
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2015

Interpolation guided compositional verification Interpolation guided compositional verification

Shang-Wei LIN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Truong Khanh NGUYEN

Yang LIU

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LIN, Shang-Wei; SUN, Jun; NGUYEN, Truong Khanh; LIU, Yang; and DONG, Jin Song. Interpolation guided
compositional verification. (2015). Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering, Lincoln Nebraska, 2015 November 9-13. 65-74.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4974

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Interpolation Guided Compositional Verification

Shang-Wei Lin∗, Jun Sun†, Truong Khanh Nguyen†, Yang Liu∗, and Jin Song Dong‡

∗School of Computer Engineering, Nanyang Technological University
†Singapore University of Technology and Design

‡School of Computing, National University of Singapore

Abstract—Model checking suffers from the state space ex-
plosion problem. Compositional verification techniques such as
assume-guarantee reasoning (AGR) have been proposed to alle-
viate the problem. However, there are at least three challenges
in applying AGR. Firstly, given a system M1 ‖ M2, how
do we automatically construct and refine (in the presence of
spurious counterexamples) an assumption A2, which must be an
abstraction of M2? Previous approaches suggest to incrementally
learn and modify the assumption through multiple invocations
of a model checker, which could be often time consuming.
Secondly, how do we keep the state space small when checking
M1 ‖ A2 |= ϕ if multiple refinements of A2 are necessary?
Lastly, in the presence of multiple parallel components, how do we
partition the components? In this work, we propose interpolation-
guided compositional verification. The idea is to tackle three
challenges by using interpolations to generate and refine the
abstraction of M2, to abstract M1 at the same time (so that the
state space is reduced even if A2 is refined all the way to M2),
and to find good partitions. Experimental results show that the
proposed approach outperforms existing approaches consistently.

Keywords—model checking; automatic compositional verifica-
tion; satisfiability; interpolation;

I. INTRODUCTION

Model checking [14], [35] is a successful formal verifi-
cation technique, which can automatically check whether a
system model M satisfies a property ϕ, denoted by M |= ϕ.
However, it suffers from the infamous state space explosion
problem [14], [35]. To alleviate the problem, assume-guarantee
reasoning (AGR) [20], [15], [34], a well-known compositional
technique, has been proposed and applied on model checking.
The most common rule used in AGR is the following assume-
guarantee non-circular (AG-NC) rule:

M1 ‖ A2 |= ϕ and M2 � A2

M1 ‖M2 |= ϕ
(1)

Given a system with two components modeled by M1 and
M2 and a property ϕ, the AG-NC proof rule says that if M1

can satisfy a property ϕ under an assumption A2 and A2

is an abstraction of M2 (i.e., M2 can be simulated by A2,
denoted by M2 � A2 as formulated in Section III-A), then
we can conclude that M1 ‖ M2 satisfies ϕ. However, the

The corresponding author, Shang-Wei Lin, can be contacted via the follow-
ing e-mail address: shang-wei.lin@ntu.edu.sg.

This research is supported (in part) by the National Research Foundation,
Prime Ministers Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2014NCR-NCR001-30) and administered by the
National Cybersecurity R&D Directorate.

challenge of applying AGR is at least threefold. The first is
how to automatically construct and refine (in the presence of
spurious counterexamples) the assumption A2. In general, the
assumption should be kept as small as possible, i.e., containing
only sufficient details to prove or disprove M1 ‖ A2 |= ϕ.
Besides relying on human creativity to create A2 manually,
there is a line of works on applying learning techniques
(e.g., [19], [4], [12], [26], [32]) to learn the assumption. The
idea is to construct a candidate assumption through learning
and then verify that the candidate is indeed an abstraction of
M2. Otherwise, the assumption must be modified (sometimes
multiple times) until it becomes an abstraction of M2. Such
a process requires multiple invocations of a model checker
and therefore could be time consuming. Secondly, the worst
case scenario for AGR is that every detail of M2 is needed
in order to prove or disprove M1 ‖ M2 |= ϕ and thus
A2 is refined all the way to M2. As a result, all the effort
on finding the assumptions and checking M1 ‖ A2 |= ϕ,
often multiple times, is wasted. The question is then: is it
possible to make use of the intermediate checking results so
as to keep the state space reduced even in the worst case
scenario? The last challenge is: in the presence of multiple
parallel components, how do we partition components to apply
AGR? It has been reported in [17] that without a good partition
strategy, model checking based on AGR might be even worse
than the traditional monolithic model checking.

In this work, we propose an approach to complement
existing AGR-based compositional verification techniques by
tackling the three challenges above. Central to our approach
is the idea of learning from bounded model checking (BMC)
results. In the following, we briefly present our approach, and
Fig. 1 shows its workflow. A model in our work is a paral-
lel composition of multiple components, which communicate
through shared variables1. At the beginning, the components
are partitioned into two groups, either randomly or based on
simple heuristics. Let us assume that the model is G1 ‖ G2

where Gi where i ∈ {1, 2} itself is a parallel composition of
multiple components. In our method, we change the partition
based on intermediate verification results. In addition, we
would construct not only an abstraction A2 for G2 but also an
abstraction A1 for G1. Initially, we set the transition relation
of A2 to be TRUE, which is the weakest over-approximation,
and A1 to be G1. We then model check A1 ‖ A2. If A1 ‖ A2

satisfies the property ϕ, we prove the system satisfies ϕ.
Otherwise, we check whether the counterexample is spurious
or not. This is done by bounded model checking G1 ‖ G2 up
to the length of the counterexample. If the counterexample is
not spurious, we find a counterexample. Otherwise, we obtain

1Our work can be extended to support messaging or barrier synchronization.

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.33

65

A1 ‖ A2 |= ϕ ?

(G1, G2)

G1 ‖ G2 |= ϕ

k-step BMC formula G1 ‖ G2 �|= ϕ

Interpolations

Un-SAT
Core

a counterexample in k steps

initial partition

A1 = G1 A2 = TRUE

yes

satisfiableunsatisfiable

refine A2

abstract A1

repartition

Fig. 1. Overall Flow

the unsatisfiability (unsat) core from the BMC formula. We
re-partition the components such that those relevant to the
unsat core are grouped into G1 (since intuitively details of
those components matter, at least in avoiding the spurious
counterexample). If the partition (G1, G2) cannot be improved
by unsat cores anymore, we refine A2 (the abstraction of
the new G2) based on the interpolants [22], [23] from the
unsatisfiable BMC formula. Lastly, we use the interpolants to
construct the abstraction A1 of G1 (so as to avoid details
of the processes which are irreverent at least to the proof
of unsatisfiable BMC formula). The above process continues
until a verification result can be concluded, i.e., the property
is proved or a real counterexample is found.

Our interpolation-guided approach tackles the above-
mentioned three problems as follows. Firstly, the assumptions
are generated and refined automatically based on interpola-
tions. Different from existing approaches on learning assump-
tions [19], [4], [12], [26], [32], the assumptions in our approach
are abstractions of G2 by construction. Secondly, unlike in
existing AGR-based approaches where the component G1 is
never changed, we actively abstract the transition relation of
G1 based on interpolations. As a result, we would not explore
G1 ‖ G2 even if A2 has to be refined all the way to G2. Lastly,
we use unsat cores to guide the partition of components. We
have implemented the approach in the PAT model checker [38],
and experiments show the benefits of our approach.

The rest of this paper is organized as follows. Section II
illustrates our approach with a simple example. Section III
reviews some preliminary backgrounds and recalls the transi-
tion over-approximation based on interpolants. In Section IV,
we show how we construct and refine A1 and A2 by using
interpolations. Experiment results are presented in Section V to
show the effectiveness of our approach. Section VI summarizes
related works. Section VII concludes this work.

II. A SIMPLE EXAMPLE

We illustrate how our approach works using a simple
example. We first show abstracting M1 whilst refining M2

could be beneficial to a system with two components. Next,
we generalize the system to n components and then show how
a good partition is found. A two-bit counter is modeled by two
components, cell1 and cell2 in Fig. 2. Each component
celli for i ∈ {1, 2} has three Boolean variables as follows.
The ini variable indicates whether the carry-in value of celli

is asserted. The biti variable stores the current bit value of

celli. It is initialized as FALSE, and its next value depends
on the exclusive-or of its current value and its carry-in value.
The outi indicates whether the current bit value of celli

should be carried out. If the bit value of cell1 is carried out,
then the carry-in value of cell2 should be asserted. The initial
condition Ii and transition relation Ti of the two components
are encoded as follows, respectively.

• I1: ¬bit1 ∧ in1

• I2: ¬bit2

• T1: (bit′1 ⇔ bit1 ⊕ in1) ∧ (out′1 ⇔ bit1 ∧ in1)

• T2: (in′2 ⇔ out1) ∧ (bit′2 ⇔ bit2 ⊕ in2) ∧
(out′2 ⇔ bit2 ∧ in2)

Suppose we want to verify the property ϕ requiring
that out2, bit2, and in2 do not hold simultaneously, i.e.,
G ¬(out2 ∧ bit2 ∧ in2). Let cell1 be M1 and cell2 be

M2, respectively. We use T̂ l
i to denote the over-approximation

of Ti after l-th iteration. Initially in our approach, T̂ 0
2 is set to

the weakest transition relation �, and T̂ 0
1 is kept as T1. Let

Al
i be the component encoded by the initial condition Ii and

the abstract transition relation T̂ l
i .

In the first iteration, a counterexample is found in one
step when model checking A0

1 ‖ A0
2 |= ϕ. To check whether

there is any one-step counterexample in the concrete system,
a bounded model checking (BMC) of length one based on
T1 and T2 is performed. However, the BMC formula is not
satisfiable meaning that the counterexample is spurious, and
T̂ 0
2 should be strengthened. From the proof of unsatisfiability,

we obtain the symmetric interpolant Ω1 = � for T1 and
Ω2 = bit2 ∨ ¬out′2 for T2, respectively (c.f. Section III-B

for details). We use the obtained interpolant to weaken T̂ 0
1 and

strengthen T̂ 0
2 as follows: T̂ 1

1 = Ω1 = � and T̂ 1
2 = T̂ 0

2 ∧Ω2 =
(bit2 ∨ ¬out′2). By the characteristics of interpolants, T̂ 1

1

and T̂ 1
2 are over-approximations of T1 and T2, respectively.

In addition, I1 ∧ T̂ 1
1 ∧ I2 ∧ T̂ 1

2 does not admit any one-step
counterexamples.

In the second iteration, A1
1 ‖ A1

2 |= ϕ are verified again,
and a counterexample in three steps is found. To check the
feasibility of any three-step counterexamples, a BMC of length
three based on the concrete transition relations, T1 and T2, is
performed. However, the BMC formula is not satisfiable, and
T̂ 1
2 still needs to be strengthened. We obtain the interpolants

Ω′1 and Ω′2 from the unsatisfiability proof to refine T̂ 1
1 and T̂ 1

2 ,

66

MODULE cell1
var bit1: bool;
var in1: bool;
var out1: bool;

init(bit1) := FALSE;
init(in1) := TRUE;

next(bit1) := bit1 xor in1;
next(out1) := bit1 & in1;

END MODULE

MODULE cell2
var bit2: bool;
var in2: bool;
var out2: bool;

init(bit2) := FALSE;

next(in2) := out1;
next(bit2) := bit2 xor in2;
next(out2) := bit2 & in2;

END MODULE

Fig. 2. The Counter Example

respectively, as follows: T̂ 2
1 = Ω′1 = bit1∨¬out′1 and T̂ 2

2 =
T̂ 1
2 ∧Ω′2 = (¬out′2∧out1)∨(¬out′2∧¬in′2)∨(in2∧bit2).

In the third iteration, a spurious counterexample in seven
steps is found, and T̂ 2

1 and T̂ 2
2 are strengthen by interpolants as

follows: T̂ 3
1 = bit1∨¬out′1 and T̂ 3

2 = T̂ 2
2 ∧ (bit′2∨out′2).

In the fourth iteration, A3
1 ‖ A3

2 |= ϕ is verified by model
checking again, but no counterexamples are found this time
meaning that cell1 ‖ cell2 |= ϕ. We remark here that
abstracting T1 is optional, but doing so reduces the state
explosion problem when checking M1 ‖ A2 |= ϕ.

Let us do the verification again, but this time let cell2

be M1 instead of cell1. The verification can be done
in one iteration, where A1 = cell2 and A2 with the
weakest transition relation TRUE. This is because cell2 is
sufficient to prove the property. From this example, we can
observe the importance of partitioning components for AGR.
In our approach, we utilize the unsatisfiability core to predict
the components which are necessary to prove the property.
Within each iteration, if the BMC formula for checking the
spuriousness of counterexamples is unsatisfiable, we obtain
its unsatisfiability core. Any component whose variables are
appearing in the unsatisfiability core might be necessary for
proving the property and is included into the M1 group. Once
the M1 group is changed, the verification is restart for the new
partition in the next iteration.

For the same counter example, if we have n cells (n-
bit counter) and suppose we want to verify the property ϕj :
G ¬(outj ∧ bitj ∧ inj) for j ∈ {1, 2, . . . , n}, our approach
is able to detect that cellj is the only necessary component
to prove ϕj , i.e., cellj is in the M1 group and the rest are in
the M2 group, which is the best partition (only one iteration
is required for verifying ϕj).

III. BACKGROUND

In Section III-A, we review some definitions, borrowed
from [12], [23], of symbolic model checking and bounded
model checking. Then, we briefly recall the transition approx-
imation based on interpolations [22], [23], in Section III-B.

A. Preliminaries

Define B = {�,⊥} to be the Boolean domain where � and
⊥ denote the truth values TRUE and FALSE, respectively. Let
x be a set of Boolean variables and |x| the size of x. A Boolean
formula φ(x) over x is a function from B

|x| to B. A valuation
ν : x → B over x is a function from Boolean variables to
truth values. We use φ[ν] to denote the result of evaluating

φ by replacing each x ∈ x with ν(x). To represent transition
systems symbolically, we also define a set of Boolean variables
x′ = {x′ | x ∈ x}, which corresponds to x such that x ∈ x
represents the current value of x, while x′ ∈ x′ represents
the value of x in the next state. Moreover, let φ(x,x′) be a
Boolean formula over x and x′. If ν and ν′ are valuations over
x and x′, respectively, we use φ[ν, ν′] to denote the result of
evaluating φ by replacing each x ∈ x with ν(x) and replacing
each x′ ∈ x′ with ν′(x′). Let C be a set of formulas. We use∧ C to denote the conjunction of all formulas.

A transition system M = (x, I(x), T (x,x′)) consists of its
state variables x, its initial predicate I(x), and its transition
relation T (x,x′). We sometimes write (x, I, T) to denote a
transition system if there is no risk of confusion. A trace of M
is a finite sequence of valuations σ = ν0ν1 · · · νk, where νi is
a valuation over x, such that I(ν0) = � and T (νi, νi+1) = �
for all i ∈ {0, 1, · · · , k}. The language of M , denoted by
L(M), contains all the traces of M . A state predicate ϕ(x)
is a Boolean function over x. We say M satisfies ϕ, denoted
by M |= ϕ, if for each σ = ν0ν1 · · · νk ∈ L(M), we have
ϕ[νi] = � for all i ∈ {0, 1, . . . , k}. A counterexample of
M |= ϕ is a trace ν0ν1 · · · νt of M such that ϕ[νi] = � for
all i ∈ {0, 1, . . . , t− 1} but ϕ[νt] = ⊥.

Let M = (x, I(x), T (x,x′)) and A =
(x, IA(x), TA(x,x′)) be two transitions systems over
x. We say M is simulated by A or A simulates M ,
denoted by M � A, if ∀x � I(x) =⇒ IA(x) and
∀xx′ � T (x,x′) =⇒ TA(x,x′). That is, the initial condition
of M is stronger than that of A and every transition in M
is also allowed in A. Obviously, if M � A holds, then
L(M) ⊆ L(A) holds. Let Mi = (xi, Ii(xi), Ti(xi,x

′
i))

be two transition systems for i ∈ {1, 2}. The parallel
composition of M1 and M2 is the transition system M1 ‖
M2 = (x1 ∪ x2, I1(x1) ∧ I2(x2), T1(x1,x

′
1) ∧ T2(x2,x

′
2)).

Given a transition system M = (x, I(x), T (x,x′)) and
a state predicate ϕ(x), whether ϕ is k-reachable in M can
be expressed symbolically as a Boolean formula. For each
variable x ∈ x and a natural number i, we use x〈i〉 to denote
the variable x with i primes added, which represents the value
of x at time i. For example, x〈3〉 = x′′′ represents the value
of x at time 3. We also extend this notation to the set of
variables and formulas. Thus, x〈i〉 contains variables with i
primes added, φ(x)〈i〉 is the formula over x〈i〉, and φ(x,x′)〈i〉
is the formula over x〈i〉 and x〈i+1〉. A state predicate ϕ(x)
is k-reachable in (x, I(x), T (x,x′)) if the following bounded
model checking (BMC) formula is satisfiable.

I(x)〈0〉∧T (x,x′)〈0〉∧T (x,x′)〈1〉∧· · ·∧T (x,x′)〈k−1〉∧ϕ(x)〈k〉

67

Algorithm 1: Verification by Transition Approximation

input : (x, I, T): the concrete transition system;
ϕ: the property to be checked

output: yes/no, with a counterexample

1 T̂ ←− � ;
2 while True do
3 if (x, I, T̂) |= ϕ then
4 return yes

5 else
6 Suppose ¬ϕ is k-reachable in (x, I, T̂) ;

7 Θ←− {I〈0〉, T 〈0〉, . . . , T 〈k−1〉,¬ϕ〈k〉} ;
8 if

∧
Θ is satisfied by a valuation ν then

9 return (no, ν) ;

10 else
11 Let Θ̂ = {Î〈0〉, T̂ 〈0〉, . . . , T̂ 〈k−1〉, ¬̂ϕ〈k〉} be

the symmetric interpolant for Θ ;

12 T̂ ←− T̂ ∧∧k−1
i=0 (T̂

〈i〉)〈−i〉 ;

B. Interpolation-based Approximation of Transition Relations

In [22], [23], transition relations are approximated by
interpolations [18], as formulated in Definition 1, obtained
from unsatisfiability proofs of bounded model checking.

Definition 1: Given a pair of Boolean formulas (A,B)
such that A ∧ B is unsatisfiable, an interpolant for (A,B)
is a formula Â satisfying the following properties:

1) A implies Â, i.e., A =⇒ Â
2) Â ∧B is unsatisfiable
3) Â refers only to the common variables of A and B.

If A ∧ B is unsatisfiable with an unsatisfiability proof, an
interpolant for (A,B) can be obtained from the proof [31].
In a formula of a k-step bounded model checking problem,
if the formula is unsatisfiable, the over-approximation of
the transition relation can be obtained from the symmetric
interpolants [22], [23], as formulated in Definition 2, among
the transition relations from steps 0 to k − 1.

Definition 2: Given an indexed set of Boolean formulas
A = {a1, a2, . . . , an} such that

∧
A is inconsistent, a sym-

metric interpolant for A is an indexed set of Boolean formulas
Â = {â1, â2, . . . , ân} satisfying the following conditions:

1) ai =⇒ âi for all i ∈ {1, 2, . . . , n}
2)

∧
Â is inconsistent

3) âi refers to the variables common to ai and A\{ai}.
Algorithm 1 shows a verification approach by over-

approximating the transition relation based on symmetric in-
terpolants [22], [23]. The details are as follows:

• Initially, the approximation T̂ is initialized as �
(line 1).

• If (x, I, T̂) |= ϕ holds, we can conclude (x, I, T) |= ϕ
also holds because T =⇒ T̂ (lines 3–4).

• If ¬ϕ is k-reachable in (x, I, T̂), there could be
two cases where either ¬ϕ is also k-reachable
in (x, I, T), or T̂ is too weak an approxima-
tion. Bounded model checking can help to find out
which case it is. We construct a set of formu-
las Θ = {I〈0〉, T 〈0〉, T 〈1〉, . . . , T 〈k−1〉,¬ϕ〈k〉} where∧
Θ is exactly the BMC formula. We use a de-

cision procedure to determine the satisfiability. If∧
Θ is satisfiable, then (x, I, T) |= ϕ does not

hold (lines 8–9). If
∧
Θ is not satisfiable, then T̂

is too weak and needs to be refined. Let Θ̂ =
{Î〈0〉, T̂ 〈0〉, T̂ 〈1〉, . . . , T̂ 〈k−1〉, ¬̂ϕ〈k〉} be the symmet-

ric interpolant for Θ. Let us define T̂�i� = (T̂ 〈i〉)〈−i〉

where (T̂ 〈i〉)〈−i〉 denotes the formula obtained by

removing i primes from T̂ 〈i〉 if possible. Because of
the properties of symmetric interpolants, the formula

I〈0〉 ∧ T̂
〈0〉
�0� ∧ T̂

〈1〉
�1� ∧ · · · ∧ T̂

〈k−1〉
�k−1� ∧ ¬ϕ〈k〉

is unsatisfiable, i.e.,
∧k−1

i=0 T̂�i� admits no path in k

steps from I to ¬ϕ. Thus, T̂ is refined as T̂ ∧∧k−1
i=0 T̂�i�, which becomes the new approximation in

the next iteration for verification (lines 11–12).

The process continues until a verification result can be
concluded. The correctness and termination of Algorithm 1
are proved in [22], [23].

IV. IMPROVING COMPOSITIONAL VERIFICATION BY

INTERPOLATIONS

In this section, we introduce how the compositional veri-
fication based on assume-guarantee reasoning (AGR), can be
improved using interpolations. We first show how our approach
works for systems with two processes in Section IV-A. Next,
we show how to extend our approach to systems with many
processes in Section IV-B.

A. Generating Assumptions by Interpolations

Let us recall the AG-NC proof rule in Equation 1. To
automatically generate the assumption A2, we can construct
A2 as the symmetric interpolants of M2 from the bounded
model checking problem of M1 ‖ M2 |= ϕ. Since the
transition relation of A2 is an over-approximation of that of
M2, the second condition of Equation 1, M2 � A2, holds
naturally. We only have to check whether the first condition,
M1 ‖ A2 |= ϕ, holds or not. If it does, then we have a
conclusive result showing that M1 ‖ M2 |= ϕ. If it does not
hold with a counterexample in k steps, the transition relation of
the assumption A2 is refined (strengthened) by the interpolants
obtained from the k-step bounded model checking problem of
M1 ‖ M2 |= ϕ provided that the problem is unsatisfiable.
Furthermore, applying the AGR rule twice, it is easy to see
that the following rule holds.

A1 ‖ A2 |= ϕ and M2 � A2 and M1 � A1

M1 ‖M2 |= ϕ
(2)

Thus, using the same formula for bounded model checking
of M1 ‖ M2, we can obtain the symmetric interpolant of the

68

Algorithm 2: Compositional Verification based on Interpolation

input : M1 = (x1, I1, T1) and M2 = (x2, I2, T2): concrete transition systems; ϕ: the property to be checked
output: yes/no, with a counterexample

1 T̂1 ←− T1 ;

2 T̂2 ←− � ;
3 while True do
4 if (x1, I1, T̂1) ‖ (x2, I2, T̂2) |= ϕ then
5 return yes

6 else
7 Suppose ¬ϕ is k-reachable in (x1, I1, T̂1) ‖ (x2, I2, T̂2) ;

8 Θ←− {I〈0〉1 , I
〈0〉
2 , T

〈0〉
1 , T

〈0〉
2 , T

〈1〉
1 , T

〈1〉
2 , . . . , T

〈k−1〉
1 , T

〈k−1〉
2 ,¬ϕ〈k〉};

9 if
∧
Θ is satisfied by a valuation ν then

10 return (no, ν)

11 else
12 Let Θ̂ = {Î〈0〉1 , Î

〈0〉
2 , T̂

〈0〉
1 , T̂

〈0〉
2 , T̂

〈1〉
1 , T̂

〈1〉
2 , . . . , T̂

〈k−1〉
1 , T̂

〈k−1〉
2 , ¬̂ϕ〈k〉} be the symmetric interpolant for Θ ;

13 T̂2 ←− T̂2 ∧
∧k−1

i=0 (T̂
〈i〉
2)〈−i〉;

14 T̂1 ←−
∧k−1

i=0 (T̂
〈i〉
1)〈−i〉; // Abstracting M1 (optional)

transition relation for M1 as well, which gives A1, i.e., the
abstraction of M1.

Algorithm 2 shows the pseudo-code of the proposed au-
tomatic compositional verification approach based on interpo-
lations (with A2 strengthened and A1 abstracted simultane-
ously). The details are described as follows.

Initially, the approximation T̂1 is initialized as T1, and the
approximation T̂2 is initialized as �, respectively (lines 1–2).
If (x1, I1, T̂1) ‖ (x2, I2, T̂2) |= ϕ holds, then we can conclude
that (x1, I1, T1) ‖ (x2, I2, T2) |= ϕ also holds (lines 4–5)

because T̂1 and T̂2 are over-approximations of T1 and T2,
respectively. Note that both T1 =⇒ T̂1 and T2 =⇒ T̂2 hold
according to the properties of interpolations (cf. Definition 2).
If ¬ϕ is k-reachable in (x1, I1, T̂1) ‖ (x2, I2, T̂2), there could
be two cases: (1) ¬ϕ is also k-reachable in (x1, I1, T1) ‖
(x2, I2, T2), or (2) T̂2 is too weak an approximation. We
construct a set of formulas

Θ = {I〈0〉1 , I
〈0〉
2 , T

〈0〉
1 , T

〈0〉
2 , . . . , T

〈k−1〉
1 , T

〈k−1〉
2 ,¬ϕ〈k〉}

where
∧
Θ is exactly the bounded model checking formula.

We use a decision procedure to determine its satisfiability.

• If
∧
Θ is satisfiable, we can conclude that

(x1, I1, T1) ‖ (x2, I2, T2) violates the property ϕ
because there exists a real counterexample in k steps
(lines 9–10).

• If
∧
Θ is unsatisfiable, then T̂2 is too weak and needs

to be strengthened, which can be done as follows. Let

Θ̂ = {Î〈0〉1 , Î
〈0〉
2 , T̂

〈0〉
1 , T̂

〈0〉
2 , . . . , T̂

〈k−1〉
1 , T̂

〈k−1〉
2 , ¬̂ϕ〈k〉}

be the symmetric interpolant for Θ. Let us define

T̂�i,j� = (T̂
〈i〉
j)〈−i〉 for i ∈ {0, 1, . . . , k − 1} and

j ∈ {1, 2} where (T̂
〈i〉
j)〈−i〉 denotes the formula

obtained by removing i primes from T̂
〈i〉
j if possible.

Because of the properties of symmetric interpolants,
the following bounded model checking formula

I
〈0〉
1 ∧ I

〈0〉
2 ∧

k−1∧

i=0

T̂
〈i〉
�i,1� ∧

k−1∧

i=0

T̂
〈i〉
�i,2� ∧ ¬ϕ〈k〉

is unsatisfiable. That is to say,
∧k−1

i=0 T̂�i,1� and∧k−1
i=0 T̂�i,2� admit no path in k steps from I1 ∧

I2 to violate ϕ. Note that
∧k−1

i=0 T̂�i,2� is an over-

approximation of T2 as well as a refinement of T̂2.

Thus, we strengthen T̂2 as T̂2∧
∧k−1

i=0 T̂�i,2� for the next

iteration (line 13). In addition, since
∧k−1

i=0 T̂�i,1� is an
over-approximation of T1, we can optionally abstract

T̂1 as
∧k−1

i=0 T̂�i,1� in line 14, which alleviates the
state space explosion problem when checking whether
(x1, I1, T̂1) ‖ (x2, I2, T̂2) |= ϕ holds.

Theorems 1 and 2 prove the correctness and termination
of the proposed interpolation-based approach.

Theorem 1: Algorithm 2 is correct.

Proof: To establish the correctness of Algorithm 2, we
want to prove that it returns “yes” only if M1 ‖M2 |= ϕ, and
returns “no” with a counterexample only if M1 ‖ M2 �|= ϕ.

Let M̂1 = (x1, I1, T̂1) and M̂2 = (x2, I2, T̂2) be the transition

systems with respect to T̂1 and T̂2, respectively. Since T̂1 and
T̂2 are obtained by interpolations, both T1 =⇒ T̂1 and
T2 =⇒ T̂2 hold, i.e., M̂1 and M̂2 are the abstractions of M1

and M2, respectively. Algorithm 2 returns “yes” only when
M̂1 ‖ M̂2 |= ϕ, which implies M1 ‖ M2 |= ϕ. On the other
hand, Algorithm 2 returns “no” only when

∧
Θ is satisfiable

by a valuation ν. Since
∧
Θ is a bounded model checking

formula to check whether ¬ϕ is reachable within k-steps in
M1 ‖ M2, the valuation ν is a witness of M1 ‖ M2 �|= ϕ.
From the above arguments, we can conclude that Algorithm 2
is correct.

69

Algorithm 3: PARTITION

input : {C1, C2, . . . , Cn}: a set of components;
k: the number of steps

output: (M1,M2): the partition of all components

1 M1 ←−M2 ←− ∅ ;
2 Let UΨ be the unsatisfiability core of Ψ;
3 for j = 1 to n do
4 if Cj has any variable appearing in UΨ then
5 M1 ←−M1 ∪ {Cj};
6 M2 ←− {C1, C2, . . . , Cn} \M1;
7 return (M1,M2);

Theorem 2: Algorithm 2 terminates.

Proof: To establish the termination of Algorithm 2, we
want to prove that the number of refinement iterations for T̂1

and T̂2 is finite. In Algorithm 2, T̂2 is initialized as �, and
T̂1 is set to the most abstract over-approximation after the first
iteration. In the following iterations of Algorithm 2, T̂1 and
T̂2 are refined and approaching to T1 and T2, respectively.
For finite state systems, the refinement loop for T̂1 and T̂2 in
Algorithm 2 must terminate. This is simply because we cannot
strengthen a formula with a finite number of models infinitely.
That is, M1 ‖ M2 |= ϕ will be either proved or disproved in
Algorithm 2 within a finite number of iterations.

B. Generalization to Multiple Components

The proposed compositional verification approach based
on interpolation is presented in the context of two compo-
nents. If a system consists of n components modeled by
M = {C1, C2, . . . , Cn} where n ≥ 3, an intuitive approach
to generalize our approach is to partition the components into
two groups to fit the AG-NC proof rule. For example, if n = 4,
we can obtain M1 = C1 ‖ C2 and M2 = C3 ‖ C4, and apply
our approach on M1 and M2.

However, the number of possible partitions is 2n − 2,
which is exponential to the number of components. In addition,
Cobleigh et al. [17] showed that a good partition is very
important to AGR with the AG-NC proof rule. With a bad
partition, assume-guarantee reasoning may not be beneficial,
which is corroborated in our experiments in Section V.

In the following, we would like to show that bounded
model checking can help to find good partitions efficiently.
Let us recall the AG-NC proof rule for AGR. An ideal case is
that we can have a conclusive verification result when the as-
sumption A2 is the most abstract one, whose transition relation
is �. That is to say, considering only the M1 group is sufficient
to have a conclusive result, or the property to be verified
is only related to the M1 group. Based on this observation,
we propose a partition heuristic based on the unsatisfiability
core of BMC formula. Consider the following bounded model
checking formula in k steps for the n components where
Cj = (xj , Ij , Tj) and j ∈ {1, 2, . . . , n}.

Ψ =
n∧

j=1

I
〈0〉
j ∧

k−1∧

i=0

n∧

j=1

T
〈i〉
j ∧ ¬ϕ〈k〉

If Ψ is not satisfiable, the property is not going to be
violated in k steps. We can obtain its unsatisfiability core,
denoted by UΨ, which includes the formula showing why the
property cannot be violated in k steps. In the other hand, the
unsatisfiability core also gives us a hint of which components
are necessary to prove that the property is satisfied.

The heuristic, PARTITION, for partitioning components is
shown in Algorithm 3. Initially, groups M1 and M2 are
initialized as empty, respectively (line 1). The satisfiability of
the bounded model checking formula Ψ in k steps is checked
by a decision procedure. If it is unsatisfiable, we obtain its
unsatisfiability core, denoted by UΨ (line 2). If a component
Cj for some j ∈ {1, 2, . . . , n} has a variable appearing in
the unsatisfiability core UΨ, we include Cj into the group M1

because it is strongly necessary to prove that the property is
satisfied (lines 3–5). The remaining components that do not
have any variables appearing in UΨ are included into the group
M2 (line 6), and the final partitioned groups M1 and M2 are
returned (line 7).

Algorithm 4 gives the pseudo-code of the generalized
interpolation-guided compositional verification for multiple
components. Initially, we assume that there is an initial par-
tition of groups M1 and M2 (line 2). Then Algorithm 4
works similarly to Algorithm 2 as if there are only two
hypothetical components M1 and M2. When a counterexample
is found in abstract components in k steps (line 9), a BMC
of length k is performed to check whether there exists any
k-step counterexample in the concrete components (line 10).
If the BMC formula is satisfied by an valuation ν (line 11),
then a real counterexample is found and returned (line 12).
If the BMC formula is not satisfiable (line 13), the partition
heuristic is performed (line 14) with the value k to obtain a
new partition (M ′

1,M
′
2). If there is any component in M ′

1 but
not in M1, it is then included into M1 (lines 15–17), and the
verification restarts from scratch for the new partition (line 18).
If there is no re-partition that can be made (line 19), the
process continues similarly to Algorithm 2 until a verification
result can be concluded. We remark that the k-step BMC
formula Ψ in the partition heuristic is equivalent to the formula∧

Θ for checking whether ¬ϕ is k-reachable in the concrete
components. Thus, the formula could be solved only once such
that the unsatisfiability core as well as the interpolants are
obtained from the same unsatisfiability proof.

The correctness of Algorithm 4 can be proved by Theo-
rem 1 as well, while the termination has to be established based
on Theorem 2 plus the finite number of re-partition iterations.
Notice that the number of components in the M1 group is
strictly increasing, and therefore the number of re-partitions in
Algorithm 4 is at most n iterations. Since the re-partitions are
finite and the verification terminates for each new partition (by
Theorem 2), we can conclude that Algorithm 4 terminates in
a finite number of iterations.

V. EVALUATION

The proposed interpolation-based compositional verifica-
tion framework has been implemented in the PAT model
checker [38]. We use MathSAT [13] (an SMT solver) to obtain
interpolations. MathSAT supports three different ways to ob-
tain interpolations from unsatisfiability formulas. We use the

70

Algorithm 4: Generalized Interpolation-based Compositional Verification

input : {C1, C2, . . . , Cn}: a set of components; ϕ: the property to be checked
output: yes/no, with a counterexample

1 while True do
2 Let (M1,M2) be a partition where Mi = (xi, Ii, Ti) for i ∈ {1, 2} ;

3 T̂1 ←− T1 ;

4 T̂2 ←− � ;
5 while True do
6 if (x1, I1, T̂1) ‖ (x2, I2, T̂2) |= ϕ then
7 return yes

8 else
9 Suppose ¬ϕ is k-reachable in (x1, I1, T̂1) ‖ (x2, I2, T̂2);

10 Θ←− {I〈0〉1 , I
〈0〉
2 , T

〈0〉
1 , T

〈0〉
2 , T

〈1〉
1 , T

〈1〉
2 , . . . , T

〈k−1〉
1 , T

〈k−1〉
2 ,¬ϕ〈k〉};

11 if
∧
Θ is satisfied by a valuation ν then

12 return (no, ν)

13 else
14 (M ′

1,M
′
2)←− PARTITION({C1, . . . , Cn}, k) ;

15 if M ′
1 \M1 �= ∅ then

16 M1 ←−M1 ∪ (M ′
1 \M1);

17 M2 ←− {C1, C2, . . . , Cn} \M1;
18 goto Line 2 ;

19 Let Θ̂ = {. . . , T̂ 〈0〉1 , T̂
〈0〉
2 , T̂

〈1〉
1 , T̂

〈1〉
2 , . . . , T̂

〈k−1〉
1 , T̂

〈k−1〉
2 , ¬̂ϕ〈k〉} be the symmetric interpolant for Θ;

20 T̂2 ←− T̂2 ∧
∧k−1

i=0 (T̂
〈i〉
2)〈−i〉;

21 T̂1 ←−
∧k−1

i=0 (T̂
〈i〉
1)〈−i〉 ; // Abstracting M1 (optional)

approach proposed by McMillan [31] in our implementation.
To demonstrate the feasibility and benefits of our approach,
the following systems are used as benchmarks.

• FMS. A flexible manufacturing system (FMS) [36],
[26] produces blocks with a cylindrical painted pin
from raw blocks and raw pegs. The manufacturing
devices are connected through buffers, and the ca-
pacity of each buffer is one. We verify the properties
requiring that each buffer should not overflow.

• DP. The dining philosophers (DP) problem illustrates
a resource sharing problem in concurrent systems.
Philosophers sit at a round table, and there is only
one fork between any two philosophers. A philosopher
requires two forks (shared with his/her neighbors) to
eat. We verify the properties requiring that any pair of
neighboring philosophers cannot eat simultaneously.

• AIP. The AIP manufacturing system [24], [27], [28]
produces two products from two types of materials in
different production routes. We verify the properties
requiring that the routes of the two types of materials
should be opposite.

• SBA. The synchronous bus arbiter (SBA) is a bus
arbitration protocol for synchronous circuits [30]. A
bus is connected by nodes (the components to access
it) in a ring, and a token is passed around the nodes.
We verified the properties requiring that a bus cannot
be accessed simultaneously by more than two nodes.

• MSI. In the MSI cache coherence protocol [30], a
memory is shared by n nodes, each of which has a
cache. A bus connects the caches of the nodes and
the memory. We verified the properties requiring that
the bus cannot be owned simultaneously by more than
two nodes.

The system models2 and verified properties of all the ex-
periments, and the implementation of our framework can be
found in [2] on-line. In our experiments, all the properties
are satisfied. We compare three verification techniques: tra-
ditional BDD-based model checking [30], [33], McMillan’s
interpolation-based transition over-approximation [22], [23],
and our interpolation-guided compositional verification. Since
both of McMillan’s and our approaches require an underlying
verification engine, we adopt the traditional BDD-based model
checking 3. The following experimental results were obtained
by running the PAT model checker on a 64-bit Windows 7
laptop with a 2.8 GHz Intel(R) Core(TM) i7-2640M processor
and 4 GB RAM.

Table I shows the verification results of different tech-
niques, where BDD denotes the traditional BDD-based model
checking, Mc-ITP denotes McMillan’s interpolation-based
transition over-approximation, C-ITP denotes the proposed

2The input language of our models, which is a simplified version of
NuSMV’s input language, does not support parameterized module definitions.

3We integrate the CUDD library [3] in our implementation, and the default
settings are used for all experiments.

71

TABLE I. VERIFICATION RESULTS

BDD Mc-ITP C-ITP C-ITPA C-ITPP+A

System n |ϕ| Time Time |R| Time |R| Time |R| Time |P |
FSM-02 8 6 10.9 2.0 24 1.1 12 1.8 16 0.3 0
FSM-04 16 12 � 9.5 48 12.3 32 7.1 36 0.6 0
FSM-06 24 18 � 20.5 72 37.8 56 19.3 60 1.1 0
FSM-08 32 24 � � 77.1 80 47.7 84 1.8 0
FSM-10 40 30 � 83.1 120 255.0 104 251.6 108 2.7 0
FSM-12 48 36 � � � � 3.8 0
FSM-14 56 42 � 192.8 168 258.0 152 190.1 156 5.2 0
FSM-16 64 48 � 298.1 192 360.5 176 282.8 180 7.3 0
FSM-18 72 54 � 368.3 216 512.0 200 432.7 204 9.1 0
FSM-20 80 60 � 506.9 240 718.4 224 576.8 228 11.8 0
FSM-24 96 72 � � 1020.8 272 885.5 276 17.9 0
FSM-30 120 90 � � � � 28.6 0
DP-04 8 4 4.8 198.9 14 5.3 13 1.4 13 0.5 5
DP-06 12 6 � 7.5 22 � 2.1 19 1.1 7
DP-08 16 8 � 18.7 28 � 3.7 25 1.9 11
DP-10 20 10 � 19.0 34 � 8.7 32 2.9 14
DP-20 40 20 � 35.7 63 � 26.0 61 13.3 29
DP-30 60 30 � 115.6 106 � 118.9 101 32.6 44
DP-40 80 40 � 200.0 124 � 138.6 122 68.5 58
DP-50 100 50 � 281.1 154 � 276.2 154 122.2 74
DP-60 120 60 � 493.2 187 � 469.7 185 199.7 89
DP-70 140 70 � 645.2 214 � 695.9 215 313.6 104
AIP-01 8 2 106.5 1.7 10 10.8 9 3.7 10 10.5 0
AIP-02 16 4 � 6.6 20 168.3 20 12.4 20 39.9 12
AIP-04 32 8 � 30.0 40 � 86.8 44 81.5 24
AIP-06 48 12 � 87.0 60 � 267.5 68 128.3 36
AIP-08 64 16 � 189.8 80 � 611.9 92 180.7 48
AIP-10 80 20 � 352.5 100 � 1170.6 116 242.7 60
AIP-11 88 22 � 459.8 110 � 1539.4 128 274.6 66
AIP-12 96 24 � 614.2 120 � � 317.8 72
SBA-02 8 12 � � 140.3 44 13.1 48 3.7 36
SBA-03 12 18 � � 631.1 74 214.7 78 6.7 54
SBA-04 16 24 � � 1086.2 104 420.5 108 11.5 72
SBA-05 20 30 � � 1602.1 134 651.0 138 17.1 90
SBA-06 24 36 � � � 897.1 168 22.9 108
SBA-07 28 42 � � � 1038.4 198 31.9 126
SBA-08 32 48 � � � 1291.7 228 41.7 144
SBA-09 36 54 � � � 1536.3 258 53.2 162
SBA-10 40 60 � � � � 71.4 180
MSI-02 8 1 � 0.3 3 2.7 3 0.7 3 1.4 1
MSI-03 11 3 � 3.2 11 � � 4.4 3
MSI-04 14 6 � � � � 12.7 6
MSI-05 17 10 � � � � �

n: number of components; |ϕ|: number of verified properties;
Time: verification time (in secs); |R|: number of refinements; |P |: number of re-partitions
�: out of memory; �: time out (30 minutes)

interpolation-guided compositional verification, and C-ITPA

denotes the C-ITP approach with abstraction of M1. We
remark in the above experiments the number of components
involved in the systems (denoted by n) is more than 2 and
therefore we need to partition the components into two groups
for the C-ITP and C-ITPA approaches. Specifically, we put
the first four components in the M1 group and the remains
in the M2 group. Note that the order of components can be
specified by users in the input model. In this set of experiments,
we randomly picked one possible order and fixed it for all
experiments unless the partition heuristic is performed.

As we expected, BDD-based model checking performed
worst because it ran out of all available memory for most of
the cases. In average, McMillan’s approach performed better
than the C-ITP approach because the partition of the M1 and
M2 groups is not good, which leaded to many cases of running
out of memory or time out. However, with the abstraction
of M1, most of these cases can be verified by the C-ITPA

approach in 30 minutes, which shows the significant benefit
of abstracting M1 in assume-guarantee reasoning. We remark
here that the integration of the SMT solver, MathSAT, is
done by interprocess communications, i.e., a dedicated process
is created for MathSAT, and the problems (in SMT-LIB [1]

format) to be solved as well as the output interpolations or the
unsatisfiability cores are stored in shared string buffers. This
implementation is not optimized because it invokes system
calls many times, which is time-consuming. The performance
could be improved if MathSAT is integrated natively as a
library.

We also applied our generalized approach (with the par-
tition heuristic as well as abstracting M1), denoted by C-
ITPP+A, on the application examples, and the verification
results are shown in the right-most column. The initial partition
is obtained by performing the partition heuristic with length
two, which is short but gives a rough understanding of the
components. We did not list the number of refinements for the
C-ITPP+A approach in the table because the partition heuristic
is able to find good partitions where all the components
related to the property are put into the M1 group so that
the property can be proved to hold with the most abstract
assumption whose transition relation is �, i.e., no refinements
are required. Instead, we list the number of re-partitions for the
C-ITPP+A approach. In the FSM example, good partitions can
be found initially, while other examples require re-partitions.
In the MSI example, no approach can handle the case of five
nodes, which consists of seventeen components, because of

72

running out of memory. After our investigation, we found
that the bottleneck is the underlying BDD-based verification
engine. Since the transition relations of the MSI components
are rather complicated, the underlying BDD-based verification
easily runs out of memory. In average, the C-ITPP+A approach
is the best one, especially when the system size is large.

VI. RELATED WORK

Model checking [14], [35] suffers from the state explosion
problem. To alleviate the problem, Pnueli firstly proposed the
assume-guarantee paradigm [34] to verify system components
individually and use the individual verification results to de-
duce additional properties of the system. Clarke et al. [15]
used interface processes to model the abstract environment
for a component, which is much smaller than the real one,
such that the state space is reduced. For formal verification
that is not based on model checking, Xu et al. [39] proposed
a proof system based on the assume-guarantee paradigm for
verifying shared variable concurrent programs. Henzinger et
al. [21] reported several case studies about applying assume-
guarantee reasoning on real world systems.

Cobleigh et al. [16] proposed a framework that generates
the abstract environment of components automatically using
the L∗ algorithm [5] based on the AG-NC proof rule. This work
is a pioneer of automating the compositional verification based
on learning techniques. Consequently, several improvements
[11], [37], [19] have been proposed to further reduce the com-
plexity. These improvements focus on reducing the size of the
alphabet during learning, which dominates the time complexity
of the membership query required the L∗ algorithm. Instead of
adopting the non-circular AG-NC proof rule, Barringer et al.
used the L∗ algorithm to learn assumptions automatically for
AGR based on the circular and symmetric proof rule [6]. Lin
et al. extended the learning-based compositional verification
on timed systems [25], [29], [26].

In traditional assume-guarantee reasoning (AGR), the M1

component in the AG-NC proof rule is never changed during
the whole verification process, which is very different from
compositional abstraction [7], [10], [9] where each component
is abstracted and refined iteratively. The approach proposed in
this work breaks with tradition of AGR such that both of the
M1 and M2 components are abstracted and refined by the
interpolants obtained from unsatisfiability proofs of bounded
model checking formulas.

The closest work to the proposed approach in this paper
is [12], which focuses on automatic assumption generation
for compositional symbolic verification as well. We have
tried to obtain an implementation of [12] for experimental
comparisons, but failed. The differences between this work
and [12] are listed as follows, and we compare them in
theoretical point of views.

• Our approach uses interpolation techniques to generate
the assumption, while [12] uses the CDNF algo-
rithm [8], which is an active algorithm for learning
Boolean formulas from membership and candidate
queries.

• Regarding the AG-NC proof rule in Equation 1,
our approach need not check the second condition,

M2 � A2, because A2 is an abstraction of M2

by construction according to the characteristic of
interpolations. However, in [12], M2 � A2 has to
be verified by model checking each time when a
candidate assumption A2 is constructed, which is an
additional overhead compared to our approach.

• The partition problem in AGR is not solved in [12],
i.e., the partition has to be given manually, while our
approach solves it by unsatisfiability cores of BMC
formulas.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose an automatic compositional
symbolic verification based on interpolations. The assump-
tion A2 required by assume-guarantee reasoning is obtained
by symmetric interpolants from the unsatisfiability proofs of
bounded model checking. In addition, the proposed approach
also weakens the component M1 based on interpolations
during the verification, which further alleviates the state space
explosion problem when checking M1 ‖ A2 |= ϕ. Currently,
we use McMillan’s interpolation technique. In the future, we
plan to use different interpolation techniques to generate the
assumptions and to compare the verification results based on
different interpolation techniques.

REFERENCES

[1] http://smt-lib.org/.

[2] https://sites.google.com/site/shangweilin/itpagr.

[3] http://vlsi.colorado.edu/ fabio/cudd/.

[4] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional
verification by learning assumptions. In CAV, volume 3576 of LNCS,
pages 548–562, 2005.

[5] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[6] H. Barringer, D. Giannakopoulou, and C. S. Păsăreanu. Proof rules
for automated compositional verification through learning. In SAVCBS,
pages 14–21, 2003.

[7] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions
of infinite state systems compositionally and automatically. In CAV,
volume 1427 of LNCS, pages 319–331, 1998.

[8] N. H. Bshouty. Exact learning boolean function via the monotone
theory. Information and Computation, 123(1):146–153, 1995.

[9] S. Chaki, E. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili,
and H. Veith. State/event software verification for branching-time
specifications. In IFM, volume 3771 of LNCS, pages 53–69, 2005.

[10] S. Chaki, J. Ouaknine, K. Yorav, and E. Clarke. Automated compo-
sitional abstraction refinement for concurrent c programs: A two-level
approach. Electronic Notes in Theoretical Computer Science, 89(3),
2003.

[11] S. Chaki and O. Strichman. Optimized L∗-based assume-guarantee
reasoning. In TACAS, volume 4424 of LNCS, pages 276–291, 2007.

[12] Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and
B.-Y. Wang. Automated assume-guarantee reasoning through implicit
learning. In CAV, volume 6174 of LNCS, pages 511–526, 2010.

[13] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The Math-
SAT5 SMT Solver. In TACAS, volume 7795 of LNCS, 2013.

[14] E. M. Clarke and E. A. Emerson. Design and sythesis of synchro-
nization skeletons using branching time temporal logic. In Logics of
Programs Workshop, volume 131, pages 52–71, 1981.

[15] E. M. Clarke, D. E. Long, and McMillan K. L. Compositional model
checking. In LICS 1989, pages 353–362, 1989.

[16] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning
assumptions for compositional verification. In TACAS, volume 2619 of
LNCS, pages 331–346, 2003.

73

[17] J.M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to
do: An investigation of decomposition for assume-guarantee reasoning.
In ISSTA, pages 97–108, 2006.

[18] M. Craig. A new form of the herbrand-gentzen theorem. Journal of
Symbolic Logic, 22(3):250–268, 1957.

[19] M. Gheorghiu, D Giannakopoulou, and C. S. Păsăreanu. Refining
interface alphabets for compositional verification. In TACAS, volume
4424 of LNCS, pages 292–307, 2007.

[20] O. Grumberg and D. E. Long. Model checking and modular verification.
In CONCUR, volume 527 of LNCS, pages 250–265, 1991.

[21] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we
guarantee: Methodology and case studies. In CAV, volume 1427 of
LNCS, pages 440–451, 1998.

[22] R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. In CAV, volume 3576 of LNCS, pages 39–51, 2005.

[23] R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. Logical Methods in Computer Science, 3(4), 2007.

[24] R. J. Leduc, M. Lawford, and P. C. Dai. Hierarchical interface-
based supervisory control of a flexible manufacturing system. IEEE
Transactions on Control Systems Technology, 14(4):654–668, 2006.

[25] S.-W. Lin, É. André, J. S. Dong, J. Sun, and Y. Liu. An efficient
algorithm for learning event-recording automata. In ATVA, volume 6996
of LNCS, pages 463–472, 2011.

[26] S.-W. Lin, É. André, Y. Liu, J. Sun, and J. S. Dong. Learning
assumptions for compositional verification of timed systems. IEEE
Transactions on Software Engineering (TSE), 40(2):137–153, 2014.

[27] S.-W. Lin and P. A Hsiung. Counterexample-guided assume-
guarantee synthesis through learning. IEEE Transactions on Computers,
60(5):734–750, 2011.

[28] S.-W. Lin and P.-A. Hsiung. Compositional synthesis of concurrent
systems through causal model checking and learning. In FM, volume
8442 of LNCS, pages 416–431, 2014.

[29] S.-W. Lin, Y. Liu, J. Sun, J. S. Dong, and É. André. Automatic
compositional verification of timed systems. In FM, volume 7436 of
LNCS, pages 272–276, 2012.

[30] K. L. McMillan. Symbolic Model Checking: An approach to the state
explosion problem. Ph. D. Thesis, Carnegie Mellon University, 1992.

[31] K. L. McMillan. Interpolation and sat-based model checking. In CAV,
volume 2725 of LNCS, pages 1–13, 2003.

[32] W. Nam and R. Alur. Learning-based symbolic assume-guarantee
reasoning with automatic decomposition. In ATVA, volume 4218 of
LNCS, pages 170–185, 2006.

[33] T. K. Nguyen, J. Sun, Y. Liu, and J. S. Dong. A model checking
framework for hierarchical systems. In ASE, pages 633–636, 2011.

[34] A. Pnueli. In transition from global to modular temporal reasoning
about programs. In Logics and Models of Concurrent Systems, pages
123–144, 1985.

[35] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In International Symposium on Programming,
volume 137, pages 337–351, 1982.

[36] M. H. Queiroz, J. E. R. Cury, and W. M. Wonham. Multitasking
supervisory control of discrete-event systems. Discrete Event Dynamic
Systems, 15(4), 2005.

[37] N. Sinha and E. M. Clarke. SAT-based compositional verification using
lazy learning. In CAV, volume 4590 of LNCS, pages 39–54, 2007.

[38] J. Sun, Y Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification
under fairness. In CAV, volume 5643 of LNCS, pages 709–714, 2009.

[39] Q. Xu, W. P de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Aspects of
Computing, 9(2):149–174, 1997.

74

	Interpolation guided compositional verification
	Citation

	Interpolation Guided Compositional Verification (T)

