
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2014

Model checking approach to automated planning Model checking approach to automated planning

Yi LI

Jin Song DONG

Jing SUN

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
LI, Yi; DONG, Jin Song; SUN, Jing; LIU, Yang; and SUN, Jun. Model checking approach to automated
planning. (2014). Formal Methods in System Design. 44, (2), 176-202.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4978

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4978&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Form Methods Syst Des (2014) 44:176–202
DOI 10.1007/s10703-013-0197-1

Model checking approach to automated planning

Yi Li · Jin Song Dong · Jing Sun · Yang Liu · Jun Sun

Published online: 26 October 2013
© Springer Science+Business Media New York 2013

Abstract Model checking provides a way to automatically explore the state space of a
finite state system based on desired properties, whereas planning is to produce a sequence
of actions that leads from the initial state to the target goal states. Previous research in
this field proposed a number of approaches for connecting model checking with planning
problem solving. In this paper, we investigate the feasibility of using an established model
checking framework, Process Analysis Toolkit (PAT), as a planning solution provider for
upper layer applications. To achieve this, we first carry out a number of experiments on
different model checking tools in order to compare their performance and capabilities on
planning problem solving. Our experimental results suggest that solving planning problems
using model checkers is not only possible but also practical. We then propose a formal
semantic mapping from the standard Planning Domain Description Language (PDDL) to
the Labeled Transition System (LTS), based on which a planning module was implemented
as a part of the PAT framework. Lastly, we demonstrate and evaluate the approach of using
PAT as planning service via a case study on a public transportation management system.

Y. Li
Department of Computer Science, University of Toronto, Toronto, Canada
e-mail: liyi@cs.toronto.edu

J.S. Dong
Department of Computer Science, National University of Singapore, Singapore, Singapore
e-mail: dcsdjs@nus.edu.sg

J. Sun (B)
Department of Computer Science, The University of Auckland, Auckland, New Zealand
e-mail: j.sun@cs.auckland.ac.nz

Y. Liu
School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
e-mail: yangliu@ntu.edu.sg

J. Sun
Singapore University of Technology and Design, Singapore, Singapore
e-mail: sunjun@sutd.edu.sg

mailto:liyi@cs.toronto.edu
mailto:dcsdjs@nus.edu.sg
mailto:j.sun@cs.auckland.ac.nz
mailto:yangliu@ntu.edu.sg
mailto:sunjun@sutd.edu.sg

Form Methods Syst Des (2014) 44:176–202 177

Keywords Model checking · Deterministic planning · Formal specification & verification

1 Introduction

Model checking [26] has emerged as a powerful automatic technique for verifying mod-
els of software and hardware systems against their specifications. The system model is ex-
haustively explored and checked by model checkers to ensure that the desired properties
are guaranteed in all cases. In general, what we care the most about the system models is
whether some safety or liveness properties, usually described in temporal logics such as Lin-
ear Temporal Logic (LTL) and Computation Tree Logic (CTL), are satisfied. Given a system
model M, an initial state s, and a formula ϕ which specifies the property, the model check-
ing process can be viewed as computing an answer to the question of whether M, s |= ϕ

holds. Invariant which can be expressed using LTL formula (G¬p) is an example of safety
properties, where G reads as always. Typically, a counterexample is given by model check-
ers when the property is found to be violated, which represents a finite path π that leads to
the violation state from the initial state s. Some model checkers are able to provide short-
est counterexamples. A shortest counterexample is defined as the minimal size path π∗ that
leads to a state s ′ where the safety property is violated.

Related works Since late 90s, several pieces of work indicated that model checking can
also be applied to the planning domain. Cimatti et al. [5] presented a decision procedure
for planning problems written in a high level action language called AR in 1997. The
decision procedure was implemented as a tool MBP using the symbolic model checking
technique [24]. They translated action descriptions to propositional formulas in order to ap-
ply model checking on them. This is one of the earliest attempt in the stream of planning
as model checking and the results are encouraging. Nevertheless, AR is no longer at the
forefront of domain description language. Many advanced features like plan metrics and
preferences which are very common nowadays cannot be represented using propositional
logic.

Berardi and Giuseppe [2] compared the performance of the two well-known model
checkers, Spin [13] and SMV [24], with some well established planners (IPP [16], which
was one of the best performers in AIPS’98 competition; FF [12], which was among
the best performers in AIPS’00; and TLPLAN [1], which accepts temporally extended
goals used as control knowledge to prune the search space). The experiment results sug-
gest that the two model checkers are comparable to IPP in terms of performance, in-
stead that FF performs much better than both. In other words, Spin and SMV used
as planners are competitive with the best performing planners at the AIPS’98 competi-
tion.

Hörne and Poll [14] investigated the feasibility of using two different model checking
techniques for solving a number of classical AI planning problems. ProB [17] is based on
mathematical set theory and first order logic. It is specifically designed for the verification
of program specifications written in the B specification language. The other model checker
used is NuSMV [4], which represents models using Binary Decision Diagrams (BDDs) [3].
For both model checkers, the state space is explored exhaustively: if there exists a plan, it
will be found, and they always terminate. However, they do not provide all possible plans
but terminate after one is found, if it exists. The experiment results suggest that several
options are suitable to solve the type of planning problems considered in the paper. These
are the Constraint Logic Programming (CLP) based ProB, running in either temporal model

178 Form Methods Syst Des (2014) 44:176–202

Fig. 1 Illustration of the type
hierarchy in PDDL

(:types place locatable - object
soldier torch - locatable
north south - place
soldier0 soldier1 - soldier)

checking mode or performing a breadth-first search, and the tableaux-based NuSMV using
an invariant.

Clearly, a classical planning problem can be easily converted into a model checking prob-
lem. The fact that this approach is feasible is supported by [8]. In that paper, the authors sug-
gest that planning should be done by semantically checking the truth of a formula. Planning
as model checking is conceptually similar to planning as propositional satisfiability. Given
a planning problem (S0,G,A), one can construct a system model M by translating every
action a ∈ A into a corresponding state transition function first. The initial state S0 can also
be mapped to the initial state s of model M by assigning value to each variable accord-
ingly. Then for the goal state G, which can be expressed using a propositional formula ϕ,
we can construct a safety property G¬ϕ that requires the formula ϕ never to hold, such that
the model checker is able to search for a counterexample path that leads to a state where ϕ

holds. The resulting plan is optimal in terms of make-span when the counterexample path is
the shortest.

After all these successful attempts, the natural next step would have been serious tool
development, but that requires considerable effort in the implementation. Indeed, there is no
serious tool developed in the recent years. The biggest problem remaining of using model
checkers for planning purposes is that there does not exist a good automatic translation from
the planning domain to the required model checking domains. All prior works mentioned
previously relied on manual translation in their experiments, while this process is error-
prone and valuable information in the original planning models are often lost along the way.
Depending on the underlying algorithms, the encoding of the problems usually has huge
effects on the performance and even the quality of the solutions produced. For example,
the type information in planning models can be very complicated in some cases and most
of the model checkers lack direct support for types. Figure 1 shows the type declaration
written in the Planning Domain Definition Language (PDDL) [23]. In this example, a type
hierarchy is declared using the basic syntax construct obj0 · · ·objn −type specifying that
place and locatable belong to object; locatable has two kinds, namely soldier and torch,
and so on. There is no easy way to encode such information (at least it requires careful
thinking and smart manipulation if done by hand) which unfortunately has a direct impact
on the problem search space. Typing information places constraints on the parameters of
action schemas which effectively limit the number of possible state transitions one needs
to consider. Furthermore, some advanced features of PDDL are tightly integrated with the
language syntax and semantics. For instance, quantifier keywords forall and exists
used in goal and action effect descriptions cannot be implemented without typing. Therefore,
we would like to propose a formal operational semantics for PDDL in terms of the Labeled
Transition System (LTS) such that planning problems can be automatically and precisely
recognized and solved by model checkers. We hope that this effort can help create more
possibilities and revive the interest in this area.

Another source of interest for this topic is that with the capability of solving planning
problems, model checkers can be used as an underlying service provider to provide plan-
ning solutions for upper layer applications. Modern model checkers have sophisticated tech-
niques for handling large state spaces, which are critical in the real world setting. Therefore,
using model checking as service should work well for real world planning problems, such

Form Methods Syst Des (2014) 44:176–202 179

as trip planning, scheduling, etc. In this paper, we further explore the synergy between the
two separate domains, namely model checking and planning. They are both important tech-
niques used in system designs. For example, one can obtain a workable design under the
environment and resource constraints via planning and verify that the required properties
are all satisfied by model checking. Our goal is to find a way to connect them together such
that the tools that support model checking can also be used to find solutions for planning
problems.

Contributions This research is divided into two stages, corresponding to the two closely
related problems that we consider, i.e., planning via model checking and PAT as planning
service. We conduct a number of experiments on different planning domains in order to
compare the performance and capabilities of various tools. Our experimental results indi-
cate that the performance of some model checkers is comparable to that of some sophisti-
cated planners for certain categories of problems and the performance of model checkers
can even be further improved by exploiting domain specific knowledge. We define the for-
mal semantics of PDDL in terms of LTS and implement an automatic verification tool as a
sub-module in the Process Analysis Toolkit (PAT) [33]. The planning module takes a sub-
set of the PDDL 2.1 language as input and is able to produce both sequential and optimal
plans. We further investigate the possibility of using the planning module with specifically
designed searching algorithms to serve as a planning solution provider for upper layer ap-
plications. The case study on a public transportation management system demonstrates that
the planning as model checking approach is not only possible but also practical.

Paper organization The rest of the paper is organized as follows. Section 2 reviews and
compares the performance of different planning tools. In Sect. 3, we define the formal oper-
ational semantics of PDDL as LTS. Section 4 presents a case study in which we implement
the planning as model checking service approach within a real application. We compare and
analyze different modeling techniques with concrete evaluation results. Section 5 concludes
the paper and maps out the future directions.

2 Review of tools

In this section, we conduct a performance review on three commonly used model check-
ers together with two well-known planners as benchmarks in solving planning problems.
A background description of the tools investigated are listed as follows.

2.1 Tools and techniques

NuSMV NuSMV is an extension of the symbolic model checker SMV [24] developed at
the Carnegie Mellon University known as CMU SMV. NuSMV is written in ANSI C and is a
joint project between the Embedded Systems Unit in the Center for Information Technology
at FBK-IRST, the Model Checking group at Carnegie Mellon University, the Mechanized
Reasoning Group at University of Genova and the Mechanized Reasoning Group at Univer-
sity of Trento. The latest version NuSMV2 is distributed under an OpenSource license [4].
Models of NuSMV are described as a hierarchy of modules which can be instantiated se-
mantically similar to call-by-reference. NuSMV allows for Boolean, integer and enumerated
types for state variables [4]. However, array indices in NuSMV must be statically evaluated
to integer constants. This constraint largely limits the expressiveness of the model. The

180 Form Methods Syst Des (2014) 44:176–202

modeling for common operations on a list of state variables is sometimes cumbersome in
NuSMV. In general, such operations have to be manually coded by enumerating all the pos-
sible cases.

The descriptions of transition relations between the current and next state pairs can be
done by either using the TRANS constraint, or the ASSIGN constraint where a system of
equations labeled as next(identifier) := expression describes how the underly-
ing finite state machine evolves over time [4]. Specifications can be expressed in both CTL
and LTL. NuSMV supports several kinds of model checking modes, namely CTL check-
ing, LTL checking, invariant checking and bounded model checking. We will compare the
performance of using different model checking modes for planning in Sect. 2.2.

Spin Spin is an established explicit state model checker developed at Bell Labs in the orig-
inal Unix group of the Computing Sciences Research Center, starting in 1980. Spin models
are described in the modeling language called “Promela” (Process Meta Language). The
language allows for dynamic creation of concurrent processes. Communication via message
channels can be defined to be synchronous or asynchronous [13]. Promela loosely follows
the Communicating Sequential Process (CSP) [10] and hence models in CSP# [32] can be
converted to it with minimal efforts. Guarded expressions are well supported, so that precon-
ditions for actions can be easily enforced in the model. Promela also allows C-style macro
definitions, which reduces the code length and facilitates the generalization of the model.

Spin has a number of runtime options for simulation and verification that can be explored.
The maximum search depth can be adjusted according to the size of the model. Spin also
allows users to prune the search space using “never-claims” which are equivalent to safety
properties. With this method it becomes possible to quickly verify whether a given safety
property holds in the context of the model, even when a complete verification is considered
to be infeasible [13]. After verification is finished, Spin is able to perform a simulation
guided by the error trail. In the simulation mode, step-by-step display of the counterexample
trace is better supported compared with NuSMV.

The specifications of properties can also be written in LTL. Spin translates LTL formulas
into “never-claims” and performs the verification. However, the counterexamples produced
by Spin are not guaranteed to be in the minimum length, so we are not able to produce
shortest plans using Spin.

PAT Process Analysis Toolkit (PAT) [20–22, 33] is a self-contained framework for spec-
ification, simulation and verification of concurrent and real-time systems developed in
School of Computing, National University of Singapore. It supports efficient trace refine-
ment checking, LTL model checking with various fairness assumptions. PAT is designed
to verify event-based compositional models specified using CSP# [32], which is an exten-
sion to Communicating Sequential Process (CSP) [10] by embedding data operations. CSP#
combines high-level compositional operators from process algebra with program-like codes,
which makes the language much more expressive. Other supported modeling languages in
PAT include Stateful Timed CSP [34] for real time systems, PCSP [36] for modeling proba-
bilistic behaviors and PRTS [37] for modeling of current, real-time and probabilistic systems
with hierarchical structures.

Most importantly, PAT supports the verification of trace refinement checking [28, 38],
linear temporal logic verification with fairness assumption [31], bounded model checking
[29, 30], fair model checking of parameterized systems [35], BDD-based discrete analysis
of timed systems [25] and assume-guarantee model checking [18, 19].

One of the unique features of PAT is that it allows users to define static functions and data
types as C# libraries. These user defined C# libraries are built as DLL files and are loaded

Form Methods Syst Des (2014) 44:176–202 181

during execution. This makes up for the common deficiencies of model checkers on complex
data operations and data types. For instance, priority queue and set can be implemented to
meet the need in modeling of some special algorithms.

Metric-FF Metric-FF [11] is a domain independent planning system developed by Jörg
Hoffmann. It is an extension of FF that supports numerical plan metrics. The system has par-
ticipated in the numerical domains of the 3rd International Planning Competition, demon-
strating very competitive performance. Two input files, namely the domain file and problem
file are needed to run Metric-FF. Metric-FF accepts domain and problem specifications writ-
ten in PDDL 2.1 level 2. Metric-FF accepts two searching parameters g and h for assigning
different weights to plan metrics optimization and heuristic functions respectively. By in-
creasing the value of g, the system will assign a higher priority to the minimization of the
given plan metrics, despite that the returned solutions are not guaranteed optimal.

SatPlan SatPlan [15] is an award winning planner for optimal planning created by Henry
Kautz, Jörg Hoffmann and Shane Neph. SatPlan2004 took the first place for optimal deter-
ministic planning at the International Planning Competition at the 14th International Con-
ference on Automated Planning & Scheduling. SatPlan accepts the STRIPS subset of Plan-
ning Domain Definition Language (PDDL) and finds plans with the shortest make-span. It
encodes the planning problem into a SAT formulation with length k and checks the satis-
fiability using SAT solvers. If the searching times out, then k is increased by one and the
process is repeated.

In SatPlan, the optimality of plan is restricted to its length (or make-span). However,
in many cases, especially real life applications, the length of the solution is not the only
criterion to be considered. The quality of the plan also depends on other factors. For instance,
the quality of the suggested routes produced by a route planning system should be judged
by the users’ preferences, the total distance of the trip, the total cost of time and money, etc.
This kind of problems are often solved by adding non-negative cost to actions, and the goal
becomes finding a plan with the minimum total action cost.

2.2 Performance comparison

In this subsection, we compare the performance of NuSMV (pre-compiled version 2.5.2),
Spin (pre-compiled version 6.0.1) and PAT (version 3.3.0) on solving two classical plan-
ning problems: the bridge crossing problem and the sliding game problem. SatPlan2006
and Metric-FF are also used as benchmarks in the experiments. The two problems selected
can be regarded as puzzle solving problems and the optimal solutions are not trivial. The
descriptions of the problems are as follows.

• The bridge crossing problem: Four wounded soldiers find themselves behind enemy lines
and try to flee to their home land. The enemy is chasing them in the middle of the night.
They arrive at a bridge that spans a river which is the border between the two countries at
war. The bridge has been damaged and can only carry two soldiers at a time. Furthermore,
several land mines have been placed on the bridge where a torch is needed to sidestep all
the mines. The enemy is on their tail, so the soldiers know that they have only 60 minutes
to cross the bridge. The soldiers only have a single torch and they are not equally injured.
The extent of their wounds have an effect on the time it takes to get across. So the time
needed for each soldier are 5, 10, 20, 25 minutes respectively. The goal is to find a solution
to get all the soldiers to cross the bridge to safety in 60 minutes or less.

182 Form Methods Syst Des (2014) 44:176–202

Fig. 2 Goal setting of the sliding
game problem

• The sliding game problem, is sometimes also referred as the eight-tiles problem. There
are eight tiles numbered from 1 to 8 and arranged in a 3 × 3 matrix. The first tile, which
is at the top-left corner is empty and marked by 0. A tile can only be shifted horizontally
or vertically into the empty space. The goal of this puzzle is to arrange the eight tiles into
increasing order as shown in Fig. 2.

Note that the bridge crossing problem is a plan existence problem with constraints on the
total time. The goal is to find a feasible plan that can be executed within 60 minutes. There
is no plan optimization involved in this problem. PAT is able to find the shortest witness
trace by using the breadth-first search algorithm, i.e., the returned counterexample trace is
guaranteed to be the shortest one. Otherwise, if a depth-first search is performed then the first
counterexample trace encountered is reported. Therefore, for the bridge crossing problem
where shortest witness trace is not required, we used the depth-first search mode; for the
sliding game problem, for which an optimal solution is expected, we enabled the “Shortest
Witness Trace” option instead. The counterexamples provided by NuSMV are always the
shortest, while this is not the case for Spin. We used NuSMV to generate optimal solutions
for the sliding game problem, and collected the performance data of Spin only for reference.

To measure the execution time more accurately, we performed each experiment three
times and calculated the average to avoid possible fluctuations caused by the overhead im-
posed by operating systems. All the experimental results were collected on an Dell desk-
top with an Intel Core 2 Duo E6550 2.33 GHz processor and 3.25 GB RAM. Spin, PAT
and NuSMV were tested in Windows XP SP3, while SatPlan and Metric-FF were tested in
Ubuntu 10.04 environment. Except for NuSMV, all other tools provide accurate statistics
including the execution time at the end of each session. For NuSMV, we made use of the
source command to invoke the time command right before and after the model checking ses-
sions to record the execution time. Unfortunately, the time command in NuSMV provides
time data that is accurate to only one decimal place. In contrast, execution time data getting
from other tools was rounded to two decimal places.

The experimental results are presented in the following two subsections, where INVAR
denotes using invariant mode of NuSMV, LTL/CTL denotes using LTL/CTL model check-
ing mode of NuSMV, WITH indicates that PAT is under “reachability-with” mode, and
DFS/BFS denotes PAT using depth-first or breadth-first model checking algorithms respec-
tively. Time is in seconds unless otherwise indicated.

2.2.1 The bridge crossing problem

To generalize the problem and obtain experimental results in a broader range, we expanded
the original bridge crossing problem to versions with up to 9 soldiers. Apart from the
breadth-first and depth-first search algorithms, PAT also supports “reachability-with” check-
ing, which is a reachability test with some state variables reaching their maximum/minimum
values. Hence PAT can be used to find the minimum amount of time needed to finish the
bridge crossing. The time limits were first calculated by PAT using the “reachability-with”

Form Methods Syst Des (2014) 44:176–202 183

Table 1 Time cost of each
soldier Soldiers 1 2 3 4 5 6 7 8 9

Time cost 5 10 20 25 30 45 60 80 100

Table 2 Experimental results for the bridge crossing problem

#Soldiers Time* Metric-FF PAT NuSMV Spin

WITH DFS INVAR CTL LTL

4 60 0.00 0.05 0.04 0.0 0.1 0.1 0.02

5 90 0.00 0.19 0.04 0.1 0.9 0.4 0.02

6 130 0.03 1.12 0.22 0.2 14.4 2.5 0.06

7 175 0.16 6.18 0.25 0.5 330.8 71.3 0.11

8 235 0.94 33.19 10.26 m m m 10.50

9 300 5.30 145.51 16.40 m m m 19.50

mode. Other model checkers were then tested taken the time limits as given. Of course, to be
fair, PAT was also run one more time using the depth-first search mode. We also ran Metric-
FF on the bridge crossing problem with parameters g = 100 and h = 1, which emphasis the
plan quality over the performance to increase the possibility of getting an solution within
the time limit.

This set of experiments are tailored to show how the model checkers compete on plan
existence problems that deal with time constraints. The time cost of each soldier is listed in
Table 1. The experiment results are summarized in Table 2. In Table 2, the column “Soldiers”
indicates the number of soldiers in the problem instances and the column “Time*” indicates
the time limit used in that test. A symbol “m” is there to show that the system ran out of
memory and did not get a solution. Although the configurations for Metric-FF (g = 100 and
h = 1) have put a much higher weight on plan quality, the optimality of the results obtained
from Metric-FF is still not guaranteed. So the data is only used for reference.

When the number of soldiers reaches 8, NuSMV is not able to build a model according to
the model descriptions due to memory shortage. This is likely to be related to the inefficient
encoding that we have to use in the models because of the restrictions on array indices. The
invariant checking mode performs generally better than CTL and LTL checking modes, be-
cause CTL and LTL model checking algorithms have to explore a search space that involves
both the model and the properties. But invariant (reachability) checking only explore the
model’s space.1

Figure 3 shows that the time needed for the bridge crossing problem increases rapidly
when the number of soldiers increases. For example, the execution time for Spin increases by
nearly 100 times when the number of soldiers increases from 7 to 8. It is clear that the state
space expands in a very fast speed. Planners such as Metric-FF handle this kind of problem
in a very different way from model checkers. Metric-FF performs a standard weighted A*
search which exploits the power of heuristics and sacrifices the optimality to speed up the
searching. That is the reason why Metric-FF performs much better than the other two.

1PAT will automatically detect the safety LTL properties and convert them into reachability problems. Hence,
we do not include the LTL checking mode for PAT in this experiment.

184 Form Methods Syst Des (2014) 44:176–202

Fig. 3 Execution time
comparison of PAT, Spin and
Metric-FF on the bridge crossing
problem

The performance of PAT and Spin is similar in this problem domain. For smaller in-
stances, for example, when the number of soldiers ranges from 4 to 7, Spin performs better
than PAT, although the difference is relatively small. For larger instances like the problem
with 8 or 9 soldiers, PAT starts to perform better that Spin.

2.2.2 The sliding game problem

Optimal AI planning is a PSPACE-complete problem in general. For many problems studied
in the planning literature, the plan optimization problem has been shown to be NP-hard [9].
The eight-tiles game is the largest puzzle of its type that can be completely solved. It is
simple, and yet obeys a combinatorially large problem space of 9!/2 states. The N × N ex-
tension of the eight-tiles game is NP-hard [27]. The difficulties of the problem instances are
measured by the lengths of their optimal solutions. There is also an approximated measure-
ment called the Manhattan distance, which is defined as |x1 − x2|+ |y1 − y2| where (x1, y1)

and (x2, y2) are two points on a plane. We have experimented on 6 problem instances in
total. Two of them (“Hard1” and “Hard2”) are the hardest with an optimal solution of 31
steps. Two of them (“Most1” and “Most2”) have the largest number of optimal solutions
and a slightly shorter solution length of 30 steps. The last two problem instances (“Rand1”
and “Rand2”) are randomly generated with optimal solutions of length 24 and 20 steps re-
spectively.

This set of experiments are designed to show how different model checkers perform on
optimal deterministic planning problems. The results obtained from SatPlan are used for
reference. The initial configurations of all the six problem instances are shown in Fig. 4.

The results are summarized in Table 3. In the table, “>600” indicates that no solution
was found after 10 minutes. The columns “L*” and “H” show the length of the optimal
solutions and the Manhattan distance of the problem instance respectively. Also note that
the solutions found by Spin are not optimal.

The CTL and LTL checking mode of NuSMV can hardly find a solution within 10 min-
utes. Similarly as in the previous example, the invariant checking mode performs much
better compared with the other two. From Fig. 5 we can conclude that the execution time
of SatPlan for different problem instances varies significantly. The performance of SatPlan
depends largely on the length of the optimal solutions. “Hard1” and “Hard2” which take
only 1 step more than “Most1” and “Most2”, spend nearly 3 times longer to find a solution.
For simpler instances, SatPlan performs the best among the three tools. However, when the
length of the optimal plans increases, the size of the SAT instances created by SatPlan grows
fast. The resulting execution time increases quickly as well.

Form Methods Syst Des (2014) 44:176–202 185

Table 3 Experimental results for the sliding game problem

Problem L* H SatPlan PAT
BFS

NuSMV Spin

INVAR CTL LTL

1 Hard1 31 21 444.42 9.60 45.2 >600 >600 2.25

2 Hard2 31 21 438.34 10.05 41.6 >600 >600 2.06

3 Most1 30 20 152.76 9.84 42.8 >600 >600 1.99

4 Most2 30 20 152.24 10.01 42.0 >600 >600 2.47

5 Rand1 24 12 33.70 7.00 30.0 >600 >600 2.63

6 Rand2 20 16 2.89 3.54 16.8 505.6 >600 2.13

Fig. 4 Initial configurations of
the sliding game problem
instances

Fig. 5 Execution time
comparison of PAT, NuSMV
and SatPlan on the sliding game
problem shown on a logarithm
scale

The performance of PAT and NuSMV is relatively stable. PAT using breadth-first search
mode takes shorter time for all the problems. This comparison indicates that PAT performs
better than NuSMV and SatPlan on plan optimization problems with our best effort in mod-
eling the same problems with different domain languages. Although we cannot general-
ize the argument without further experiments and justifications, this empirical finding still
proves the feasibility of applying PAT to the optimal deterministic planning domain.

186 Form Methods Syst Des (2014) 44:176–202

(:action TakeBus
:parameters (?p - passenger ?b - bus

?from - stop ?to - stop)
:precondition (and (At ?b ?from) (At ?p ?from))
:effect (and (not (At ?p ?from)) (not (At ?b ?from))

(At ?b ?to) (At ?p ?to)
(increase (time-cost) 10)
(increase (money-cost) 2)))

Fig. 6 PDDL action schema for taking bus

3 Operational semantics of PDDL

Manual encoding of planning problems in the respective model description languages is
cumbersome and error-prone. Considering planning problems in more realistic environment,
the variables and parameters in the model descriptions are usually subject to change over
time. In some cases, the goals and cost/reward functions can also be different when the
environment changes. This is where the concept of replan comes into play. Using model
checkers as service enables real-time replanning by generating problem descriptions at run-
time, and modifying models with the latest environment variables. The idea of using model
checkers as planning service is only possible if there exists an automatic tool that connects
planning and model checking domains.

To achieve this goal, we define a formal operational semantics of the planning language
in terms of executable systems, which can be understood directly by model checkers. Es-
sentially, we change the planning problem to a verification problem.

In this section, we describe the operational semantics of PDDL in terms of LTS. Our
goal is to provide a guide for implementing an automatic translator from PDDL to model
description languages recognized by model checkers. We make two basic assumptions on
the input language:

• The PDDL domain descriptions are written in the subset of PDDL 2.1 that includes
STRIPS-like operators with literals having typed arguments and numerical plan metrics.
The typing can be easily done by hand or a tool such as TIM [6] when the original model
is written without typed arguments.

• Durative actions are absent (referred as simple planning instance in [7]).

3.1 PDDL formalization

PDDL is the standard language for describing classical planning problems and is widely
used by many planners. Essentially following [7], a PDDL simple planning instance consists
of two types of files, i.e., the domain and the problem.

Definition 1 (Simple planning instance) A simple planning instance is defined to be a pair
I = (Dom,Prob), where Dom = (Fs,Rs,As,arity) is a 4-tuple consisting of (finite sets of)
function symbols, relation symbols, actions (non-durative), and a function mapping all of the
symbols to their respective arities. Prob = (Os, Init,G) is a triple consisting of the objects
in the domain, the initial state specification and the goal state specification.

Actions are grouped as a set of action schemas. The schema consists of the action name,
a list of parameters, a precondition and effects. The PDDL code in Fig. 6 is an example of an

Form Methods Syst Des (2014) 44:176–202 187

action schema for taking a bus from a bus stop from to another bus stop to. The precondition
for the action schema is that both the bus and the passenger are at from and the effect is that
they are transferred to a new location to. The type that follows each parameter constraints
the type of objects that the variable can be instantiated to. In the following sections, we
only consider flattened and fully grounded actions, meaning that the actions in As do not
contain conditional effects and quantifiers. There are standard ways to get rid of conditional
effects and instantiate action schemas using proper objects as described in [7]. PDDL 2.1
also allows for numerical optimization criteria to be specified. In the TakeBus example, the
values of time-cost and money-cost are increased in the effects. The optimization
criterion, also known as the plan metric, consists of numerical expressions to be maximized
or minimized, e.g., (:metric minimize(time-cost)) requires that the value of the
function time-cost to be minimized.

3.2 Operational semantic

The primitive numeric expressions of a planning instance, PNEs, are the terms constructed
by applying the function symbols in Fs to the objects drawn from Os. Similarly, the atoms of
a planning instance, denoted by Atoms, are the expressions formed by applying the relation
symbols in Rs to the objects (with respect to arities and type constraints).

Definition 2 (System state) A system state is composed of two components (F,R) where
F ∈ PNEs × R⊥ maps primitive numeric expressions to their values (⊥ denotes undefined
value) and R ∈ Atoms × {true, false} maps atoms to Boolean values.

We refer to F and R as the valuation functions. A system transition is of the form
(F,R)

a−→ (F ′,R′) where a is an action in As. For each flattened and grounded action a,

• Prea denotes the precondition of a, which is a propositional expression over Atoms, e.g.,
(and (At b from) (At p from));

• Adda is the positive effect of a, which is the set of ground atoms that are asserted as
positive literals, e.g., (At b to);

• Dela is the negative effect of a, which is the set of ground atoms that are asserted as
negative literals, e.g., (not (At b from));

• NEa is the numeric effect of a, which is the set of assignment propositions, e.g.,
(assign time 0).

The set of all effects of action a is written as Eff a . We use the notation (F,R)
Eff a� (F ′,R′)

for a pseudo system transition caused by the effects of action a. A pseudo transition by Eff a

can be understood as a system transition caused by an action a′ such that Eff a′ = Eff a and
Prea′ = true. A group of pseudo transitions can be aggregated to form a real state transition
by following the action semantics.

The operational semantics is systematically defined by associating a set of firing rules
with each PDDL language construct. Figure 7 illustrates the firing rules related to actions.
We omit the rules for initializing initial states here, since they are very similar to what we
have for actions. The semantics of Adda and Dela can be mapped to the rewriting of the
corresponding values of atoms (PosEffect and NegEffect in Fig. 7). Positive effects update
atom values to true while negative effects update them to false. There are five kinds of
numeric effects, i.e., assignment, increase, decrease, scale up, and scale down. We have
shown the semantics for the assignment effect as in Rule AssignEffect. The rest simply

188 Form Methods Syst Des (2014) 44:176–202

correspond to the shorthand operators +=,-+,*= and /=. Sometimes a number of effects
are grouped by the keyword and. For any valid action, the effects in a group should be
consistent with each other. Therefore, we are able to define the combined effects of two sub-
effects as the function rewriting of one over the other (Rule And). Rule Precond captures
how applicability of action is checked, i.e., the state transition is executed if and only if the
precondition for the corresponding action holds.

Example 1 Recall the action schema TakeBus in Fig. 6, a corresponding state transition in
LTS would be,

(F,R)
TakeBus−→ (

F ⊕ {
tcost′ �→ tcost + 10,

mcost′ �→ mcost + 2
}
R ⊕ {

At(b, from) �→ true,

At(b, to) �→ true,

At(p, to) �→ true,

At(p, from) �→ false
})

,

where the valuation functions in F and R are updated according to Eff TakeBus. This transition
is enabled if and only if (F,R) |= PreTakeBus.

Theorem 1 (Correctness of action mapping) Let a ∈ As be a fully flattened and grounded
action, (F,R) and (F ′,R′) be two system states, (F,R)

a→ (F ′,R′) appears in the labeled
transition relationship if and only if (F,R) satisfies the precondition of a and executing a

updates the system states to (F ′,R′).

Let the initial state be Init = (F0,R0), goal state be G = (Fn+1,Rn+1), the transition sys-
tem of a simple planning instance is a LTS LF

R = (S, Init,→) where S is the set of reachable
system states and → is a labeled transition relationship conforming to the operational se-
mantics presented in Fig. 7. A solution to the instance is a finite sequence of system states
conforming to the transition relations in LF

R .

Theorem 2 (Correctness of plan mapping) Sequence 〈a0, . . . , an〉 is a solution to the plan-
ning problem I if and only if there exists a sequence π = 〈s0, . . . , sn+1〉 where s0 = Init,

sn+1 ∈ G, si ∈ S and si

ai→ si+1 for all 0 ≤ i ≤ n.

Proof (sketch) According to Theorem 1, executing action ai changes the system state from
si to si+1. By simple induction, executing the a finite sequence of actions 〈a0, . . . , an〉 up-
dates the system state from s0 = Init to sn+1 ∈ G, which corresponds exactly to the definition
of a plan to I . �

A plan is optimal if and only if there does not exist another such sequence π ′ such that
|π ′| < |π |. A plan maximizes a numerical expression e if and only if there does not exist
another sequence π ′′ such that Eval(e, sn) < Eval(e, s ′′

m), where sn and s ′′
m are the last state

in π and π ′′ respectively.

Example 2 Consider the TakeBus example with two buses b1 and b2, two passengers
p1 and p2 and two stops A and B . Ignore functions at the moment for simplicity. Fig-
ure 8 shows a part of the state transition for the example. In the diagram, each node is

Form Methods Syst Des (2014) 44:176–202 189

Fig. 7 Operational semantics for PDDL actions where a ∈ As, ⊕ is function rewriting operator, Eval evalu-
ates an assignment proposition

Fig. 8 Illustration of the LTS
state transitions in the TakeBus
example

labeled with the objects (buses and passengers) at stop A. The objects that do not ap-
pear in the node are at stop B . Every arrow is labeled with the parameters for the action
TakeBus(?p, ?b, ?from, ?to), where ?p is a passenger, ?b is a bus; ?from and ?to are the
source and destination stops.

3.3 Implementation

We have implemented a planning tool that supports PDDL as a module of the PAT model
checking framework. The tool is available for download at http://www.comp.nus.edu.sg/~
pat/plan. Figure 9 demonstrates the architectural design of the planning module. The ed-
itor is featured with powerful text editing and syntax highlighting. Multiple domain and

http://www.comp.nus.edu.sg/~pat/plan
http://www.comp.nus.edu.sg/~pat/plan

190 Form Methods Syst Des (2014) 44:176–202

Fig. 9 Architecture of the planning module in PAT

problem files can be edited as a group. The parser transforms the PDDL models as well as
the problem instances into the internal domain representation. The simulator allows users
to perform various simulation tasks on the input models, including complete state graph
generation, automatic simulation, user interactive simulation and trace replay. The module
relies on various underlying model checking techniques provided by the PAT verifier. The
counterexamples found by the verifier can be displayed as a planning solutions.

We have tested the tool on a number of planning problems including the sliding game
and bridge crossing problems and received good results. The formal operational semantics
we defined earlier enables the automatic mapping from the planning domain to the model
checking domain. We are one step closer to the goal of model checking as planning service.
The prototype we have built could serve as a platform for experimenting on variate heuristics
and algorithms in the future. We hope our efforts in implementing the tool can help revive
the interests in this research area.

4 Case study—Transport4You

In this section, we present a case study on “Transport4You” which was submitted to the 33rd
International Conference on Software Engineering (ICSE)—Student Contest on Software
Engineering (SCORE). The project won the “Formal Methods Award”2 out of 56 submis-
sions, which was presented for the final round of the competition at ICSE 2011 in Hawaii.
The “Transport4You” Intelligent Public Transportation Manager (IPTM) is a specifically
designed municipal transportation management solution which is able to simplify the fare
collection process and provide customized services to each subscriber. To be specific, a
system that is able to provide customized trip information and timely responses to each sub-
scriber is to be built to satisfy the increasing needs. In other words, the new system should

2The awards page of the 33rd International Conference on Software Engineering (ICSE 2011) in Hawaii,
USA, http://2011.icse-conferences.org/content/awards.

http://2011.icse-conferences.org/content/awards

Form Methods Syst Des (2014) 44:176–202 191

Fig. 10 System architecture
diagram of the “Transport4You”
IPTM system

Fig. 11 Simulator architecture
diagram

not only play the role of a bus conductor, but also be a trip advisor who informs the users
of changes in the lines and possibly suggests optimized routes for them. The architectural
design of the IPTM system is shown in Fig. 10.

The “Transport4You” IPTM system consists of two sub systems, namely the bus em-
bedded system (BES) and the central mainframe (CM). The bus system is responsible for
passenger detection, part of the fault correction and reporting detection results to the central
server. In contrast, the server system deals with all kinds of service requests from users and
administrators, information management, as well as user notification. The two sub systems
communicate via TCP connections and at the same time interact with users and administra-
tors. A significant component of the “Transport4You” IPTM system is the Route Planning
module which makes use of the model checking capability of PAT as a planning service.
This function provides a guide for users who are not familiar with the bus routes and need
suggestions for choosing bus lines. This can also be applied to suggest alternative optimal
routes to subscribers, based on the behavioral data analyzed in the User Behavior Analy-
sis module. To further illustrate the idea of using PAT as planning service, we have built a
simulator for the IPTM system.

192 Form Methods Syst Des (2014) 44:176–202

Fig. 12 Simulator screen shot of
route planning results

As is shown in Fig. 11, the simulator generates a new planning domain model according
to the latest road conditions and bus line configurations, whenever the environment changes.
Users choose their starting positions and destination stations on the simulator interface. By
clicking the “Plan” button, the system generates a problem instance according to what have
been chosen and pass it to the PAT planning module. After interpreting the returned results,
the simulator is able to display the planned route and detailed instructions to users through
the display interface, as is shown in Fig. 12. The route planning module works correctly even
when there are real time changes on road conditions. When interruptions of bus lines are
detected, the administrator updates the road condition database immediately (automatically
or manually). The planning results are, therefore, guaranteed to be accurate based on the
most updated data.

4.1 Route planning model design

In this subsection, we discuss the design of the route planning CSP# model. We will look at
two different approaches for improving the solution quality and compare the performance
of them. To construct a CSP# model for route planning, we have to first formally define the
problem. There are 14 bus lines traveling among 61 bus stops on our simulated city map. In
addition, each bus line has a sequence of bus stops that it must reach one by one.

Definition 3 (Route Planning task) A Route Planning task is defined by a 5-tuple
(S,B, t, c,L) with the following components,

• S is a finite, non-empty set of bus stops. Terminal stops include start terminals sstart ⊆ S,
and end terminals send ⊆ S, where sstart ∩ send = ∅.

• B is a finite set of bus lines, and for every bus line bi ∈ B , bi : S → S is a partial func-
tion. bi(s) is the next stop taking bus i from stop s. ∀s ∈ sstart∀b ∈ B, s ∈ dom(b) →
b−1(s) = α. ∀s ∈ send∀b ∈ B, s ∈ dom(b) → b(s) = β . ∀b ∈ B,b−1(α) = α ∧ b(β) = β .

• t : S → BS is a function where BS ⊆ B . t (s) is the set of available bus lines at stop s, i.e.,
BS = {bi ∈ B | s ∈ dom(bi)}.

• c : S → S is a partial function. c(s) is the stop one can get to by crossing the road at
stop s.

• L is a unary predicate on S. L(s) is true when the current location of the passenger is
stop s.

The definition is intuitive enough and require little additional explanation. The tuple can
be constructed from the evaluation of the bus line and road configurations that are stored in
the ITPM central mainframe. Now we can define the Route Planning domain.

Form Methods Syst Des (2014) 44:176–202 193

Definition 4 (Route Planning domain) Given initial location s0 and destination sg , a Route
Planning domain maps a Route Planning task to a classical planning problem with close-
world assumption as follows,

States: Each state is represented as a literal s ∈ S, where L(s) holds.
Initial State: s0

Goal States: sg

Actions:

1. (TakeBus(bi, s), PRECOND: bi ∈ t (s),
EFFECT: ¬L(s) ∧ L(bi(s)))

2. (Cross(s), PRECOND: s ∈ dom(c),
EFFECT: ¬L(s) ∧ L(c(s)))

After defining the problem, we shall look at a basic CSP# model that solves the route
planning problem. According to the problem definitions, the model includes four parts,
namely the environment variables (bus stops and bus lines), the initial state, the state tran-
sition functions (actions) and the goal states. The design of each part will be discussed as
follows.

4.1.1 Environment variables

In the description of the environment variables, we first declare an enumeration that lists all
the bus stops for later use:

enum{TerminalA,Stop5,Stop7,Stop9 . . .Stop26,Stop11,Stop35,Stop34};
Then we use a self-defined data type 〈BusLine〉 to keep track of the bus line configura-

tions and provide useful helper methods.

var sLine1 =[TerminalA,Stop5,Stop7,Stop9,Stop58,Stop31,Stop33,

Stop53,Stop57,TerminalC];
var〈BusLine〉Line1 = new BusLine(sLine1,1);
var sLine2 =[TerminalC,Stop56,Stop52,Stop32,Stop30,Stop59,

Stop10,Stop8,Stop6,TerminalA];
var〈BusLine〉Line2 = new BusLine(sLine2,2);
...

var sLine14 = [TerminalC,Stop34,Stop32,Stop30,Stop16,TerminalB];
var〈BusLine〉Line14 = new BusLine(sLine14,14);
In the above code, the instantiation of 〈BusLine〉 takes in two parameters, including a

sequence of bus stops and an integer that indicates the bus line number. After declaration,
we are able to use the bus line variable to look up useful information of a particular bus line
including the previous stop and the next stop with respect to the current stop.

4.1.2 Initial state

In the description of the initial states, we declare two variables, currentStop and currentBus.
The variable currentStop corresponds to the state variable s mentioned before (which is

194 Form Methods Syst Des (2014) 44:176–202

the current location of the passenger), while currentBus is a temporary variable storing the
enabled bus line in the execution of the current action.

var currentStop = Stop5;
var B0 = [−2];
var〈BusLine〉currentBus = new BusLine(B0,−1);
The initial value of currentStop is set to be Stop5 in this example. The currentBus is also

a variable of type 〈BusLine〉 and its initial value is set to some negative integer to avoid
confusion.

4.1.3 State transition functions

Now we translate the action schema mentioned before to a state transition function that can
be further converted to CSP# processes with the help of the “case” statement (a switch-
case like conditional branch). The description of transition functions can be further divided
into two parts. In the first part, a process named takeBus() is defined to capture the state
transitions caused by taking bus. The second part deals with a process crossRoad() which is
defined to capture the state transitions caused by walking to the opposite side of the road.

takeBus() = case{
currentStop ==TerminalA : BusLine1[]BusLine3[]

BusLine5[]BusLine7

currentStop == Stop5 : BusLine1[]BusLine5

currentStop == Stop7 : BusLine1[]BusLine5

currentStop == Stop9 : BusLine1

...

currentStop == Stop11 : BusLine12

currentStop == Stop35 : BusLine13

currentStop == Stop34 : BusLine14
};

The process takeBus() chooses one of the bus lines that are available in the current bus
stop and hands over control to it. For example, at Stop5, there are two bus lines available,
namely BusLine1 and BusLine5. Then we define processes that describe the behaviours of
bus lines (BusLine1 to BusLine14).

BusLine1 = TakeBus.1{
currentStop = Line1.NextStop(currentStop);
currentBus = Line1; } → takeBus();

...

BusLine14 = TakeBus.14{
currentStop = Line14.NextStop(currentStop);
currentBus = Line14; } → takeBus();

Form Methods Syst Des (2014) 44:176–202 195

This is where the actual state transitions happen. Each bus line process invokes TakeBus.n
event, and at the same time, updates the value of currentStop and currentBus. Finally, the
bus line process returns the control to the process takeBus(). Notice that there is another
version of this process that also allows road crossing at any bus stop. We shall look at it later
after the discussion of the crossRoad() process.

crossRoad() = case{
currentStop == Stop5 : cross{currentStop = Stop6} → takeBus()

currentStop == Stop7 : cross{currentStop = Stop8} → takeBus()

...

currentStop == Stop35 : cross{currentStop = Stop34} → takeBus()

currentStop == Stop34 : cross{currentStop = Stop35} → takeBus()

};
Depending on the value of currentStop, a common event cross will be evoked and the

hidden effect is the update of currentStop to the stop opposite to it. For instance, when
the user is at Stop5, event cross can happen and the user’s location is changed to Stop6.
After a state transition, the process also hands over its control to takeBus(). Combining two
processes by an external choice operator gives us the final transition function:

plan = takeBus()[]crossRoad();
As mentioned before, to enable road crossing, we have to modify the bus line process.

Instead of returning the control to takeBus(), we have to return to plan which may also
invoke the process crossRoad(). This could increase the search space of the model, however
the increase of verification time is not significant.

4.1.4 Goal states

The goal states of the model are fairly easy to define. Very similar to the initial state de-
scription, we only need to specify the goal to be that the value of currentStop equals to the
destination stop chosen by the user. It is Stop53 in this example.

#define goal currentStop == Stop53;

4.2 The cost function approach

The basic model we discussed earlier is able to solve the Route Planning problem. It even
provides optimal plans in terms of the make-span if the “BFS” mode is used. However, the
quality of the plan is not always guaranteed. The plan quality depends on several factors,
including the length of the suggested route, the total walking distance, the number of buses
changed, etc. To measure the plan quality, we introduce cost function into the model. It is
fairly intuitive to assign a non-negative integer value to each action. For instance, we assign
a cost of 10 for TakeBus(bi, s) and a cost of 2 for Cross(s). In addition, we also assign a
cost of 5 for two consecutive TakeBus actions with different bi , which implies there is a
bus change occurring. The plans produced by the basic model are sometimes suboptimal in
terms of the total cost. There are two causes for the inefficiency:

196 Form Methods Syst Des (2014) 44:176–202

Fig. 13 The
newBFSVerification() algorithm

1: working ← ∅
2: current ← InitialStep
3: τ ← ∞
4: repeat
5: value ← EvaluateExpression(current)
6: if current.SatisfyGoal() then
7: if value < τ then
8: τ ← value
9: end if

10: end if
11: if value > τ then
12: continue
13: end if
14: for all step ∈ current.MakeOneMove() do
15: working.Enque(step)

16: end for
17: until working.Count() ≤ 0

• The basic model treats action Cross and TakeBus as the same. However, in real life, dif-
ferent subscribers may have their own preferences on the minimization of the number of
bus stops or the walking distance.

• The basic model does not have penalties on bus changes when producing the route plan.
The number of bus changes is considered a critical factor when judging the quality of the
plan.

To ensure high plan quality in our new model, we use a cost function to measure the cost
incurred with the execution of an action. The implementation of the cost function in our
established basic model can be done with very little effort. For takeBus() and crossRoad()
process, we can add a hidden event: tau{cost = cost + x}, where x is 10 or 2. For bus
changes, we can add another hidden event with a conditional branch:

tau{if (!currentBus.isEqual(LineX))}cost = cost + 5}}
where LineX is the bus line to be taken next.

However, the introduction of cost function also increases the complexity of the problem.
The original optimal planning problem can be solved by a simple breadth-first search. As the
size of optimal solutions in this context is usually small, the execution time is also relatively
short. Unfortunately, the default “reachability-with” checking algorithm in PAT searches the
whole state space for a maximum/minimum value of a given variable. The execution time
is considerably long for this kind of searching according to our experiments. To resolve the
problem, we design a new searching algorithm with the assumption that all cost values are
non-negative integers. Once a solution is found in the searching, we update the threshold
τ with its cost value (line 8). In the following search, if the cost of the current partial plan
exceeds τ , we consider it a dead-end since no further transitions could make the cost lower.
This pruning of the search space largely reduces the execution time and memory usage to
a satisfactory level and still preserves the optimality of the solutions. The new algorithm
newBFSVerification() is given in Fig. 13, where working is the task queue used in the BFS;
τ is the temporary variable to store the current best value explored so far; value stores the
cost valuation of the current state; current.SatisfyGoal returns true if the goal is satisfied for
the current state; current.MakeOneMove returns the set of all possible outgoing transitions
from the current state. The state pruning happens if value is greater than τ (line 12).

Form Methods Syst Des (2014) 44:176–202 197

Fig. 14 An example of bus line
configuration

Fig. 15 An unsatisfactory
solution produced by the basic
model

Fig. 16 Special pattern of two
overlapping bus lines

4.3 Search space pruning

As mentioned in the previous subsection, one of the reasons for producing suboptimal solu-
tions is that the number of bus changes is uncontrolled. Taking an example shown in Fig. 14,
bus line b1 and b2 both travel along the path 〈s1, s2, s3〉. The route of b1 is shown in solid
lines while the route of b2 is shown in dashed lines. We refer to a particular edge between
two stops by the corresponding action name. For instance, TakeBus(b1, s1) refers to the solid
edge between s1 and s2.

As illustrated in Fig. 15, the basic model produces unsatisfactory solutions when there
exists better ones. The partial solution “TakeBus(b1, s1) ⇒ TakeBus(b2, s2)” introduces a
redundant bus change from b1 to b2. To prune the search space and speed up the verification,
we restrict that a user is not going to change a bus if it is not necessary. This constraint
can be easily captured by adding a new method “bool IsRedundant(BusLine CurrentBus,int
CurrentStop)” to the defined type 〈BusLine〉. In the guard condition of process BusLine2, we
can define a constraint !Line2.IsRedundant(currentBus, currentStop) to avoid this transition
if the change to Line2 is considered redundant.

The criteria for deciding whether an action TakeBus(bi, sj) is redundant or not given the
current bus line is bk can be formulated as follows.

Definition 5 (Redundant action) An action TakeBus(bi, sj) is not redundant if one of the
followings holds:

1. bi = bk

2. bi ∈ t (sj) ∧ bk ∈ t (sj) ∧ bi(sj) �= bk(sj) ∧ ∃m ∈N1, bi(sj)
−m �= bk(sj)

−m

3. 1 and 2 do not hold and bi(sj) �= bk(sj) ∧ b−1
i (sj) �= b−1

k (sj)

Definition 5 can be casually interpreted as, “when a user is going to change to a different
bus that does not form a special pattern with the current bus as shown in Fig. 16 and shares
the same previous stop or next stop with the current bus, the change is considered redundant.

The basic idea is to stay on one bus as long as possible. This can be enforced by
simply ignoring the transitions to a bus having the same previous stop as the current
one, because the transition to that bus should happen earlier (not necessarily from the
current bus) or does not happen at all. As is shown in Fig. 17(a), the partial solution

198 Form Methods Syst Des (2014) 44:176–202

Fig. 17 Redundant bus changes

“TakeBus(b2, s1) ⇒ TakeBus(b1, s2)” is not satisfactory as at s2, b1 and b2 have the same
previous stop s1. A good path is “TakeBus(b1, s1) ⇒ TakeBus(b1, s2)”. Similarly, the transi-
tions to a bus having the same next stop as the current one should also be avoided, because
the transition can happen later (not necessarily from the current bus) or does not happen
at all. As shown in Fig. 17(b), the partial solution “TakeBus(b1, s1) ⇒ TakeBus(b2, s2)” is
not satisfactory as at s2, b1 and b2 have the same next stop s3. A good path in this case is
“TakeBus(b1, s1) ⇒ TakeBus(b1, s2)”.

However, after enforcing these two basic rules, the transition can never happen between
two lines forming the special pattern illustrated in Fig. 16. When two bus lines form such a
overlapping pattern, a bus change at the end of the overlapping segment, which is s3 in this
case, is not considered redundant. The reason that we force the bus change to occur at the
end of the overlapping segment is that this ensures that a necessary bus change only happens
once within the overlapping range.

4.4 Performance evaluation

In this subsection, we evaluate the performance as well as the solution quality of the two
modified planning models discussed previously. We tested all (3660) starting stop and des-
tination stop combinations on the three models. The length of the shortest solution was
calculated by solving the shortest path problem using Dijkstra algorithm after we converted
the original map to a directed graph with path cost 1 for each edge. Table 4 shows the com-
parison results.

In the table, column under “States” is the average number of states searched when find-
ing the plan among the 3660 test cases. Column “Time” and “Memory” list the statistics for
three models including the average, maximum and median values of time as well as memory
consumption. From the comparison, we can easily see that the PRUNE model performs the
best in terms of execution time and memory consumption. In fact, a large portion of redun-
dant transitions are pruned and the search space is reduced to a minimal. In Fig. 18, it is
clear that the PRUNE model solved all instances in a very short time (less than 0.05 seconds)
while the other two spent more time on the harder problems. But still, most of the instances
(82 %) were solved in less than 0.075 seconds.

Meanwhile, the PRUNE model also preserves the make-span optimality while maintain-
ing low total costs. The PRUNE model produced plans with an average total cost of 56.79
which is slightly higher than the optimal value 56.02 achieved by the COST model. The
average cost for the BASIC model is 58.23, which is much higher than the other two. Note
that 89.6 % of the solutions from the PRUNE model are cost-optimal compared with 65.7 %

Form Methods Syst Des (2014) 44:176–202 199

Table 4 Comparison results of three route planning models

States Time (s) Memory (KB) Cost Length

Avg. Max Mean Avg. Max Mean

BASIC 1029 0.045 0.596 0.028 11120 31521 10088 58.23 5.51

COST 1125 0.048 0.599 0.030 11282 34704 10191 56.02 5.59

PRUNE 158 0.018 0.050 0.017 9198 10568 9118 56.79 5.51

Fig. 18 No. of instances solved
vs. time for three route planning
models

from the BASIC model. We believe that this is a strong indication that the control knowledge
is helpful in not only expediting the searching but also maintaining lower action costs. The
cost function model guarantees the lowest total cost as it is designed to do so. However, it is
a little inefficient on the memory usage, as the plan metric optimization requires exploration
of a larger state space. Some solutions are not the shortest because the Cross actions have
less cost but are still counted towards the total length of the plans.

To summarize, the PRUNE model is very efficient in solving the route planning problem
and the experimental results indicate that the algorithm effectively controls the search space
while maintain high plan qualities. We believe that this approach can be applied to larger
systems and the combination with the COST model can help produce cost-optimal plans if
needed. The prototype used in the experiment and more detailed results can be found at
http://www.comp.nus.edu.sg/~pat/plan.

5 Conclusion

In this paper, we explored the use of model checking techniques in the AI planning domain.
We believe our work has established a good starting point in this direction towards more
practical applications. We first examined the feasibility of using different model checkers
in solving classical planning problems. In our experiments, we compared the performance
and capabilities of different tools including PAT, Spin and NuSMV. PAT is proved to be
most suitable for solving various kind of planning problems. The experimental results also

http://www.comp.nus.edu.sg/~pat/plan

200 Form Methods Syst Des (2014) 44:176–202

indicate that some model checkers, for example PAT, can even compete with sophisticated
planners in certain domains.

Based on the performance evaluation, we suggested the approach of using PAT as plan-
ning service. Lack of automatic tools for translating planning domain languages into models
that can be recognized and solved by model checkers has long been a critical problem in
the “planning as model checking” stream. Manual translation is often inaccurate and error-
prone. We presented a formal semantic mapping from PDDL to LTS which enables model
checkers to solve planning problems. A planning module that directly works on PDDL was
implemented in the PAT framework. We also applied our approach to a case study on the
“Tranport4You” IPTM system. We started with a basic model based on the system specifi-
cations and further improved the model in two ways. One of them introduces cost functions
to optimize plan quality, while the other exploits domain specific control knowledge for
search space pruning. Finally, we compared different approaches based on their execution
time, memory efficiency and plan quality. The case study project won the “Formal Methods
Award” at the Student Contest on Software Engineering of the 33rd International Confer-
ence on Software Engineering (ICSE) in Hawaii, USA in May 2011.

Experiments have been carried out on three model checkers and two planners so far, we
would like to extend the comparisons to a larger range of model checking as well as planning
tools to get a more general view of the subject. In addition, we are interested in extending the
planning module in PAT to support a more recent version of PDDL, version 3.1 with durative
actions and action preferences. We would also like to experiment on more heuristics and
implement a mechanism for automatically exploiting domain specific knowledge to further
optimize the algorithms. Last but not least, we recommend that more research should be
done on applying model checking as planning services. The application of this technique
can be extended to a larger range on real-life problems appeared in various fields.

Acknowledgements The authors would like to thank their teammates in the ICSE 2011 SCORE contest,
Mr. Hang Yang and Mr. Huanan Wu, for their valuable contributions to the implementation of the “Trans-
port4You” system. This work is partially supported by the research grant TDSI-11-002-1A “Model Checking
System of Systems” and NAP project “Formal Verification on Cloud”.

References

1. Bacchus F, Kabanza F, Sherbrooke UD (2000) Using temporal logics to express search control knowl-
edge for planning. Artif Intell 16:123–191

2. Berardi D, Giacomo GD (2000) Planning via model checking: some experimental results. Unpublished
manuscript

3. Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput
Surv 24:293–318

4. Cavada R, Cimatti A, Jochim CA, Keighren G, Olivetti E, Pistore M, Roveri M, Tchaltsev A (2005)
NuSMV 2.5 User Manual. CMU and ITC-irst

5. Cimatti A, Giunchiglia E, Giunchiglia F, Traverso P (1997) Planning via model checking: a decision
procedure for AR. In: Recent advances in AI planning, pp 130–142

6. Fox M, Long D (1998) The automatic inference of state invariants in TIM. J Artif Intell Res 9:367–421
7. Fox M, Long D (2003) PDDL2.1: an extension to PDDL for expressing temporal planning domains.

J Artif Intell Res 20:61–124
8. Giunchiglia F, Traverso P (2000) Planning as model checking. In: Biundo S, Fox M (eds) Recent ad-

vances in AI planning. Lecture notes in computer science, vol 1809. Springer, Berlin, pp 1–20
9. Gregory P, Long D, Fox M (2007) A meta-CSP model for optimal planning. In: Proceedings of the 7th

international conference on abstraction, reformulation, and approximation, SARA’07. Springer, Berlin,
pp 200–214. http://portal.acm.org/citation.cfm?id=1770681.1770700

10. Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8):666–677

http://portal.acm.org/citation.cfm?id=1770681.1770700

Form Methods Syst Des (2014) 44:176–202 201

11. Hoffmann J (2002) Extending FF to numerical state variables. In: Proceedings of the 15th European
conference on artificial intelligence (ECAI-02). Wiley, Lyon, pp 571–575

12. Hoffmann J, Nebel B (2001) The FF planning system: fast plan generation through heuristic search.
J Artif Intell Res 14:253–302

13. Holzmann GJ (2003) The SPIN model checker: primer and reference manual. Addison-Wesley, Reading
14. Hörne T, van der Poll JA (2008) Planning as model checking: the performance of ProB vs NuSMV. In:

Proceedings of the 2008 annual research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries: riding the wave of technology,
SAICSIT ’08. ACM, New York, pp 114–123

15. Kautz HA, Selman B, Hoffmann J (2006) SatPlan: planning as satisfiability. In: Abstracts of the 5th
international planning competition

16. Koehler J, Nebel B, Hoffmann J, Dimopoulos Y (1997) Extending planning graphs to an ADL subset.
In: Proceedings of the 4th European conference on planning: recent advances in AI planning, ECP ’97.
Springer, London, pp 273–285. http://dl.acm.org/citation.cfm?id=647867.736939

17. Leuschel M, Butler M (2003) ProB: a model checker for B. In: Araki K, Gnesi S, Mandrioli D (eds)
FME 2003: formal methods. Lecture notes in computer science, vol 2805. Springer, Berlin, pp 855–874

18. Lin S-W, André É, Dong J-S, Sun J, Liu Y (2011) An efficient algorithm for learning event-recording
automata. In: Bultan T, Hsiung P-A (eds) Automated technology for verification and analysis. LNCS,
vol 6996. Springer, Berlin, pp 463–472

19. Lin S-W, Liu Y, Sun J, Dong JS, André É (2012) Automatic compositional verification of timed systems.
In: Giannakopoulou D, Méry D (eds) FM 2012: formal methods. LNCS, vol 7436. Springer, Berlin, pp
272–276

20. Liu Y, Sun J, Dong JS (2008) An analyzer for extended compositional process algebras. In: Companion
of the 30th international conference on software engineering, ICSE Companion ’08. ACM, New York,
pp 919–920

21. Liu Y, Sun J, Dong JS (2010) Analyzing hierarchical complex real-time systems. In: Proceedings of the
ACM SIGSOFT international symposium on the foundations of software engineering (FSE 2010), pp
511–527

22. Liu Y, Sun J, Dong JS (2010) Developing model checkers using PAT. In: Proceedings of the 8th interna-
tional symposium on automated technology for verification and analysis, ATVA ’10, pp 371–377

23. McDermott DV (1998) PDDL—The Planning Domain Definition Language. Yale Center for Computa-
tional Vision and Control

24. McMillan KL (1992) Symbolic model checking: an approach to the state explosion problem. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA

25. Nguyen TK, Sun J, Liu Y, Dong JS, Liu Y (2012) Improved BDD-based discrete analysis of timed
systems. In: Giannakopoulou D, Méry D (eds) FM 2012: formal methods. LNCS, vol 7436. Springer,
Berlin, pp 326–340

26. Peled D, Pelliccione P, Spoletini P (2009) Wiley encyclopedia of computer science and engineering.
Wiley, New York. Chap “Model checking”

27. Reinefeld A (1993) Complete solution of the eight-puzzle and the benefit of node ordering in IDA*. In:
Proceedings of the 13th international joint conference on artificial intelligence, vol 1. Morgan Kaufmann,
San Francisco, pp 248–253. http://portal.acm.org/citation.cfm?id=1624025.1624060

28. Sun J, Liu Y, Dong JS (2008) Model checking CSP revisited: introducing a process analysis toolkit. In:
Proceedings of the 3rd international symposium on leveraging applications of formal methods, verifica-
tion and validation (ISoLA 2008). Springer, Berlin, pp 307–322

29. Sun J, Liu Y, Dong JS, Sun J (2008) Bounded model checking of compositional processes. In: Proceed-
ings of the 2nd IEEE theoretical aspects of software engineering conference (TASE 2008). IEEE Comput
Soc, Los Alamitos, pp 23–30

30. Sun J, Liu Y, Dong JS, Sun J (2008) Compositional encoding for bounded model checking. Frontiers of
Computer Science in China 2(4):368–379

31. Sun J, Liu Y, Dong JS, Wang HH (2008) Specifying and verifying event-based fairness enhanced sys-
tems. In: Proceedings of the 10th international conference on formal engineering methods (ICFEM
2008). Springer, Berlin, pp 318–337

32. Sun J, Liu Y, Dong JS, Chen C (2009) Integrating specification and programs for system modeling
and verification. In: Chin WN, Qin S (eds) Proceedings of the third IEEE international symposium on
theoretical aspects of software engineering (TASE’09). IEEE Comput Soc, Los Alamitos, pp 127–135

33. Sun J, Liu Y, Dong JS, Pang J (2009) PAT: towards flexible verification under fairness. In: Proceed-
ings of the 21th international conference on computer aided verification (CAV 2009), Grenoble, France.
Springer, Berlin, pp 709–714

34. Sun J, Liu Y, Dong JS, Zhang X (2009) Verifying stateful timed CSP using implicit clocks and zone
abstraction. In: Proceedings of the 11th international conference on formal engineering methods (ICFEM
2009), pp 581–600

http://dl.acm.org/citation.cfm?id=647867.736939
http://portal.acm.org/citation.cfm?id=1624025.1624060

202 Form Methods Syst Des (2014) 44:176–202

35. Sun J, Liu Y, Roychoudhury A, Liu S, Dong JS (2009) Fair model checking of parameterized systems.
In: Proceedings of the 6th international symposium on formal methods (FM 2009), pp 123–139

36. Sun J, Song SZ, Liu Y (2010) Model checking hierarchical probabilistic systems. In: Dong J, Zhu H
(eds) Formal methods and software engineering. LNCS, vol 6447. Springer, Berlin, pp 388–403

37. Sun J, Liu Y, Song S, Dong JS, Li X (2011) PRTS: an approach for model checking probabilistic real-
time hierarchical systems. In: Qin S, Qiu Z (eds) Formal methods and software engineering. LNCS, vol
6991. Springer, Berlin, pp 147–162

38. Wang T, Song S, Sun J, Liu Y, Dong JS, Wang X, Li S (2012) More anti-chain based refinement checking.
In: Aoki T, Taguchi K (eds) Formal methods and software engineering. LNCS, vol 7635. Springer, Berlin,
pp 364–380

	Model checking approach to automated planning
	Citation

	Model checking approach to automated planning
	Abstract
	Introduction
	Related works
	Contributions
	Paper organization

	Review of tools
	Tools and techniques
	NuSMV
	Spin
	PAT
	Metric-FF
	SatPlan

	Performance comparison
	The bridge crossing problem
	The sliding game problem

	Operational semantics of PDDL
	PDDL formalization
	Operational semantic
	Implementation

	Case study-Transport4You
	Route planning model design
	Environment variables
	Initial state
	State transition functions
	Goal states

	The cost function approach
	Search space pruning
	Performance evaluation

	Conclusion
	Acknowledgements
	References

