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Abstract—In real-world systems, rare events often characterize
critical situations like the probability that a system fails within
some time bound and they are used to model some potentially
harmful scenarios in dependability of safety-critical systems.
Probabilistic Model Checking has been used to verify depend-
ability properties in various types of systems but is limited by
the state space explosion problem. An alternative is the recourse
to Statistical Model Checking (SMC) that relies on Monte Carlo
simulations and provides estimates within predefined error and
confidence bounds. However, rare properties require a large
number of simulations before occurring at least once. To tackle
the problem, Importance Sampling, a rare event simulation
technique, has been proposed in SMC for different types of
probabilistic systems. Importance Sampling requires the full
knowledge of probabilistic measure of the system, e.g. Markov
chains. In practice, however, we often have models with some
uncertainty, e.g., Interval Markov Chains. In this work, we
propose a method to apply importance sampling to Interval
Markov Chains. We show promising results in applying our
method to multiple case studies.

Index Terms—Rare Events, Importance Sampling, Markov
Chains, Interval Markov Chains, Dependability, Statistical Model
Checking

I. INTRODUCTION

Discrete Time Markov Chains (DTMC) are a standard

formalism to model and reason about probabilistic systems

[9], [27], well suited to dependability analysis of security

protocols (e.g. [20]) or safety-critical systems. In particular,

the reliability of a failure-repair process can be described by

a Markovian structure based on stochastic failure and repair

mechanisms of the system components and can be investigated

by reachability or mean time to failure properties specified

with an appropriate logic.

However, modelling real-world systems is a difficult task:

individual probabilistic transitions are in general unknown or

partially known and may be given with a margin of error.

For this reason, many extension of Markov Chains have been

proposed in the literature [16], [22], [30]. In particular, Interval

Markov Chains (IMC) are a formalism in which the transition

values of a DTMC are given within intervals. Algorithms for

common implementation and consistency of IMC have been

proposed [10]. In the original work [16], the IMC semantics

allowed a transition to be taken with different values in

their corresponding interval at each occurrence. In this work,

we consider an alternative common interpretation for IMCs

in which they represent all of the DTMCs such that the

transition probabilities lie in their corresponding intervals. In

this semantics, the transitions are fixed once-and-for-all1.

Probabilistic Model Checking algorithms have been de-

veloped to analyse stochastic systems in the context of DTMCs

(e.g. [12], [29]) and IMCs [3], [4] but they are limited by

the state space explosion problem. This limitation prompted

the development of simulation-based techniques like Statist-

ical Model Checking (SMC) [29]. SMC requires the use of

an executable model of the system and then estimates the

probability of a property based on the simulations. One of

the core ideas of SMC is to sample independent execution

traces of the system and individually verify if they satisfy a

property of interest. The probability that the system satisfies

the property is estimated by the proportion of traces which

satisfy the property. By modelling the executions of a system

as a Bernoulli random variable, SMC provides rigorous bounds

of the error of the estimator based on confidence intervals or

Chernoff bounds [6]. Note that SMC is not limited to fre-

quentist inference and may use alternative efficient techniques,

such as Bayesian inference [15] and hypothesis testing [28],

to decide with specified confidence whether the probability of

a property exceeds a given threshold or not.

However, rare events pose a problem to SMC because they

imply that a large number of simulations must be sampled

in order to observe them. Hence SMC may still be compu-

tationally challenging. Several variance reduction techniques,

such as Importance Splitting [13] and Importance Sampling

(IS) [14], [23], have been applied to estimate rare dependable

properties in Markov models. IS works by simulating a system

under a weighted (IS) distribution that makes a property

more likely to be seen. It then compensates the results by

1Note that the once-and-for-all semantics is not novel but, as far as we
know, the terminology is recent. See for example [3].
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the weights, to estimate the probability under the original

distribution. In order to perform IS and to evaluate the resulting

estimator, it is necessary to know exactly the probability

distribution of the original system. This limitation makes IS

infeasible for probability estimation of an IMC since the

probabilistic transitions are given in intervals.

The goal of this work is to overcome this problem by using

an optimisation algorithm. Due to the potentially large number

of observed transitions and the inherent number of constraints

that must be fulfilled, standard numerical and statistical ap-

proaches fail to work. We thus propose a new algorithm which

is shown to work effectively for IMC importance sampling

(IMCIS). We implement our approach with a prototype tool

and apply the algorithm to estimate rare dependable properties

of failure-repair processes and a safety property of a secure

water treatment system. The experiment results show empir-

ically that our confidence intervals are correct with respect to

the original system instead of an approximation of the system.

a) Structure of the article: Section II introduces the

basic notions of DTMCs, IMCs and Monte Carlo integration.

Section III introduces the IS framework for IMCs. Section IV

addresses the optimisation problem raised by IMCIS. Our

algorithm is fully described in Section V, with the results

of applying it to some case studies given in Section VI.

Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce the notions and notations used

throughout the paper. A stochastic system S is interpreted as a

set of interacting components in which the state is determined

randomly with respect to a global probability distribution. Let

(Ω,F , μ) be the probability space induced by the system with

Ω a set of finite paths with respect to system’s property φ, F a

σ-algebra of Ω and μ the probability distribution defined over

F . We first recall the definitions of a Discrete Time Markov

Chain (DTMC) and an Interval Markov Chains (IMC) and

give the basics of Monte Carlo integration.

A. Discrete Time and Interval Markov Chains

DTMCs are a standard formalism, extensively used in the

literature, to model probabilistic systems. Formally,

Definition 2.1: A DTMC is a tuple M = (S, s0, A,G, V ),
where S is a finite set of states, s0 ∈ S is an initial state, G
is a set of atomic propositions, V : S → 2G is a labelling

function and A : S × S → [0, 1] is a probabilistic transition

function such that ∀s ∈ S,
∑

t∈S A(s, t) = 1.

For convenience, we use a matrix notation for the transition

function, that is A = (aij)0≤i,j≤m with m + 1 = |S|. Each

aij corresponds to the probability to reach sj from si in one

step. We denote ai = (ai0, · · · , aim) the probabilistic state

distribution from si ∈ S.

Given the transition matrix A of a DTMC, the probability of

taking a path ω = ω0 → · · · → ωl is defined by the product of

the individual transition probabilities of the path, i.e., PA(ω) =∏l
i=1 A(ωi−1, ωi). The length of a path is denoted |ω| and is

defined by its number of transitions.

For a given path ω ∈ Ω, we denote nij(ω) the number of

times the transition from state si to state sj occurred. Thus,

we can write P (ω) as a product of the elements of A:

PA(ω) =

m∏
i=0

m∏
j=0

a
nij(ω)
ij (1)

Note that
∑m

i=0

∑m
j=0 nij(ω) = |ω|. Also, if aij = 0,

nij(ω) = 0 and then a
nij(ω)
ij = 1.

Definition 2.2: An IMC is a tuple M =
(S, s0, A

−, A+, G, V ), where S, s0, G and V are as

for a DTMC and where the transition function is replaced

by two functions A−, A+ : S × S → [0, 1] such that (i)

A− ≤ A+, (ii) ∀s ∈ S,
∑

t∈S A−(s, t) ≤ 1 and (iii) ∀s ∈ S,∑
t∈S A+(s, t) ≥ 1.

A− and A+ give respective lower and upper bounds on the

transition probabilities. IMCs are then a natural extension of

DTMCs since they allow us to specify intervals of possible

probability transitions for each state of the Markov chain. We

say that B ∈ [A] if B is a DTMC that satisfies all the interval

constraints of [A] and that bi ∈ [ai] if we restrict the DTMC

and the IMC to state i.

B. Learning a DTMC or an IMC

In practice, DTMCs are often obtained through some estim-

ation based on belief, partial knowledge, learning process, etc.

Therefore the transition probability is not precise. A common

way to learn transition matrix A of Markov chain M is to use

standard frequentist estimations based on a (long) sequence of

random observations. An individual transition between state

si and sj can be estimated by âij = nij/ni where nij is

the number of times transition si → sj occurred and ni

the number of times a transition has been taken from state

si. However, this estimation lies within a confidence interval

denoted I . For example, given confidence 1−δ and ni, one can

determine absolute error ε such that P (|âij − aij | > ε) ≤ δ
using the Okamoto bound [21]. With δ = 10−5 and ni = 104,

ε ≈ 0.025 and I = [âij − ε; âij + ε].
It is worth mentioning that if the state space is large,

standard frequentist estimations are unlikely to be accurate

for all transitions. But other methods have been proposed in

the literature such as Laplace and Good-Turing’s estimations

[8], [11]. Moreover, large models are sometimes parametrised

by global variables that may be learnt up to some precision.

In the latter case, if the transitions are symbolic functions

of the global variables, it is not necessary to observe all the

transitions but to estimate directly the global variables and to

deduce a DTMC or an IMC from it.

In this article, Â = (âij)0≤i,j≤m denotes a learnt transition

matrix of Markov chain M. We assume that the DTMC is

learnt up to some precision ε = (εij)0≤i,j≤m. Then, we denote

Â− = Â − ε, Â+ = Â + ε and [Â] the corresponding IMC

centred on DTMC Â. By construction, Â ∈ [Â].
Fig. 1a illustrates a DTMC A with state space S =

{s0, · · · , s3} and a probabilistic distribution μ parametrised

by two individual transitions a and c. Fig. 1b illustrates an
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s3 s0 s1 s2

a c

b d

1 1

(a) a DTMC.

s3 s0 s1 s2

[â± εâ] [ĉ± εĉ]

[b̂± εâ] [d̂± εĉ]

1 1

(b) an IMC.

s3 s0 s1 s2

1 1− ad

ad

1 1

(c) Perfect Importance Sampling.

s3 s0 s1 s2

a
c

1−ad

a−1

1 1

(d) Likelihood ratio per trans-
ition.

Figure 1: DTMC and IMC

IMC of A in which parameters a and c are supposed to be

equal to â and ĉ up to margins of error εâ and εĉ.

C. Monte Carlo estimation

Given a probabilistic model S, a DTMC or an IMC, the

goal is to estimate the probability that a random execution of

S satisfies a property φ specified using bounded temporal logic

formulae (see for example [12]). Let γ be this probability and

z be the function that assigns 1 to a trace satisfying φ and

0 otherwise. By definition, γ is the sum of the probabilities

of the paths ω such that z(ω) = 1. In other words, γ is the

expectation of function z over the set of traces Ω where z
must be interpreted as a Bernoulli random variable Z:

γ =
∑
Ω

z(ω)Pμ(ω) =
∑
ω|=φ

Pμ(ω) = Eμ[Z], (2)

with Pμ(ω) the probability of path ω under the probability

distribution μ.

In SMC, a set of N traces (ωi)1≤i≤N is sampled randomly

according to distribution μ and a Monte Carlo frequentist

estimation γ̂N of γ is given by:

γ̂N =
1

N

N∑
i=1

z(ωi). (3)

Note that z(ωi) is effectively the realisation of a Bernoulli ran-

dom variable with parameter γ. Hence Var(γ̂N ) = γ(1−γ)/N .

Given the level of confidence 1−δ and Φ−1
1−δ/2 the (1−δ/2)-

quantile of the normal distribution, an approximate confidence

interval is given by I =

[
γ̂N ± Φ−1

1−δ/2

√
γ̂N (1−γ̂N )

N

]
.

For clarity, we sometimes use the notation γ(A) to refer to

the probability of property φ when μ is a DTMC parametrised

by the matrix of transitions A, γ̂N (A) to denote an estimate of

γ(A) based on N samples and σ̂N (A) the empirical standard

deviation of the samples.

III. IMPORTANCE SAMPLING IN MARKOV MODELS

Given a set of N traces, the absolute error, defined as the

half size of the confidence interval, decreases as the inverse

square root of N . But for small probabilities, the accuracy

of the estimation is better captured by the relative error, that

is the absolute error divided by γ. However, the relative error

explodes when γ tends to zero since it is inversely proportional

to the square root of Nγ. So, in practice, denoting the relative

error RE, if we desired RE = 10%, we would need to increase

N as a proportion of 100 ∗ γ−1. Rare events require too

many samples to be observed at least once and prompted the

recourse to advanced simulation techniques such as importance

sampling [2], [7], [14], [23].

A. IS estimation

Let μ be absolutely continuous with respect to another

probability measure μ′ over Ω, then (2) can be written

γ =
∑
Ω

Pμ(ω)

Pμ′(ω)
z(ω)Pμ′(ω). (4)

The function L = Pμ/Pμ′ is called the likelihood ratio
function and γ can be then interpreted as the expectation of

function z weighted by L under probabilistic measure μ′:

γ =
∑
Ω

L(ω)z(ω)Pμ′(ω) = Eμ′ [ZL]. (5)

Note that in a DTMC, the likelihood ratio L of a path is

the ratio of its probabilities under distribution μ and μ′.
Assume that μ′ is defined on the same space than μ and is

parametrised by probability matrix B = (bij)0≤i,j≤m. Then,

L(ω) = PA(ω)/PB(ω).
In practice, the likelihood ratio of ω is initialised to 1 and,

once a transition si → sj is taken, the likelihood ratio is

updated on-the-fly by multiplying its current value by aij/bij .

Formally, we can write any likelihood ratio as a product of

power of all the ratios aij/bij :

L(ω) =

∏m
i=0

∏m
j=0 a

nij(ω)
ij∏m

i=0

∏m
j=0 b

nij(ω)
ij

=
m∏
i=0

m∏
j=0

(
aij
bij

)nij(ω)

(6)

We can thus estimate γ by sampling traces under μ′ and

compensating each path ωk by its likelihood ratio L(ωk):

γ̂NIS =
1

NIS

NIS∑
k=1

L(ωk)z(ωk) (7)

Here ωk ∼ μ′ and NIS denotes the number of simulations

used by the IS estimator. An approximate confidence interval

is given by I =
[
γ̂NIS ± Φ−1

1−δ/2

σ̂NIS√
NIS

]
where σ̂NIS

denotes

the empirical standard deviation of the samples. The goal of

IS is to reduce the variance of the rare event and so achieve a

narrower confidence interval than the Monte Carlo estimator,

resulting in NIS 
 N . In general, the IS distribution μ′ is

chosen to produce the rare events more frequently.

The IS distribution defined by Pμ′ = zPμ/γ outputs an

estimator with zero variance. Indeed, the paths that do not

satisfy φ have a probability 0 to occur and the likelihood ratio

of the successful paths is equal to γ. Sampling under this

perfect distribution is however unrealistic since it requires to

know γ which is the probability to estimate.

In practice, choosing a good importance sampling dis-

tribution in terms of variance reduction is a conundrum.
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Nevertheless, in the framework of DTMCs, the cross-entropy

algorithm can be used to find a good candidate for the IS

distribution as shown in [14], [24].

B. Margin of error problem

In the following, we show that applying existing important

sampling techniques to a DTMC learnt from a real system

would result in general in significant errors. Let us consider

DTMC A described in Fig. 1a. Assume that the initial state is

s0 and that our goal is to estimate the probability γ of reaching

s2. Remark that, in this simple example, γ = ac/(1 − ad).
Thus, with a = 0.0001 and c = 0.05, γ ≈ 5.005× 10−6. An

example of perfect IS distribution for A, called B, is given

in Fig. 1c. Fig. 1d gives the ratios (aij/bij). Note that all the

paths sampled with respect to B are successful and have the

same likelihood ratio L(ω) = ac/(1−ad) = γ. It follows that

V (γ̂N ) = 0 and, independently to confidence level (1−δ) and

sample size N , the confidence interval is reduced to a single

point : I = [γ̂N ± 0] = γ.

Assume now that A is unknown and approximated by

a transition matrix Â parametrised by â and ĉ. The graph

structure being identical, it is easy to find the perfect im-

portant sampling with respect to Â and eventually to output

γ̂N (Â) = âĉ
1−âd̂

and a confidence interval reduced to this

point. Unfortunately, this estimation is only perfect with

respect to Â regardless of how close Â and A are. It is

extremely unlikely that γ̂N (Â) = γ and consequently, the

confidence interval almost surely never contains the exact

probability. More importantly, a slight error of approximation

of the probabilistic transitions may lead to significant different

results. For example, with â = 0.0003 and ĉ = 0.0498,

γ̂N (Â) = 1.4944 × 10−5, which is almost three times the

exact value.

Since IS implies the computation of a potentially large

product of individual transition probabilities, a fine under-

standing of the system behaviour is necessary to be performed

correctly. If the abstraction of the system is too coarse, it

is unlikely the case. Even a low deviation of one particular

individual transition may have large consequences on the final

computation. The sensitivity of the results seriously poses the

question of the validity of IS for approximated models of real-

world systems, which in general are much larger and more

complex than this example. This motivates us to take into

account the margin of errors in our IS analysis.

C. IS for IMC

In the following, we show how to apply IS to IMC by

reducing the problem to an optimization problem. For any A
in an IMC [Â], the exact probability PA(ω) of a path ω falls

within the following interval:

m∏
i=0

m∏
j=0

(a−ij)
nij(ω) ≤ PA(ω) ≤

m∏
i=0

m∏
j=0

(a+ij)
nij(ω) (8)

Then, given a sample of N paths and an IS distribution B,

for all A ∈ [Â],

1

N

N∑
k=1

z(ωk)
m∏
i=0

m∏
j=0

(
a−ij
bij

)nij(ωk)

≤ γ̂N (A)

≤ 1

N

N∑
k=1

z(ωk)
m∏
i=0

m∏
j=0

(
a+ij
bij

)nij(ωk)

But, optimising individually each transition leads to very

coarse bounds. For all i, individual probabilities (aij)0≤i,j≤m

must fulfil the vectorial constraint:
∑m

j=0 aij = 1. Moreover, a

transition observed in different paths may optimise each path

probability in a different way. Since we use the once-for-all
IMC semantics, improving the bounds requires to optimise the

transitions all together. For this purpose, we first rewrite the

lower bound problem as a constrained minimisation problem:

minimize
A∈[Â]

N∑
k=1

z(ωk)
m∏
i=0

m∏
j=0

(
aij
bij

)nij(ωk)

subject to a−ij − aij = c−(aij) ≤ 0, for all j,

and aij − a+ij = c+(aij) ≤ 0, for all j,

and 1−
m∑
j=0

aij = c(ai) = 0, for all i.

(9)

The upper bound can be handled similarly by rewriting it as

a maximisation problem. We denote Amin and respectively

Amax the DTMCs that minimises and maximises the optim-

isation problem. In what follows, for convenience, we only

present our approach for the lower bound.

The minimisation problem can be simplified. First of all,

it is worth noting that the probabilistic distributions from a

given state are independent of each other. In other words,

optimising state distribution ai has no impact on aj . Moreover,

it is only necessary to optimise the distribution from state s if

at least one transition s→ s′ is observed in a successful path

with respect to property φ. Denoting α the set of indexes of

successful paths, M its cardinal, α(k) the k-th element of α
with 1 ≤ k ≤ M and Tk the set of transitions observed in

ωα(k):

minimize
A∈[Â]

M∑
k=1

∏
(i→j)∈Tk

(
aij
bij

)nij(ωα(k))

subject to a−ij − aij = c−(aij) ≤ 0, for all j,

and aij − a+ij = c+(aij) ≤ 0, for all j,

and 1−
m∑
j=0

aij = c(ai) = 0, for all i.

(10)

In what follows, we denote f(A) the objective function to

minimise.

In some cases, it remains easy to evaluate aij . For example,

if only one transition si → sj has been taken from state

si, then aij = max(a−ij , 1 −
∑m

j′ �=j a
+
ij′). This expression

guarantees that aij is well defined and remains consistent
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with regard to the constraints that apply to the other outgoing

transitions from state si. Nevertheless, if several transitions

from state si have been observed, the problem becomes much

harder and requires the recourse to a minimisation algorithm.

IV. SOLVING THE MINIMISATION PROBLEM

Minimising f(A) requires a class of algorithms for solving

optimisation problems with equality and inequality constraints.

Numerical methods like penalty or interior point methods (see

e.g. [19]) are not suitable in our context due to the large sample

size and number of observed transitions. Various statistical

methods, notably in convex optimisation, could be used but

their efficiency is strongly impacted by the large number of

constraints. Which algorithms fit the best our problem is a

complex question as the answer is likely system-dependent;

providing a clear answer goes beyond this article. For more

details, we discuss in the appendix alternative promising

methods, notably the stochastic gradient descent [18] and the

stochastic interior Point Method [5]. In this work, we propose a

simple algorithm which is proper for solving our problem and

converges almost surely to a global minimum. Note that the

global minimum is not necessarily unique and is guaranteed

to exist since the intervals for each parameter are closed and

the objective function is continuous.

A. Monte Carlo Random Search algorithm

We propose to determine a global minimum by a random

search into the domain of definition [Â] of the function. The

algorithm works as follows: starting with Amin = A(0) = Â,

we sample iteratively independent candidates A(l+1) in [Â]
according to a probability distribution X covering all the

DTMCs in [Â]. If f(A(l+1)) < f(A(l)), A(l+1) becomes

the new minimum Amin, otherwise the minimum remains

unchanged. When a candidate is undefeated for R rounds,

we stop the search and outputs Amin as an approximation of

the minimum. We can not prove that the minimum has been

reached but at least, the probability that the minimum is below

f(Amin) is less than R−1.

The method is known to be convergent (see for example

Theorem 2.1, page 40 in [26]) but in general the speed

of convergence is low. Nevertheless, in practice, termination

can be ensured by setting a maximal number of samples.

Moreover, the algorithm remains easy to set up since it does

not require any gradient or Hessian matrix computation.

The main difficulty is to generate DTMCs satisfying all the

constraints of [Â]. Indeed, sampling uniformly in each interval

would pose some consistency problem and would likely violate

the equality constraints. Moreover, after normalisation, the in-

terval constraints would unlikely be satisfied. Finally, we have

to guarantee that the whole consistent domain of definition

can be covered by the samples. Assume in what follows that

we want to generate the candidate A(l).

B. Dirichlet distributions

Dirichlet distributions are useful when one wants to cut a

string (of length 1) into m+ 1 pieces Xj of different lengths

where each piece has a specific average length parametrised

by αj , but allowing some variation in the relative sizes of the

pieces. We denote β =
∑m

j=0 αj . For all j, the relative average

length of Xj is ERel[Xj ] = αj/β and the variance of the

relative length varies inversely with β: VRel(Xj) =
αj(β−αj)
β2(β+1) .

Multiplying the random variable X = (Xj)0≤j≤m by a

constant K > 0 does not impact the relative lengths because

the length of each coordinate is multiplied by the same

constant. However, the relative variances VRel(Xj) decreases

to zero when K tends to the infinity:

VRel(KXj) =
Kαj(K.β −Kαj)

K2β2(Kβ + 1)

=
αj(β − αj)

β2(Kβ + 1)
−→

K→∞
0

Given an IMC [Â], for each visited state si, we sample m+1
values denoted (aij)0≤j≤m according to a Dirichlet distribu-

tion X = (Xij)0≤j≤m parametrised by vector (Kiâij)0≤j≤m

where Ki > 0 is a precomputed parameter aiming to control

the relative variances. If all the constraints of [âij ] are satisfied,

(aij)0≤j≤m is the state distribution from si of the DTMC

candidate A(l).

If Ki is chosen too large, the variance of each coordinate

decreases and we would likely sample values that are too close

to the mean âij . If Ki is too low, the variance becomes larger

and we would generate values that do not belong to [âij −
εij , âij + εij ].

For this purpose, we set, for each transition (i→ j), a value

Kij such that the standard deviation of Xij equals εij :

εij =

√
âij(1− âij)

Kij + 1

Then,

Kij =
âij(1− âij)

ε2ij
− 1

Finally, if the values Kij have the same order of magnitude, we

choose Ki = minj Kij . We thus guarantee that the coordinate

values of the candidate are well-spread around the mean while

falling in their corresponding interval [âij ± εij ] with high

probability since the standard deviations of Xij are slightly

greater or equal than the corresponding εij .

C. Tuning the algorithm

If a generated vector does not fulfil the constraints, we

simply discard it and generate a new one until all the con-

straints are satisfied. This may be however challenging if m
is large or if Kij have different orders of magnitude. We

proposed two simple solutions to overcome these problems.

1) m is large: If the Dirichlet sampler fails to generate a

DTMC candidate satisfying the [âi] constraints in state i, a

possibility is to multiply Ki by a value strictly greater than

1, for example, λ = 1.1. The goal is to smoothly reduce

the variance of each coordinate while preserving their relative

length, increasing the chance to sample all the coordinates in

their respective intervals.
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2) Kij have different orders of magnitude: If Kij have

different orders of magnitude, choosing Ki as the minimum

of Kij may not be adequate since the relative variance of the

corresponding coordinates may be too large. Consequently, the

samples for these coordinates would likely fall out of their

corresponding interval and the resulting state distribution ai
would not satisfy the constraints of [âi]. Choosing the mean

or the median of Kij may be more efficient though it does

not fully overcome this problem.

An other solution is to handle separately the transitions with

a ’large’ Kij and the ones with a significantly ’lower’ Kij .

For sake of simplicity, assume that Ki0 is large with respect

to the other Kij and that these Kij have the same order of

magnitude. We proceed in two steps: (i) We select uniformly

a value ai0 in the interval [âi0 ± εi0] ∩ [1 −∑m
j=1 â

+
ij ; 1 −∑m

j=1 â
−
ij ]. The intersection guarantees the consistency of

ai0. Let β = 1 − ai0. (ii) Once ai0 has been selected, the

other transition values are sampled according to distribution

Yi ∼ βX(Ki(âij))j′ �=j where X is a Dirichlet distribution

parametrised by Ki(âij). Then, for all j′ �= j,

ERel[Yij′ ] = β
Kiâij′∑

j′ �=j Kiâij′
= âij′ (11)

and

VRel(Yij′) = β2Kiaij′(Kiβ −Kiâij′)

K2
i β

2(Kiβ + 1)

=
âij′(β − âij′)

Kiβ + 1
(12)

By choosing Ki = minj′ �=j
β−âij

βε2
ij′

− 1
β , we thus ensure

that ERel[Yij′ ] = âij′ and
√
VRel(Yij′) ≥ εij′ for all j > 0.

The procedure is thus repeated until all the values aij′ rely

in their corresponding interval. Then, (aij)0≤j≤m is the state

distribution in state i of candidate A(l).

V. DESCRIPTION OF THE ALGORITHM

We present in this section the pseudo-algorithm of im-

portance sampling for IMC (Algorithm 1) and the pseudo-

algorithm for the random search optimisation (Algorithm 2).

For sake of simplicity, we have not included the cases ‘m is

large’ and ‘Kij have different orders of magnitude’ mentioned

in Section IV-C.

The goal of the algorithm is, given an IMC [Â], an IS

distribution parametrised by B and the property φ, to output a

(1− δ)-confidence interval defined with respect to [Â] instead

of Â. The inputs of the algorithm are confidence parameter δ
and sample size N used to estimate γ.

Remark 5.1: Generating matrices A ∈ [Â] and solving the

minimisation problem is independent of B. However, even if

the topic of this paper is not about how B is chosen, it remains

an interesting question to know if there exists a ‘better’ IS

distribution defined with respect to the entire set of matrices in

[Â]. In this work, we assume that the IS distribution is defined

with respect to Â but note that other distributions could have

been chosen (for the better or the worst).

Traces are sampled from initial state s0 with respect to

probabilistic distribution B until φ is decided (Alg. 1, lines 3 to

5). Note that we do not need to store the entire trace. Instead,

for each trace ωk, we update on-the-fly a table containing the

transitions si → sj of ωk and the number of times these

transitions have been taken nk(si, sj). This table is defined

by the set of transitions Tk and their respective counters nk in

Algorithm 1 (lines 6 to 11). At line 13, notation 1(ωk |= φ)
is the indicator function and is equal to 1 if ωk |= φ and 0
otherwise. We denote Vk the set of visited states in ωk (apart

the last state of the trace), V and T the respective union of

Vk and Tk over all the traces. The symbolic likelihood ratio

of ωk is then entirely defined by the k-th table. If ωk � φ, the

table can be deleted since z(ωk)L(ωk) = 0.

Once all the traces have been sampled, the tables and

[Â] define the minimisation problem described in (10). The

function to optimise is denoted f(A) at line 16 and we use

Algorithm (2) for this purpose. At line 17, g(A) denotes the

sum of the likelihood ratio squares for the successful paths

used in the evaluation of the standard deviations. Once the

arguments Amin and Amax of the minimum and maximum

have been determined, we evaluate γ̂N (Âmin), σ̂N (Âmin),
γ̂N (Âmax) and σ̂N (Âmax) (lines 19 to 22). Finally, we output

the final (1− δ)-confidence interval CI = [L,U ] where:

L = γ̂N (Âmin)− Φ−1
1δ/2

σ̂N (Âmin)√
N

U = γ̂N (Âmax) + Φ−1
1δ/2

σ̂N (Âmax)√
N

.

VI. CASE STUDY

In the following, we conduct multiple case studies to

evaluate the efficiency of our algorithms. The challenge for

our approach is to show that we are able to provide more

reliable importance sampling confidence intervals with the

IMC settings. Hence, we have chosen models for which we

are able to obtain accurate results using numerical techniques,

in order to compare them with the correct values.

The empirical coverage of the experiments is the proportion

of experiments in which the exact value γ falls within the final

confidence interval. To empirically verify our results we per-

formed each simulation experiment 100 times and report the

coverage of the experiments with respect to the approximated

DTMC Â and with the exact DTMC A. We use the same

IS distribution for IS experiments and IMCIS experiments

but they are performed independently. The estimators are

based on N = 10000 traces. The optimisation is stopped

when the randomly generated candidates for the minimum

and the maximum are undefeated for R = 1000 rounds. All

simulations were performed using a Java prototype.

A. Illustrative example

The first case study follows the example introduced in

Section III. The model under scrutiny is a DTMC parametrised

by two individual transitions a = 10−4 and c = 0.05.
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Algorithm 1 IMC Importance Sampling (IMCIS)

Input: [Â] : an IMC

B : an IS matrix

ϕ : a temporal property

δ : confidence parameter

N : sample size

1: for k ∈ {1, . . . , N} do
2: ωk = x0, Vk = ∅, Tk = ∅
3: l = 1
4: while ωk |= φ is not decided do
5: generate sl under IS measure B
6: ωk = s0 · · · sl
7: Vk = Vk ∪ {sl−1}
8: if sl−1 → sl /∈ Tk then
9: Tk = Tk ∪ {sl−1 → sl} and nk(sl−1, sl) = 1

10: else
11: nk(sl−1, sl) = nk(sl−1, sl) + 1
12: end if
13: end while
14: z(ωk) = 1(ωk |= φ)
15: end for
16: V =

⋃N
k=1 Vk, T =

⋃N
k=1 Tk

17: f(A) =
∑N

k=1 z(ωk)
∏

i∈Vk

∏
j|(i→j)∈Tk

(
aij

bij

)nk(si,sj)

18: g(A) =
∑N

k=1 z(ωk)
∏

i∈Vk

∏
j|(i→j)∈Tk

(
aij

bij

)2nk(si,sj)

19: OPTIMISATION of f(A) (see Algorithm 2)

20: γ̂N (Amin) = f(Amin)/N
21: γ̂N (Amax) = f(Amax)/N
22: σ̂N (Amin) = g(Amin)/N − γ̂N (Amin)

2

23: σ̂N (Amax) = g(Amax)/N − γ̂N (Amax)
2

Output: (1− δ)-confidence interval CI = [L;U ]
where L = γ̂N (Amin)− Φ−1

δ/2σ̂N (Amin)/
√
N

and U = γ̂N (Amax) + Φ−1
1−δ/2σ̂N (Amax)/

√
N

These values are supposed to be unknown but still to fall

within the respective intervals: a ∈ [0.5; 5.5] × 10−4 and

c ∈ [0.0493; 0.0503]. Recall that γ = ac/(1 − ad) is the

probability of reaching s2 from s0.

We sample under the perfect importance sampling dis-

tribution B defined with respect to the centred DTMC Â
parametrised by â = 3× 10−4 and ĉ = 0.0498.

This example illustrates the difference of results between

our approach and the standard importance sampling approach

for DTMCs. For each experiment, we calculate and then report

in Table I the descriptive statistics of the number of rounds nr

necessary to find the minimum and the maximum, the corres-

ponding matrices Amin and Amax (respectively described by

the couples (amin, cmin) and (amax, cmax)). We remark that

on average, it takes between 181 and 3119 rounds to converge

close to Amin and Amax.

In Table II, we report the average bounds of the confidence

intervals obtained by IS and by IMCIS and their mid-value.

Note that the IS confidence interval is centred on γ̂N (Â) and

Algorithm 2 Random Search Optimisation

Input: [Â]: an IMC

f(A) : function to optimise (A ∈ [Â])
V : set of visited states

R : number of consecutive successes to observe

Rmax: maximal number of rounds

1: Rcurrent = 0 : current number of rounds

2: Rwhile = 0 : current number of consecutive successes

3: Amin = Amax = Â
4: while Rwhile < R ∧Rcurrent < Rmax do
5: for i ∈ V do
6: Ki = minj

âij(1−âij)

ε2ij
− 1

7: (ai /∈ [âi]) = �
8: while ai /∈ [âi] do
9: generate ai ∼ Dirichlet(Kiâi))

10: end while
11: end for
12: evaluate f(A)
13: if f(A) < f(Amin) then
14: Amin = A and Rwhile = 0
15: else
16: if f(A) > f(Amax) then
17: Amax = A and Rwhile = 0
18: else
19: Rwhile = Rwhile + 1
20: end if
21: end if
22: Rcurrent = Rcurrent + 1
23: end while
Output: f(Amin) and f(Amax)

may be then slightly different than the IMCIS mid-value. Since

we sampled under the perfect distribution, the exact value

of the centred DTMC, γ(Â) = 1.4944 × 10−5 is always

contained in the importance sampling confidence interval. But

this 100% coverage for γ(Â) drops to zero for γ since the

confidence interval is reduced to γ(Â). In comparison, the

IMCIS confidence interval has a 100% coverage for both γ(Â)
and γ.

B. Group repair model

The following benchmark is a reliability model taken from

[24], small enough (125 states) to be investigated using

PRISM [17] to corroborate our results. The system is modelled

as a continuous time Markov chain and comprises three types

of subsystems (1, · · · , 3) containing, respectively, 4 compon-

ents that may fail independently. The components fail with

rates (α2, α, α) where α = 0.1 is supposed to be unknown, and

are repaired with rate 1. In addition, components are repaired

with priority according to their type (type i has highest priority

than type j if i < j). The components of type 2 and 3
are repaired one by one as soon as one has failed whereas

components of type 1 are repaired all together as soon as more

than two of them have failed. The property we consider is the
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Table I: Illustrative example with a ∈ [5, 5.5]× 10−5 and c ∈ [0.0493, 0.0503].

nr âmin ĉmin âmax ĉmax

average 2181 5.02× 10−5 0.0496 5.48× 10−4 0.0501

min 1244 5× 10−5 0.0493 5.45× 10−4 0.0494

max 4119 5.1× 10−5 0.0502 5.5× 10−4 0.0503

st. dev. 580 2.11× 10−7 2.2× 10−4 1.25× 10−6 1.63× 10−4

Table II: Comparison between IS and IMCIS.

95%-CI Mid value Coverage of γ(Â) Coverage of γ

Illustrative example IS [1.494± 0]× 10−5 1.494× 10−5 100% 0%

IMCIS [0.249; 2.7]× 10−5 1.499× 10−5 100% 100%

Group repair IS [1.104; 1.171]× 10−7 1.138× 10−7 80% 27%

IMCIS [1.029; 1.216]× 10−7 1.123× 10−7 100% 75%

SWaT IS [1.2; 1.7]× 10−2 1.45× 10−2 - -

IMCIS [0.7; 2.2]× 10−2 1.45× 10−2 - -

probability of reaching a failure state that corresponds to the

failure of all the components, before returning to the initial

state of no failures. The probabilistic transitions are symbolic

functions of α. For α = 0.1, γ = 1.179× 10−7.
In the following experiments, we used frequentist inference

to compute an estimate α̂ = 0.0995 and calculated a 99.9%-

confidence interval CI: α ∈ [0.09852; 0.10048]. We can then

easily build an IMC [A(α̂)] centred on Â = A(α̂). Note

that γ(Â) = 1.117 × 10−7. We then determined an import-

ance sampling distribution by the cross-entropy algorithm for

DTMC described in [24].
Table II shows that the empirical IS coverage for γ(Â) is

already below 95%. This problem is well-known and docu-

mented (e.g. [25]). As for the illustrative example, the IMCIS

confidence interval is larger and its coverage of γ(Â) remains

perfect. The problem comes from a poor estimation of the

likelihood ratio standard deviation. Detecting this phenomenon

is an open problem, in practice tackled by increasing NIS . On

the contrary, the IMCIS confidence interval keeps a perfect

coverage of γ(Â) and remains good with respect to the exact

model when the IS coverage of γ drops to 27%.
Figure 2 shows a superposition of IS and IMCIS CI for

the repair model. Even if the experiments have been made

independently, the IS confidence intervals are almost always

fully contained in the IMCIS confidence intervals, that prove

empirically a better reliability. Figure 3 illustrates the evolution

of the IMCIS confidence bounds of an IMCIS experiment

during the optimisation step. Figure 5 shows the range of

probabilities for the repair model given the interval [α̂ =
0.09852; 0.10048]. Note that the average IMCIS confidence

interval in Table II covers 83% of the interval of probabilities

defined by γ(A(α)).

C. Repair model
The following benchmark is also a failure-repair process

taken from [24]. This benchmark is larger (40820 states) and

is composed of 6 subsystems with respectively 5, 4, 6, 3, 7, 5
components that fail with rates (2.5α, α, 5α, 3α, α, 5α) where

α belongs to interval [0.8236 × 10−3, 1.1764 × 10−3], and

are repaired with rate (1, 1.5, 1, 2, 1, 1.5). As in the group

repair model, components are repaired with priority according

to their type (type i has highest priority than type j if

i < j). However, the components are all repaired one by

one as soon as one has failed. The property we consider is

the probability of reaching a failure state that corresponds

to the failure of all the components of at least one type,

before returning to the initial state of no failures. We assume

that α = 0.001 in the IS experiments. For this value,

γ = 7.488 × 10−7. We repeated five times our experiments.

The 95% confidence intervals obtained by IS captured values

in [7.3895 × 10−7, 7.5205 × 10−7] while IMCIS captured

values between [5.6884 × 10−7, 9.5491 × 10−7]. Both set

of experiments are thus satisfying on this large model with

respect to α = 0.001. However, if α is not in the interval

[0.99× 10−3, 1.1× 10−3], the IS intervals do not contain the

exact value γ whereas the IMCIS intervals still contain γ if α
is in [0.88× 10−3, 1.12× 10−3].

D. Secure Water Treatment model

The SecureWater Treatment testbed (SWaT) built at Singa-

pore University of Technology and Design is a scale-down

version of a real industry water treatment plant [1]. The

testbed is built to facilitate research on cyber security for

CPS, which has the potential to be adopted to Singapore’s

water treatment systems. SWAT consists of a modern six-stage

process. The process begins by taking in raw water, adding

necessary chemicals to it, filtering it via an Ultrafiltration (UF)

system, de-chlorinating it using UV lamps, and then feeding

it to a Reverse Osmosis (RO) system. A backwash process

cleans the membranes in UF using the water produced by

RO. We refer to [1] for more details about the system and

the datasets. Automatic model learning techniques are used

to construct a set of Markov chains through abstraction and

refinement, based on long system execution logs. The model

can be described by 70-state DTMC and IMC. Our initial state

is a failure state of the system that is repaired in about 5 step

units. We want to estimate probability γ that the water level
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Figure 2: Repair model. Superposition of independent

IS (red, thick) and IMCIS (blue, thin) 95%-confidence

intervals. The black line indicates γ = 1.179× 10−7.

Figure 3: Repair model. Evolution of the IMCIS confid-

ence interval bounds during the optimisation step. x-axis

in log scale to show the fast changes in the first iterations.

indicator (LIT301) exceeds a threshold (> 800) within the

next 30 step units. γ is unknown but supposedly small. The

experiments suggest that γ(Â) ∈ [5×10−3; 2.5×10−2]. Resuts

are reported in Table II (SWaT model). Figure 4 shows that IS

is hardly reliable since the (red) IS confidence intervals do not

even intersect (see the two first red CI). On the other hand,

IMCIS (in blue) provides more consistent results. It is also

worth noticing that the union of these IS confidence intervals

is a subinterval of most of the IMCIS confidence intervals.

Since the larger width of the IMCIS confidence intervals offer

more chance to catch exact probability γ, we recommend the

recourse to IMCIS for the estimation of CPS critical events.

VII. CONCLUSION

The focus of this paper was to introduce importance

sampling in an IMC settings in order to take into account

margin of errors inherent to approximated models. The goal of

Figure 4: Water treatment model. Independent IS (red,

thick) and IMCIS (blue, thin) 99%-CIs.

Figure 5: Ridder model probabilities for α ∈
[0.09852; 0.10048]. Values calculated by PRISM.

this approach is to provide more reliable confidence intervals

of dependable properties in the rare event context, defined with

respect to the original system. We proposed an algorithm based

on random search optimisation using Dirichlet distributions to

achieve this problem. The full validity of the approach is not

achieved but our results are very promising and show great

improvements over the similar importance sampling approach

defined in the DTMC settings. As far as we know, the frame-

work is novel and raises challenging questions. In particular,

it would be interesting to compare the current algorithm with

other optimisation schemes proper to our problem. An other

challenge is to define a ’best’ importance sampling distribution

in the IMC settings. Finally, the uncertainties of the model may

lead to large confidence intervals. In a future work, we plan

to use it for improving the learning of a probabilistic system

and to apply our approach to larger cyber physical systems.
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[23] Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner R. W. Scheinhardt, and
Boudewijn R. Haverkort. Rare Event Simulation for Highly Dependable
Systems with Fast Repairs. In QEST 2010, Seventh International
Conference on the Quantitative Evaluation of Systems, Williamsburg,
Virginia, USA, 15-18 September 2010, pages 251–260, 2010.

[24] Ad Ridder. Importance sampling simulations of markovian reliability
systems using cross-entropy. Annals of Operations Research, 134:119–
136, 2005.

[25] Gerardo Rubino and Bruno Tuffin, editors. Rare Event Simulation using
Monte Carlo Methods. Wiley, 2009.

[26] J. Spall. Introduction to Stochastic Search and Optimisation. Wiley,
2003.

[27] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985, pages 327–338,
1985.

[28] Abraham Wald. Sequential tests of statistical hypotheses. The Annals
of Mathematical Statistics, 16(2):117–186, 1945.

[29] H. Younes. Verification and Planning for Stochastic Processes with
Asynchronous Events. PhD thesis, Carnegie Mellon University, 2004.

[30] Lijun Zhang, Holger Hermanns, and David N. Jansen. Logic and
model checking for hidden markov models. In Formal Techniques
for Networked and Distributed Systems - FORTE 2005, 25th IFIP
WG 6.1 International Conference, Taipei, Taiwan, October 2-5, 2005,
Proceedings, pages 98–112, 2005.

APPENDIX

Various optimisation algorithms could be used in our

context. Their efficiency is measured in terms of speed of

convergence. Since the objective function is unlikely to be

linear or at most quadratic, we can only consider non-linear

algorithms. However, since the constraints are linear, statistical

convex optimisation methods are relevant to our problem.

General stochastic techniques, like genetic or Metropolis-

Hastings algorithms may also be considered but they are not

limited to convex problems and are usually less efficient in

terms of speed of convergence than the convex algorithms

discussed below.

1) Stochastic Gradient Descent [18]: is a stochastic ap-

proximation of the gradient descent optimization method for

minimising an objective function that is written as a sum of

differentiable functions, i.e. f(A) =
∑M

k=1 L(ωk;A) where

ωk is the k-th successful path, A ∈ [Â] and L(ω;A) denotes

the likelihood of path ω given original probabilistic measure A.

In the standard gradient descent, A(0) = Â and the parameter

A(j) is updated at iteration j + 1 by:

A(j+1) = A(j) − η∇f(A(j)) (13)
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where η is a parameter called the learning rate in machine

learning. In the stochastic gradient descent, the gradient

∇f(A(j)) is approximated by the gradient of only one sample:

A(j+1) = A(j) − η∇L(ωk;A
(j)) (14)

where ωk is chosen randomly in the set of the sampled suc-

cessful paths. The convergence of the numerical and stochastic

gradient descents has been analysed. The main advantage of

the stochastic gradient descent is that, in our context, the gradi-

ent of a sample is easy to calculate since L(ωk;A
(j)) has a

polynomial form. However, A(j+1) in Equation (14) obviously

does not satisfy the equality constraints (
∑m

j=1 a
(j+1)
ij �= 1).

After re-normalisation, the equality constraints are satisfied but

not necessarily the inequality constraints. A projection into [Â]
is thus necessary after solving Equation (14). Unfortunately,

the projection step must be performed after each iteration by

minimisation of the distance between A(j+1) and [Â], that

implies significant time over-cost.

2) Stochastic Interior Point Method [5]: is more suited

for dealing inequality constraints since, at each iteration,

an update is directly found into [Â] by the means of the

logarithmic barrier method. To apply this method, we rewrite

the constrained optimisation problem as an unconstrained

optimisation problem of the form:

minimize
A

f(A)−
m∑
i=0

λici−
m∑
i=0

m∑
j=0

(μ−ij log(c
−(aij))

+ μ+
ij log(c

+(aij)))

where each λi is a Lagrange multiplier assigned to the

constraint
∑

j aij = 1 and μ−ij , μ
+
ij > 0 are the barrier

parameters of aij . In [5], the authors propose an approximation

of the minimum using a stochastic version of the interior point

method. However, in our context, the number of constraints

may be huge and slow down the solving of the resulting system

of equations. Indeed, we must take into account m equality

constraints and a maximum of 2m2 inequality constraints.

Solving the system of polynomial equations enriched with

one Lagrangian multiplier per constraint quickly becomes

intractable with respect to the number of states. Moreover, a

proof of convergence is still missing according to the authors2.

A. Prism code for the repair benchmark

We give below the code of the Prism model and the property

under investigation. α must be set by the user.

ctmc

const int n=4;
const double alpha = 0.1;
const double alpha2 = alpha*alpha;
const double mu = 1.0;

2The convergence was initially established in the appendix of [5] but the
authors admitted on their webpage on https://pcarbo.github.io a “major flaw”
in the convergence proof. So far, the convergence is still an open question

module type1
state1 : [0..n] init 0;
[] state1 < n -> (n-state1)*alpha2 :
(state1’=state1+1);

[] state1 >=2 -> mu : (state1’=0);
endmodule

module type2
state2 : [0..n] init 0;
[] state2 < n -> (n-state2)*alpha :
(state2’=state2+1);
[] state2 >=2 & state1 < 2 -> mu :
(state2’=0);
endmodule

module type3
state3 : [0..n] init 0;
[] state3 < n -> (n-state3)*alpha :
(state3’=state3+1);

[] state3 > 0 & state2 < 2 & state1 < 2
-> mu : (state3’=state3-1);

endmodule

label "failure" = state1 = n & state2 = n
& state3 = n;

The property code is:

P=?["init" & (X !"init" U "failure")]
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