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and Jun Sun4

1 Yale-NUS College, Singapore, Singapore
2 Autodesk, Singapore, Singapore

3 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

4 Singapore University of Design and Technology, Singapore, Singapore

Abstract. Symmetry reduction is a well-known approach for alleviating
the state explosion problem in model checking. Automatically identifying
symmetries in concurrent systems, however, is computationally expen-
sive. We propose a symbolic framework for capturing symmetry patterns
in parameterised systems (i.e. an infinite family of finite-state systems):
two regular word transducers to represent, respectively, parameterised
systems and symmetry patterns. The framework subsumes various types
of “symmetry relations” ranging from weaker notions (e.g. simulation
preorders) to the strongest notion (i.e. isomorphisms). Our framework
enjoys two algorithmic properties: (1) symmetry verification: given a
transducer, we can automatically check whether it is a symmetry pat-
tern of a given system, and (2) symmetry synthesis: we can automatically
generate a symmetry pattern for a given system in the form of a trans-
ducer. Furthermore, our symbolic language allows additional constraints
that the symmetry patterns need to satisfy to be easily incorporated in
the verification/synthesis. We show how these properties can help iden-
tify symmetry patterns in examples like dining philosopher protocols,
self-stabilising protocols, and prioritised resource-allocator protocol. In
some cases (e.g. Gries’s coffee can problem), our technique automati-
cally synthesises a safety-preserving finite approximant, which can then
be verified for safety solely using a finite-state model checker.

1 Introduction

Symmetry reduction [12,19,22] is a well-known approach for alleviating the state
explosion problem in automatic verification of concurrent systems. The essence of
symmetry reduction is to identify symmetries in the system and avoid exploring
states that are “similar” (under these symmetries) to previously explored states.

One main challenge with symmetry reduction methods is the difficulty in
identifying symmetries in a given system in general. One approach is to provide
dedicated language instructions for specifying symmetries (e.g. see [22,29,30])
or specific languages (e.g. see [13,24,25]) so that users can provide insight on
what symmetries are there in the system. For instance, Murϕ provides a spe-
cial data type with a list of syntactic restrictions and all values that belong
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to this type are symmetric. Another approach is to detect symmetry automat-
ically without requiring expert insights. Automatic detection of symmetries is
an extremely difficult computational problem. A number of approaches have
been proposed in this direction (e.g. [15,16,33]). For example, Donaldson and
Miller [15,16] designed an automatic approach to detecting process symmetries
for channel-based communication systems, based on constructing a graph called
static channel diagram from a Promela model whose automorphisms correspond
to symmetries in the model. Nonetheless, it is clear from their experiments that
existing approaches work only for small numbers of processes.

In practice, concurrent systems are often obtained by replicating a generic
behavioral description [32]. For example, a prioritised resource-allocator proto-
col [14], [Sect. 4.4] provides a description of an allocator program and a client
program in a network with a star topology (allocator in the center), from which
a concurrent system with 1 allocator and m clients (for any given m ∈ Z>0)
can be generated. This is in fact the standard setting of parameterised systems
(e.g. see [4,31]), which are symbolic descriptions of infinite families {Si}∞

i=1 of
transition systems Si that can be generated by instantiating some parameters
(e.g. the number of processes).

Adopting this setting of parameterised systems, we consider the problem of
formulating and generating symbolic symmetry patterns, abstract descriptions
of symmetries that can be instantiated to obtain concrete symmetries for every
instance of a parameterised system. A formal language to specify symmetry pat-
terns should be able to capture interesting symmetry patterns, e.g., that each
instance Si of the parameterised system S = {Si}∞

i=1 exhibits the full symme-
try Sn (i.e. invariant under permuting the locations of the processes). Ideally,
such a language L should also enjoy the following algorithmic properties: (1)
symmetry verification, i.e., given a symmetry pattern P ∈ L, we can automati-
cally check whether P is a symmetry pattern of a given parameterised system,
and (2) symmetry synthesis: given a parameterised system, we can automati-
cally generate symmetry patterns P ∈ L that the system exhibits. In particular,
if L is sufficiently expressive to specify commonly occuring symmetry patterns,
Property (1) would allow us to automatically compute which common symme-
try patterns hold for a given parameterised system. In the case when symmetry
patterns might be less obvious, Property (2) would allow us to identify further
symmetries that are satisfied by the given parameterised systems. To the best
of our knowledge, to date no such languages have been proposed.

Contribution: We propose a general symbolic framework for capturing symme-
try patterns for parameterised systems. The framework uses finite-state letter-to-
letter word transducers to represent both parameterised systems and symmetry
patterns. In the sequel, symmetry patterns that are recognised by transducers
are called regular symmetry patterns. Based on extensive studies in regular model
checking (e.g. see [1,4,27,31]), finite-state word transducers are now well-known
to be good symbolic representations of parameterised systems. Moreover, equiv-
alent logic-based (instead of automata-based) formalisms are also available, e.g.,



Regular Symmetry Patterns 457

LTL(MSO) [3] which can be used to specify parameterised systems and prop-
erties (e.g. safety and liveness) in a convenient way. In this paper, we show
that transducers are not only also sufficiently expressive for representing many
common symmetry patterns, but they enjoy the two aforementioned desirable
algorithmic properties: automatic symmetry verification and synthesis.

There is a broad spectrum of notions of “symmetries” for transition systems
that are of interest to model checking. These include simulation preorders (a
weak variant) and isomorphisms (the strongest), e.g., see [6]. We suggest that
transducers are not only sufficiently powerful in expressing many such notions
of symmetries, but they are also a flexible symbolic language in that constraints
(e.g. the symmetry pattern is a bijection) can be easily added to or relaxed from
the specification. In this paper, we shall illustrate this point by handling simula-
tion preorders and isomorphisms (i.e. bijective simulation preorders) within the
same framework. Another notable point of our symbolic language is its ability
to specify that the simulation preorder gives rise to an abstracted system that is
finite-state and preserves non-safety (i.e. if the original system is not safe, then
so is the abstracted system). In other words, we can specify that the symmetry
pattern reduces the infinite-state parameterised system to a finite-state system.
Safety of finite-state systems can then be checked using standard finite-state
model checkers.

We next show how to specialise our framework to process symmetries
[12,19,22]. Roughly speaking, a process symmetry for a concurrent system S
with n processes is a permutation π : [n] → [n] (where [n] := {1, . . . , n}) such
that the behavior of S is invariant under permuting the process indices by π
(i.e. the resulting system is isomorphic to the original one under the natural
bijection induced by π). For example, if the process indices of clients in the
aforementioned resource-allocator protocol with 1 allocator and m clients are
1, . . . , m+1, then any permutation π : [m+1] → [m+1] that fixes 1 is a process
symmetry for the protocol. The set of such process symmetries is a permutation
group on [m + 1] (under functional composition) generated by the following two
permutations specified in standard cyclic notations: (2, 3) and (2, 3, . . . ,m + 1).
This is true for every value of m ≥ 2. In addition, finite-state model check-
ers represent symmetry permutation groups by their (often exponentially more
succinct) finite set of generators. Thus, if S = {Sn}∞

n=1 is a parameterised sys-
tem where Sn is the instance with n processes, we represent the parameterised
symmetry groups G = {Gn}∞

n=1 (where Gn is the process symmetry group for
Sn) by a finite list of regular symmetry patterns that generate G. We postu-
late that commonly occuring parameterised process symmetry groups (e.g. full
symmetry groups and rotations groups) can be captured in this framework, e.g.,
parameterised symmetry groups for the aforementioned resource-allocator pro-
tocol can be generated by the symmetry patterns {(2, 3)(4) · · · (m + 1)}m≥3 and
{(2, 3, . . . ,m + 1)}m≥3, which can be easily expressed using transducers. Thus,
using our symmetry verification algorithm, commonly occuring process symme-
tries for a given parameterised system could be automatically identified.

The aforementioned approach of checking a given parameterised system
against a “library” of common regular symmetry patterns has two problems.
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Firstly, some common symmetry patterns are not regular, e.g., reflections. To
address this, we equip our transducers with an unbounded pushdown stack.
Since pushdown transducers in general cannot be synchronised [5] (a crucial
property to obtain our symmetry verification algorithm), we propose a restric-
tion of pushdown transducers for which we can recover automatic symmetry
verification. Secondly, there are many useful but subtle symmetry patterns in
practice. To address this, we propose the use of our symmetry synthesis algo-
rithm. Since a naive enumeration of all transducers with k = 1, . . . , n states does
not scale, we devise a CEGAR loop for our algorithm in which a SAT-solver pro-
vides a candidate symmetry pattern (perhaps satisfying some extra constraints)
and an automata-based algorithm either verifies the correctness of the guess, or
returns a counterexample that can be further incorporated into the guess of the
SAT-solver.

We have implemented our symmetry verification/synthesis algorithms and
demonstrated its usefulness in identifying regular symmetry patterns for
examples like dining philosopher protocols, self-stabilising protocols, resource-
allocator protocol, and Gries’s coffee can problem. In the case of the coffee can
problem, we managed to obtain a reduction from the infinite system to a finite-
state system.

RelatedWork: Our work is inspired by regular model checking (e.g. [1,3,4,31]),
which focuses on symbolically computing the sets of reachable configurations of
parameterised systems as regular languages. Such methods are generic, but are not
guaranteed to terminate in general. As in regular model checking, our framework
uses transducers to represent parameterised systems. However, instead of com-
puting their sets of reachable configurations, our work finds symmetry patterns
of the parameterised systems, which can be exploited by an explicit-state finite-
state model checker to verify the desired property over finite instances of the sys-
tem (see [32] for more details). Although our verification algorithm is guaranteed
to terminate in general (in fact, in polynomial-time assuming the parameterised
system is given as a DFA), our synthesis algorithm only terminates when we fix
the number of states for the transducers. Finding process symmetry patterns is
often easier since there are available tools for finding symmetries for finite (albeit
small) instances of the systems (e.g. [15,16,33]).

Another related line of works is “cutoff techniques” (e.g. see [17,18] and the
survey [31]), which allows one to reduce verification of parameterised systems
into verification of finitely many instances (in some cases, ≤ 10 processes). These
works usually assume verification of LTL\X properties. Although such techniques
are extremely powerful, the systems that can be handled using the techniques
are often quite specific (e.g. see [31]).

Organisation: Section 2 contains preliminaries. In Sect. 3, we present our
framework of regular symmetry patterns. In Sect. 4 (resp. Section 5), we present
our symmetry verification algorithm (resp. synthesis) algorithms. Section 6 dis-
cusses our implementation and experiment results. Section 7 concludes with
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future work. Due to space constraints, some details are relegated into the full
version [28].

2 Preliminaries

General Notations. For two given natural numbers i ≤ j, we define [i, j] =
{i, i + 1, . . . , j}. Define [k] = [1, k]. Given a set S, we use S∗ to denote the set
of all finite sequences of elements from S. The set S∗ always includes the empty
sequence which we denote by ε. Given two sets of words S1, S2, we use S1 ·S2 to
denote the set {v · w | v ∈ S1, w ∈ S2} of words formed by concatenating words
from S1 with words from S2. Given two relations R1, R2 ⊆ S ×S, we define their
composition as R1 ◦ R2 = {(s1, s3) | ∃s2. (s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2}. Given a
subset X ⊆ S, we define the image R(X) (resp. preimage R−1(X)) of X under
R as the set {s ∈ S | ∃s′. (s′, s) ∈ R} (resp. {s′ ∈ S | ∃s. (s′, s) ∈ R}). Given
a finite set S = {s1, . . . , sn}, the Parikh vector P(v) of a word v ∈ S∗ is the
vector (|v|s1 , . . . , |v|sn

) of the number of occurrences of the elements s1, . . . , sn,
respectively, in v.
Transition Systems. Let ACT be a finite set of action symbols. A transition
system over ACT is a tuple S = 〈S; {→}a∈ACT〉, where S is a set of configurations,
and →a ⊆ S × S is a binary relation over S. We use → to denote the relation(⋃

a∈ACT →a

)
. In the sequel, we will often only consider the case when |ACT| = 1

for simplicity. The notation →+ (resp. →∗) is used to denote the transitive (resp.
transitive-reflexive) closure of →. We say that a sequence s1 → · · · → sn is a
path (or run) in S (or in →). Given two paths π1 : s1 →∗ s2 and π2 : s2 →∗ s3

in →, we may concatenate them to obtain π1 � π2 (by gluing together s2). In
the sequel, for each S′ ⊆ S we use the notation post∗→(S′) to denote the set of
configurations s ∈ S reachable in S from some s ∈ S.
Words, Automata, and Transducers. We assume basic familiarity with word
automata. Fix a finite alphabet Σ. For each finite word w = w1 . . . wn ∈ Σ∗, we
write w[i, j], where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj . Given a
(nondeterministic finite) automaton A = (Σ, Q, δ, q0, F ), a run of A on w is a
function ρ : {0, . . . , n} → Q with ρ(0) = q0 that obeys the transition relation δ.
We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the alphabet Q.
The run ρ is said to be accepting if ρ(n) ∈ F , in which case we say that the
word w is accepted by A. The language L(A) of A is the set of words in Σ∗

accepted by A. In the sequel, we will use the standard abbreviations DFA/NFA
(Deterministic/Nondeterministic Finite Automaton).

Transducers are automata that accept binary relations over words [8,9] (a.k.a.
“letter-to-letter” automata, or synchronised transducers). Given two words w =
w1 . . . wn and w′ = w′

1 . . . w′
m over the alphabet Σ, let k = max{n,m} and

Σ# := Σ∪{#}, where # is a special padding symbol not in Σ. We define a word
w ⊗ w′ of length k over alphabet Σ# × Σ# as follows:

w⊗w′ = (a1, b1) . . . (ak, bk), where ai =

{
wi i ≤ n

# i > n,
and bi =

{
w′

i i ≤ m

# i > m.
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In other words, the shorter word is padded with #’s, and the ith letter of w⊗w′ is
then the pair of the ith letters of padded w and w′. A transducer (a.k.a. letter-to-
letter automaton) is simply a finite-state automaton over Σ#×Σ#, and a binary
relation R ⊆ Σ∗ × Σ∗ is regular if the set {w ⊗ w′ : (w,w′) ∈ R} is accepted by
a letter-to-letter automaton. The relation R is said to be length-preserving if R
only relates words of the same length [4], i.e., that any automaton recognising
R consumes no padded letters of the form (a,#) or (#, a). In the sequel, for
notation simplicity, we will confuse a transducer and the binary relation that it
recognises (i.e. R is used to mean both).

Finally, notice that the notion of regular relations can be easily extended
to r-ary relations R for each positive integer r (e.g. see [8,9]). To this end, the
input alphabet of the transducer will be Σr

#. Similarly, for R to be regular, the
set {w1 ⊗ · · · ⊗ wr : (w1, . . . , wr) ∈ R} of words over the alphabet Σr must be
regular.
Permutation Groups. We assume familiarity with basic group theory (e.g.
see [11]). A permutation on [n] is any bijection π : [n] → [n]. The set of all
permutations on [n] forms the (nth) full symmetry group Sn under functional
composition. A permutation group on [n] is any set of permutations on [n] that
is a subgroup of Sn (i.e. closed under composition). A generating set for a per-
mutation group G on [n] is a finite set X of permutations (called generators)
such that each permutation in G can be expressed by taking compositions of
elements in X. In this case, we say that G can be generated by X. A word
w = a0 . . . ak−1 ∈ [n]∗ containing distinct elements of [n] (i.e. ai �= aj if i �= j)
can be used to denote the permutation that maps ai �→ ai+1 mod k for each
i ∈ [0, k) and fixes other elements of [n]. In this case, w is called a cycle (more
precisely, k-cycle or transposition in the case when k = 2), which we will often
write in the standard notation (a0, . . . , ak−1) so as to avoid confusion. Any per-
mutation can be written as a composition of disjoint cycles [11]. In addition, it
is known that Sn can be generated by the set {(1, 2), (1, 2, . . . , n)}. Each sub-
group G of Sn acts on the set Σn (over any finite alphabet Σ) under the group
action of permuting indices, i.e., for each π ∈ G and v = (a1, . . . , an) ∈ Σn,
we define πv := (aπ−1(1), . . . , aπ−1(n)). That way, each π induces the bijection
fπ : Σn → Σn such that fπ(v) = πv.

Given a permutation group G on [n] and a transition system S = 〈S;→〉 with
state space S = Σn, we say that S is G-invariant if the bijection fπ : Σn → Σn

induced by each π ∈ Gn is an automorphism on S, i.e., ∀v, w ∈ S: v → w implies
fπ(v) → fπ(w).

3 The Formal Framework

This section describes our symbolic framework regular symmetry patterns.

3.1 Representing Parameterised Systems

As is standard in regular model checking [1,4,31], we use length-preserving trans-
ducers to represent parameterised systems. As we shall see below, we will use
non-length-preserving transducers to represent symmetry patterns.
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Definition 1 (Automatic transition systems1). A transition system S =
〈S; {→}a∈ACT〉 is said to be (length-preserving) automatic if S is a regular set
over a finite alphabet Σ and each relation →a is given by a transducer over Σ.

More precisely, the parameterised system defined by S is the family {Sn}n≥0

with Sn = 〈Sn;→a,n〉, where Sn := S ∩ Σn is the set of all words in S of
length n and →a,n is the transition relation →a restricted to Sn. In the sequel,
for simplicity we will mostly consider examples when |ACT| = 1. When the
meaning is understood, we shall confuse the notation →a for the transition
relation of S and the transducer that recognises it. To illustrate our framework
and methods, we shall give three examples of automatic transition systems (see
[3,31] for numerous other examples).

Example 1. We describe a prioritised resource-allocator protocol [14], [Sect. 4.4],
which is a simple mutual exclusion protocol in network with a star topology.
The protocol has one allocator and m clients. Initially, each process is in an
idle state. However, clients might from time to time request for an access to
a resource (critical section), which can only be used by one process at a time.
For simplicity, we will assume that there is only one resource shared by all the
clients. The allocator manages the use of the resource. When a request is lodged
by a client, the allocator can allow the client to use the resource. When the client
has finished using the resource, it will send a message to the allocator, which
can then allow other clients to use the resource.

To model the protocol as a transducer, we let Σ = {i, r, c}, where i stands
for “idle”, r for “request”, and c for “critical”. Allocator can be in either the
state i or the state c, while a client can be in one of the three states in Σ. A
valid configuration is a word aw, where a ∈ {i, c} represents the state of the
allocator and w ∈ Σ∗ represents the states of the |w| clients (i.e. each position in
w represents a state of a client). Letting I = {(a, a) : a ∈ Σ} (representing idle
local transitions), the transducer can be described by a union of the following
regular expressions:

– I+(i, r)I∗ — a client requesting for a resource.
– (i, c)I∗(r, c)I∗ — a client request granted by the allocator.
– (c, i)I∗(c, i)I∗ — the client has finished using the resource. ��
Example 2. We describe Israeli-Jalfon self-stabilising protocol [23]. The original
protocol is probabilistic, but since we are only interested in reachability, we may
use nondeterminism to model randomness. The protocol has a ring topology,
and each process either holds a token (denoted by �) or does not hold a token
(denoted by ⊥). Dynamics is given by the following rules:

– A process P holding a token can pass the token to either the left or the right
neighbouring process P ′, provided that P ′ does not hold a token.

1 Length-preserving automatic transition systems are instances of automatic struc-
tures [8,9].
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– If two neighbouring processes P1 and P2 hold tokens, the tokens can be merged
and kept at process P1.

We now provide a transducer that formalises this parameterised system. Our
relation is on words over the alphabet Σ = {⊥,�}, and thus a transducer is an
automaton that runs over Σ × Σ. In the following, we use I := {(�,�), (⊥,⊥)}.
The automaton is given by a union of the following regular expressions:

– I∗(�,⊥)(⊥,�)I∗

– I∗(⊥,�)(�,⊥)I∗
– I∗(�,�)(�,⊥)I∗

– (⊥,�)I∗(�,⊥)
– (�,⊥)I∗(⊥,�)
– (�,⊥)I∗(�,�) ��

Example 3. Our next example is the classical David Gries’s coffee can problem,
which uses two (nonnegative) integer variables x and y to store the number of
black and white coffee beans, respectively. At any given step, if x + y ≥ 2 (i.e.
there are at least two coffee beans), then two coffee beans are nondeterministi-
cally chosen. First, if both are of the same colour, then they are both discarded
and a new black bean is put in the can. Second, if they are of a different colour,
the white bean is kept and the black one is discarded. We are usually interested
in the colour of the last bean in the can. We formally model Gries’s coffee can
problem as a transition system with domain N × N and transitions:

(a) if x ≥ 2, then x := x − 1 and y := y.
(b) if y ≥ 2, then x := x + 1 and y := y − 2.
(c) if x ≥ 1 and y ≥ 1, then x := x − 1 and y := y.

To distinguish the colour of the last bean, we shall add self-loops to all configu-
rations in N×N, except for the configuration (1, 0). We can model the system as
a length-preserving transducer as follows. The alphabet is Σ := Ωx ∪ Ωy, where
Ωx := {1x,⊥x} and Ωy := {1y,⊥y}. A configuration is a word in the regular lan-
guage 1∗

x⊥∗
x1

∗
y⊥∗

y . For example, the configuration with x = 5 and y = 3, where
the maximum size of the integer buffers x and y is 10, is represented as the word
(1x)5(⊥x)5(1y)3(⊥y)7. The transducer for the coffee can problem can be easily
constructed. ��

3.2 Representing Symmetry Patterns

Definition 2. Let S = 〈S;→〉 be a transition system with S ⊆ Σ∗. A symmetry
pattern for S = 〈S;→〉 is a simulation preorder R ⊆ S×S for S, i.e., satisfying:

(S1) R respects each →a, i.e., for all v1, v2, w1 ∈ S, if v1 →a w1, and (v1, v2) ∈
R, then there exists w2 ∈ S such that (w1, w2) ∈ R and v2 →a w2;

(S2) R is length-decreasing, i.e., for all v1, v2 ∈ S, if (v1, v2) ∈ R, then
|v1| ≥ |v2|.

The symmetry pattern is said to be complete if additionally the relation is length-
preserving and a bijective function.
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Complete symmetry patterns will also be denoted by functional notation f . In
the case of complete symmetry pattern f , it can be observed that Condition (S1)
also entails that f(v) →a f(w) implies v →a w. This condition does not hold in
general for simulation preorders. We shall also remark that, owing to the well-
known property of simulation preorders, symmetry patterns preserve non-safety.
To make this notion more precise, we define the image of a transition system
S = 〈S;→〉 (with S ⊆ Σ∗) under the symmetry pattern R as the transition
system S1 = 〈S1;→1〉 such that S1 = R(S) and that →1 is the restriction of →
to S1.

Proposition 1. Given two sets I, F ⊆ Σ∗, if post∗→1
(R(I)) ∩ R(F ) = ∅, then

post∗→(I) ∩ F = ∅.
In other words, if S1 is safe, then so is S. In the case when S1 is finite-state,
this check can be performed using a standard finite-state model checker. We
shall define now a class of symmetry patterns under which the image S1 of the
input transition system can be automatically computed.

Definition 3 (Regular Symmetry Pattern). A symmetry pattern R ⊆ S×S
for an automatic transition system S = 〈S;→〉 is said to be regular if the relation
R is regular.

Proposition 2. Given an automatic transition systemS = 〈S;→〉 (with S ⊆ Σ∗)
and a regular symmetry pattern R ⊆ S×S, the image ofS under R is an automatic
transition system and can be constructed in polynomial-time.

In particular, whether the image of S under R is a finite system can be auto-
matically checked since checking whether the language of an NFA is finite can
be done in polynomial-time. The proof of this proposition (in the full version) is
a simple automata construction that relies on the fact that regular relations are
closed under projections. We shall next illustrate the concept of regular symme-
try patterns in action, especially for Israeli-Jalfon self-stabilising protocol and
Gries’s coffee can problem.

We start with Gries’s coffee can problem (cf. Example 3). Consider the func-
tion f : (N × N) → (N × N) where f(x, y) is defined to be (i) (0, 1) if y is odd,
(ii) (2, 0) if y is even and (x, y) �= (1, 0), and (iii) (1, 0) if (x, y) = (1, 0). This
is a symmetry pattern since the last bean for the coffee can problem is white
iff y is odd. Also, that a configuration (x, y) with y ≡ 0 (mod 2) and x > 1 is
mapped to (2, 0) is because (2, 0) has a self-loop, while (1, 0) is a dead end. It is
easy to show that f is a regular symmetry pattern. To this end, we construct a
transducer for each of the cases (i)–(iii). For example, the transducer handling
the case (x, y) when y ≡ 1 (mod 2) works as follows: simultaneously read the
pair (v, w) of words and ensure that w = ⊥x⊥x1y and v ∈ 1∗

x⊥∗
x1y(1y1y)

∗⊥∗
y . As

an NFA, the final transducer has ∼ 10 states.

Process Symmetry Patterns. We now apply the idea of regular symmetry pat-
terns to capture process symmetries in parameterised systems. We shall show
how this applies to Israeli-Jalfon self-stabilising protocol. A parameterised per-
mutation is a family π̄ = {πn}n≥1 of permutations πn on [n]. We say that π̄ is reg-
ular if, for each alphabet Σ, the bijection fπ̄ : Σ∗ → Σ∗ defined by fπ̄(v) := πnv,
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where v ∈ Σn, is a regular relation. We say that π̄ is effectively regular if π̄ is
regular and if there is an algorithm which, on input Σ, constructs a transducer
for the bijection fπ̄. As we shall only deal with effectively regular permutations,
when understood we will omit mention of the word “effectively”. As we shall
see below, examples of effectively regular parameterised permutations include
transpositions (e.g. {(1, 2)(3) · · · (n)}n≥2) and rotations {(1, 2, . . . , n)}n≥1.

We now extend the notion of parameterised permutations to parameterised
symmetry groups G := {Gn}n≥1 for parameterised systems, i.e., each Gn is a
permutation group on [n]. A finite set F = {π̄1, . . . , π̄r} of parameterised per-
mutations (with π̄j = {πj

n}n≥1) generates the parameterised symmetry groups
G if each group Gn ∈ G can be generated by the set {πj

n : j ∈ [r]}, i.e., the nth
instances of parameterised permutations in F . We say that G is regular if each
π̄j in F is regular.

We will single out three commonly occuring process symmetry groups for
concurrent systems with n processes: full symmetry group Sn (i.e. generated
by (1, 2) and (1, 2, . . . , n)), rotation group Rn (i.e. generated by (1, 2, . . . , n)),
and the dihedral group Dn (i.e. generated by (1, 2, . . . , n) and the “reflection”
permutation (1, n)(2, n − 1) · · · (�n/2�, �n/2�)). The parameterised versions of
them are: (1) S := {Sn}n≥1, (2) R := {Rn}n≥1, and (3) D := {Dn}n≥1.

Theorem 1. Parameterised full symmetry groups S and parameterised rotation
symmetry groups R are effectively regular.

As we will see in Proposition 3 below, parameterised dihedral groups are not
regular. We will say how to deal with this in the next section. As we will see
in Theorem 4, Theorem 1 can be used to construct a fully-automatic method
for checking whether each instance Sn of a parameterised system S = {Sn}n≥0

represented by a given transducer A has a full/rotation process symmetry group.

Proof (Sketch of Theorem 1). To show this, it suffices to show that F =
{(1, 2)(3) · · · (n)}n≥2 and F ′ = {(1, 2, . . . , n)}n≥2 are effectively regular. [The
degenerate case when n = 1 can be handled easily if necessary.] For, if this is the
case, then the parameterised full symmetry S and the parameterised rotation
symmetry groups can be generated by (respectively) {F ,F ′} and F ′. Given an
input Σ, the transducers for both F and F ′ are easy. For example, the trans-
ducer for F simply swaps the first two letters in the input, i.e., accepts pairs of
words of the form (abw, baw) where a, b ∈ Σ and w ∈ Σ∗. These transducers can
be constructed in polynomial time (details in the full version). ��
The above proof shows that {(1, 2)(3) · · · (n)}n≥0 and {(1, 2, . . . , n)}n≥0 are
regular parameterised permutations. Using the same proof techniques, we can
also show that the following simple variants of these parameterised permu-
tations are also regular for each i ∈ Z>0: (a) {(i, i + 1)(i + 2) · · · (n)}n≥1,
and (b) {(i, i + 1, . . . , n)}n≥1. As we saw from Introduction, the prioritised
resource-allocator protocol has a star topology and so both {(2, 3)(4) · · · }n≥1

and {(2, 3, . . . , n)}n≥1 generate complete symmetry patterns for the protocol
(i.e. invariant under permuting the clients). Therefore, our library L of regular
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symmetry patterns could store all of these regular parameterised permutations
(up to some fixed i).

Parameterised dihedral groups D are generated by rotations π̄ =
{(1, 2, . . . , n)}n≥2 and reflections σ̄ = {(1, n)(2, n − 1) · · · (�n/2�, �n/2�)}n≥2.
Reflections σ̄ are, however, not regular for the same reason that the language of
palindromes (i.e. words that are the same read backward as forward). In fact, it
is not possible to find a different list of generating parameterised permutations
that are regular (proof in the full version):

Proposition 3. Parameterised dihedral groups D are not regular.

4 Symmetry Verification

In this section, we will present our symmetry verification algorithm for regular
symmetry patterns. We then show how to extend the algorithm to a more general
framework of symmetry patterns that subsumes parameterised dihedral groups.

4.1 The Algorithm

Theorem 2. Given an automatic transition system S = 〈S;→〉 and a regular
relation R ⊆ S ×S, we can automatically check if R is a symmetry pattern of S.

Proof. Let D be the set of words over the alphabet Σ3 of the form v1⊗v2⊗w1, for
some words v1, v2, w2 ∈ Σ∗ satisfying: (1) v1 → w1, (2) (v1, v2) ∈ R, and (3) there
does not exist w2 ∈ Σ∗ such that v2 → w2 and (w1, w2) ∈ R. Observe that R is
a symmetry pattern for S iff D is empty. An automaton A = (Σ3, Q,Δ, q0, F )
for D can be constructed via a classical automata construction.

As before, for simplicity of presentation, we will assume that S = Σ∗; for,
otherwise, we can perform a simple product automata construction with the
automaton for S. Let A1 = (Σ2, Q1,Δ1, q

1
0 , F1) be an automaton for →, and

A2 = (Σ2
#, Q2,Δ2, q

2
0 , F2) an automaton for R.

We first construct an NFA A3 = (Σ2
#, Q3,Δ3, q

3
0 , F3) for the set Y ⊆ S × S

consisting of pairs (v2, w1) such that the condition (3) above is false. This can
be done by a simple product/projection automata construction that takes into
account the fact that R might not be length-preserving: That is, define Q3 :=
Q1 × Q2, q3

0 := (q1
0 , q2

0), and F3 := F1 × F2. The transition relation Δ consists
of transitions ((q1, q2), (a, b), (q′

1, q
′
2)) such that, for some c ∈ Σ#, it is the case

that (q2, (b, c), q′
2) ∈ Δ2 and one of the following is true: (i) (q1, (a, c), q′

1) ∈ Δ1,
(ii) q1 = q′

1, b �= #, and a = c = #. Observe that the construction for A3 runs
in polynomial-time.

In order to construct A, we will have to perform a complementation operation
on A3 (to compute the complement of Y ) and apply a similar product automata
construction. The former takes exponential time (since A3 is nondeterministic),
while the latter costs an additional polynomial-time overhead. ��
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The above algorithm runs in exponential-time even if R and S are presented
as DFA, since an automata projection operation in general yields an NFA. The
situation improves dramatically when R is functional (i.e. for all x ∈ S, there
exists a unique y ∈ S such that R(x, y)).

Theorem 3. There exists a polynomial-time algorithm which, given an auto-
matic transition system S = 〈S;→〉 presented as a DFA and a functional regu-
lar relation R ⊆ S × S presented as an NFA, decides whether R is a symmetry
pattern for S.

Proof. Let D be the set of words over the alphabet Σ4 of the form v1 ⊗v2 ⊗w1 ⊗
w2, for some words v1, v2, w1, w2 ∈ Σ∗ satisfying: (1) v1 → w1, (2) (v1, v2) ∈ R,
(2’) (w1, w2) ∈ R, and (3) v2 �→ w2 Observe that R is a symmetry pattern
for S iff D is empty. The reasoning is similar to the proof of Theorem 2, but
the difference now is that given any w1 ∈ Σ∗, there is a unique w2 such that
(w1, w2) ∈ R since R is functional. For this reason, we need only to make sure
that v2 �→ w2. An automaton A for D can be constructed by first complementing
the automaton for → and then a standard product automata construction as
before. The latter takes polynomial-time if → is presented as a DFA, while the
latter costs an additional polynomial-time computation overhead (even if R is
presented as an NFA). ��
Proposition 4. The following two problems are solvable in polynomial-space:
given a regular relation R ⊆ S ×S, check whether (1) R is functional, and (2) R
is a bijective function. Furthermore, the problems are polynomial-time reducible
to language inclusion for NFA.

Observe that there are fast heuristics for checking language inclusion for NFA
using antichain and simulation techniques (e.g. see [2,10]). The proof of the
above proposition uses standard automata construction, which is relegated to
the full version.

4.2 Process Symmetries for Concurrent Systems

We say that an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗) is
G-invariant if each instance Sn = 〈S ∩ Γn;→〉 of S is Gn-invariant. If G is
generated by regular parameterised permutations π̄1, . . . , π̄r, then G-invariance
is equivalent to the condition that, for each j ∈ [r], the bijection fπj : Σ∗ → Σ∗

is a regular symmetry pattern for S. The following theorem is an immediate
corollary of Theorem 3.

Theorem 4. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗)
and a regular parameterised symmetry group G presented by regular parameterised
permutations π̄1, . . . , π̄k, we can check that S is G-invariant in polynomial-time
assuming that S is presented as DFA.

In fact, to check whether S is G-invariant, it suffices to sequentially go through
each π̄j and ensure that it is a symmetry pattern for S, which by Theorem 3
can be done in polynomial-time.
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4.3 Beyond Regular Symmetry Patterns

Proposition 3 tells us that regular symmetry patterns do not suffice to capture
parameterised reflection permutation. This leads us to our inability to check
whether a parameterised system is invariant under parameterised dihedral sym-
metry groups, e.g., Israeli-Jalfon’s self-stabilising protocol and other randomised
protocols including Lehmann-Rabin’s protocol (e.g. [26]). To deal with this prob-
lem, we extend the notion of regular length-preserving symmetry patterns to a
subclass of “context-free” symmetry patterns that preserves some nice algorith-
mic properties. Proviso: All relations considered in this subsection are length-
preserving.

Recall that a pushdown automaton (PDA) is a tuple P = (Σ,Γ, Q,Δ, q0, F ),
where Σ is the input alphabet, Γ is the stack alphabet (containing a special
bottom-stack symbol, denoted by ⊥, that cannot be popped), Q is the finite set
of control states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states, and
Δ ⊆ (Q × Γ) × Σ × (Q × Γ≤2) is a set of transitions, where Γ≤2 denotes the set
of all words of length at most 2. A configuration of P is a pair (q, w) ∈ Q × Γ∗

with stack-height |w|. For each a ∈ Σ, we define the binary relation →a on
configurations of P as follows: (q1, w1) →a (q2, w2) if there exists a transition
((q1, o), a, (q2, v)) ∈ Δ such that w1 = wo and w2 = wv for some w ∈ Γ∗.
A computation path π of P on input a1 . . . an is any sequence

(q0,⊥) →a1 (q1, w1) →a2 · · · →an
(qn, wn)

of configurations from the initial state q0. In the following, the stack-height
sequence of π is the sequence |⊥|, |w1|, . . . , |wn| of stack-heights. We say that
a computation path π is accepting if qn ∈ F .

We now extend Theorem 4 to a class of transducers that allows us to cap-
ture the reflection symmetry. This class consists of “height-unambiguous” push-
down transducers, which is a subclass of pushdown transducers that is amenable
to synchronisation. We say that a pushdown automaton is height-unambiguous
(h.u.) if it satisfies the restriction that the stack-height sequence in an accepting
computation path on an input word w is uniquely determined by the length |w|
of w. That is, given an accepting computation path π on w and an accepting
computation path π′ of w′ with |w| = |w′|, the stack-height sequences of π and π′

coincide. Observe that the definition allows the stack-height sequence of a non-
accepting path to differ. A language L ⊆ Σ∗ is said to be height-unambiguous
context-free (huCF) if it is recognised by a height-unambiguous PDA. A sim-
ple example of a huCF language is the language of palindromes (i.e. the input
word is the same backward as forward). A simple non-example of a huCF lan-
guage is the language of well-formed nested parentheses. This can be proved by
a standard pumping argument.

We extend the definitions of regularity of length-preserving relations, symme-
try patterns, etc. from Sects. 2 and 3 to height-unambiguous pushdown automata
in the obvious way, e.g., a length-preserving relation R ⊆ S × S is huCF if
{v ⊗ w : (v, w) ∈ R} is a huCF language. We saw in Proposition 3 that
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parameterised dihedral symmetry groups D are not regular. We shall show now
that they are huCF.

Theorem 5. Parameterised dihedral symmetry groups D are effectively height-
unambiguous context-free.

Proof. To show this, it suffices to show that the parameterised reflection permu-
tation σ̄ = {σn}n≥2, where σn := (1, n)(2, n − 1) · · · (�n/2�, �n/2�), is huCF. To
this end, given an input alphabet Σ, we construct a PDA P = (Σ2,Γ, Q,Δ, q0, F )
that recognises fσ̄ : Σ∗ → Σ∗ such that fσ̄(v) = σnv whenever v ∈ Σn. The
PDA P works just like the PDA recognising the language of palindromes. We
shall first give the intuition. Given a word w of the form v1 ⊗ v2 ∈ (Σ2)∗, we
write w−1 to denote the word v2 ⊗v1. On an input word w1w2w3 ∈ (Σ2)∗, where
|w1| = |w3| and |w2| ∈ {0, 1}, the PDA will save w1 in the stack and compares
it with w3 ensuring that w3 is the reverse of w−1

1 . It will also make sure that
w2 = (a, a) for some a ∈ Σ in the case when |w2| = 1. The formal definition of
P is given in the full version. ��
Theorem 6. There exists a polynomial-time algorithm which, given an auto-
matic transition system S = 〈S;→〉 presented as a DFA and a functional h.u.
context-free relation R ⊆ S × S presented as an NFA, decides whether R is a
symmetry pattern for S.

To prove this theorem, let us revisit the automata construction from the proof
of Theorem 3. The problematic part of the construction is that we need to show
that, given an huCF relation R, the 4-ary relation

R := (R × R) ∩ {(w1, w2, w3, w4) ∈ (Σ∗)4 : |w1| = |w2| = |w3| = |w4|} (∗)

is also huCF. The rest of the construction requires only taking product with
regular relations (i.e. → or its complement), which works for unrestricted push-
down automata since context-free languages are closed under taking product
with regular languages via the usual product automata construction for regular
languages.

Lemma 1. Given an huCF relation R, we can construct in polynomial-time an
h.u. PDA recognising the 4-ary relation R.

Proof. Given a h.u. PDA P = (Σ2,Γ, Q,Δ, q0, F ) recognising R, we will con-
struct a PDA P ′ = (Σ4,Γ′, Q′,Δ′, q′

0, F
′) recognising R. Intuitively, given an

input (v, w) ∈ R, the PDA P ′ is required to run two copies of P at the same
time, one on the input v (to check that v ∈ R) and the other on input w (to
check that w ∈ R). Since P is height-unambiguous and |v| = |w|, we can assume
that the stack-height sequences of accepting runs of P on v and w coincide. That
is, in an accepting run π1 of P on v and an accepting run of π2 of P on w, when
a symbol is pushed onto (resp. popped from) the stack at a certain position in
π1, then a symbol is also pushed onto (resp. popped from) the stack in the same
position in π2. The converse is also true. These two stacks can, therefore, be
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simultaneously simulated using only one stack of P ′ with Γ′ = Γ × Γ. For this
reason, the rest of the details is a standard product automata construction for
finite-state automata. Therefore, the automaton P ′ is of size quadratic in the
size of P. The detailed definition of P ′ is given in the full version. ��
We shall finally pinpoint a limitation of huCF symmetry patterns, and discuss
how we can address the problem in practice. It can be proved by a simple reduc-
tion from Post Correspondence Problem that it is undecidable to check whether
a given PDA is height-unambiguous. In practice, however, this is not a major
obstacle since it is possible to manually (or semi-automatically) add a selection
of huCF symmetry patterns to our library L of regular symmetry patterns from
Sect. 3. Observe that this effort is independent of any parameterised system that
one needs to check for symmetry. Checking whether any huCF symmetry pattern
in C is a symmetry pattern for a given automatic transition system S can then
be done automatically and efficiently (cf. Theorem 6). For example, Theorems 5
and 6 imply that we can automatically check whether an automatic transition
system is invariant under the parameterised dihedral groups:

Theorem 7. Given an automatic transition system S = 〈S;→〉 (with S ⊆ Σ∗)
presented as DFA, checking whether S is D-invariant can be done in polynomial-
time.

Among others, this allows us to automatically confirm that Israeli-Jalfon self-
stabilising protocol is D-invariant.

5 Automatic Synthesis of Regular Symmetry Patterns

Some regular symmetry patterns for a given automatic system might not be obvi-
ous, e.g., Gries’s coffee can example. Even in the case of process symmetries, the
user might choose different representations for the same protocol. For example,
the allocator process in Example 1 could be represented by the last (instead
of the first) letter in the word, which would mean that {(1, 2, . . . , n − 1)}n≥3

and {(1, 2)(3) · · · (n)}n≥3 are symmetry patterns for the system (instead of
{(2, 3, . . . , n)}n≥2 and {(2, 3)(4) · · · (n)}n≥3). Although we can put reasonable
variations of common symmetry patterns in our library L, we would benefit
from a systematic way of synthesising regular symmetry patterns for a given
automatic transition system S. In this section, we will describe our automatic
technique for achieving this. We focus on the case of symmetry patterns that
are total functions (i.e. homomorphisms), but the approach can be generalised
to other patterns.

Every transducer A = (Σ# × Σ#, Q, δ, q0, F ) over Σ∗
# represents a regular

binary relation R over Σ∗. We have shown in Sect. 4 that we can automatically
check whether R represents a symmetry pattern, perhaps satisfying further con-
straints like functionality or bijectivity as desired by the user. Furthermore, we
can also automatically check that it is a symmetry pattern for a given automatic
transition system S. Our overall approach for computing such transducers makes
use of two main components, which are performed iteratively within a refinement
loop:
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Synthesise. A candidate transducer A with n states is computed with the help
of a SAT-solver, enforcing a relaxed set of conditions encoded as a Boolean
constraint ψ (Sect. 5.1).

Verify. As described in Sect. 4, it is checked whether the binary relation R repre-
sented by A is a symmetry pattern for S (satisfying further constraints like
completeness, as desired by the user). If this check is negative, ψ is strength-
ened to eliminate counterexamples, and Synthesise is invoked (Sect. 5.2).

This refinement loop is enclosed by an outer loop that increments the para-
meter n (initially set to some small number n0) when Synthesise determines
that no transducers satisfying ψ exist anymore. The next sections describe the
Synthesise step, and the generation of counterexamples in case Verify fails,
in more detail.

5.1 Synthesise: Computation of a Candidate Transducer A
Our general encoding of transducers A = (Σ# ×Σ#, Q, δ, q0, F ) uses a represen-
tation as a deterministic automaton (DFA), which is suitable for our refinement
loop since counterexamples (in particular, words that should not be accepted)
can be eliminated using succinct additional constraints. We assume that the
states of the transducer A to be computed are Q = {1, . . . , n}, and that q0 = 1
is the initial state. We use the following variables to encode transducers with n
states:

– xt (of type Boolean), for each tuple t = (q, a, b, q′) ∈ Q × Σ# × Σ# × Q;
– zq (of type Boolean), for each q ∈ Q.

The assignment xt = 1 is interpreted as the existence of the transition t in A.
Likewise, we use zq = 1 to represent that q is an accepting state in the automa-
ton; since we use DFA, it is in general necessary to have more than one accepting
state.

The set of considered transducers in step Synthesise is restricted by impos-
ing a number of conditions, selected depending on the kind of symmetry to be
synthesised: for general symmetry homomorphisms, conditions (C1)–(C8) are
used, for complete symmetry patterns (C1)–(C10), and for process symmetries
(C1)–(C11).

(C1) The transducer A is deterministic.

(C2) For every transition q
(a,b)−→ q′ in A it is the case that a �= #.2

(C3) Every state of the transducer is reachable from the initial state.
(C4) From every state of the transducer an accepting state can be reached.
(C5) The initial state q0 is accepting.
(C6) The language accepted by the transducer is infinite.

(C7) There are no two transitions q
(a,b)−→ q′ and q

(a,b′)−→ q′ with b �= b′.

2 Note that all occurrences of # are in the end of words.
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(C8) If an accepting state q has self-transitions q
(a,a)−→ q for every letter a ∈ Σ#,

then q has no outgoing edges.

(C9) For every transition q
(a,b)−→ q′ in A it is the case that b �= #.

(C10) There are no two transitions q
(a,b)−→ q′ and q

(a′,b)−→ q′ with a �= a′.

Condition (C2) implies that computed transducers are length-decreasing, while
(C3) and (C4) rule out transducers with redundant states. (C5) and (C6)
follow from the simplifying assumption that only homomorphic symmetries pat-
terns are computed, since a transducer representing a total function Σ∗ → Σ∗

has to accept the empty word and words of unbounded length. Note that (C5)
and (C6) are necessary, but not sufficient conditions for total functions, so fur-
ther checks are needed in Verify. (C7) and (C8) are necessary (but again
not sufficient) conditions for transducers representing total functions, given the
additional properties (C3) and (C4); it can be shown that a transducer vio-
lating (C7) or (C8) cannot be a total function. Condition (C9) implies that
padding # does not occur in any accepted word, and is a sufficient condition
for length-preservation; as a result, the symbol # can be eliminated altogether
from the transducer construction.

Finally, for process symmetries the assumption can be made that the trans-
ducer preserves not only word length, but also the number of occurrences of each
symbol:

(C11) The relation R represented by the transducer only relates words with the
same Parikh vector, i.e., R(v, w) implies P(v) = P(w).

The encoding of the conditions (C1)–(C11) as Boolean constraints is mostly
straightforward. Further Boolean constraints can be useful in special cases,
in particular for Example 3 the restriction can be made that only image-
finite transducers are computed. We can also constrain the search in the
Synthesise stage to those transducers that accept manually defined words
W = {v1 ⊗ w1, . . . , vk ⊗ wk}, using a similar encoding as the one for counterex-
amples in Sect. 5.2. This technique can be used, among others, to systematically
search for symmetry patterns that generalise some known finite symmetry.

5.2 Counterexample Generation

Once a transducer A representing a candidate relation R ⊆ Σ∗ × Σ∗ has been
computed, Theorem 2 can be used to implement the Verify step of the algo-
rithm. When using the construction from the proof of Theorem 2, one of three
possible kinds of counterexample can be detected, corresponding to three differ-
ent formulae to be added to the constraint ψ used in the Synthesise stage:

1. A word v has to be included in the domain R−1(Σ∗
#): ∃w. R(v, w)

2. A word w has to be included in the range R(Σ∗
#): ∃v. R(v, w)

3. One of two contradictory pairs has to be eliminated: ¬R(v1, w1)∨¬R(v2, w2)
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Case 1 indicates relations R that are not total; case 2 relations that are not
surjective; and case 3 relations that are not functions, not injective, or not simu-
lations.3 Each of the formulae can be directly translated to a Boolean constraint
over the vocabulary introduced in Sect. 5.1. We illustrate how the first kind of
counterexample is handled, assuming v = a1 · · · am ∈ Σ∗

# is the word in ques-
tion; the two other cases are similar. We introduce Boolean variables ei,q for
each i ∈ {0, . . . , m} and state q ∈ Q, which will be used to identify an accepting
path in the transducer with input letters corresponding to the word v. We add
constraints that ensure that exactly one ei,q is set for each state q ∈ Q, and that
the path starts at the initial state q0 = 1 and ends in an accepting state:

{ ∨

q∈Q

ei,q

}

i∈{0,...,m}
,

{
¬ei,q ∨ ¬ei,q′

}
i∈{0,...,m}

q 
=q′∈Q

, e0,1,
{
em,q → zq

}
q∈Q

.

For each i ∈ {1, . . . , m} a transition on the path, with input letter ai has to be
enabled: {

ei−1,q ∧ ei,q′ →
∨

b∈Σ

x(q,ai,b,q′)

}
i∈{1,...,m}

q,q′∈Q

.

Table 1. Experimental results on verifying and generating symmetry patterns

Symmetry Systems (#letters) # Transducer states Verif. time Synth. time

Herman Protocol (2) 5 0.0 s 4 s

Israeli-Jalfon Protocol (2) 5 0.0 s 5 s

Gries’s Coffee Can (4) 8 0.1 s 3 m19 s

Resource Allocator (3) 11 0.0 s 4 m56 s

Dining Philosopher (4) 17 0.4 s 26 m

6 Implementation and Evaluation

We have implemented a prototype tool based on the aforementioned approach
for verifying and synthesising regular symmetry patterns. The programming lan-
guage is Java and we use SAT4J [7] as the SAT solver. The source code and the
benchmarking examples can be found at https://bitbucket.org/truongkhanh/
parasymmetry. The input of our tool includes a model (i.e. a textual represen-
tation of transducers), and optionally a set of finite instance symmetries (to
speed up synthesis of regular symmetry patterns), which can be generated using
existing tools like [33].

3 Note that this is for the special case of homomorphisms. Simulation counterexamples
are more complicated than case 3 when considering simulations relations that are
not total functions.
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We apply our tool to 5 models: the Herman self-stabilising protocol [21],
Israeli-Jalfon self-stabilising protocol [23], the Gries’ coffee can example [20],
Resource Allocator, and Dining Philosopher. For the coffee can example, the
tool generates the functional symmetry pattern described in Sect. 3, whereas the
tool generates rotational process symmetries for the other models (see the full
version for state diagrams). Finite instance symmetries were added as constraints
in the last three examples.

Table 1 presents the experimental results: the number of states of the synthe-
sised symmetry transducer, the time needed to verify that the transducer indeed
represents a symmetry pattern (using the method from Sect. 4), and the total
time needed to compute the transducer (using the procedure from Sect. 5). The
data are obtained using a MacBook Pro (Retina, 13-inch, Mid 2014) with 3 GHz
Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory. In almost all cases,
it takes less than 5 min (primarily SAT-solving) to find the regular symmetry
patterns for all these models. As expected, the verification step is quite fast (<1
second).

7 Future Work

Describe the expressivity and nice algorithmic properties that regular symmetry
patterns enjoy, we have pinpointed a limitation of regular symmetry patterns in
expressing certain process symmetry patterns (i.e. reflections) and showed how
to circumvent it by extending the framework to include symmetry patterns that
can be recognised by height-unambiguous pushdown automata. One possible
future research direction is to generalise our symmetry synthesis algorithm to
this more general class of symmetry patterns. Among others, this would require
coming up with a syntactic restriction of this “semantic” class of pushdown
automata.
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