
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2014

Towards verification of computation orchestration Towards verification of computation orchestration

Jin Song DONG

Yang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Xian ZHANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
DONG, Jin Song; LIU, Yang; SUN, Jun; and ZHANG, Xian. Towards verification of computation
orchestration. (2014). Formal Aspects of Computing. 26, (4), 729-759.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4977

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4977&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

DOI 10.1007/s00165-013-0280-9
BCS © 2013
Formal Aspects of Computing (2014) 26: 729–759

Formal Aspects
of Computing

Towards verification of computation
orchestration
Jin Song Dong1, Yang Liu2, Jun Sun3 and Xian Zhang1

1 School of Computing, National University of Singapore, Singapore, Singapore
2 School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
3 Singapore University of Technology and Design, Singapore, Singapore

Abstract. Recently, a promising programming model called Orc has been proposed to support a structured way of
orchestrating distributed Web Services. Orc is intuitive because it offers concise constructors to manage concur-
rent communication, time-outs, priorities, failure of Web Services or communication and so forth. The semantics
of Orc is precisely defined. However, there is no automatic verification tool available to verify critical properties
against Orc programs. Our goal is to verify the orchestration programs (written in Orc language) which invoke web
services to achieve certain goals. To investigate this problem and build useful tools, we explore in two directions.
Firstly, we define a Timed Automata semantics for the Orc language, which we prove is semantically equivalent
to the operational semantics of Orc. Consequently, Timed Automata models are systematically constructed from
Orc programs. The practical implication is that existing tool supports for Timed Automata, e.g., Uppaal, can
be used to simulate and model check Orc programs. An experimental tool has been implemented to automate
this approach. Secondly, we start with encoding the operational semantics of Orc language in Constraint Logic
Programming (CLP), which allows a systematic translation from Orc to CLP. Powerful constraint solvers like
CLP(R) are then used to prove traditional safety properties and beyond, e.g., reachability, deadlock-freeness,
lower or upper bound of a time interval, etc. Counterexamples are generated when properties are not satisfied.
Furthermore, the stepwise execution traces can be automatically generated as the simulation steps. The two
different approaches give an insight into the verification problem of Web Service orchestration. The Timed Auto-
mata approach has its merits in visualized simulation and efficient verification supported by the well developed
tools. On the other hand, the CPL approach gives better expressiveness in both modeling and verification. The
two approaches complement each other, which gives a complete solution for the simulation and verification of
Computation Orchestration.

Keywords: Orc, Web service orchestration, Verification, Timed automata, Uppaal, Constraint logic
programming, CLP(R)

This work is a substantial extension of the publicaton [DLSZ06] in 8th International Conference on Formal Engineering Methods, 2006.
Correspondence and offprint requests to: Y. Liu, E-mail: yangliu@ntu.edu.sg.

730 J. S. Dong

1. Introduction

The prevalence of the Internet and Web Services raises the request of Service-Oriented Computing (SOC) [SH05],
which can invoke remote services, process the results and communicate results with other terminals. However,
it is very challenging to design an orchestration system with concurrency and synchronization using practical
programming languages because these traditional languages use threads for concurrency and semaphores for
synchronization. Even the high-level libraries using channel and working pool have to be built up based on these
primary elements.

Recently, a promising programming language Orc [MC07, CM05] has been proposed for orchestrating distrib-
uted services in a structured manner. It abstracts all computations, Web Services and time control mechanisms as
site calls, which are implemented by primitive remote procedures. With this abstraction, it provides a concise syn-
tax for concurrent site call executions, threads synchronization and message passing. In addition, slow response
and service failure can be easily handled using timing site calls. Using Orc, complicated orchestrating problems
can be understood and constructed without worrying about the programming details.

Orc is precise and elegant. Both operational semantics [MC07, WKCM08] and denotational semantics (a tree
semantics [MHM04] and a trace semantics [WKCM08]) are defined. However, as an emerging language, there
are only limited formal verification mechanisms to systematically verify critical properties over systems modeled
in Orc. The process of formal verification can prove that a system does not have defects or does satisfy desirable
properties, which is very important for software systems. Critical system requirements like safety properties and
liveness properties play important roles in the system specification, development and testing. In the context of
Web Services, for example, it is critical to verify that a composite service upholds critical properties (e.g., ensuring
that a credit card is only debited once per transaction, or not executing the order to send the merchandize until
the goods are paid for). In this article, we address the verification problem of the Orc language. Our aim is to
verify the orchestration programs (written in Orc language) which invoke web services to achieve certain goals.
The critical properties to be verified include safety, liveness or even timing properties, of Orc programs.

Our first approach starts with defining an executable model in Timed Automata [AD94] for Orc programs,
which conforms to the operational semantics of Orc language defined in [WKCM08]. The practical implication
is that existing tool support for Timed Automata can be used for verification of Orc programs. We target at the
state-of-the-art real time system modeling tool, Uppaal [LPW97], which provides an interactive user interface
for the real-time system simulation and verification. Moreover, we implement a tool to construct Uppaal models
automatically from Orc programs.

This approach not only successfully demonstrates a solution for Web Service orchestration verification, but
also shows the possibility to verify timed process algebras in general based on Timed Automata. However, further
investigation reveals that Timed Automata and Uppaal has several limitations. Firstly, constrained by the Timed
Automata theories, this approach can only handle a subset of Orc language that is regular, type-safe and with a
finite number of threads. Secondly, model checkers for Timed Automata may not be optimal for the translated
models from Orc programs. Therefore, the simulation and verification may be slow for large and complex systems.
Finally, Uppaal supports only a restrictive subset of timed CTL (Computation Tree Logic) [LPY95]. Limited by
the nature of Timed Automata, these problems are hard to tackle.

Our second approach is a method based on Constraint Logic Programming (CLP) [JM94]. CLP is designed
for mechanized verification using constraint solving, which has been successfully applied to model programs
and transition systems for the purpose of verification. Our approach starts with a systematic encoding of the
operational semantics of Orc [WKCM08] into CLP, which gives an equivalent CLP models. Then we develop
CLP rules for verifying different kinds of properties. As the result, we can use powerful constraint solver like
CLP(R) [JMSY92] to prove safety properties (e.g., reachability and deadlock-freeness), lower or upper bound
of a time interval, etc. Counterexamples are generated when properties are falsified. Furthermore, the stepwise
simulation can be displayed automatically from the counterexample traces. With more expressiveness power
(compared to Timed Automata approach), this approach can handle all the Orc language structures.

We use an auction site example [MC07] to demonstrate our approaches. The dining philosopher example
is used as a running example in the article to illustrate the concepts. Our experimental results demonstrate the
effectiveness of the two approaches. The comparison of the two approaches shows that CLP implementation is
faster and can support more properties as we expected.

Towards verification of computation orchestration 731

1.1. Related works

Orc has a strong theoretical foundation in process algebras, particularly in CCS [Mil89], CSP [Hoa85] andπ -calcu-
lus [Mil99]. These process algebras provide fundamental models of concurrency in which processes communicate
over channels. Orc is different from the above process algebras as Orc permits integration of arbitrary compo-
nents (sites) in a computation. More importantly, Orc has quantitative timing control to handle service failures.
Traditional process algebras have well established model checking theories and tool supports, e.g., FDR2 [Ros97]
and PAT [SLDP09, LSD10, LSD11] for CSP# [SLDC09], and FOλ

� �

[Tiu05] for π -calculus. Due to lack of
quantitative timing support, none of these tools can model and verify timing aspects of complex systems. There
are process algebras with time extensions, e.g., Timed CSP [SD95] and Stateful Timed CSP [SLD+13]. To the
best of our knowledge, there are few verification supports for Timed CSP, e.g., the theorem proving approach
documented in [Bro99, GG09], the translation to Uppaal models [DHQ+04, DHQ+08] and the approach based
on constraint solving [DHSZ06].

There are a number of works on the verification of Orc programs. In [DLSZ06], we presented the first approach
to verify Orc programs by encoded (asynchronous) operational semantics of Orc [MC07, MHM04, KCM06] using
Timed Automata. However, this semantics misses the quantitative timing aspects, which are introduced later
in [WKCM08]. In this work, we update our semantics encoding in Timed Automata according to [WKCM08].
Other semantics translation approaches include works like [BMT06, AM07, AM08, AM10]. In [BMT06], Bruni,
Melgratti and Tuosto encode Orc in Petri nets and the join calculus. However, there is no verification support for
this work. In [AM07, AM08, AM10], a rewriting semantics of Orc is defined, which is proved to be semantically
equivalent to the operational semantics of Orc. Models in rewrite theory are then constructed from Orc programs
manually, and Maude, which is a simulator and model checker for rewrite theory, is used to simulate and model
check Orc programs. This approach is manual and their semantics based on clock-tick events (i.e., time must
be modeled discretely). Compared with these works, our approaches (including the second approach described
below) are automatic and support the dense-time semantic model. Furthermore, our second approach allows a
systematic encoding the semantics of Orc language in CLP. CLP has been successfully applied to model programs
and transition systems for the purpose of verification [GP97, JSV04]. Therefore, various properties (e.g., safety
properties, lower or upper bound of a time interval, etc.) can be verified.

As an orchestration language, Orc is related to WS-BPEL (Web Service Business Process Execution Lan-
guage) [OAS07]. WS-BPEL models business processes by specifying the work flows of carrying out business
transactions, which shares many common elements with Orc. Both WS-BPEL and Orc orchestrate Web Services
by using process composition (sequential and parallel) and communication (synchronous and asynchronous).
However they are different in several ways. WS-BPEL has a rich set of the language structures to ease the process
design. Orc’s concise syntax allows the reuse of the process definitions. WS-BPEL has variables to store the state
of the communications and is able to receive calls from client web services. Orc is abstract as it focuses on process
and communication. Most importantly, Orc has a well-defined semantics.

Our work is closely related to the works on verification of Web Service orchestrations, which are quite recent,
but have attracted considerable attentions. Some related works on the WS-BPEL verification are listed as follows.
Model-based verification of WS-BPEL [FUMK03, FUMK06, FEK+07, Fos08a] models Web Services work
flows using the notion of Finite State Processes, which is then verified using their tool LTSA-WS [FUMK06]
(and later WS-Engineer [Fos08b]). Nakajima [Nak05] proposed a method to extract the behavioral specification
from a WS-BPEL process and to analyze it by using the SPIN model checker. A finite state automaton extended
with variable annotations (definitions and updates) is used as an intermediate representation. In [PZWQ06], Pu
and his colleagues defined an operational semantics for WS-BPEL as well as a transformation from WS-BPEL
to Timed Automata. Comparing with [PZWQ06], our first approach focuses on Orc language, which has dif-
ferent characteristics from WS-BPEL. Firstly, Orc uses sites to express all the computations, where timers and
conditional choice are treated as basic site calls. Secondly, the special compositional pattern asymmetric parallel
composition is unique in Orc language. This operator is a basic syntax block in Orc to express different concepts
like time-out, priority, nondeterministic choice, iterative process, parallel-or and so on [WKCM08]. Lastly, Orc
has rigorous semantics, therefore we can prove the translation to TA is sound. Translating Orc to TA is not just
an arithmetic task by repeating [PZWQ06]. We studied how to express different syntax and semantics using TA
in a correct way. Other works use different computational models for verifying WS-BPEL processes. In [SMS05],
a Petri Net semantics is provided for WS-BPEL. The net resulting from the translation is then validated with
the LoLA model checking tool [Sch00]. The SENSORIA project [WHA+08, WCG+06, WDG+07] develops var-
ious approaches on modeling and verification of SOC, where foundational theories, techniques and methods are

732 J. S. Dong

fully integrated in a pragmatic software engineering approach. In [FGV04, FV06], an execution semantics for
(an early version of) BPEL has been provided in terms of Abstract State Machines (ASMs). A more general
framework for modeling Web Services based on ASM are proposed in [BT08b, BT08a]. Since ASMs provide
a rigorous meaning to abstract code, for the verification and validation of properties of ASMs one can adopt
every appropriate accurate method, without being restricted to mechanical (theorem proving or model checking)
techniques. Ait-Sadoune and Ait-Ameur [ASAA08, ASAA09] proposed a proof and refinement based approach
for the formal representation, verification and validation of web services compositions using the Event B method.
They also developed the BPEL2B translator that automates the translation of BPEL into Event B models.

The rest of the article is organized as follows. Section 2 introduces the syntax and semantics of the Orc lan-
guage and gives sample models. Sections 3 and 4 present our two approaches. Each of these two sections includes:
background knowledge of the Timed Automata and CLP respectively, Orc program definitions and encodings
in the target framework, verification solutions of the Orc language. Section 5 uses some examples to show the
difference between the two approaches and compare the performance based on the experiment results. Section 6
compares the two different approaches in details. Finally, Sect. 7 concludes the article with possible future work.

2. Orchestration language Orc

This section presents the syntax and semantics of Orc. Formal definitions of Orc semantics can be referred
in [CM05].

2.1. Syntax

Let E be an expression name; M be a site name; x be a variable; m be a value. The syntax of the Orc language is
defined as follows1

D ∈ Declaration ::� E(x̄) �̂ f
f , g ∈ Expression ::� M(p̄) ‖ E(p̄) ‖ f >x> g ‖ f | g ‖ f <x< g
p ∈ Actual ::� x ‖ m

Declaration E(x̄) �̂ f defines expression E whose formal parameter list is x̄ and body is expression f . We
assume that only variables x̄ are free in f . An expression is either an elementary expression or a composition
of two expressions. An elementary expression is either a site call M(p̄), or an expression call E(p̄). An actual
parameter p may be a variable x or a value m, and p̄ is a list of actual parameters. If the parameter list is empty
in M(p̄) or E(p̄), we simply write M and E. Orc has three composition operators: (1) f >x> g for sequential
composition, (2) | for symmetric parallel composition, and (3) f <x< g for asymmetric parallel composition.

2.1.1. Site

The basic element of Orc programs is a site call. A site is a separately defined procedure, e.g., a Web Service imple-
mented on a remote machine. A site call can give at most one response; it is possible that a site never responds to
a call, which is treated as non-terminating computation. A site call has the same form as a function call: the name
of a site followed by an optional list of parameters. For example, calling site Google(w) where Google is an Internet
search engine and w is a keyword, may return the web site links related to the keyword. Calling Email(a,m) sends
message m to address a, causing a permanent change in the recipient’s mailbox, and returns a signal to denote
completion of the operation. Site calls are strict, i.e., a site is called only if all its parameters have values. Table 1
lists the fundamental sites used in Orc for effective programming.

2.1.2. Sequential composition operator

Sequential operator >x> allows strict sequencing of site calls. For example, Google(w) >m> Email(a,m) will
first call site Google, and name the returned value as m. After that Email(a,m) is called, if either site fails to
respond, then the evaluation returns no value. The simpler notation M � N is used when the value returned by
site M is of no significance. To send two emails in sequence and then call Notify, we write

Email(addr1,m) � Email(addr2,m) � Notify

1 Previous presentations of Orc have used the notation f where x :∈ g instead of f <x< g.

Towards verification of computation orchestration 733

Table 1. Fundamental sites
0 Never responds. It can be used to terminate a computation.

let(x, y, . . .) Returns a tuple consisting of the values of its arguments.
Clock Returns the current time at the server of this site as an integer.
Atimer(t) Where t is integer and t ≥ Clock, returns a signal at time t.
Rtimer(t) Where t is integer and t ≥ 0, returns a signal after exactly t time units.
if (b) Where b is a Boolean expression, returns a signal if b is true, and remains

Silent (no response) if false.
Signal Returns a signal immediately. It is the same as Rtimer(0).

2.1.3. Symmetric parallel operator

Symmetric parallel operator | gives the power of multi-threaded computation. Evaluation of f | g, creates two
threads to compute f and g respectively. The result from f | g is the interleaving of these two streams in timed
order. If both threads produce values simultaneously, they are merged arbitrarily. Operator | is commutative
and associative. An interesting expression is (Google(w) | Yahoo(w)) >m> Email(a,m). Here, the first part
(Google(w) | Yahoo(w)) may publish multiple values, and for each value v, we call Email(a, v) where m is set to
v. Therefore, the evaluation can cause up to two emails to be sent, one with the value from Google and the other
from Yahoo.

2.1.4. Asymmetric parallel operator

The asymmetric parallel operator <x< is used to prune portions of a computation selectively: Email(a,m) <
m< (Google(w) | Yahoo(w)) sends at most one email, with the first value received from either Google or Yahoo.
In this expression, Email(a,m) and (Google(w) | Yahoo(w)) are evaluated simultaneously. Email(a,m) is blocked
because m does not have a value. Evaluation of (Google(w) | Yahoo(w)) may return up to two values; the first value
is assigned to m and the evaluation of this expression is then terminated. After that, Email(a,m) is unblocked
and executed.

2.1.5. Expression definition

An expression is defined like a procedure, with a name and possible parameters, though it may return a stream
of values. As an example, consider the following restaurant reservation process, where R1 and R2 are two restau-
rants, and t is the meal time. The user is notified for the first acknowledgement received from the two restaurants,
if any.

Reservation(t) �̂ Notify(x) <x< (R1(t) | R2(t))

Recursive definition is also supported in Orc. The following expression defines a Clock using Rtimer(t), which
emits a signal every time unit, starting immediately.

Clock �̂ Signal | (Rtimer(1) � Clock)

Dining philosopher example We use the classical dining philosopher problem [MC07] to demonstrate a complete
Orc program. There are N Philosophers, sitting around a table. Every pair of neighbors shares a fork. The fork
to the left of Philosopher i is Forki , and the fork to his right is Forki′ where i′ � (i + 1) mod N . Philosopher i can
eat only if he holds both left and right forks. A philosopher’s life cycle consists of the following activities: acquire
the two adjacent forks, eat, and release the forks. Because of the seating arrangement, neighboring philosophers
cannot eat simultaneously.

Each Forki is modeled as a FIFO buffered channel which is either empty (if some philosopher holds the corre-
sponding fork) or has one signal (if no philosopher holds the fork). We write Forki .put to denote sending a signal
along the channel and Forki .get to denote getting a signal from the channel. Initially, each channel holds a signal.
In this example, Pi (0 ≤ i < N) depicts philosopher i, where the right neighbor of Pi is Pi′ (i′ = (i + 1) mod N),
and Eat returns a signal as the completion of eating.

Pi �̂ ((let(x, y) � Eati � Forki .put � Forki′ .put � Pi) <y< Forki′ .get) <x< Forki .get

734 J. S. Dong

Fig. 1. Operational semantics of Orc

The dining philosopher problem can be represented as:

DP �̂ P0 | P1 | . . . | PN−1

This definition of dining philosopher can lead to deadlock. To avoid deadlock, philosophers should pick up their
forks in a specific order. For instance, all except P0 pick up their left forks first and then their right forks, and P0
picks up the right fork and then the left fork.

P′
0 �̂ Fork1.get � Fork0.get � Eat0 � Fork1.put � Fork0.put � P′

0
P′

i(1 ≤ i < N) �̂ Forki .get � Forki′ .get � Eati � Forki .put � Forki′ .put � P′
i

DP′ �̂ P′
0 | P′

1 | . . . | P′
N−1

Timed vending machine In this example, a user may insert some coins and then make a choice between coffee or
tea. Once the choice is made, the vending machine dispatches the corresponding drink. Alternatively, the user
may ask the machine to releasex the coins and walk away. If the user idles more than 10 seconds after the coin is
inserted, the machine will release the coins.

Select �̂ ((if (flag �� 1) � reqrelease � release � Rtimer(2) � Signal)
| (if (flag �� 2) � cof fee � Rtimer(3) � dispatch coffee � Signal)
| (if (flag �� 3) � tea � Rtimer(2) � dispatch tea � Signal)) < flag < (let(1) | let(2) | let(3))

Timeout �̂ let(z) < z < (Select | Rtimer(10) � release � Signal)
TVM �̂ coin � Timeout � TVM

Note that two patterns [WKCM08] are used here. Nondeterministic choice in Select expression is expressed
using asymmetric composition such that the choice of a first value is nondeterministic if several values are pub-
lished simultaneously. Time-out in Timeout expression is expressed using the symmetric composition of Select
expression and Rtimer(10) inside an asymmetric composition.

Towards verification of computation orchestration 735

2.2. Formal semantics

Both operational semantics and denotational semantics are defined for Orc. The operational semantics is defined
based on transition systems [MC07, WKCM08]. The denotational semantics of Orc language is defined using
trees [MHM04] and traces [WKCM08]. In [WKCM08], it is proved that the denotational semantics and opera-
tional semantics of Orc are equivalent. In this work, we focus on the operational semantics of the Orc language
as explained below.

In [MC07], two types un-timed operational semantics are proposed for Orc: asynchronous operational seman-
tics (AOS) and synchronous operational semantics (SOS). The difference between the two semantics lies on the
execution order of the enabled events. Similar to most process algebras, AOS of Orc allows arbitrarily interleaved
of all (enabled) events. It does not specify when particular events take place, nor any specific order in processing
the events. Hence an enabled event can be arbitrarily delayed by executing other events. In order to program
time-out or any other timed-based computation, SOS is introduced so that internal events (i.e., all events other
than external response) are processed as soon as possible. External responses are executed if there is no more
internal events.

In [WKCM08], AOS is extended to include the time at which an event occurs. This extended semantics is
refereed as to timed asynchronous operational semantics (TAOS). The corresponding executions are changed
from a sequence of events to a sequence of time-event pairs. This semantics allows multiple events to occur at a
single instant of time. An important feature of TAOS is that time can be considered either discrete or continuous.
SOS mentioned above is no longer interesting, since the timing aspect of the language is modeled explicitly using
timed transitions in [WKCM08].

In this work, we adopt TAOS as defined in [WKCM08] to capture the timing behaviors and verify timing
related properties, (since SOS is a temporary solution to support real-time operators like time-out in the un-timed
semantics). The semantic model of an Orc program in TAOS is a transition system, which can be generated based
on the small-step operational semantics rules. The labels are time-event pairs (t, a). The transition relation f

t,a→ f ′
states that expression f may take a transition labeled with event a to expression f ′, such that the transition occurs
exactly t time units after its evaluation starts.

Definition 1 Given an Orc program f , the transition system associated with the program is Of � (O, o0,T ×
�,−→1) where O is the set of possible Orc configurations, o0 is the initial configuration, T is the transition time,
� is the alphabet which includes all events in f , and −→1⊆ O × (T × �) × O is the transition relation defined
by the transition rules in Fig. 1.

In this semantics, we partition the set of events into publication events (written as !m) and internal events
(written as τ). Publication events correspond to the communication of value m to the environment during a
transition. Internal events correspond to the state changes not intended to be observable by the environment.
Both publication and internal events are referred to as base events. The times in the transition relation are relative
to the start of evaluation of the expression. The complete small-step operational semantics of Orc is given in
Fig. 1.

The SiteCall rule in Fig. 1 describes the operational semantics of site calls. It specifies that expression M(m),
the invocation of site M with value m, performs an internal event at relative time 0 (i.e., without delay) and tran-
sitions to an intermediate expression ?u. We write �(M,m) for the set of handles that correspond to expression
M(m). Each handle describes a possible behavior of site M when it is called with value m. We also call ?u, the
expression corresponding to handle u. Informally, a handle specifies the relative times at which particular values
could potentially be returned by a site call, and also the possibility of perpetual non-response. A handle is a
set of pairs (t,m), where t is a time and m is a value, denoting that m may be returned at time t as a response.
Additionally, a handle may also include a distinguished element ω, which indicates non-response.

The SiteRet rule describes the behavior of handles as a set of potential responses in time. If (t,m) ∈ u, then
?u may transit after t units with event !m to 0, an expression which has no observable transitions. If ω ∈ u, then
it is possible that the handle will never respond, in which case the call blocks indefinitely. If a handle specifies
more than one potential actions (i.e., response or non-response), any one of the values may be returned at the
associated time.

Expressions are evaluated using call-by-name in the Def rule, where a single global set of definitions is
defined as D. Interested readers can find the detailed explanation of combinator rules (Seq1N, Seq1V, Sym1,
Sym2, Asym1, Asym2V and Asym2N) in [WKCM08].

736 J. S. Dong

Fundamental sites Fundamental sites have predefined and predictable behaviors. As a result, we can define
�(M,m) completely for a fundamental site M and any value m. In the following definitions, we write � for
signal, a unit value. For the sites in Table 1, there is exactly one handle for each site for a specific parameter value.

�(0) � {{ω}} �(let,m) � {{(0,m)}}
�(if , true) � {{(0, �)}} �(if , false) � {{ω}}
�(Rtimer, t) � {{(t, �)}} �(Signal) � {{(0, �)}}

Time-shifted expressions A time-shifted expression, written f t, is the expression that results from f after t units
have elapsed without occurrence of an event. When it is not possible for t time units to elapse without f engaging
in an event, we write f t � ⊥, where ⊥ is an unreachable expression. The time-shifted expression f t, for t ≥ 0, is
defined below based on the structure of f .

M(x)t � M(x)

M(m)t �
{

M(m) if t = 0
⊥ otherwise.

E(p̄)t �
{

E(p̄) if t = 0
⊥ otherwise.

(f | g)t � (f t | gt)
(f >x> g)t � (f t >x> g)
(f <x< g)t � (f t <x< gt)

3. Timed automata approach

This section presents the Timed Automata based approach. Timed Automata and Uppaal are briefly introduced
in Sect. 3.1. Section 3.2 presents an executable model in Timed Automata for each and every constructor in Orc.
Section 3.3 demonstrates how Uppaal is used to verify Orc programs using two case studies.

3.1. Timed automata and Uppaal

Timed Automata are finite state machines equipped with clocks. It is a formal notation to model behaviors of
real-time systems. Its definition provides a general way to annotate state transition graphs with timing constraints
using finitely many real-valued clock variables. Given a set of clocks C, the set of clock constraints�(C) is defined
as:

φ :� x ≤ c | c ≤ x | x < c | c < x | φ1 ∧ φ2, where x is a clock variable and c ∈ R
+.

A clock valuation v for a set of clocks C is a function which assigns a real value to each clock. A clock valuation
v satisfies a clock constraint δ, written as v |� φ, if and only if φ evaluates to true using the clock values given
by v. For d ∈ R+, let v + d denote the clock valuation v′ such that v′(c) � v(c) + d for all c ∈ C. For X ⊆ C, let
clock resetting notion [X → 0]v denote the valuation v′ such that v′(c) � v(c) for all c ∈ C \ X and v′(x) � 0 for
all x ∈ X .

Definition 2 (Timed automaton). A Timed Automaton A is a 6-tuple 〈S, s0, �,C, I ,T 〉, where S is a finite set of
states, s0 is the initial state, � is the alphabet, C is a finite set of clocks, I : S → �(C) is a mapping from a state
to a state invariant, and T ⊆ S ×� × 2C ×�(C) × S is the transition relation. �

In a Timed Automaton, a state is associated with an invariant, while a transition is labeled with a synchroni-
zation action, a guard (a constraint on clocks) and a clock reset (a set of clocks to be reset). Intuitively, a Timed
Automaton starts executions with all clocks initialized to zero. The automaton can stay at a node, as long as the
invariant of the node is satisfied, with all clocks increasing at the same rate. A transition (s, e, φ,X , s′) ∈ T is
fired only if φ and I (s) are satisfied by the current clock valuation v and [X → 0]v satisfies I (s′). After event e
occurs, clocks in X are set to zero. For example, Fig. 2 illustrates some simple Timed Automata. Graphically,
a double-lined circle indicates an initial state. Typically, a model of a complex system consists of a network of
Timed Automata.2

2 We may treat an automata network as one automaton by constructing the product. However, leaving it as a network saves us from the state
space explosion problem as well as allowing us to benefit from optimization built in the Timed Automata tools.

Towards verification of computation orchestration 737

Si S1

call_0

(a): Zero Site (b): Rtimer (t)

Si S1

x=0

call_if

x:=0

[b]

get_if

(c): if

Si S1

x=0

call_signal

x:=0

get_signal

(d):Signal

Fig. 2. Fundamental sites

Definition 3 (Timed automata network). Let Ai � 〈Si, si
0, �

i,Ci, I i,T i〉 where i ∈ {1, . . . , n} be a set of Timed
Automata. A network of Timed Automata is the parallel composition of A1, . . . ,An, denoted as A1 ‖ . . . ‖ An.
A1 ‖ . . . ‖ An is a Timed Automaton 〈S, s0, �,C, I ,T 〉 such that S � S1 × . . . × Sn; s0 � (s1

0, . . . , sn
0); � �

�1∪. . .∪�n; C � C1∪. . .∪Cn; I is defined such that for all (s1, . . . , sn) ∈ S, I ((s1, . . . , sn)) � I 1(s1) ∧ . . . ∧ I n(sn);
T is the least transition relation which satisfies the following condition.

• For all (. . . , si, . . .) ∈ S, if (si, e, c, g, qi) ∈ T i , then ((. . . , si, . . .), e, c, g, (. . . , qi, . . .) ∈ S) ∈ T .
• For all (. . . , si, . . . , sj, . . .) ∈ S, if (si, e!, c, g, qi) ∈ T i and (sj, e?, c′, g′, qj) ∈ T i , then ((. . . , si, . . . , sj, . . .), τ, c∪

c′, g ∧ g′, (. . . , qi, . . . , qj, . . .) ∈ S).

Similarly, the semantic model of timed automata is also a transition system as defined below.

Definition 4 Given a Timed Automaton A � 〈S, i, �,C, I ,T 〉, the transition system associated with the autom-
aton is TA � (S, s0,T × �,−→2) where S � S × V is the set of all possible states. Each state is composed of
a control state in S and a valuation of the clocks. The initial state s0 � 〈i, v0〉 comprises the initial state i and a
zero valuation v0. −→2⊆ S × (T ×�) × S has the following transitions.

• 〈s, v〉 δ,a−→2 〈s′, v′〉 iff s
a; X ; ϕ−→ s′. That is, the clock interpretation meets the guard (v |� ϕ), and the new clock

valuation satisfies: v′(x) � 0 for all x ∈ X and v′(x) � v(x) + δ, for all x �∈ X . �

Uppaal [LPW97] is our choice of model checker for verifying a network of Timed Automata because of its
efficiency as well as its wide recognition. Uppaal is a tool for modeling, simulation and verification of real-time
systems modeled as Timed Automata. It consists of three main parts, a system editor which provides a graphical
interface to design Timed Automata, a simulator and a model checker. The simulator is a validation tool which
enables examination of possible dynamic executions of a system and thus provides an inexpensive means of fault
detection prior to verification by the model checker, which covers the exhaustive dynamic behavior of the system.
The model checker checks invariant and bounded liveness properties by exploring the symbolic state space of a
system. The properties are expressed as a rich subset of TCTL [HNSY92]. In a nutshell, Uppaal is a model checker
for systems that can be modeled as a collection of non-deterministic processes with finite control structure and
real-valued clocks, communicating through channels or shared variables. Typical applications include real-time
controllers and communication protocols, e.g., those where timing aspects are critical. In this work, we extend
its application to Web Service orchestration.

3.2. Timed automata semantics for Orc

This section is devoted to a definition of Timed Automata semantics for Orc programs, which allows us to sys-
tematically construct a Timed Automata model from an Orc program. The practical implication is that we may
then reuse existing tools and theories for Timed Automata to achieve various purposes, for instance, synthesis
of implementation [AFP+02], simulation [ADW00], theorem proving [LW00] or more importantly formal verifi-
cation [LPW97]. In the following, the Timed Automata semantics for Orc programs is formally defined, starting
with fundamental sites. The dining philosopher example is used as a running example.

Definition 5 (Zero site). A zero site 0 is modeled as an automaton A0 where S � {si, s1} and3 � � {call0} and
C � ∅ and I � ∅ and T � {(si, call0,∅, true, s1)}. �

A zero site is a site that never responds. Thus there is no site return event, as illustrated in Fig. 2a. The formal
definition of the automaton for the fundamental site Rtimer(t) is presented below, which plays the central role in
the timing aspect of the orchestration.

3 This means that there is no invariant for any state.

738 J. S. Dong

Si S1 S2

call_M(P) get_M(P)

Fig. 3. Timed automaton for site call

Si S2S1

call_Rtimer(t) get_Rtimer(t)

Fig. 4. Timed automaton for Rtimer(t) call

Definition 6 (Rtimer(t)). A Rtimer(t) site is modeled as an automatonARtimer(t) where� � {callRtimer(t), getRtimer(t)},
S � {si, s1}, C � {x}, I � {(s1, x ≤ t)} and T � {(si, callRtimer(t), {x}, true, s1), (s1, getRtimer(t),∅, x � t, si)}. �

The Timed Automaton for Rtimer(t) is illustrated in Fig. 2b. Once the site is called via the synchronization on
the callRtimer(t) event, the local clock x is reset to 0. After exactly t time units, the calling site is notified via the
getRtimer(t) event. This matches the handles set of the Rtimer (i.e., �(Rtimer, t) � {{(t, �)}}).

Similarly, fundamental sites callif and callSignal are defined as Timed Automata as well, which are illustrated
in Fig. 2c, d respectively. The urgent state4 S1 makes sure that the site return event takes no time. callAtimer(t) is
ignored since Atimer(t) can represented as Rtimer(t − c), where c is the current clock value. calllet is a simple
Timed Automaton similar to callif , but the second transition is the get event without condition b.

The fundamental sites presented so far are defined as the complete expression calls (see Definition 11). If we
only consider Timed Automata for the Orc contracts of the fundamental sites, then the call events should be
removed, e.g., the zero site 0 contains just a single state without any transitions.

Definition 7 (Site call). A site call M(P) is modeled as an automaton AM(P) where S � {si, s1, s2}, � � {τcallM(P) ,
!mgetM(P)}, C � ∅, I � ∅, and T � {(si, τcallM(P) ,∅, true, s1), (s1, !mgetM(P) ,∅, true, s2)}. �

A site call is modeled as a Timed Automaton allowing a call event which invokes the service and a get event which
gets the response from the called site, illustrated in Fig. 3. Note that event τcallM(P) (or !mgetM(P)) is to distinguish
with other τ (or !m) events for presentation purpose; and we use callM(P) (or getM(P)) in the Timed Automata to
denote the τcallM(P) (or !mgetM(P)) event. This conforms to the operational semantics of site call, i.e., the two steps
of invocation and response as in Fig. 1.

A special kind of site calls is the calls to Rtimer(t) and Signal because of the timing constraints. The invocation
of Rtimer(t) site is shown in Fig. 4 (Signal calls are omitted for the similarity). The initial state is set as committed
state5, which will fire the outgoing event callRtimer(t) immediately with the top priority among all transitions. The
finishing state is set as an urgent state, which stops the timer in the finishing state. By using the committed and
urgent states, we can get exactly t time units between the initial state and finishing state.

External sites must be specified as separate Timed Automata running parallel with the orchestration program
for the sake of verification. The behavior of external sites shall be modeled based on their specification, and the
invocation and response shall be modeled explicitly and synchronized with the corresponding site call (as specified
in Definition 7). For example, the behaviors of the forks in the dining philosopher example are modeled as in
Fig. 5, where the user may repeatedly get the fork and then put it back. Consequently, a site call Forki .put is the
synchronization on the invocation event callForki .put (simplified as call fork i put in this example) and response
getForki .put event (simplified as get fork i put in this example). For an abstract site call like Eat, instead of building
a trivial automaton which synchronizes on the call event and then returns a signal, it is treated as an abstract
local event for the sake of efficient verification.6

4 In Uppaal, urgent states are semantically equivalent to adding an extra clock x, that is reset on all incoming edges, and having an invariant
x ≤ 0 on the location. Hence, time is not allowed to pass when the system is in an urgent location.
5 In Uppaal, committed states freeze time. If any process is in a committed location, the next transition must involve an edge from one of
the committed locations.
6 In Uppaal, it corresponds to a transition labelled with no channel event.

Towards verification of computation orchestration 739

S0 S1 S2

call_fork_i_put get_fork_i_put

Fig. 5. Timed automaton for Forki

get_fork_i’_put call_fork_i_get get_fork_i_get

(a) Timed Automaton for Forki get

get_fork_i’_get call_fork_i_put get_fork_i_put

(c) Timed Automaton for Forki put

get_fork_i_get call_fork_i’_get get_fork_i’_get

(b) Timed Automaton for Forki get

get_fork_i_put call_fork_i’_put get_fork_i’_put

(d) Timed Automaton for Forki put

Fig. 6. Network of automata for P′
i(1 ≤ i ≤ N)

Definition 8 (Sequential composition). Let the automata network of g be Ag �̂ A1 ‖ · · · ‖ An, where for all
i : 1 . . n, Ai �̂ 〈Si, si

0, �
i,Ci, I i,T i〉. A sequential composition f >x> g is modeled as a Timed Automata

network Af>x>g �̂ Af ‖ A′
g, where A′

g �̂ (A′
1 ‖ · · · ‖ A′

n)k and for all i : 1 . . n, A′
i �̂ 〈Si′ , si′

0 , �
i′ ,Ci′ , I i′ ,T i′ 〉

where Si′ � Si ∪ {si′
0 } and �i′ � �i ∪ {getx} and Ci′ � Ci and I i′ � I i and T i′ � T i ∪ {(si′

0 , getx,∅, true, si
0)}. �

Notice that a channel7 named getx is defined to synchronize the publishing of a value of x from automata Af
and the receiving of the value in A′

g.
A sequential composition f >x> g is modeled as, in general, a network of Timed Automata Af>x>g, where

network of f is untouched, whereas the each automaton Ai in the network of g is changed by adding a new initial
state si′

0 and new transition from si′
0 to si

0, which is the original initial state. This new transition has to synchronize
on the event getx, which is to pair with the publishing event from Af . The purpose of adding this new state and
transition is to make sure that if there is a value published from Af , the execution of g will be triggered. This
reflects the Seq1N and Seq1V rules in Fig. 1.

In an abuse of notations, we use Ak to denote a network containing k copies of the same automaton A.
The network of f is parallel-composed with multiple copies of network of g. Every time a new value of x is
published, a new instance of the g component is created and starts execution. In general, there would be infinite
number of overlapping activations of the g component. However, if we assume the g part executes reasonably fast
(and terminating), we need only a finite number of copies of g to fork and reuse them once they are terminated.
For the sake of verification of real world applications, we always assume that there is an upper bound on the
number of overlapping activation of the g part. For example, Fig. 6 presents the automata interpretation of the
P′

i(1 ≤ i ≤ N) in the dining philosopher example, where each site call is modeled as a Timed Automaton and
local event eat has been removed for simplicity. In general, multiple copies of each of the automata is required.
However, only one copy for each automaton is shown as that is all that is needed in this case.

Definition 9 (Symmetric parallel composition). A symmetric parallel composition f | g is modeled as a network
of two Timed Automata (networks) Af ‖ Ag. �

A symmetric parallel composition is modeled as two automata (networks) running in parallel. There is no com-
munication between the f and g. f and g are probably remote site call to services which run independently on
remote machines. Note that the clocks in the two automata change at same pace so that the timed shift are satisfied
automatically. Two automata (networks) sharing no common event are used to capture the interleaving behaviors.
For example, the automata network for DP′ in the dining philosopher example is the network containing the
networks in Fig. 6 (one for each i).

7 In Uppaal, a broadcast channel is used here in order to do the synchronization for all paralleled automata in the g.

740 J. S. Dong

fork_i_get fork_i’_get

fork_i’_get fork_i_get

eat_i fork_i_put fork_i’_put

Fig. 7. Timed automaton for Pi

The last compositional constructor of Orc is the asymmetric parallel composition, denoted f <x< g. Accord-
ing to the semantics in [CM05], the g expression terminates as soon as one value of x is published. This kind of
dynamic termination of Timed Automata is achieved through the use of a shared global flag.

Definition 10 (Asymmetric parallel composition). Let flag be a global Boolean variable. It is initially true. Let
the network of the expression g be Ag �̂ A1 ‖ . . . ‖ An. An asymmetric parallel composition f < x< g is
modeled as a network of Timed Automata Af<x<g �̂ Af ‖ A′

g where, A′
g � A′

1 ‖ . . . ‖ A′
n and for all i : 1 . . n,

A′
i �̂ 〈Ai .S,Ai .si,Ai .�,Ai .C,Ai .I ,T 〉 where

T � {(s1, getx, cl ′, gc, s2) | (s1, getx, cl, gc, s2) ∈ Ai .T }
∪{(s1, e, cl, gc ∧ flag, s2) | e �� getx ∧ (s1, e, cl, gc, s2) ∈ Ai .T }

where cl ′ sets flag to false and resets the clocks in cl usingassignmentin Uppaal. �

As soon as a publishing of x is achieved, the global flag is set to be false (this is atomic since they are on the
same transition). Consequently all transitions in the network of the expression g are blocked. Therefore, the
network of g terminates. Notice that the flag is carefully implemented so that it is local to the automata in A′

g (by
defining a unique global variable for each activation of the network). The execution of Af is not blocked until a
synchronization on event publisgetx is required. Therefore, it may make steps in parallel or even before g does.
Similarly to the symmetric parallel composition, the clocks in Af and Ag change at the same pace so that the timed
shift are satisfied automatically. We remark that while our definitions of Timed Automata interpretation for Orc
programs are generic, there are plenty of simplifications and optimizations to be performed on the constructed
Timed Automata. For example, the Pi expression is modeled (and simplified) as the automaton in Fig. 7.

Definition 11 (Expression call). An expression call is E(P) with E(P) �̂ f is modeled as the network of Timed
Automata for f prefixed by the callE (P) event, i.e., AE(P) �̂ 〈S, si, �,C, I ,T 〉, where S � {si ∪ Af .S} and
� � {τcallE(P) ∪ Af .�} and C � Af .C and I � Af .I and T � {(si, τcallE(P) ,∅, true,Af .si) ∪ Af .T }. �

For each parameter x of the expression call, a channel getx is defined to synchronize with the publishing of a
value of the parameter x. In case there are multiple parameters, the expression call is executed only after all the
parameters get their values (via synchronization on the corresponding channels). Publishing of the parameters
may occur in any order.

For simple tail recursion where there is only one automaton instead of an automata network when the recur-
sion call is reached (with our simplification and optimization done), we connect the last state to the initial state
to make a loop, e.g., the automaton in Fig. 7. In general, recursion is resolved by replacing it with the least fixed
point. However, Orc does allow expressions like N � f | N where there could be infinite number of copies of f .
These kinds of expressions are disallowed by focusing only on finite-state Orc programs as discussed below.

In general, our modeling of Orc may end up with a network containing an infinite number of automata (see
Definitions 8 and 11). One evidence of a possibly infinite number of automata is that Orc in general allows an
irregular language (as in automata theory) as Orc is Turing complete. Some Orc programs that we regard as
problematic are as follows.

P �̂ b | (a � P � c), where a, b, c are sites or even expressions
M �̂ let(x) <x< (let(0) | Signal)
N �̂ f (x) <x< N

Towards verification of computation orchestration 741

Si S1 S2

qi:=p1;
q2:=p2;
...
qn:=pn;

call_M(P) get_M(P)

Fig. 8. Timed automaton for site call with value passing

Si S1 S2

call_M(P) get_M(P)

M_Return:=v

Fig. 9. Timed automaton for site with value passing

P in general allows a language of the form anbcn which is a typical example of an irregular language. It is a known
fact that such languages cannot be expressed using finite automata. Therefore, they are beyond automata-based
model checking. M is not type safe because the type of x can be either integer 0 or a signal. In general, x could
be any type. This as well presents a problem to current model-checking techniques. Lastly, N allows an infinitely
number of threads of f running independently, which would result in an infinite internal loop without returning
a value, i.e., a divergence in CSP’s terms. Our target is therefore a subset of Orc language that is regular, type-safe
and only allows a finite number of threads. Formally, it is the subset of Orc that are finite-state following the defi-
nition of finite-state processes given in [OW02]. Intuitively, a finite-state Orc program generates only a finite-state
transition system (according to the small-step operational semantics) assuming each step takes one time unit.

The soundness of the Timed Automata modeling is proved by showing that there is a weak bi-simulation
relation (denoted using symbol ≈) between the Timed Automata and the operational semantics of Orc. The
formal definition of ≈ is given by Definition 13 in Appendix A. The following theorem is proved by a structural
induction over our definitions and the operational semantics of Orc defined in [MC07] (see Appendix A for the
proof details).

Theorem 3.1 For any finite-state Orc program f , let Af be the timed automata constructed by following
Definition 5 to 11. Af a weak bi-simulation of f , i.e., Af ≈ f . �

Value passing handling Timed automata do not have notions for variables and assignments. Fortunately Uppaal
as an extension of Timed Automata introduces variables (both local and global) and variable assignments (in
events). Hence parameter passing can be realized through globally shared variables as no data can be attached
along a channel communication. It is obvious that these shared variables must have unique names. Because the
names of site calls are unique, we prefix all the formal parameters’ names with their site call names. The return
values of each site call are named as site call name + “Return”.

To invoke a site call, the formal parameters are assigned to the value of actual parameters in the call event
in the Site Call model. The complete model of callM(P) is shown in Fig. 8. The return value of a site is assigned
in the get event in the Site model (Fig. 9). The sequential composition f >x> g has an additional assignment
x :� fReturn for variable x in the get event of f . Similarly for asymmetric parallel composition f <x< g , we add
the assignment x :� gReturn in the get event of g. The expression call E(P) �̂ f has also an assignment in the get
event for its return value.

3.3. Verification using Uppaal

This section is devoted to a discussion on how to apply tool support for Timed Automata, in particular Uppaal,
to formally analyze the constructed Timed Automata.

The verification of Orc programs is based on the Uppaal verifier, which supports a simplified version of timed
Computational Tree Logic (CTL). Similar to CTL language, the query language in Uppaal consists of path
formulae and state formulae except the nested path formulae. State formulae describe individual states, whereas
path formulae quantify over paths or traces of the model. Path formulae can be further classified into reachability,
safety and liveness. Figure 10 illustrates the different path formulae supported by Uppaal. Each type is described
below. Real world examples will be found in Sect. 5.

742 J. S. Dong

Fig. 10. Path formulae supported in Uppaal. The filled states are those for which a given state formulae ϕ holds. Bold edges are used to show
the paths the formulae evaluate on.

State formulae A state formula is an expression that can be evaluated for a state without looking at the behavior
of the model. For example, we can check whether i �� 7 is true at some states. In Uppaal, deadlock is
expressed using a special state formula (although this is not strictly a state formula). The formula simply
consists of the keyword deadlock and is satisfied for all deadlock states.

Reachability properties Reachability properties are the simplest form of properties. They ask whether a given
state formula, ϕ, possibly can be satisfied by any reachable state (written as E� ϕ). Reachability properties
are often used while designing a model to perform sanity checks. For instance, when creating a model of a
communication protocol involving a sender and a receiver, it makes sense to ask whether it is possible for the
sender to send a message at all or whether a message can possibly be received.

Safety properties Safety properties are on the form: “bad things will never happen". For instance, in a model of
computer, a safety property might be, the temperature of the CPU is always under the certain threshold. A
variation of this property is that “something will possibly never happen". For instance when playing a game,
a safe state is one in which we can still win the game. In Uppaal, we can use A� ϕ and E� ϕ to present the
two kinds of properties respectively.

Liveness properties Liveness properties are of the form: something will eventually happen, e.g., when pressing the
close button in the lift, then eventually the door will be closed. In its simple form, liveness is expressed with
the path formula A� ϕ, meaning ϕ is eventually satisfied. The more useful form is the leads to or response
property, written A� ϕ and ψ � ϕ , which is read as whenever ψ is satisfied, then eventually ϕ will be
satisfied, e.g., whenever a message is sent, then eventually it will be received.

Timing properties Since Uppaal uses a continuous time model, we can check the clock related prosperities. Clock
variables can be used in the properties as propositions. For example, we can check the following timing
properties related to a robot.

• A� Robot.move imply (x >� 2 and x <� 3) shows that the robot can only move when the clock x is
between 2 and 3, i.e., after a delay between 2 and 3 time units.

• E� Robot.idle and x > 3: the robot can be idle after 3 time units.

3.4. Automated construction

We developed an experimental tool to automatically construct Uppaal models from Orc programs using XML
and Java technology. We start with parsing the Orc program and building an Abstract Syntax Tree. Afterwards,
each Orc language construct is converted to a Timed Automaton or a network of Timed Automata according to
our definitions in Sect. 3.2. The output of the program is an XML representation of the Uppaal model, which

Towards verification of computation orchestration 743

is ready to be employed and verified. The tool and Orc programs appeared in this paper can be found on the
web [DLSZ].

We briefly mention some of the implementation issues here. Because Uppaal does not allow data to pass
through channels, global variables are carefully defined to pass along the values, i.e., a get event is always attached
with an assignment to the respective global variable. An aggressive simplification procedure is applied whenever
possible to simplify and optimize the constructed Timed Automata. For instance, when we apply Definition 8, if
we are certain that there is only one copy of g required, we may do the product of the two automata and remove
the get event given that it does not affect the rest of the model. We also try to minimize the number of clock
variables by reusing the same ones so as to speed up the verification. However, the simplification and optimization
remains as a challenging task and can be further improved by considering Orc laws.

Once the Uppaal model is built, we may import it using Uppaal and do verification. For example, it can be
easily verified that the first Orc program of the dining philosophers can lead to deadlock. In our experiment,
we created 5 philosophers and 5 fork instances. Afterwards we checked if the model is deadlock-free using the
following property: A� not deadlock. Uppaal reports that the property does not hold for the system. A counter-
example where all philosophers pick up their left fork can be found via random simulation. In the case that the
first philosopher always picks up the right fork, we verify that the Orc program is deadlock-free and it satisfies
properties like that no more than half of the philosophers can be eating at the same time etc.

3.5. Limitations of timed automata approach

The Timed Automata approach gives us an easy way to simulate and verify Orc programs by reusing the existing
powerful tools, like Uppaal. However, as discussed in this section, we can see several limitations of the Timed
Automata approach. Firstly, limited by the expressiveness power of Timed Automata, it can only support a subset
of Orc language that is regular, type-safe and allows only a finite number of threads. Secondly, the verification
of Orc programs relies on the model checker Uppaal; we can only query a subset of CTL query excluding the
nested path formulae. Furthermore, the deadlock state formula can only be used with reachability and invariantly
path formulae. Thirdly, Timed Automata model checker is not optimized for the translated Orc program. This
is because the mapping from the process algebra definitions of Orc programs to Timed Automata models is not
simply one to one. Practical orchestration models often result in high complexity in the corresponding Timed
Automata models, which can make the simulation and verification inefficient or even impossible. Finally, to sim-
plify the generated Timed Automata models is difficult. It is possible to identify some patterns in the generated
Timed Automata for simplification. However, to systematically identify the patterns is difficult due to the lack of
mathematical theory support.

These limitations come from the nature of Timed Automata, so Timed Automata is not the ideal technique
for the orchestration verification. We need a complementary solution.

4. Constraint logic programming approach

This section presents our second approach based on Constraint Logic Programming (CLP). Section 4.1 briefly
introduces the background of CLP. Section 4.2 illustrates the encoding of Orc programs in CLP. Section 4.3
presents properties we may perform over systems in the CLP framework.

4.1. CLP preliminaries

Constraint Logic Programming (CLP) [JM94] began as a natural merger of two declarative paradigms: constraint
solving and logic programming, in which logic programming is extended to include concepts from constraint sat-
isfaction. This combination helps make CLP programs more expressive, and in some cases more efficient than
other logic programming languages. The CLP scheme defines a class of languages based upon the paradigm of
rule-based constraint programming, where CLP(R) [JMSY92] is an instance of this class. In this section, we
present some preliminary definitions about CLP. More details can be found in [JM94].

744 J. S. Dong

Factorial The following is a typical CLP program:

fac(0, 1).
fac(N,X1 ∗ N) � N > 0, fac(N − 1,X1).

A relation fac(N, X) is defined, where X is the factorial of N , denoted as X � N !. There are two atoms for the
relation fac(N, X), where the first atom is a fact and the second one is a rule.

The universe of discourse D of our CLP program is a set of terms. Real constants and real variables are both
arithmetic terms. If t1, t2 are arithmetic terms, then so are (t1 + t2), (t1 − t2) and (t1 ∗ t2). A Constraint is written
using a language of functions and relations. If t1 and t2 are arithmetic terms, tl � t2 ,tl < t2 and tl ≤ t2 are all
arithmetic constraints. If, however, not both the terms tl and t2 are arithmetic terms, then only the expression
tl � t2 is a constraint. Both these kinds of constraints will be used in programs, and they form a subset of all the
predicates which may appear in a program. Because these constraints have predefined meanings, we shall some-
times emphasize this by calling them primitive constraints (or simply constraints when confusion is unlikely).
Constraints are used in two ways, in the basic programming language to describe expressions and conditions,
and in user assertions, defined below.

An atom is of the form p(t̃), where p is a user defined predicate symbol distinct from �,< and ≤, and t̃ is a
sequence of terms. A rule is of the form A � B̃, where the atom A is the head of the rule, and the sequence of
atoms B̃ and the constraint constitute the body of the rule. A goal has exactly the same format as the body of
the rule, in the form of ? − B̃, . If B̃ is an empty sequence of atoms, we call this a (constrained) fact. All goals,
rules and facts are terms. A ground instance of a constraint, atom and rule is defined in obvious way. A ground
instance of a constraint is obtained by instantiating variables therein from D. The ground instances of a goal G,
written �G� is the set of ground atoms obtained by taking all the true ground instances of G and then assembling
the ground atoms therein into a set. We write G1 |� G2 to mean that for all groundings θ of G1 and G2, each
ground atom in G1θ appears in G2θ .

Let G � (B1, . . . ,Bn,) and P denote a goal and program respectively. Let R � A � C1, . . . ,Cm, 1 denote
a rule in P, written so as none of its variables appear in G. Let A � B, where A and B are atoms, be shorthand
for equations between their corresponding arguments. A reduct of G using R is of the form

(B1, . . . ,Bi−1,C1, . . . ,Cm,Bi+1, . . . ,Bn,Bi � A ∧ ∧ 1)

provided Bi � A ∧ ∧ 1 is satisfiable. A derivation sequence is a possibly infinite sequence of goals G0,G1, . . .
where Gi, i > 0 is a reduct of Gi−1. If there is a last goal Gn with no atoms, notationally (�,) and called a
terminal goal, we say that the derivation is a successful and that the answer constraint is. A derivation is ground
if every reduction therein is ground.

Derivation We calculate 3! through the goal ? − fac(3, X). The following demonstrates a derivation sequence of
the goal with three steps. The constraints in the last step are the termination goal answer X � 6.

N � 3, fac(N, X).
⇓

N � 3,N > 0,N − 1 � N1,X � N ∗ X1, fac(N1,X1).
⇓

N � 3,N > 0,N − 1 � N1,X � N ∗ X1,
N1 > 0,N1 − 1 � N2,X 1 � N1 ∗ X2, fac(N2,X2).

⇓
N � 3,N > 0,N − 1 � N1,X � N ∗ X1,N1 > 0,N1 − 1 � N2,
X 1 � N1 ∗ X2,N2 > 0,N2 − 1 � 0,X2 � 1.

4.2. Orc semantics in CLP

This section is devoted to an encoding of the operational semantics of Orc language in CLP. The practical impli-
cation is that we may then use powerful constraint solver like CLP(R) [JMSY92] to verify Orc programs. Note
that we follow the timed asynchronous operational semantics of Orc as presented in Sect. 2.2.

Towards verification of computation orchestration 745

Fig. 11. Dining philosophers in CLP

4.2.1. Orc models encoding

The initial step of our approach is the syntax encoding of Orc programs in CLP syntax, which can be easily
automated by syntax rewriting. A relation of the form def (N,P,B) is used to define a definition N with body
B and formal parameters list P. Then the different expressions are defined using predicates like para(f , g) for
f | g, seq(f , g, x) for f > x> g, where(f , g, x) for f < x< g, and so on. For instance, Fig. 11 is the syntax
encoding of dining philosopher problem of size 3 in CLP, which is a symmetric composition of 3 philosophers,
while each is a recursive process named pi. Rule plusone returns I ′ given I , i.e., returns I + 1 if I + 1 is less than N ,
otherwise returns 0. We use the CLP arbitrary variable “ ” for the unimportant variables and input arguments.
A description of the relation names appearing in Fig. 11 can be found in the following sections.

4.2.2. Operational semantics

We define oos (Orc Operational Semantics) relation as a transition system interpretation of an Orc program,
where the state is identified by the combination of the process expression and the valuation of the time variables.
The relation oos(P1,T1,E,P2,T2) is true if the process P1 may evolve to P2 through event transition E. T1 is
the time before the transition and T2 is the time after the transition. T1 �� T2 implies that the transition takes
no time. oos is defined in terms of each and every operator of Orc language. For instance, the site call evaluation
steps are defined through the following clauses:

oos(sitecall(M,m),T , [tau], u(M,m),T) � not(def (M, ,)), constant list(m).
oos(u(M,m),T1, [get(V)], zerosite,T2) � T2 >� T1, constant list(V).
oos(abscall(M,),T , [get([signal])], zerosite,T).

The first rule reflects the SiteCall rule in Orc’s semantics. A site call M(m), where M is the site name and m
is the list of actual parameters, transitions to u(M,m) with tau event. The intermediate state u(M,m) represents
a process that is blocked waiting for the return from the call. There are two conditions for this rule to fire: the site
call M is not defined internally (i.e., not(def (M, ,))) and the input actual parameters must be constant (i.e.,
constant list(m)). We assume this step takes 0 time unit. Keyword not in the rules means “negation as failure” as
in logic programming.

The second rule maps to the SiteRet rule in Orc’s semantics. The pending process u(M,m) receives a result
V and transitions to zerosite via a get(V) event. The returned time is stored in T2. If the environment never
produces a response event, then the call blocks infinitely. Therefore, in the modeling process, developers need to
provide return values and exact time delay for all returning site calls. The published tuple V must contain only
constants, otherwise the transition will be blocked.

The last rule abscall is a simplification of the two-step evaluation of the site call. Sometimes the return value and
evaluation time are not important for the modeling, we can use abstract site calls to model the two-step execution.

The following rules define the encoding of Orc fundamental sites. The zerosite will not progress anymore and
leave the timer to keep ticking. The let(C) transitions to zerosite and generates a get(C) event. The if rule will
return a signal if the given condition C is evaluated to be true,8 and it is blocked otherwise. The signal rule will

8 The evaluation of the condition C is based on the CLP(R) function call, which returns true if the input constraint is true.

746 J. S. Dong

just publish a signal and reach zerosite. The clock rule will publish the current time T and reach zerosite. We
define rtimer as a site transiting to zerosite with D time unit delay.

oos(zerosite,T1, [], zerosite,T2) � D > 0,T2 � T1 + D.
oos(let(C),T , [get(C)], zerosite,T) � constant list(C).
oos(if (C),T , [get([signal])], zerosite,T) � call(C).
oos(signal,T , [get([signal])], zerosite,T).
oos(clock,T , [get([T])], zerosite,T).
oos(u(rtimer, [D]),T1, [get([signal])], zerosite,T1 + D) � D >� 0.

The following rules define the composition operators. The first two rules correspond to Sym1 and Sym2
steps for the symmetric composition. The third and fourth rules correspond to Seq1N and Seq1V steps for the
sequential composition. For asymmetric parallel composition, we use rule five and six for Asym2N and Asym2V
steps, which allow transitions on processes F and G, but only if the process F expression does not publish a value.
When the process F publishes a value, we use rule seven for Asym1 step to terminate F and the result value is
bound into variable X and passed into the process G. The last rule defines the expression definition step Def of
the Orc semantics. It returns the body of the definition. This rule requires that the actual parameters passed in
must be constants.

oos(para(F ,G),T1, [E], para(F1,G1),T2) � oos(F ,T1, [E],F1,T2), tshift(G,G1,T2 − T1).
oos(para(F ,G),T1, [E], para(F1,G1),T2) � oos(G,T1, [E],G1,T2), tshift(F ,F1,T2 − T1).
oos(seq(F ,G,X),T1, [E], seq(F1,G,X),T2) � oos(F ,T1, [E],F1,T2), not(E � get()).
oos(seq(F ,G,X),T , [tau], para(seq(F1,G,X),G),T) � oos(F ,T , [get(X)],F1,T).
oos(where(F ,G,X),T1, [E],where(F1,G,X),T2) �

oos(G,T1, [E],G1,T2), not(E � get()), tshift(F ,F1,T2 − T1).
oos(where(F ,G,X),T , [tau],F1,T) � oos(G,T , [get(X)],G1,T), tshift(F ,F1,T2 − T1).
oos(where(F ,G,X),T1, [E],where(F1,G1,X),T2) � oos(F ,T1, [E],F1,T2), tshift(G,G1,T2 − T1).
oos(sitecall(E,P),T , [tau],F ,T) � constant list(P), def (E,P,F).

The parameter passing and variable substitution are solved by the variable unification provided by the CLP
language. In the expression definition rule, the actual parameter list P is passed to the def rule, which achieves the
variable substitution automatically after the unification of the actual parameters P and the formal parameters
in the definition. The variable passing of the sequential composition and asymmetric composition also uses the
unification of the middle variable X in the definition.

The time shift rules are defined as follows according to the definition in Sect. 2.2. Because the parameter
passing are done via the unification, the parameters of a site call cannot be variables. Hence the rule on M(x) is
ignored. bottom is a constant for invalid state.

tshift(sitecall(M,C), sitecall(M,C), 0).
tshift(sitecall(M,C), bottom,).
tshift(sitecall(E,P), sitecall(E,P), 0).
tshift(sitecall(E,P), bottom,).
tshift(para(F ,G), para(F1,G1),T) � tshift(F ,F1,T), tshift(G,G1,T).
tshift(seq(F ,G,X), seq(F1,G,X),T) � tshift(F ,F1,T).
tshift(where(F ,G,X),where(F1,G1,X),T) � tshift(F ,F1,T), tshift(G,G1,T)

4.2.3. Semantic model

Given an arbitrary CLP program, its execution starts with the initial set of terms and then repeatedly tries to
apply rules until the goal or a fix point is reached. In this work, we focus on the encoded CLP program Pf of a
given Orc program f . In the following, we formalize the semantic model of Pf to a transition system so that we
can argue the equivalence with original Orc program f .

Definition 12 Given an Orc program f , let Pf be the corresponding CLP program constructed using the rules
above together with oos and tshift rules. The transition system associated with the program Pf is Pf � (C, c0,T×
�,−→3) where C is the set of possible sets of terms, c0 is the initial set of terms, T is the transition time, � is the
alphabet which includes all events in f , and −→3⊆ C × (T ×�) × C is the transition relation defined by the oos
transition rules.

Towards verification of computation orchestration 747

Note that the only transitions caused in P is the execution of oos rules, i.e., for any execution of

oos(P1,T1,E,P2,T2), there is a transition in P such that c
T2−T1,E−→3 c′. Other rule execution will not generate

any transition in P .

Theorem 4.1 For any finite-state Orc program f , Pf a weak bi-simulation of f , i.e., Pf ≈ f . �

Proof sketch: The theorem can be proved by a structural induction on the Orc programs based on the opera-
tional semantic rules as shown in Fig. 1.

Firstly, orc operational semantics rules are triggered by the matching of pre-conditions. Execution of the rules
will generate the resulting transition. The execution of the oos rules follows the exactly same way.

Secondly, it is clear that the mapping from the operational semantics rules to CLP oos rules is strictly one
to one as shown in the section above. This implies that whenever there is a transition in Of , then there is a
corresponding transition in Pf , and vice versa. Therefore we can conclude that Pf a weak bi-simulation of f . �

4.2.4. Simplification based on algebra laws

Process algebra can use its algebraic laws to facilitate reasoning and simplification about process definitions. This
can bring us significant simplification of Orc programs, which is not available in the Timed Automata approach.
We define the following rules according to the equivalence relations of laws of Orc [MC07, LZH10], which are
then used to simplify the expressions during the verification.

The following four rules show the simplification laws involving zerosite. The first argument of rule sim is the
input process. The second argument is the simplified process. Cut operator ! terminates the search after the first
match, which is used to improve efficiency.

sim(para(zerosite,P),P) �!.
sim(para(P, zerosite),P) �!.
sim(seq(zerosite, ,), zerosite) �!.
sim(where(F , zerosite,),F) �!.

The following rules define a depth first search to apply a simplification step for a process whenever possible.
The simplified process is stored in the second argument of sim rule.

sim(seq(P,Q, [X]), seq(P1,Q, [X])) � sim(P,P1).
sim(seq(P,Q, [X]), seq(P,Q1, [X])) � sim(Q,Q1).
sim(para(P,Q), para(P1,Q)) � sim(P,P1).
sim(para(P,Q), para(P,Q1)) � sim(Q,Q1).
sim(where(P,Q, [X]),where(P,Q1, [X])) � sim(P,P1).
sim(where(P,Q, [X]),where(P,Q1, [X])) � sim(Q,Q1).

To simplify an Orc program, we just need to invoke rule simplify, which will try to apply the simplification
laws until no more laws can be applied. The simplified process is stored in Q.

simplify(P,Q) � sim(P,D), !, simplify(D,Q).
simplify(P,P).

We do not define all the algebra laws for Orc program here, e.g., commutativity laws for symmetric compo-
sition and distributive laws over f <x< g. The reason is that these laws will not help in the simplification of the
expression. However, if needed, we can define them easily in CLP syntax.

We argue that this simplification will not affect the soundness of Theorem 4.1. This is because the simplifica-
tion rules will not generate any new transitions since no new oos is introduced. These rules are just performing the
syntax rewriting based on the algebra laws of Orc language, which has been proved in [MC07, LZH10]. Notice
that using of cut operator in the simplification rules will not affect the soundness of Theorem 4.1. Because cut
operator is to reduce the searching space after the first match of a rule, which means that the simplification may
not be performed for all Orc programs. However, as long as the simplification is sound, then Theorem 4.1 is
sound.

748 J. S. Dong

4.3. Properties verification of Orc models

This section is devoted to properties verification we may perform over Orc programs encoded in CLP. We imple-
mented a model checker prototype in one of the CLP solver, namely CLP(R) for its support of real-type variables.
Assertions can be proved against a given real-time system. We also developed a number of shortcuts for easy
querying and proving.

Using CLP, we may make explicit assertion which is either a safety assertion, or a liveness assertion. Yet it can
be used for both purposes using a unique interpretation. A discussion on how to allow such temporal properties
is presented in [CCO+04]. In the following, we show how safety properties and liveness properties can be queried.
We employ the coinductive tabling technique [JJV05] to obtain termination when dealing with recursions, which
facilitates verifying safety and liveness properties based on traces. Essentially, coinductive tabling extends CLP so
that it can inductively use proof obligations that are assumed but not yet proven, and it can generate new proof
obligations assertions dynamically. This technique is akin to the notion of tabling in logic programming systems
in that the main purpose is to obtain termination when dealing with recursion. In standard tabling, procedure
calls and their answers are tabled so as not to repeat them. In our approach, the main differences are first that the
setting is CLP and not just logic programming, and more importantly, that proof obligations, procedure calls and
their answers are all tabled. Termination is obtained by applying a principle of coinduction, that is: a recursive
proof obligation may be proved by assuming that a preceding proof obligation is true.

First of all, the reachability testing can be defined in CLP as follows. The relation treachable(P, Q, N, T1, T2)
states that it is possible to reach the process expression Q at time T2 from P at time T1, with trace N . We also
apply the simplification rule simplify after every step to speed up the operations. By using the tabling method, we
dynamically record the process expressions that have been explored in order to avoid re-exploring them. In this
regard, reachability can be asserted using treachable.

treachable(P,P, [],T1,T1).
treachable(P,Q, [E | N],T1,T2) � oos(P,T1,E,P1,T3), simplify(P1,P2), treachable(P2,Q,N,T4,T2).

An invariant property (a predicate over time variable and state variables and possible local clocks) is in general
expressed as the assertion:

inv(P,T ,Property) � not(treachable(P,Q, ,T ,T1), not sat(Property)).

where not sat(Property) is a constraint indicating that the output from the previous atom not satisfying the user
defined Property.

One safety property of special interest is deadlock-freeness. The following clauses are used to prove it.

tdeadlock(P,T1) � treachable(P,P1,N,T1,T2),
(not(oos(P1,T2, [],Q,T), oos(Q,T , [], ,)); (oos(P1,T2, [],Q,); not(oos,P1,T2, [], ,))),
printf (“deadlock at : %”, [N]).

Basically, it states that a process P at time T1 may result in deadlock if it can reach the process expression P1
at time T2 where no event transition is available neither at T2 nor at any later moment. The last line outputs the
deadlock trace as a counterexample. Alternatively, we may present it as a result of the deadlock-freeness proving.

We allow trace-based properties (safety or liveness) that can be checked by exploring trace set partially. The
retrieve of a trace is done by the predicate superstep(P,N,Q), which finds a sequence of events through which
process expression P evolves to Q:

superstep(P, [],) � not(oos(P, , ,Q,), not table(Q)).
superstep(P, [A | N],Q) � oos(P, ,M,P1,), not(M �� []; M �� [tau]),

M � [A], not table(P1), assert(table(P1)), superstep(P1,N,Q).
superstep(P,N,Q) � oos(P, ,M,P1,), (M �� []; M �� [tau]),

not table(P1), assert(table(P1)), superstep(P1,N,Q).

We may prove that some event will always eventually be ready to be engaged using the following rule: where
rule member(N,E) returns true if event E appears at least once in the event sequence N .

finally(P,E) � not(superstep(P,N,), not member(N,E)).

Rule finally(P,E) captures the idea that there is no such trace without event E in this process P. In other words,
this process will eventually go to event E. Another property based on traces would be identifying the relationship

Towards verification of computation orchestration 749

among events, e.g., event A can never happen before (after) event B in a trace or trace fragment. Taking the dining
philosopher for example, we would like to ensure that in a round of eating, the event Forki .put will never happen
before event eati .

Verification For the dining philosophers, we would like to check that it is deadlock-free by running the following
goal and expecting failure:

? − tdeadlock(dp3, 0)

For the vending machine example, we would expect that whenever we choose tea, it would never dispatch
coffee instead of tea, which can be checked by the following goal, where in(tea,N) means element tea is inside
the trace N and after(N, dispatchcoffee, tea) means that dispatchcoffee appears after tea.

? − superstep(vending,N,), not(in(tea,N), after(N, dispatchcof fee, tea)).

Additional checking In reality, most processes are non-terminating, so it would not be possible to retrieve all
possible traces of a process. However, by given a specific trace of a trace fragment, we are able to identify whether
it is an event sequencing of a given process. For instance, the following clause is used to query if a sequence of
event is a trace of the system, where P is a process expression and X is a sequence of events.

trace(P,X) � superstep(P,X ,).

In addition to proving pre-specified assertions, one distinguished feature of our approach is that implicit
assertions may be proved. For example, we may identify the lower or upper bound of a (time or data) variable,
which is very useful to do the worst or best case analysis of orchestration plans.

dur(P,Q,T1,T2) � oos(P,T1, ,Q,T2).
dur(P,Q,T1,T2) � oos(P,T1, ,P1,T3), dur(P1,Q,T3,T2).

We are able to compute the duration of the execution of one process P to its subsequent process Q by the
above two rules, where T1 is the starting time and T2 is the ending time. By using the predicate dur, we are able to
get identify the lower bound of some processes involving time. If process Rtimer(5) � Google(Orc) returns, then
it should take more than 5 time units. This can be checked by the following goal and expecting T ≥ 5.

? − dur(seq(sitecall(rtimer, [5]), sitecall(Google, [Orc]),), zerosite, 0,T) � T >� 5.

5. Case study and experiments

This section presents a case study of an auction orchestration modeled using both Timed Automata and CLP.
The comparison of the two approaches can reveal the difference of the two approaches. We also conducted some
experiments to compare the performance of the two approaches.

5.1. Orchestrating an auction

In this subsection, we demonstrate a typical web-based application, i.e., running an auction for an item. This
example was originally presented in [MC07].

First, an item can be advertised by calling site Adv(v0), which posts its description and a minimum bid price
at a web site. Bidders put their bids on specific channels. In general, there are multiple Bidders. A Multiplexor
is used to merge all the bids into a single channel, i.e., bid . The Orc definition for Multiplexor is described as
follows.

Multiplexori �̂ bidi .get >y> bid .put(y) � Multiplexori
Multiplexor �̂ Multiplexor1 | Multiplexor2 | . . . | Multiplexori

In Uppaal, a template called Bidder is built, which outputs a bid on channel bid . In general, there are multiple
Bidders. The Timed Automata for the basic sites are shown in the Fig. 12.

In CLP, the representation of Multiplexor is defined straightforwardly as follows, where the structure ii is a
syntactic sugar for indexed interleaving. counter value is a build-in facility in CLP(R) to check whether the value
of global variable iicount is same as I . iicount is updated in ii to synchronize with Multiplexor.

750 J. S. Dong

bid_i_get? bid_put!

(a): Timed Automaton for Multiplexori

Advcall_adv?

publish_adv!

(b): Adv site call

Bidbid_i_get!

x:=a

(c): Bidderi

postNext

publish_y?

(d): PostNext site call

Fig. 12. Basic sites in auction example

call_bid_i_get!
x>u

x<=u

call_next_bid?

publish_next_bid!

next_bid_return:=x

call_next_bid? x:=bid_i_get_return

bid_i_get_publish?

(a): Timed Automaton for nextBid u

call_bids? call_next_bid!

u:=v

publish_next_bid?

y:=next_bid_ret

call_bids?
publish_y!

(b):Timed Automaton for Bids v part 1

publish_y?

publish_bids!

bid_ret:=y

(c):Timed Automaton for Bids v part 2

publish_y?

call_bids!

v:=y

(d):Timed Automaton for Bids v part 3

Fig. 13. Basic sites in auction example

def (multiplexori, [], seq(seq(sitecall(getbid, [I]), sitecall(putbit, [Y]), [Y]),
sitecall(multiplexori, [I])),) � counter value(iicount, I).

def (multiplexor, [N], ii(N, sitecall(multiplexori, []))).

Three variations on the auction strategy, Auctioni(v) (1 ≤ i ≤ 3) are considered. We start the auction by
executing z :∈ Auctioni(v) where v is the minimum acceptable bid.

5.1.1. Non-terminating auction

The first solution continually takes the next bid from channel bid which exceeds the current (highest) bid and
posts it at a web site by calling PostNext.

nextBid(u) �̂ bid .get >x> {(if (x > u) � let(x)) | (if (x ≤ u) � nextBid(u))}
Bids(v) �̂ nextBid(v) >y> (let(y) | Bids(y))

Orc program nextBid(v) returns the next bid from c exceeding v. The site call if (x > u) returns a signal if x > u
and remains silent otherwise. Bids(v) returns a stream of bids from bid where the first bid exceeds v and successive
bids are strictly increasing. The following strategy starts the auction by advertising the item, and posts successively
higher bids at a web site. But the expression evaluation never terminates.

Auction1(p) �̂ Adv(p) � Bids(p) >z> PostNext(z) � 0

Towards verification of computation orchestration 751

call_adv!

v0:=p

publish_adv? call_bid!

v:=p

publish_bids?

z:=bids_return

Fig. 14. Timed automaton for Auction1 part 1

publish_bids? call_post!

m:=z

publish_post? call_0!

Fig. 15. Timed automaton for Auction1 part 2

The Timed Automata of nextBid(u) and Bids(v) are shown in Fig. 13. The Timed Automaton of nextBid(u)
is simplified by combining the two if-condition automata with the main nextBid(u) timed Automaton, because
the two conditions (x > u) and (x ≤ u) are exclusive.

Following the Timed Automata semantics defined in Sect. 3.2, Auction1(v) is interpreted as the automata in
Figs. 14 and 15.

In order to save space, the automata in the next two examples have been simplified whenever possible. Com-
mitted states are used to prevent undesired interleaving behaviors. For example, it is used to publish multiple
signals at once for expressions like let(x, y, z).

The CLP modeling for Auction1 is defined as follows, which is a direct translation.

def (nextbid, [U], seq(sitecall(bidget, []), para(seq(if (X > U), let([X]),),
seq(if (U <� X), sitecall(nextbid, [U]),)), [X])).

def (bids, [V], seq(sitecall(nextbid, [V]), para(let([Y]), sitecall(bids, [Y])), [Y])).
def (auction1, [P], seq(seq(seq(abscall(adv,), sitecall(bids, [P]),),

sitecall(postnext, [Z]), [Z]), zerosite,)).

By checking with Uppaal and CLP(R), we can see that this version of the auction system is deadlock free,
which means it never terminates. In this example, we assume that expression let(y) in Bids(v) is carried out fast
enough so that there will not be an infinite number of threads of let(y). In addition to deadlock-freeness, we may
verify properties like a posted bid is never lower than the minimum acceptable bid (see the second property in
Table 3).

5.1.2. Terminating auction

The previous program is modified so that the auction terminates if no higher bid arrives for h time units (say, h
hours). The winning bid is then posted by calling PostFinal, and the goal variable is assigned the value of the
winning bid. The expression Tbids(v), where v is a bid, returns a stream of pairs (x, flag), where x is a bid value,
x ≥ v, and flag is boolean. If flag is true, then x exceeds its previous bid, and if false then x equals its previous
bid, i.e., no higher bid has been received in h time units.

Tbids(v) �̂ (let(x, flag) | if (flag) � Tbids(x))
<(x, flag)< (nextBid(v) >y> let(y, true) | Rtimer(h) � let(v, false))

Auction2(v) �̂ Adv(v) � Tbids(v) >(x, flag)>
(if (flag) � PostNext(x) � 0 | if (flag) � PostFinal(x) � let(x))

In this auction, a new site call named PostFinal is added which is quite similar to PostNext. The difference
between a non-terminating auction and a terminating auction is that a time-out (h time unit) process is added.
As time-out (or timed-interrupt) is a typical timing behavior, we do define some templates to treat them specially
and effectively. A list of typical composable timing patterns formally defined in terms of Timed Automata is
available elsewhere in [DHQ+04]. For example in Fig. 16, we can use the typical way of dealing with time-out
in Timed Automata by adding a clock to record the time, as well as some clock constraints to guard the transi-
tions. The constructed Timed Automata for Auction2 is shown in Fig. 16, in which c denotes the clock and h is
a constant.

752 J. S. Dong

Bid get

let

bid_put? x<=y

x>y
y:=x,c:=0,new:=x

y:=v,c:=0

call_adv!

call_postnext!

publish_adv?

c>=h

c>=h

c>=h

call_postfinal!

Fig. 16. Auction2: terminating auction

Bid get

let

Less

bid_put?
x<=y

x>y
y:=x

y:=i,c:=0, v:=i
call_adv!

publish_adv?

c>=h

c>=h

c>=h

not(v==y)
call_postnext!

v==y

call_postfinal!

c:=0

Fig. 17. Auction3: batch processing

The CLP modeling for the Tbids and Auction2(v) is defined as follows, which is a direct translation.

def (tbids, [V],where(
para(seq(sitecall(nextbid, [V]), let([Y , true]), [Y]), seq(sitecall(rtimer, [H]), let([V , false]),)),
para(let([X ,FLAG]), seq(if (FLAG), sitecall(tbids, [X]),)), [X ,FLAG])).

def (auction2, [V], seq(seq(abscall(adv, [V]), sitecall(tbids, [V]),),
para(seq(seq(if (FLAG), abssite(postnext,X),), zerosite,),

seq(seq(if (FLAG), abssite(postfinal,X),), zerosite,)), [X ,FLAG])).

5.1.3. Batch processing

The previous solution posts every higher bid as it appears in channel bid . It is reasonable to post higher bids only
once each hour. Thus, the last solution collects the best bid over an hour and posts it. If this bid does not exceed
the previous posting, i.e., no better bid has arrived in an hour, the auction is closed, the winning bid is posted
and its value is returned as the result. In the interest of space, we skip the Orc program and the construction. The
detail of the auction is available elsewhere in [MC07]. The constructed Timed Automaton is presented in Fig. 17.
The CLP model is omitted for its direct translation.

5.2. Experiments

In order to compare the performance of the two approaches proposed, we conducted several experiments on
the dining philosopher and auction examples on verifying various properties. The results are presented in this
section.

Towards verification of computation orchestration 753

Table 2. Dining philosopher experiment results

Orc Property Result Uppaal CLP sim CLP
time(s) time(s) time(s)

Philosopher3 Deadlock True 1 0.03 0.02
Philosopher4 Deadlock True 6 1.4 1.4
Philosopher5 Deadlock True 145 55 53
Philosopher3 Always eat True 0.01 0.01 0.01
Philosopher4 Always eat True 0.015 0.012 0.012
Philosopher5 Always eat True 0.03 0.015 0.015
Philosopher3 Majority eat False 0.65 0.42 0.42
Philosopher4 Majority eat False 18 3.3 3.3
Philosopher5 Majority eat False 930 254 250

Table 3. Experiment results

Orc Property Result Uppaal CLP sim CLP Remark
time(s) time(s) time(s)

Auction1 A[] not deadlock True 20 0.1 0.1 Non-terminating.
Auction1 A[] not (PostNext.posted<250) True 3 0.1 0.1 No bid price lower 250.
Auction1 A[] not(old==0) imply new>old True 90 0.1 0.1 Price posted on the PostNext

site keeps increasing.
Auction1 E<> PostNext.posted == 500 True 1 0.2 0.3 Possible to post 500.
Auction2 A[] not deadlock False 1 0.15 0.14 Terminating.
Auction2 A[] PostFinal.postFinal imply True 150 1.2 1.6 Auction terminates after h

Auc.c>�h time units.
Auction2 A[] PostFinal.final True 10 0.5 0.7 The final bid comes from

== 1000 imply the respective bidder.
Bidder10.bid == true

Auction3 A[] not deadlock False 1 0.2 0.3 Terminating.
Auction3 E[] not(PostNext.p1<h and True 60 3.6 4.5 It is not possible to post a

PostNext.p1>0) highest bid before h time units.

5.2.1. Experiment bed

All experiments were conducted on a Pentium 3.0 GHz processor PC with 1 GB RAM and a 20 GB quota of
disk space, running Windows XP. For the Timed Automata approach, we used Uppaal version 4.0 [LPW97]. The
CLP approach is based on a CLP(R) program [JMSY92]. Column CLP Sim and CLP shows the verification
time with the simplification rules and without the simplification rules respectively.

5.2.2. Dining philosopher

The first bench of experiments is on the Dining Philosophers examples. We implemented this example with N
philosophers and N forks. The following three properties are checked. We also tried different numbers of Dining
Philosophers to test the verification capability of the two approaches. The result of the running time is shown as
shown in Table 2.

Deadlock The system can deadlock.
Always eat It is possible that one philosopher eats all the time with the others starving. This property is checked

with trace refinement.
Majority eat Not more than or equal to (N + 1)/2 philosophers can eat at the same time.

5.2.3. Auction

In the verification experiment of auction example, we created 10 Bidders whose bid prices are from 200 to
1100, while the minimum bid price is 250. Some properties concerning all three auction strategies together the
verification time are illustrated in Table 3.

The discussion of the experiments are shown in Sect. 6.

754 J. S. Dong

6. Discussion

In this section, we compare the two approaches presented in this work in the following aspects.

Translation vs. encoding The two approaches presented in this work represent Orc programs using different
formalisms. The Timed Automata approach performs a systematic translation from Orc programs to Timed
Automata based on the operational semantics. The soundness of this approach is proved by showing a bisim-
ulation of translated TA models with the original Orc program. However this translation is not complete, i.e.,
limited by the expressiveness power of Timed Automata, it can only support a subset of Orc language that is
regular, type-safe and allows only a finite number of threads.

The CLP-based approach creates a framework which can interpret Orc programs by encoding them using
CLP. This framework includes the operational semantics of Orc languages as well we simplification rules, which
allow the encoded Orc programs to be executed by following the operational semantics. The soundness of this
approach is proved by showing a bisimulation of the execution model of the encoded CLP programs with the
original Orc programs. For the CLP encoding, the Orc programs can be mapped exactly to CLP programs because
the encoding is basically a syntax rewriting. Therefore the completeness is guaranteed in this approach.

It is clear now that the two approaches are quite different. The translation based approach may not be com-
plete due to the restricted expressiveness of the targeting formalism. The encoding based approach requires the
effort to develop an execution model based on the semantics, which is more complicated, but flexible. One example
of flexibility is the application of simplification rules. In the TA approach, the simplification can be done just at
the translation step. After the translation, the simplification cannot be applied because Orc program structure
information is gone. However, in the CLP approach, the direct encoding keeps the Orc program structure, which
makes simplification rules can be applied at any step.

Simulation and verification capability For the TA approach, the simulation and verification of Orc programs rely
on tool support for TA, e.g., the model checker Uppaal. For the verification capability, we can query a subset
of timed CTL query excluding the nested path formulae, as supported by Uppaal. For the second approach, the
simulation and verification of Orc programs needs to be developed manually. For example, currently, we support
safety properties (including deadlock, reachability, invariant) and liveness properties (including eventually oper-
ator) in the second approach. Furthermore, new model checking algorithms can be developed in this framework.
Note that timed properties are not supported in the CLP-based approach.

Uppaal is not optimized for the translated Orc programs. This is because the mapping from the process
algebra definitions of Orc programs to Timed Automata models is not simply one to one. Practical orchestration
models often result in high complexity in the corresponding Timed Automata models, which can make the simu-
lation and verification inefficient or even impossible. For the CLP approach, there is no such problem. However,
optimizations techniques (e.g., partial order reduction or symmetry reduction) need to be realized manually.

When the verification fails, there will be a counterexample generated by both approaches. The counterexample
in Uppaal is presented as a sequence of events, which can be simulated using Uppaal simulator. Since there is a
mapping between original Orc program and generated Timed automata (mainly the invocation and response of
the side calls), we can trace the counterexample in the original Orc program. But this may not be always easy. For
example, in a case that two or more events with same name are enabled, if the counterexample trace include one
such event, to find out the correct one needs careful examination of the whole trace. In the CLP-based approach,
the counterexample is stored in a list (e.g., the third item in the treachable predicate). The interpretation of the
counterexample in the CLP-based approach is straightforward since the Orc encoding of the program reflects
exactly the original Orc program.

Performance and scalability From the experiments presented in Tables 2 and 3 of Sect. 5, it can be noticed that
the performance of the CLP-based approach is much more scalable than Uppaal. The reason is that CLP-based
approach introduces no overhead during the encoding process and the resulted state space is smaller than the TA
approach. One typical cause of the overhead transition of the TA approach is the additional transition introduced
in the sequential composition. However, the CLP-based approach is still suffering from the state-space explosion
problem, e.g., the deadlock and majority eat properties in dining philosophers example. The efficiency of the
simplification in the CLP approach heavily depends on the models. In dining philosophers example, there is no
performance gain. The overhead of the simplification checking is negligible. The simplification rules improve the
performance for the actions examples.

Towards verification of computation orchestration 755

From Table 3, we can see that given the same model, the time for verifying different properties are similar for
CLP-based approach. For Uppaal, if the property is false, the verification time can be very short. This reflects
that the on-the-fly model checking approach in Uppaal will stop immediately when a counterexample is found.
For the CLP-based approach, the termination of the rule execution is hard to predict due to using of tabling and
other optimization technique in the CLP(R) tool.

Overall, the CLP-based approach is more scalable than the TA approach based on the experimental results.
However, if the properties involve time, only Uppaal tool can provide such support.

7. Conclusion and future works

In this work, we presented two promising approaches which can simulate and verify Orc programs. In the first
approach, an automata-based semantics for Orc language is proposed, which allows a systematic construction
of Timed Automata models from Orc programs. After that, we explored ways of using Uppaal to verify criti-
cal properties over Orc programs. We developed a tool to automate our approach. In the second approach, we
encode the semantics of Orc in CLP, which allows us to verify the properties using powerful CLP tools. Because
the one-to-one mapping of the encoding, CLP encoding can support the complete Orc language. Furthermore,
a wider range of properties can be verify in the open modeling environment. We conducted some experiments to
compare the two approaches and found CLP approach is fast and more expressive.

There are some possible future works. Starting from the first approach, one possible future work concerns
the inadequate data passing capability of Orc, i.e., no complex data structure is supported. Therefore, we might
provide a mechanism for introducing and manipulating data structures like arrays and tuples in our tool. A
more direct approach could be to develop a tool to support the verification of Orc language itself without any
translation. This is possible because Orc language has well defined operational semantics and its behaviors can be
interpreted as labeled transition systems. If the behaviors have finite states, automatic verification techniques like
model checking can be used to verify the Orc programs. In the CLP approach, clauses are defined to represent the
operational semantics of Orc. Because of the natural connections among operational semantics, algebra semantics
and denotational semantics, it is interesting to look at the different semantics by encoding them using CLP.

Starting from the second approach, we want to continue the CLP approach further to look at its verification
ability for process algebra. Secondly, we plan to investigate the possibility to verify the state-of-the-art Web Ser-
vice orchestration language WS-BPEL using CLP, which has no formal semantics, but much more complicated
syntax. Finally, we want to extend our work to the Web Service Choreography, which is a multi-party contract
that describes from global view point the external observable behavior across multiple Web Services. The long
term objective is to develop a generic modeling and verification framework for SOC.

A. Appendix: correctness proof

This section presents the proof of the weak bi-simulation relation between the Timed Automata and the opera-
tional semantics of Orc. In this proof, the Orc programs refer to a subset of Orc language that is regular, type-safe
and with a finite number of threads (see Sect. 3.3 for details).

Definition 13 Let O1 � (C, c0,T × �,−→1) and O2 � (S, s0,T × �,−→2) be two transition systems, For any
c ∈ C and s ∈ S, c ≈ s if and only if,

• ∀ t ∈ T, α ∈ �, c
t,α−→1 c′ implies there exists s′ ∈ S such that s

t,α−→2 s′, and c′ ≈ s′.
• ∀ t ∈ T, α ∈ �, s

t,α−→2 s′ implies there exists c′ ∈ C such that c
t,α−→1 c′, and c′ ≈ s′.

Theorem A.1 Given an Orc program Orc, let OOrc �̂ (O, o0,T × �,−→1) be the transition system associated
with the expression. Let AOrc be the corresponding Timed Automaton defined using Definition 5 to 11 in the
paper. Let TOrc �̂ (S, s0,T ×�,−→2) be the transition system associated with the Timed Automaton. o0 ≈ s0.

Proof: The theorem can be proved by a structural induction on the Orc programs. To abuse notations, we
write Orc ≈ AOrc to mean OOrc.o0 ≈ TOrc.s0.

• 0: In Orc semantics, 0 has no observable transitions, so O0 is a single state transition system without any
transitions. The same is T0. Thus, 0 ≈ A0.

• let(z): In Orc semantics, the only transition for Olet(z) is let(z)
0,z−→1 0. It is also the only transition in the

responding Timed Automaton. Thus, let(z) ≈ Alet(z).

756 J. S. Dong

• Rtimer(t): In Orc semantics [WKCM08], there is no transition rules for this basic site. However, it plays an
important role in our work. After being called, the only transition allowed is time passing,

Rtimer(t)
δt1 ,τ−→1 Rtimer(t − t1); Rtimer(t)

δt,τ−→1 0

The calling site is blocked until the t time units has elapsed. By Definition 6 and 4, the Timed Automaton
bi-simulates the site Rtimer(t).

• The proof for fundamental sites if and Signal are skipped for simplicity. The proof is similar to let(z) and
Rtimer(t).

• Site call M(P): According to Orc’s operational semantics [WKCM08], the transitions in OM(P) are M(P)
0,τ−→1?k

and ?k
t,!m−→1 0. According to our Definition 7, the two transitions have one-to-one correspondence to the tran-

sitions in the Timed Automaton shown in Fig. 3. In particular, s2 ≈ 0 and, therefore, s1 ≈?k and, lastly,
si ≈ M(P). Thus, M(P) ≈ AM(P).

• Sequential composition f >x> g: According to the operational semantics of Orc, the two transitions available
for the sequential composition are:

f >x> g
t,a−→1 f ′ >x> g if f

t,a−→1 f ′

f >x> g
t,τ−→1 (f ′ >x> g) | [m/x].g if f

t,!m−→1 f ′

Assume f ≈ Af and g ≈ Ag. For every a such that if f
t,a−→1 f ′, there is a transition in Of>x>g. Because Af>x>g

is Af ‖ A′
g (by Definition 8), there is a corresponding transition in Af>x>g because a is local to automaton Af

and by Definition 3 the local actions are free to occur. Moreover, f ′ ≈ Af ′ by assumption. If f
t,!m−→1 f ′, then

f >x> g
t,!m−→1 (f ′ >x> g) | [m/x].g. By Definition 8, there is a corresponding transition in A′

g. As long as the
number of get events are finite, there is always a corresponding transition in one of the A′

g.
In the other direction, for every transition a from the initial state of Af>x>g, if a is a get event, it must be a

synchronization between Af and one of the A′
g. By assumption, there must be a transition f

t,a−→1 f ′. Therefore,

there is a corresponding transition in f >x> g
t,!m−→1 (f ′ >x> g) | [m/x].g. If a is a local event, then it must

belong to Af because the only transition in A′
g at its initial state is a synchronized get event. There must be a

corresponding transition in Of and Of>x>g. By induction, we conclude f >x> g ≈ Af>x>g.
• Symmetric composition f | g: According to the operational semantics of Orc, the two transitions available for

the sequential composition are:

f | g
t,a−→1 f ′ | gt if f

t,a−→1 f ′

f | g
t,a−→1 f t | g′ iff g

t,a−→1 g′

Therefore, f and g are interleaving. By Definition 9, the corresponding Timed Automaton is defined as Af |g �̂
Af ‖ Ag. The events in both f and g are renamed so that there is no synchronization between f and g. Note
that the clocks in the two automata change at same pace so that the timed shift are satisfied automatically.
Assume f ≈ Af and g ≈ Ag. By Definition 3 and the above, transitions rules, we conclude f | g ≈ Af |g.

• Asymmetric composition f <x< g: According to the operational semantics of Orc, the two transitions available
for the sequential composition are:

f <x< g
t,a−→1 f ′ <x< gt if f

t,a−→1 f ′

f <x< g
t,τ−→1 [m/x].f t if g

t,!m−→1 g′

f <x< g
t,a−→1 f t <x< g′ if g

t,a−→1 g′ and a ��!m

Form the transaction rules we can conclude the following three properties: 1) f and g run in parallel; 2) the first
returned value of g is passed to f and g stops; 3) f is blocked if x is not available. From the three properties,
the transition system Of<x<g is the production of Of and Og, where they synchronized on the transition getx
and g is stopped after the synchronization. Tf<x<g is exactly the same transition according to the Definition 9,
which uses the shared flag to stop the execution of g. Note that the clocks in the two automata change at same
pace so that the timed shift are satisfied automatically.

Towards verification of computation orchestration 757

• Expression call E(P) �̂ f : According to the operational semantics of Orc, the transition available for expression

call composition is: E(P)
0,τ−→1 [P/x].f iff �E(x) �̂ f � ∈ D. The internal event τ acts as the initial event of

the expression. It passes the input value to formal parameters. The equivalent event in the Timed Automata
model is callE (P) event in the Definition 11. The one-to-one mapping is shown in the following two transition
systems.

OE(P) �̂ ({Of .S ∪ o0}, {Of .� ∪ τ }, o0,
{Of . −→1 ∪(o0, τ,Of .o0)})

TE(P) �̂ ({Tf .S ∪ (i, v0)}, {Tf .� ∪ τ }, (i, v0),
{Of . −→1 ∪((i, v0), τ, (Of .s0.i, v0)))})

Therefore, we conclude that our Timed Automata semantics is sound.

Acknowledgements

The authors would like to thank Prof. Jayadev Misra for insightful discussion on the Orc language and pointing
out relevant papers. This work is supported by National Natural Science Fund of China under grants 61100059
and research project “Automatic Checking and Verification of Security Protocol Implementations”.

References

[AD94] Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
[ADW00] Amnell T, David A, Wang Y (2000) A Real-Time Animator for Hybrid Systems. In: Proceedings of the ACM SIGPLAN

Workshop on Languages, Compilers, and Tools for Embedded Systems (LCTES 00), pp 134–145
[AFP+02] Amnell T, Fersman E, Pettersson P, Sun H, Wang Y (2002) Code synthesis for timed automata. Nordic J Comput 9(4):269–300
[AM07] AlTurki M, Meseguer J (2007) Real-time Rewriting Semantics of Orc. In: Proceedings of the 9th ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming (PPDP 07), pp 131–142
[AM08] AlTurki M, Meseguer J (2008) Reduction semantics and formal analysis of orc programs. Electr Notes Theor Comput

Sci 200(3):25–41
[AM10] AlTurki M, Meseguer J (2010) Dist-Orc: A Rewriting-based Distributed Implementation of Orc with Formal Analysis. Tech-

nical report, The University of Illinois at Urbana-Champaign, April https://www.ideals.illinois.edu/handle/2142/15414.
[ASAA08] Ait-Sadoune I, Ait-Ameur Y (2008) Verification and validation of web services composition using the event b method. In

Proceedings of the International Summer School about Modeling and Verifying parallel Processes (MOVEP 08), pp 317–322
[ASAA09] Ait-Sadoune I, Ait-Ameur Y (2009) A proof based approach for modelling and verifying web services compositions. In: 14th

IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 09), pp 317–322
[BMT06] Bruni R, Melgratti H, Tuosto E (2006) Translating Orc Features into Petri Nets and the Join Calculus. In: Proceeding of the

3rd International Workshop on Web Services and Formal Methods (WS-FM 06), Springer, New York, pp 123–137
[Bro99] Brooke P (1999) A Timed Semantics for a Hierarchical Desgn Notation. PhD thesis, University of York, New York
[BT08a] Borger E, Thalheim B (2008) A method for verifiable and validatable business process modeling. Ad Softw Eng 5316:59–115
[BT08b] Borger E, Thalheim B (2008) Modeling Workflows, Interaction Patterns, Web Services and Business Processes: The ASM-

Based Approach. In: Abstract State Machines (ASM), B and Z (ABZ 08), vol 5238 of LNCS, Springer, New York, pp 24–38
[CCO+04] Chaki S, Clarke EM, Ouaknine J, Sharygina N, Sinha N (2004) State/Event-based Software Model Checking. In: Proceeding

of International Conference on Integrated Formal Methods (IFM 04), pp 128–147
[CM05] Cook WR, Misra J (2005) A Structured Orchestration Language. Available for download at http://www.cs.utexas.edu/users/

wcook/projects/orc.
[DHQ+04] Song Dong J, Hao P, Qin S, Sun J, Wang Y (2004) Timed Patterns: TCOZ to Timed Automata. In: Proceedings of the 6th

International Conference on Formal Engineering Methods (ICFEM 04), vol 3308 of LNCS, Springer, New York, pp 483–498
[DHQ+08] Dong JS, Hao P, Qin SC, Sun J, Yi W (2008) Timed automata patterns. IEEE Trans Softw Eng 34(6):844–859
[DHSZ06] Dong JS, Hao P, Sun J, Zhang X (2006) A Reasoning Method for Timed CSP Based on Constraint Solving. In: Proceedings

of the 8th International Conference on Formal Engineering Methods (ICFEM 06), vol 4260 of LNCS, Springer, New York,
pp 342–359

[DLSZ] Dong JS, Liu Y, Sun J, Zhang X Orc Verification Project Website. http://www.comp.nus.edu.sg/~pat/orc/.
[DLSZ06] Dong JS, Liu Y, Sun J, Zhang X (2006) Verification of computation orchestration via timed automata. In: Proceedings of

the 8th International Conference on Formal Engineering Methods (ICFEM 06), vol 4260 of LNCS, Springer, New York,
pp 226–245

[FEK+07] Foster H, Emmerich W, Kramer J, Magee J, Rosenblum DS, Uchitel S (2007) Model Checking Service Compositions under
Resource Constraints. In: Proceedings of the 6th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 07), pp 225–234

[FGV04] Farahbod R, Glasser U, Vajihollahi M (2004) Specification and Validation of the Business Process Execution Language for
Web Services. In Abstract Sate Machines (ASM 04), vol 3052 of LNCS, Springer, New York, pp 78C94

https://www.ideals.illinois.edu/handle/2142/15414
http://www.cs.utexas.edu/users/wcook/projects/orc
http://www.cs.utexas.edu/users/wcook/projects/orc
http://www.comp.nus.edu.sg/~pat/orc/

758 J. S. Dong

[Fos08a] Howard Foster M (2008) Tool Support for Safety Analysis of Service Composition and Deployment Models. In: Proceedings
of the IEEE International Conference on Web Services (ICWS 08), pp 716–723

[Fos08b] Foster H (2008) WS-Engineer 2008. In: Proceedings of the 6th International Conference on Service-Oriented Computing
(ICSOC 08), vol 5364 of LNCS, Springer, pp 728–729

[FUMK03] Foster H, Uchitel S, Magee J, Kramer J (2003) Model-based Verification of Web Service Compositions. In: Proceedings of the
18th IEEE International Conference on Automated Software Engineering (ASE 03), pp 152–163

[FUMK06] Foster H, Uchitel S, Magee J, Kramer J (2006) LTSA-WS: a tool for model-based verification of web service compositions
and choreography. In: Proceedings of the 28th International Conference on Software Engineering (ICSE 06), pp 771–774

[FV06] Farahbod UGR, Vajihollahi M (2006) An abstract machine architecture for web service based business process management.
Int J Bus Process Integr Manag 1(4):279C291

[GG09] Göthel T, Glesner S (2009) Machine Checkable Timed CSP. In Proceedings of the 1st NASA Formal Methods Symposium
(NFM 09). NASA Conference Publication, NASA

[GP97] Gupta Gl, Pontelli E (1997) A Constraint-based Approach for Specification and Verification of Real-time Systems. In: IEEE
Real-Time Systems Symposium, pp 230–239

[HNSY92] Henzinger TA, Nicollin X, Sifakis J, Yovine S (1992) Symbolic Model Checking for Real-Time Systems. In: Proceedings of
the 7th International Symposium of Logics in Computer Science (LICS 92), pp 394–406

[Hoa85] Hoare CAR (1985) Communicating Sequential Processes. International Series in Computer Science. Prentice-Hall
[JJV05] Santosa A, Jaffar J, Voicu R (2005) Modeling Systems in CLP with Coinductive Tabling. In: Proceedings of the 21st Interna-

tional Conference on Logic Programming (ICLP 2005), pp 412–413
[JM94] Jaffar J, Maher MJ (1994) Constraint logic programming: a survey. J Log Progra 19/20:503–581
[JMSY92] Jaffar J, Michaylov S, Stuckey PJ, Yap RHC (1992) The CLP(R) Language and System. ACM Trans Program Lang Syst

14(3):339–395
[JSV04] Jaffar J, Santosa AE, Voicu R (2004) A CLP Proof Method for Timed Automata. In: Real-Time Systems Symposium,

pp 175–186
[KCM06] Kitchin D, Cook WR, Misra J (2006) A language for task orchestration and its semantic properties. In: Proceedings of the

International Conference on Concurrency Theory (CONCUR 06), pp 477–491
[LPW97] Larsen KG, Pettersson P, Wang Y (1997) Uppaal in a Nutshell. Intern J Softw Tool Technol Trans 1(1-2):134–152
[LPY95] Larsen KG, Pettersson P, Yi W (1995) Model-Checking for Real-Time Systems. In: Proceedings of Fundamentals of Compu-

tation Theory, number 965 in LNCS, pp 62–88
[LSD10] Liu Y, Sun J, Dong JS (2010) Developing model checkers using pat. In: Proceedings of the 8th International Symposium of

Automated Technology for Verification and Analysis (ATVA 10), Springer, pp 371–377
[LSD11] Liu Y, Sun J, Dong JS (2011) Pat 3: An extensible architecture for building multi-domain model checkers. In: Proceedings of

the 22nd International Symposium on Software Reliability Engineering (ISSRE 11), pp 190–199
[LW00] Lin HM, Wang Y (2000) A Proof System for Timed Automata. In: Tiuryn J (ed) Proceedings of the 3rd International

Conference on Foundations of Software Science and Computation Structures (FoSSaCS 00), vol 1784 of LNCS, pp 208–222
[LZH10] Li Q, Zhu H, He J (2010) A Denotational Semantical Model for Orc Language. In: Proceedings of the 7th International

colloquium conference on Theoretical aspects of computing, ICTAC’10, Springer-Verlag, Heidelberg, pp 106–120
[MC07] Misra J, Cook W (2007) Computation orchestration: a basis for wide-area computing. Softw Syst Model 6(1):83–110
[MHM04] Misra J, Hoare T, Menzel G (2004) A Tree Semantics of an Orchestration Language. In: Proceedings of the NATO Advanced

Study Institute, Engineering Theories of Software Intensive Systems, NATO ASI Series, Marktoberdorf, Germany
[Mil89] Milner R (1989) Communication and Concurrency. Prentice-Hall International, Prentice-Hall
[Mil99] Milner R (1999) Communicating and Mobile Systems: the π Calculus. Cambridge University Press, Cambridge
[Nak05] Nakajima S (2005) Model-Checking Behavioral Specification of BPEL Applications. In: Proceeding of the 2nd International

Workshop on Web Services and Formal Methods (WS-FM 05), France
[OAS07] OASIS (2007) Web Services Business Process Execution Language Version 2.0, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-

v2.0.html.
[OW02] Ouaknine J, Worrell J (2002) Timed CSP = closed timed safety automata. Electr Note Theor Comput Sci 68(2):142–159
[PZWQ06] Pu G, Zhao X, Wang S, Qiu Z (2006) Towards the Semantics and Verification of BPEL4WS. Electr Note Theor Comput Sci

151(2):33–52
[Ros97] Roscoe AW (1997) The Theory and Practice of Concurrency. Prentice-Hall
[Sch00] Schmidt K (2000) LoLA: A Low Level Analyser. In: Proceeding of the 21st International Conference of Application and

Theory of Petri Nets (ICATPN 00), pp 465–474
[SD95] Schneider S, Davies J (1995) A Brief History of Timed CSP. Theoretical Computer Science 138, Oxford
[SH05] Singh MP, Huhns MN (2005) Service-Oriented Computing. Wiley, Chichester
[SLD+13] Sun J, Liu Y, Dong JS, Liu Y, Shi L, André É (2013) Modeling and verifying hierarchical real-time systems using stateful timed

csp. ACM Trans Softw Eng Methodol (TOSEM) 22(1):1–3
[SLDC09] Sun J, Liu Y, Dong JS, Chen C (2009) Integrating specification and programs for system modeling and verification.

In: Proceedings of the third IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE 09).
IEEE Computer Society, pp 127–135

[SLDP09] Sun J, Liu Y, Dong JS, Pang J (2009) PAT: Towards Flexible Verification under Fairness. In: Proceedings of the 21th
International Conference on Computer Aided Verification (CAV 09) volume 5643 of Lecture Notes in Computer Science,
pp 709–714

[SMS05] Schlingloff BH, Martens A, Schmidt K (2005) Modeling and model checking web services. In: Electronic Notes in Theoretical
Computer Science: Issue on Logic and Communication in Multi-Agent Systems, pp 27

[Tiu05] Tiu A (2005) Model Checking for Pi-calculus Using Proof Search. In: Proceedings of the International Conference on
Concurrency Theory (CONCUR 05), San Francisco

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Towards verification of computation orchestration 759

[WCG+06] Wirsing M, Clark A, Gilmore S, Hölzl M, Knapp A, Koch N, Schroeder A (2006) Semantic-Based Development of Ser-
vice-Oriented Systems. In: Proceeding. 26th IFIP WG 6.1 International Conference on Formal Methods for Networked and
Distributed Systems (FORTE 06), LNCS 4229, Springer-Verlag, New York, pp 24–45

[WDG+07] Wirsing M, Nicola RD, Gilmore S, Hölzl M, Lucchi R, Tribastone M, Zavattaro G (2007) SENSORIA Process Calculi for
Service-Oriented Computing. In: Trustworthy Global Computing, Second Symposium (TGC 06), volume 4661 of LNCS,
Springer, pp 30–50

[WHA+08] Wirsing M, Hölzl M, Acciai L, Clark A, Banti F, Fantechi A, Gilmore S, Gnesi S, Gönczy L, Koch N, Lapadula A, Mayer
P, Mazzanti F, Pugliese R, Schroeder A, Tiezzi F, Tribastone M, Varró D (2008) A Pattern-Based Approach to Augmenting
Service Engineering with Formal Analysis, Transformation and Dynamicity. In: Proceedings of 3rd International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation (ISOLA 08), LNCS. Springer-Verlag, New York

[WKCM08] Wehrman I, Kitchin D, Cook Wr, Misra J (2008) A Timed Semantics of Orc. Theor Comput Sci 402(2–3):234–248

Received 8 August 2011
Revised 20 November 2012
Accepted 5 March 2013 by J. Woodcock
Published online 30 April 2013

	Towards verification of computation orchestration
	Citation

	Towards verification of computation orchestration
	Abstract
	1 Introduction
	1.1 Related works

	2 Orchestration language Orc
	2.1 Syntax
	2.1.1 Site
	2.1.2 Sequential composition operator
	2.1.3 Symmetric parallel operator
	2.1.4 Asymmetric parallel operator
	2.1.5 Expression definition

	2.2 Formal semantics

	3 Timed automata approach
	3.1 Timed automata and Uppaal
	3.2 Timed automata semantics for Orc
	3.3 Verification using Uppaal
	3.4 Automated construction
	3.5 Limitations of timed automata approach

	4 Constraint logic programming approach
	4.1 CLP preliminaries
	4.2 Orc semantics in CLP
	4.2.1 Orc models encoding
	4.2.2 Operational semantics
	4.2.3 Semantic model
	4.2.4 Simplification based on algebra laws

	4.3 Properties verification of Orc models

	5 Case study and experiments
	5.1 Orchestrating an auction
	5.1.1 Non-terminating auction
	5.1.2 Terminating auction
	5.1.3 Batch processing

	5.2 Experiments
	5.2.1 Experiment bed
	5.2.2 Dining philosopher
	5.2.3 Auction

	6 Discussion
	7 Conclusion and future works
	A Appendix: correctness proof
	Acknowledgements
	References

