pressure Sensor

Fig. 8. Sensor behaviours

Controller and Reasoning Engine Model. Inside the reasoning engine,
rule evaluation is triggered by two processes, namely the MainInterface and
ContextChecker processes. In order to model the periodical evaluation by process
ContextChecker , we use a constant integer RATE to represent the interval and
Duration variable to record elapsed time. The atomic syntax used here is to
ensure the process inside the block is executed without interference from other
processes.

Towards Formal Modelling and Verification of Pervasive Computing Systems 81

ReasonEngine() = MainInterface() ||| ContextChecker();

MainInterface() =

atomic{port?id.status → update{sensors[id]=status;
Duration= call(setTimer,id,status,Duration)} →
FireAllRules()};MainInterface();

ContextChecker()=

atomic{update{Duration = call(tick,Duration,RATE)}
→ FireAllRules()};ContextChecker();

On receiving a message from any sensor, the MainInterface updates the sen-
sor status and Duration. Then, the FireAllRules process is invoked to perform
rules evaluation. The syntax call(setTimer , id , status,Duration) in the above
model is used to call an external static function setTimer (written in C#).
Duration be will updated externally according to the input of sensor id and
status. This is a special feature in PAT, which allows users to separate com-
plicated calculation from the high level model in order to have a simple model
with efficient verification. The ContextChecker is similar to the MainInterface
in updating sensor statuses and Duration, but does so in a periodic cycle instead
of using a listener.

The process FireAllRules sequentially evaluates every rule independent of the
results from previous cycles of rule evaluation and triggers proper actions such
as setting a flag or sending a message to the reminding system. Messages are
passed via a synchronous channel named res. We model every rule in a separate
process. In the following, we list one rule to illustrate the modelling. The process
Rule 14 1() models a complicated rule defined for recognising the wandering
behaviour of the dementia patient. It says if the shake sensor on shower tap is
stationary, the PIR sensor detects the patient’s presence has lasted for 15 time
units, the shower flag is still false and patient 1 is in the shower room, then
patient1 is wandering in the shower room. Consequently, the reasoning engine
sets the wander flag to true and passes a message to inform the reminding system
that patient1 needs to be reminded to leave the room.

FireAllRules() = Rule0();

...

Rule_14_1() = if(sensors[ShakeTap] == STATIONARY &&

sensors[PirShowerroom] == FIRING &&

Duration[PirShowerroom] ≥ 15 &&

!ShowerFlag && Location_Person[1] == SHOWERROOM){
setFlag{WanderFlag = true} →
res!Error.WanderingInShowerroom.1 → Rule_14_2()}

else {Rule_14_2()};
...

RemindingSystemModel. In the system, reminders are activated/deactivated
upon receiving corresponding messages from the controller. As shown in Fig. 9,
the reminding system receives a triplet from the controller via channel res. This
triplet consists of a command, behaviour code and patient ID. If the command is

82 Y. Liu et al.

ActRm

DeactRm

res?status.rid.pid

[status==ACT]

[status==DEACT]

Fig. 9. Reminding system behaviours

ACT , the reminder rid will be activated and prompted to patient pid , otherwise
the specified reminder will be stopped if it is active. The ACT and DEACT are
command constants corresponding to Normal and Error in rule processes.

Finally we integrate all the sub-system models together into a process named
SmartRoom() using composition patterns. Interested readers are referred to [17].

6.2 Scenario Verification Experiments

In this section we verify the proposed properties against the system model built
in Sect. 6.1. He experiments test bed is a PC with Intel Xeon CPU at 2.13 GHz
and 32 GB RAM.

Deadlock Freeness. Since each layer of the system as well as the environ-
ment model are independent from each other except for channel communications,
we conducted the experiments incrementally. During verification of a particular
component model, we abstract away the details of other component models leav-
ing only the channels for receiving messages. Doing in this way, we are able to
check deadlock freeness locally for all system components and keep the composi-
tion of component models in a manageable level. In the Table 13, the row starts
with env represents the environment model; row env + snr represents the model
composed by environment model and sensor model; row env + snr + mdw adds
middleware model into previous one; and the last row is the complete model
with all components. It turns out to be that the complete model including bed-
room and shower room scenario is too large for verification. We split it into two
sub-models according to the locations. The experiment results show the rapid
increase of state space when more components are composed.

In CSP#, a deadlock freeness property is specified as

#assert CompleteSmartRoom() deadlockfree;

3 St- States, OOM- Out of Memory.

Towards Formal Modelling and Verification of Pervasive Computing Systems 83

Table 1. Results of deadlock freeness checking

Model Bedroom ShowerRoom BothRooms

#St/k Time/s #St/k Time/s #St/k Time/s

env 0.028 0.005 0.008 0.005 0.082 0.010

env + snr 0.157 0.080 0.072 0.030 0.906 0.339

env + snr+ mdw 17.40 7.799 56.01 23.00 8319 4017

Complete 731.5 384.2 7059 4031 OOM OOM

Guaranteed Reminders. Guaranteed reminders are important measurements
of the system, which are illustrated using the patterns of service effectiveness.
We take the reminder services of Lying Wrong Bed in bedroom as examples.
Other properties for guaranteed reminder services can be specified similarly.

#define LyingWrongBed (sensors[RfidBed_1] �= EMPTY

&& sensors[RfidBed_1] �= 1);

#define RemindedWrongBed

(ReminderStage[LyingWrongbed*2 + 1] �= 0);

#assert SmartBedroom() �
� (LyingWrongBed → � RemindedWrongBed);

Here, condition LyingWrongBed specifies the scenario that someone else is sleep-
ing on patient1’s bed, and RemindedWrongBed defines the state the reminder
is prompted. This property states that when a patient is sleeping in a wrong
bed, the system will always prompt the LyingWrongBed reminder eventually.
The results of the verification are shown in Table 2. The first two reminders are
checked against the bedroom system model while the rest are against shower
room model. Surprisingly, all the reminders on shower room fails and it takes
variant time to invalid a property due to the depth of the bugs.

Table 2. Results of guaranteed reminders checking

Property Result # States/k Time/s

LyingWrongBed (LWB) True 808.4 616.8

SitBedTooLong (SBTL) True 798.3 607.2

ShowerNoSoap (SNS) False 196.6 107.5

ShowerTooLong (STL) False 1018 2635

ShowerNotOff (SNO) False 701.8 489.1

WanderingInSR (WIS) False 58.24 27.48

84 Y. Liu et al.

Testing of Faults. Various fault occur in AMUPADH system, the most com-
mon ones are the inconsistencies, the false reminder and reminder conflicts. They
are introduced in the following. Experiment results shown in Table 3 reveals
multiple bugs.

Table 3. Results of testing faults

Model Fault type Result # States/k Time/s

Bedroom FalseAlarm: LWB False 731.5 371.7

FalseAlarm: SBTL True 1.463 0.479

CR: LWB vs. SBTL True 20.6 7.89

Shower Room InConsistency True 0.404 0.180

CR: SNS vs. WIS True 10.34 4.150

CR: SNS vs. STL True 20.98 7.898

CR: SNS vs. WNO True 10.54 3.660

CR: STL vs. SNO True 16.35 5.785

CR: STL vs. WIS True 16.35 5.767

CR: WIS vs. WNO True 5.2 1.758

Inconsistent Knowledge. In the shower room, it is the case that there is no
one in the room (the PIR sensor indicates SILENT status), while the system
variable recording patient 1’s location remains to be in the room. This property
is specified as follows:

#define Contradiction (Pos_Person[1] == SHOWERROOM

&& sensors[PIR] == SILENT);

#assert SmartShowerRoom() reaches Contradiction;

False Reminders. False reminders are generated prompts that should not be sent
to patients. In the following, we specify a situation that the Sit Bed Too Long
reminder is sent to patient1 but in fact he is not in the bedroom.

#define FalseReminder (Pos_Person[1] �= BEDROOM

&& ReminderStage[SitBedLong] �= 0);

#assert SmartBedRoom() reaches FalseReminder;

Conflicting Reminders (CR). In the following, ConflictReminder defines a state
where two reminders (i.e. WanderingInSR reminder and Shower No Soap
reminder) are simultaneously prompted to one patient.

#define ConflictReminder

(ReminderStage[ShowerNoSoap * 2] �= 0

&& ReminderStage[WanderingInSR * 2] �= 0);

#assert SmartShowerRoom reaches ConflictReminder;

Towards Formal Modelling and Verification of Pervasive Computing Systems 85

6.3 Detecting Rule Anomalies in AMUPADH: Experiments

We perform rules verification in the following steps.

Parsing Drools Rule to CSP#. Manually modelling of all the rules are time
consuming and error prone due a large number of rules are defined. Thus, we
developed tool for automatically translate Drools rules used in AMUPADH to
CSP# syntax in two steps.

Step 1: Extract Shared Information. For the purpose of easy management,
the shared information is declared and kept in separate files from rule files.
We need to first extract these information. Fortunately, customised data type
and external function calls are supported in PAT. Thus, it is only needed to
extend the original Java classes with additional methods for value retuning
conform to PAT models. However, rewrite the Java methods to C# codes is
a better solution since PAT is written in C#.

Step 2: Mapping Rules into CSP#. The parser processes the rules one at
a time and splits the rule into three parts, i.e., rule name, conditions and
consequences by reading the keywords rule, when and then respectively.
We then map the Drools rule into CSP# by mapping rule names into rule
associated comments, the conditions to ifa expressions, the consequences
into ifa statements and point to the next rule in the else part (evaluation of
the rules is sequential).

The two-step parsing tool automates the process of modelling rules and
reduces the time required for verifying rules. Although human intervention might
be required in rewriting Java classes into C#, the effort is minimal since Java
classes are seldomly changed during development. However, this parser is unable
to treat rules with priorities and rule chaining at the moment, extension is pos-
sible once needed.

Detetcting Rule Anomalies

Step 1: Define Rule Conditions as States. In order to specify the prop-
erties associated with evaluating conditions of rules, we explicitly define all
the rule conditions as specific states. We take Rule 14 1 in Sect. 6.1 as an
example. Rule 14 1 is the 14th rule in the rule base defined for person 1.

#define Rule_14_1 (sensors[ShakeTap] == STATIONARY &&

sensors[PirShowerroom] == FIRING &&

Duration[PirShowerroom] ≥ 15 &&

!ShowerFlag && Location_Person[1] == SHOWERROOM)

Step 2: Specify Rule Anomalies. We check three types of rule anomalies.
– Non-reachable rules are rules that cannot be satisfied during all exe-

cutions of the system. The following property asserts if Rule 14 1 is
reachable.

86 Y. Liu et al.

#asset SmartShowerRoom reaches Rule_14_1;

– Redundant Rules are rules that have similar effects on the system such
as always fires together. We first check the subsumed rules which is the
case that one rule always fires with the other rule. An simple example
property specification is as follows.

#asset SmartShowerRoom � � (Rule_1 → Rule_2);

#asset SmartShowerRoom � � (Rule_2 → Rule_1);

By checking every pair of rules, we are able to do a thorough testing to
find all possible subsumed rules. Duplicated rules are two rules subsumed
with each other.

– Conflicting Rules are rules that fires together at a particular state
but have conflict consequences. To detect this anomaly is to define an
impermissible set like the following example.
#define contradict_state (ShowerFlag == true &&

Location_Person[1] != SHOWERROOM &&

Location_Person[2] != SHOWERROOM);

#assert SmartShowerRoom reaches contradict_state;

This contradict state says someone is taking shower, but neither of the
two patients is in the shower room. Note that there are only two users in
the model and ShowerFlag , Location Person[1] and Location Person[2]
are all variables updated by some rules. If this contradict state is reach-
able, there must be some rules conflicting. By inspecting the witness
trace reported by PAT, we are able to identify them.

Step 3: Verify Rules Using PAT. Finally, we integrate all the rules into
the formal model and verify the properties specified in previous step using
built-in verification algorithms in PAT. The results are shown in Table 4 with
multiple conflicts found.

Table 4. Results of detecting rule anomalies

Scenario # Rules # Non-reachable # Subsumed/# Duplicated # Conflict

Bedroom 17 2 8/3 2

Shower Room 22 5 16/2 4

Avg. Time(s) - 2.05 3.05 -

6.4 Bug Report

Discovery of Unexpected Bugs. Counterexamples are returned as evidences
if the system model violates certain properties. They are of great value to system
engineers to debug the system. The set of confirmed bugs are reported as follows
which are unexpected by the development team.

Towards Formal Modelling and Verification of Pervasive Computing Systems 87

System implementation fails to meet requirements

– Guaranteed Reminders. This experiment reveals a critical problem of the sys-
tem that the system fails to monitor the patient’s location correctly. A patient
exiting the shower room with tap left on is a typical case. The two reminders,
Shower Not Off and WanderingInSR will repeatedly prompt even though
there is no one in the shower room.

Unexpected Faults Arising out of system complexity

– False Alarm in Bedroom. The result of the second property is witnessed to
be valid. Through careful investigation, we notice that the rule defined for
Sit Bed Too Long does not have an identity attached to the rule’s condition
and hence this reminder is sent to the bed’s default owner regardless of the
bed’s current user.

– Conflict Reminders. From the experiment results, we found many scenar-
ios where there are reminder conflicts. For example, a patient wandering
in the shower room tirggers the WanderingInSR reminder. He then ignores
the reminder and turns on the shower tap to play with water (A typical
behaviour of a dementia patient). The water runs for a long time that the
Shower No Soap reminder is triggered, therefore causing the system to prompt
the conflicting reminders.

Anomalies in Activity Recognition Rules

– Non-reachable rule. In the bedroom scenario, the rule defined to recognise an
activity of opening a cupboard is not reachable. The reason is that sensor
engineers removed the reed switch sensor on the cupboard without notifying
the rule engineers.

– Redundant rules. Five duplicated rules are discovered which were acciden-
tally added into the rule repository for testing and were not removed due to
negligence.

– Conflicting rules. A scenario where a pair of conflicting rules are witnessed
that the monitored user have been showering for a long period of time, yet
continues to ignore the reminder that prompts him to use the shower foam.
This was the reason that led to the triggering of two contradictory reminders
that request a user to perform activities in two different locations at the same
time, which is physically impossible.

Discussion

Usefulness. We gained several observations from this case study. First, model
checking techniques can provide a very good guide on system design. From our
experiences of working with designers of the system, they usually focus on setting
up a demonstration based on selected scenarios without considering other useful
situations. It is not only because of the high cost of hardware devices but also

88 Y. Liu et al.

to complete a full demonstration is time consuming. In fact, the development
and consideration of all possibilities when constructing scenarios and rules is
an impossible task and would either take many man-hours to find out through
actual deployment. In fact, some of the bugs (e.g., False Alarm) we reported are
occurring in execution of AMUPADH system and some of them are unexpected
(e.g., inconsistency). The counterexamples reported from the experiment also
helped the engineers to pinpoint the source of the bug. Besides, it is important to
find unexpected bugs based on the stakeholders requirements before deployment
of the whole system. Hence the engineers can retrieve certain normal or abnormal
scenarios they are interested in based on our analysis results.

Additionally, we observed the failure of updating the correct location infor-
mation of the patient leads to the violation of important properties. From the
discussion with hardware engineers, we learned that RFID readers have limited
detection range. We may think it is unwise to solely rely on RFID readers to track
the patients. During the experiments, we also noticed that a lot of redundant
messages are sent out by the reasoning engine which increase the complexity of
the system and slow down the verification.

Thoughts of solving state space explosion in PvC system verification. The exper-
imental results reflect the typical state space explosion problem. The number of
states in checking deadlock freeness of the complete model reaches the level of
108, which is the limit of explicit-state model checkers like SPIN and PAT. The
state of art state space reduction methods like partial order reduction may not
have significant improvement of this problem. Compositional verification on the
other hand draws our attention. From the deadlock freeness checking, we noticed
that if all components are locally deadlock-free, it is of great possibility that the
complete system model which is a composition of all the components is free of
deadlock. Obviously verifying a local property of a component is much easier
than verify it against the system model. Furthermore, the general architecture
of PvC systems suggests that there are almost no sharing recourses between
components. The independency between system components further proves that
compositional verification could be a feasible solution to state space explosion
problem. Thus, in future, we shall explore how composition verification tech-
niques can be applied.

7 Related Work

PvC systems have achieved many milestones in recent years. However, works on
applying formal methods to assure the correctness of such systems are limited.
In [7], they proposed a TCOZ model for a smart meeting room system which
very well captured the synchronised communications and real-time constraints
of sensors and actuators. Researchers in [8] used Ambient Calculus to model a
location sensitive smart guiding system in a hospital. The mobility issue is well
modelled in their work. Important properties are manually proved in both of
the two papers. However, both of the two languages does not have support for
hierarchical structures. Moreover, lack of verification tools support restricts the

Towards Formal Modelling and Verification of Pervasive Computing Systems 89

applicability of their approaches to large pervasive systems. Our work advances
them by adopting hierarchical modelling patterns. Automatic verification of our
modelling framework can be supported by popular model checkers.

In [28], Adaptation Finite-State-Machine (A-FSM) is proposed for modelling
adaptations between system states in context aware adaptive applications. Fault
patterns based on the A-FSM and their detection algorithms are presented as
well. However, how to model systems in A-FSM is not clear and liveness prop-
erties are not supported in their work. Researchers in [11] proposed multiple
important properties regarding security, safety requirements in PvC systems.
Formalisation patterns are illustrated and possible verification approaches are
explored. However, since they lack the underlying modelling patterns, the prop-
erties and their verifications are very difficult to apply. In our work, we fur-
ther classified the important requirements into safety and liveness properties
and formalise them in popular logics which are checkable based on our mod-
elling framework. Besides, we propose scenario verification which verifies critical
requirements on an exhaustive enumeration of targeted scenarios which is more
focused than aimless, random verification approaches and more complete than
verification/testing upon selected cases.

In rules verification, Ligeza and Nalepa [13] proposed definitions for rule
anomalies regarding redundancy, consistency, completeness and determinism.
Preece et al. [14] surveyed the verification of rule based systems focusing on
detecting anomalies. Five rule verification tools are compared based on their
capability of detecting rule anomalies such as redundancy, ambivalence etc. How-
ever, their definitions for anomalies and the surveyed algorithms are not directly
applicable to PvC systems. Most of their algorithms detect anomalies based on
syntax checking and semantic logics inspection between rules, instead of how
the rules affect the system behaviour. Furthermore, the algorithms are mostly
designed for goal-driven (stateless) rules where knowledge is not shared between
different rounds of evaluation. This is certainly not the case of how rules working
in PvC systems. Thus, in our work, we redefined the rule anomalies according
to their influences upon the system behaviours and formulate them into proper-
ties which are verifiable on our modelling framework by reusing existing model
checking algorithms.

8 Conclusion

In this work, we propose a formal modelling framework for pervasive comput-
ing systems. Different modelling patterns are discussed according to the typical
features of systems such as concurrent interactions, context-awareness and lay-
ered architectures. We also provide environment modelling patterns which are
usually not considered in modelling complex systems. Based on the modelling
framework, we propose scenario verification where critical properties of safety
and liveness requirements are identified and specified in proper logics such as
specifying guaranteed reminder services using LTL, and rules verification where
rule anomalies are redefined upon system behaviours and formulated to for-
mal properties which can be verified using existing model checking algorithms.

90 Y. Liu et al.

To demonstrate our approaches, we present a case study of an living assisting
system for elder dementia patients. We model the system using our modelling
framework and conduct experiments of scenario verification and rules verifica-
tion. Multiple bugs are revealed. Experimental results and sources of the bugs
are explained.

This work demonstrates the usefulness of formal methods (particularly model
checking techniques) in analysing PvC systems. In the future, we will apply
probabilistic model checking techniques for quantitative analysis of PvC systems
and explore compositional verification techniques to alleviate the state space
explosion problem.

Acknowledgment. The authors would like to thank Lee Vwen Yen Alwyn, Clifton
Phua, Zhu Jiaqi and Kelvin Sim from Institute for Infocomm Research in Singapore
for the kindness contributions and valuable feedback to this work. We also want thanks
the anonymous reviews for their valuable suggestions in improving the manuscript.

References

1. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 66–75 (1991)
2. Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world

with pervasive networks. IEEE Pervasive Comput. 1(1), 59–69 (2002)
3. Nehmer, J., Becker, M., Karshmer, A., Lamm, R.: Living assistance systems: an

ambient intelligence approach. In: Proceedings of the 28th International Conference
on Software Engineering, ICSE ’06, pp. 43–50 (2006)

4. Saha, D., Mukherjee, A.: Pervasive computing: a paradigm for the 21st century.
Computer 36, 25–31 (2003)

5. Edwards, W.K., Grinter, R.E.: At home with ubiquitous computing: seven chal-
lenges. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001. LNCS, vol.
2201, pp. 256–272. Springer, Heidelberg (2001)

6. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specification and programs for
system modeling and verification. In: TASE, pp. 127–135 (2009)

7. Dong, J.S., Feng, Y., Sun, J., Sun, J.: Context awareness systems design and rea-
soning. In: ISoLA, pp. 335–340 (2006)

8. Coronato, A., Pietro, G.D.: Formal specification of wireless and pervasive health-
care applications. ACM Trans. Embed. Comput. Syst. 10, 12:1–12:18 (2010)

9. Mahony, B., Dong, J.S.: Blending object-Z and timed CSP: an introduction to
TCOZ. In: ICSE ’99, pp. 95–104 (1998)

10. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

11. Arapinis, M., Calder, M., Denis, L., Fisher, M., Gray, P.D., Konur, S., Miller, A.,
Ritter, E., Ryan, M., Schewe, S., Unsworth, C., Yasmin, R.: Towards the verifica-
tion of pervasive systems. ECEASST 22, 1–15 (2009)

12. Clarke Jr, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

13. Ligeza, A., Nalepa, G.J.: Rules verification and validation. In: Giurca, A., Gase-
vic, K.T.D. (eds.) Handbook of Research on Emerging Rule-Based Languages and
Technologies: Open Solutions and Approaches, pp. 273–301. IGI Global, Hershey
(2009)

Towards Formal Modelling and Verification of Pervasive Computing Systems 91

14. Preece, A.D., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-
based systems. Knowl. Eng. Rev. 7(02), 115–141 (1992)

15. Biswas, J., Mokhtari, M., Dong, J.S., Yap, P.: Mild dementia care at home –
integrating activity monitoring, user interface plasticity and scenario verification.
In: Lee, Y., Bien, Z.Z., Mokhtari, M., Kim, J.T., Park, M., Kim, J., Lee, H., Khalil,
I. (eds.) ICOST 2010. LNCS, vol. 6159, pp. 160–170. Springer, Heidelberg (2010)

16. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

17. Liu, Y., Zhang, X., Liu, Y., Sun, J., Dong, J.S., Biswas, J., Mokhtari, M.: Technical
report for formal analysis pervasive computing systems. http://www.comp.nus.
edu.sg/∼yanliu/techreport.pdf

18. Olveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in real-time maude. Theor.
Comput. Sci. 410, 254–280 (2009)

19. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., Andre, E.: Modeling and verifying
hierarchical real-time systems using stateful timed CSP. ACM Trans. Software
Eng. Methodol. (TOSEM) 22(1), 3:1–3:29 (2013)

20. Alur, R.: Timed automata. Theor. Comput. Sci. 126, 183–235 (1999)
21. Sun, J., Song, S., Liu, Y.: Model checking hierarchical probabilistic systems. In:

Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 388–403. Springer,
Heidelberg (2010)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

23. Marrero, W., Clarke, E., Jha, S.: Model checking for security protocols. Technical
report. Carnegie Mellon University (1997)

24. Du, K., Zhang, D., Zhou, X., Hariz, M.: Handling conflicts of context-aware remind-
ing system in sensorised home. Cluster Comput. 14, 81–89 (2011)

25. Antoniou, G.: Rule-based activity recognition in ambient intelligence. In: Bassili-
ades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol.
6826, pp. 1–1. Springer, Heidelberg (2011)

26. Storf, H., Becker, M., Riedl, M.: Rule-based activity recognition framework: chal-
lenges, technique and learning. In: PervasiveHealth, pp. 1–7 (2009)

27. Lee, V.Y., Liu, Y., Zhang, X., Phua, C., Sim, K., Zhu, J., Biswas, J., Dong, J.S.,
Mokhtari, M.: ACARP: auto correct activity recognition rules using process analy-
sis toolkit (PAT). In: Donnelly, M., Paggetti, C., Nugent, C., Mokhtari, M. (eds.)
ICOST 2012. LNCS, vol. 7251, pp. 182–189. Springer, Heidelberg (2012)

28. Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Wang, Z.: Context-aware
adaptive applications: fault patterns and their automated identification. IEEE
Trans. Softw. Eng. 36, 644–661 (2010)

	Towards formal modelling and verification of pervasive computing systems
	Citation
	Author

	tmp.1583998677.pdf.ImOCc

