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ABSTRACT
Ensuring the correct behaviour of an application is a critical secu-
rity issue. One of the most popular ways to modify the intended
behaviour of a program is to tamper its binary. Several solutions
have been proposed to solve this problem, including trusted comput-
ing and anti-tampering techniques. Both can substantially increase
security, and yet both have limitations. In this work, we propose an
approach which combines trusted computing technologies and anti-
tampering techniques, and that synergistically overcomes some of
their inherent limitations. In our approach critical software regions
are protected by leveraging on trusted computing technologies and
cryptographic packing, without introducing additional software
layers. To illustrate our approach we implemented a secure monitor
which collects user activities, such as keyboard and mouse events
for insider attack detection. We show how our solution provides a
strong anti-tampering guarantee with a low overhead: around 10
lines of code added to the entire application, an average execution
time overhead of 5.7% and only 300KB of memory allocated for the
trusted module.

ACM Reference Format:
Flavio Toffalini, Martín Ochoa, Sun Jun, and Jianying Zhou. 2019. Careful-
Packing: A Practical and Scalable Anti-Tampering Software Protection
enforced by Trusted Computing. In Ninth ACM Conference on Data and
Application Security and Privacy (CODASPY ’19), March 25–27, 2019, Richard-
son, TX, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3292006.3300029

1 INTRODUCTION
The widespread of commercial software and of potential security
threats makes it necessary to develop systematic protection mech-
anisms. For instance, a customer could attempt to use a program
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without paying the license fee [38], a player might cheat in a video-
game [21], or an anti-virus software can be sabotaged [31] by mal-
ware. To achieve these goals, a common strategy is to edit the binary
code of such software in order to alter its logic. These threats are
often referred to as Man-At-The-End attackers (MATE) [3]. Both
academic researchers and commercial companies have spent an
extensive effort against MATE threats [5, 12, 16, 18, 50, 53]. The
goal of the defending mechanisms is to guarantee that an attack
cannot change the software logic to some extent. It is possible to
achieve this goal in different ways, e.g., through anti-tampering
techniques [36] or through trusted computing technologies [20].

Anti-tampering techniques allow a software to inspect itself
and check whether its code has been modified. We refer to those
techniques as self-checking, which literally read the binary code of
the protected software by using special functions called checkers.
The checkers compute a digital fingerprint of the software byte-
code and verify whether that fingerprint matches a pre-computed
value [36]. On the other hand, trusted computing technologies pro-
vide dedicated hardware so that the software can be executed in
secure containers which are physically separated from the rest of
the system. Those containers are composed of memory regions
that cannot be directly read/written by other processes (either from
kernel-space or from user-space). Trusted computing technologies
are further reinforced against physical attacks such as flashing
BIOS/firmware, page swap, or page cache attacks [13].

However, both anti-tampering and trusted computing have lim-
itations. On the one hand, purely software-based anti-tampering
techniques are not completely secure, since the defending mech-
anisms reside in an untrusted memory region and a determined
attacker can identify and disarm such defenses. It is possible to
harden anti-tampering techniques by using a combination of addi-
tional approaches [6, 10, 11, 51] that raise the bar for the attackers
but that do not fundamentally address the problem [22]. On the
other hand, trusted computing technologies, which provide higher
security guarantees than purely software-based solutions, often
have practical limitations, e.g., software within a secure container
cannot directly interact with the hosting operating system (OS);
and the secure container often has size limitations [7]. Previous
works studied solutions that move part of the OS functionality
inside a trusted region [4, 7, 47], but they introduce further com-
plexity for employing a secure interaction with the rest of the world
(e.g., networking, file system). Other authors suggested protecting
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only portions of the code [30, 41]. However, these approaches do
not address critical limitations such as the interaction with the
underlying OS, or the limited amount of memory. Limited memory
makes it unsustainable to deploy all processes in dedicated trusted
containers. For instance, machines featured with Intel Software
Guard eXtension (SGX) [40] provide only a few hundred megabytes
that must be shared among all the running trusted containers. If we
consider processes such as Skype or Firefox, which require around
100MB each, we need multiple trusted containers for each process
to protect. Therefore, this approach does not scale for multiple
parallel processes. The introduction of SGX 2.0 allows modifying
the size of a single trusted container but it does not modify the
maximum memory available for trusted containers.

Our proposal overcomes the limitations of both pure anti-tampering
and trusted computing by combining both approaches. We extend
hardware security features of trusted computing over untrusted
memory regions by using a minimal (possibly fixed) amount of
code. To achieve this, we harden anti-tampering functionality (e.g.,
checkers) by moving them in trusted components, while critical
code segments (which invoke the checkers stored within a trusted
module) are protected by cryptographic packing. As a result, we
keep the majority of the software outside of the secure container,
this leads to three advantages: (i) we avoid further sophistication in
communicating with the OS, (ii) we maximize the number of trusted
containers issued contemporaneously, and (iii) we also maximise
the number of processes protected.

Realizing our idea in practice is non-trivial. Besides the self-
checking functionalities, we need to carefully design other phases
of our approach such as installation, boot, and response. The instal-
lation phase must guarantee that the program is installed properly,
while the boot phase should validate that the program starts un-
tampered. Both phases require us to solve the attestation problem.
The third phase, the response, is the mechanism which allows a
program to react against an attack once it has been detected. More-
over, trusted computing technologies, such as SGX, do not offer
stand-alone threads that can run independently of insecure code.
Instead, protected functionality needs to be called from (potentially)
insecure code regions. As a result, such technologies do not pro-
vide availability guarantees. Therefore, one design aspect of our
solution is to cope with and mitigate denial of service threats.

As a proof-of-concept, we implemented a monitoring application
which integrates our approach. For this example, we opted for SGX
as a trusted module. The application is an agent which traces user’s
events (i.e., mouse movements and keystrokes) and stores the data
in a central server. We developed the monitoring agent in C++ and
we deployed it in a Windows environment. In our implementation,
we designed the checkers to monitor those functions dedicated to
collect data from the OS, while the response was implemented as
a digital fingerprint which represents the status of the client (i.e.,
client secure, client tampered).

To evaluate our approach, we systematically analyze which at-
tacks can be performed against our approach and we show that,
with the user monitoring application, our solution provides better
protection than previous approaches. We measure the overhead
of our approach in terms of Lines of Code (LoC), execution time,
and trusted memory allocated. We show that fewer than 10 LoC
are required to integrate our approach, while the trusted container

requires around 300 LoC. Furthermore, the overhead in terms of
execution time is negligible, i.e., on average 5.7% w.r.t. the original
program. During our experiment, we managed to run and protect
up to 90 instances at the same time.

Problem Statement: The research question we are addressing
in this work is thus: Is it possible to extend trusted computing
security guarantees to untrusted memory regions without moving
the code entirely within a trusted module?

Contributions: In summary, the contributions of this paper are:
(a) We propose a new technique to extend trusted computing

over untrusted zones minimizing the amount of code to store
within a trusted module. (b) We propose a technique to mitigate de-
nial-of-service problems in trusted computing technologies. (c) We
propose an algorithm for achieving a secure installation and boot
phase.

Organization. We provide background on SGX and software
protection in Section 2. Then, we discuss the threat model in Sec-
tion 3 and describe our approach and the technical challenges in
Section 4. After that, we explain our implementation in Section 5,
while we perform an evaluation of our approach in Section 6. Fi-
nally, we provide a discussion about related works in Section 7 and
conclude in Section 8.

2 BACKGROUND
In the following, we recap some notions of Intel Software Guard
eXtension (SGX) [40] and of anti-tampering techniques.

2.1 Software Guard eXtention Overview
Although our approach is not bounded to one particular trusted
computing technology, we have chosen to develop our first proof-
of-concept prototype based on Intel Software Guard eXtension
(SGX) [40].

At the core of SGX are enclaves. An enclave is a memory region
located in the user-space which contains trusted functions. A sys-
tem can host multiple enclaves at the same time, each of which
has a dedicated set of pages (4kB each) in DRAM. Each enclave
has direct access only to its own page set and it cannot read/write
pages belonged to other enclaves. Processes in neither the user-
space nor the kernel-space can direct access to an enclave’s pages.
Figure 1 shows the SGX memory structure. This is achieved by
using a Processor Reserved Memory layout (PRM), which reserves a
subset of DRAM pages only for enclaves instantiations. The system
assigns some pages of PRM to a specific enclave, this association is
maintained thanks to the Enclave Page Cache (EPC). Finally, SGX
keeps track of the status of each page assigned by a specific table
called the Enclave Page Cache Map (EPCM).

SGX provides a gateway mechanism for calling trusted functions
in the enclaves, which is implemented by a dedicated instruction
(ECALL). All trusted functions are enumerated at the compilation
time. Then, a process calling a trusted functionwill provide a pointer
to the enclave along with the number of the function to call. The
passage of parameters from the untrusted zone to the trusted one
is implemented through a proxy mechanism: SGX provides a set of
functions for moving parameters into the enclave, and also for re-
trieving the return values. SGX also allows pointer parameters that
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Figure 1: Intel Software Guard eXecution Memory Structure

allow a trusted function to directly read/write untrusted memory
regions.

To export data outside an enclave, SGX provides a mechanism
called sealing. Sealing works by encrypting a buffer of bytes before
it leaves the trusted memory region. Through sealing, an enclave
can encrypt a secret (i.e., a variable) such that only the enclave
itself can read it again. It is also possible to encrypt a secret such
that two or more enclaves can read it. To achieve it, SGX provides
an attestation process which guarantees the identification of an
enclave and the hardware in which it is deployed. Sealing is used
when an enclave needs to store its state in a non-volatile storage,
or else when an enclave needs to share information with another
one inside the same machine or over a network.

It is possible to implement multi-threading computation in SGX,
i.e., trusted functions, which belong to the same enclave, can be
called simultaneously by threads. We refer to parallel trusted func-
tion as trusted threads, while the normal threads are called untrusted
threads. The number of secure threads is statically defined at com-
pilation time, and each (trusted) thread status is maintained by
structures (TCS) within the enclave, SGX also provides secure syn-
chronization mechanisms (i.e., locks). Moreover, it is possible to use
policies that guarantee an untrusted thread to be always bounded
to the same trusted thread. This feature allows us to extend our
approach to multi-threading programs.

As introduced before, enclaves suffer from denial-of-service, e.g., a
malicious OS might avoid execution of the trusted functions. In this
work, we show how our approach can mitigate these limitations.

2.2 Anti-Tampering Techniques
We say that a program P is tamper-resistant if P is designed such
that an attacker would have difficulties to modify P ’s code. There
are several strategies for achieving this goal [36]. In this work, we
focus on self-checking. These techniques work at bytecode level,
and they are structured such that the software can read its own
bytecode in order to find anomalies and then reacts accordingly.
We call checkers those sections of the software which check the
software status, and responses those which react to the checkers’
requests.

A checker’s duties include reading a portion of the software’s
bytecode and verifying whether that code matches specific expec-
tations. That is, the checker computes a hash code of the bytecode
using a hashing function and compares the hash value with a pre-
computed value. Once a mismatch is found, the software might
adopt different reactions, e.g., it can emit an alarm or restore the
un-tampered code.

To prevent the checkers from being disabled by an attacker, they
typically spread over the code and/or triggered randomly during
the execution. Checkers, hash functions, and hash values can be
prone to attack; therefore, an anti-tampering protection must be
designed for protecting itself. This is achievable by using different
techniques, e.g., through obfuscation techniques [6], or a network
of checkers (which communicate with each other so that if one
checker is disabled/tampered, other checkers become aware of the
attack).

3 THREAT MODEL
In a tampering attack, the goal of an attacker is to edit the code
of a victim program [12]. This goal can be achieved in different
ways. One way is to change the bytecode of a program before its
execution, this is called off-line tampering. That is, the attacker first
analyzes the binary of the program and then disables/removes the
anti-tampering mechanisms. The challenge for an attacker is thus
to remove the anti-tampering mechanism without compromising
the program logic. Using tools such as debuggers or analyzers, the
attacker can deduce how the anti-tampering protection works and
disable it accordingly. To cope with off-line attacks, it is possible
to adopt anti-tampering mechanisms based on digital fingerprint
mechanisms. They employ a cryptographic fingerprint of software
(e.g., signature, hash, checksum) to validate software status before
the execution [2, 33]. Besides off-line attacks, there are the so-called
on-line attacks. In this category, the attacker aims to edit the code
during the execution of the victim program. Such attacks can be
performed either from the kernel-space or from the user-space. The
key to such attacks is to synchronize the attacker and the victim
process such that the victim code is edited in a way unnoticed by
the anti-tampering mechanism.

In our scenario, an attacker can compromise the victim logic (i.e.,
the bytecode) by using both off-line and on-line approaches. We also
consider acceptable to steal the victim software, or a piece of, as
long as this keeps the environment unaltered. A suitable example
for our scenario is represented by distributed anti-viruses. This
software is composed by a client-server infrastructure and they are
commonly used in companies. In particular, the clients report the
status of their host machine to a central server, and the server stores
the reports and eventually notifies an intrusion. In our example,
it is possible to mount a set of attacks that will be easily detected.
For instance, if a client is disabled, the central server will detect
the anomaly, similarly if an unauthorized client is installed. If an
attacker manages to steal a copy of the client software, it may be
possible to run a tampered client in a controlled environment made
ah-hoc, however, as long as the attacker cannot run such client in
the original infrastructure, there is not effective damage for the
companies. A tampered client becomes really dangerous when the
attacker manages to run such client in the corporate environment in
order to allow illicit activities. In this case, the attack has to happen
such that the central server does not recognize the anomaly.

The attacker model we consider works at user-space level; there-
fore, we assume the kernel is healthy. Having a healthy kernel is ac-
ceptable in corporate scenarios where the machines are constantly
checked. Moreover, a user-space threat (e.g., user-space malware,
spyware) is generally simpler to mount than one at kernel-space.
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Even though we assume having a trusted kernel, and we could
have instantiated our approach on the kernel itself, we opted to
implement our PoC by using SGX in order to raise the bar for at-
tackers that have compromised the kernel, as we will discuss in the
following sections. We also assume the machines are not virtual-
ized, this avoids the attacker to use VMX features [49]. Moreover,
we assume the task scheduler is trusted, this is crucial to avoid a
perfect synchronization of two processes (see Section 6.5).

To sum up, the adversary we face has the following properties:
(i) he can analyze and change the binary off-line; (ii) he can change
the on-line memory of a victim process at runtime; (iii) he cannot
tamper with the task scheduler; (iv) he cannot virtualize the victim
machine.

4 DESIGN
Our anti-tampering technique is an extension of the classic self-
checking mechanism. In the following, we describe howwe improve
upon existing techniques with trusted computing technologies. We
start with a description of the problem addressed and then analyze
limitations of existing approaches before explaining how our idea
can help to limit the attacking surface of existing approaches.

4.1 Challenges
In our model, a program’s execution can be described as a triplet
(M,b, i)whereM represents the state of the program (i.e.,memory),
b is the sequence of instruction to execute (i.e., code section) and
i denotes the next instruction to execute (i.e., instruction pointer).
For simplicity, we focus on sequential and deterministic programs,
whose instructions are executed step-by-step; however, in Section 4
we will discuss also multi-threading scenarios. Each step of the
program can be represented as follows:

(M,b, i) → (M ′,b ′, j),

whereM ′ is the updated memory status, b ′ is the updated instruc-
tion sequence, and→ is the small-step semantics of the program.
From a software security point of view, a program should satisfy
the following properties: (i) the next instruction j must be decided
uniquely by the program logic (i.e., M and the current instruction
at i); (ii) the program stateM ′ must be determined according to the
previous program stateM , and the instruction executed i; (iii) in-
structions b must not change during the program execution (i.e.,
b = b ′). Note that we assume that the application code is not dy-
namically generated, and that input and output operations happen
through writing/reading operation in the memory.

Property (i) is related to the control flow integrity problem [29],
which is guaranteed neither by anti-tampering techniques [36] nor
by trusted computing [28]. But it is tackled by tools such as [32, 46]
and discussed in previous works [1, 14, 37, 52, 54].

Property (ii) can be guaranteed by moving only sensitive data in-
side a trusted module and using get()\set() functions for interacting
with them. This was already implemented by Joshua et al. [30] in
their Glamdring tool. Such a solution is prone to space constraint
because it keeps data within the trusted module (i.e., an enclave).

Property (iii) can be implemented by moving all code inside
trusted modules, which was the first approach employed [4, 7, 47].

However, simply moving all code into the trusted module has
two problems. First, a trusted module has a limited amount of
memory available, and therefore only certain critical sections can
be executed securely. Second, the application needs access to other
OS layers to interact with the environment (network, peripherals).
Our approach aims to address these limitations.

A naive anti-tampering mechanism is to run a checker function
over the entire code b right before executing any instruction. This
is described as follows:

(M,b, i) → check(b) → (M ′,b ′, j),

where the check() function verifies the integrity of the code b. This
approach verifies the integrity of the entire application code at
each step. However, this is inefficient since a program must read its
entire code at each step. Furthermore, we must protect the checker
function throughout the program.

In order to address space and efficiency constraints, as suggested
in [9, 43, 44], we may consider only certain parts of the program to
be sensitive, which are referred to as critical sections (CS) hereafter.
CSs include delicate parts of the software such as license checking
in commercial products. We could thus focus on protecting only
the critical part of the program and checking a block of instructions
instead of the entire program (i.e., CSs). That is, instead of checking
every instruction in every step, we check only the CSs. Therefore,
the function check() is executed whenwe encounter an instruction
starting a CS. This is illustrated as follows:

(M,b, i)
if i ∈ CS
−−−−−−−→ check(CS) → (M ′,b ′, j)

(M,b, i)
else
−−−→ (M ′,b ′, j),

where i ∈ CS means the instruction i is the beginning of a critical
section CS and check(CS) checks the critical section CS .

Intuitively, even though the above idea improves the efficiency of
the anti-tampering mechanism, it is still subject to attacks. Firstly,
it is subject to just-in-time patch & repair. That is, an attacker
could synchronize its actions to change the victim code right af-
ter the checking and restore the original code before the checker
is executed again. To conduct such an attack (without having to
compromise the task scheduler), the attacker and the software to
be protected must run as concurrent processes, and the attack must
time its actions according to the task scheduler. We argue that this
attack is practically very challenging to carry out. In Section 6.5,
we discuss the feasibility of such attacks in more depth. Secondly,
an attacker may compromise the anti-tampering mechanisms (i.e.,
modify the checkers and responses). Defenses against these attacks
already exist. For instance, one may employ code obfuscation on
checkers and responses so that the attacker would not identify them;
or design the checkers and responses such that they are strongly
interconnected with the application code [8] so it is challenging to
compromise the anti-tampering mechanisms without compromis-
ing the application logic; or move part of the code (e.g., checkers
and responses) to the server [51]. These approaches are however
prone to a similar threat, i.e., all of them allocate their detection
system in untrusted zones, and therefore, with enough time any
attacker can understand and disarm these systems.
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4.2 Anti-Tampering based on Trusted
Computing

In this section, we will present the technical solutions to realize
our approach in a real system. To achieve this, we require a trusted
module to harden anti-tampering techniques. For the sake of co-
herence with our proof-of-concept implementation (see Section 5),
we use the Intel Software Guard eXtension (SGX) [40] terminology.
However, it is possible to use other trusted modules (see Section 6.6).

Unlike previous solutions that simple “hide” checking functions
by adopting obfuscation or anti-reversing techniques [6, 10, 11, 51],
we store code relevant to the anti-tamperingmechanism in a trusted
module (i.e., an enclave), through which we monitor and react to
attacks conducted on the untrusted memory region. Saving anti-
tampering mechanisms within trusted containers is significantly
different from previous purely software-based solutions since an
attacker cannot directly tamper with them. This is illustrated in
Figure 2, which presents an overview of our technique. In detail, a
given application is divided into two zones: an untrusted zone (on
the left side) and a trusted zone (on the right side). The untrusted
zone contains the entire application code, whereas the trusted zone
contains all functions and global variables employed by our anti-
tampering technique, such as checkers and responses (shown in
blue). The untrusted zone is further divided into different regions:
the CSs which we aim to protect (shown in red), the non-sensitive
blocks (shown in pale yellow) and the code for calling the trusted
functions in the trusted zone (shown in green). We also included
three labels (i.e., a, b, and c) to identify specific regions that will be
used ahead in the discussion. By using this structure, we can check
the status of the untrusted zone by being inside the trusted zone.

Critical Section Definition. A CS is any continuous region of
code which is surrounded by two instructions, respectively labeled
as CS_Begin and CS_End, and that satisfies the following rules:

(1) CS_Begin and CS_End must be in the same function.
(2) For each program execution, CS_Begin is always executed

before CS_End.
(3) Every execution path from a CS_Begin must reach only the

corresponding CS_End.
(4) Every execution pathwhich connectsCS_Begin and aCS_End

must not encounter other CS_Begin instructions.
(5) A CS cannot contain try/catch blocks
(6) We consider function calls from within a CS as atomic, i.e.,

we do not consider the called function as a part of the CS.
(7) The loops contained by a CS must be bounded to a known

constant.

Points (2) and (3) can be implemented by using a forward anal-
ysis [34] of all possible branches from CS_Begin to CS_End, and
considering all function calls as atomic operations. We also desire
that a CS contains only unwinding loops to minimize the time in
which a CS is plain. The other points are simply static patterns. The
above rules are implemented by static analysis at compilation time.
If a CS does not satisfy one of those requirements, the compilation
process is interrupted. Therefore, we assume having only valid CSs
at runtime.

In order to maintain the application stable, and to reduce the
attacker surface, we desire that at most one CS remains decrypted

(plain) during each thread execution. This is achieved by introduc-
ing a global variable, called plain_cs, within the trusted zone (as
illustrated in Figure 2-c). The variable plain_cs indicates which CS
is currently decrypted. Also, as we will illustrate later, the value
of plain_cs is updated by encrypt() and decrypt() functions. For
sake of simplicity, we describe the following techniques by consider-
ing only single-thread programs. While we extend our approaches
to multi-threading programs at the end of this section.

Overcoming Denial of Service Issues. Even if a trusted func-
tion is protected from being tampered with, usually trusted com-
puting components do not provide availability guarantees, in the
sense that the code in the trusted zone must be invoked externally.
We overcome this limitation by employing packing [48], a tech-
nique which is often used by malware to hide its functionality,
combined with a heartbeat [18]. Our intuition is to force the un-
trusted zone to call trusted functions in order to execute application
logic. This configuration is depicted in Figure 2-a. In the beginning,
CSs are encrypted (red shape). Therefore an attacker cannot di-
rectly change CSs’ content, and the code cannot be executed unless
unpacked. Each CS is surrounded by calls to two functions, which
are called decrypt() and encrypt(). In our design, decrypt()
and encrypt() functions has the role of checkers. Those functions
take a CS identification (e.g., CS address) as an input, then they
apply cryptographic operations to the CS by using a private key.
The private key is stored inside the trusted module (see Figure 2-
c). The first call (green shape) points to the decrypt() function
which performs three operations: (i) it decrypts the CS, (ii) it sets
plain_cs to CS, and (iii) it performs a hash of the code to check the
CS integrity. Once this checker is executed, the CS contains plain
assembly code that can be processed. As a result, the untrusted zone
must call the checker in order to execute the CS’s code. After the
CS, a second call (green shape) points to the encrypt() function
which performs three operations: (i) it encrypts the CS, (ii) it sets
plain_cs to NULL, and (iii) it performs a hash of the code to check
the CS integrity. Note that decrypt() and encrypt() are consid-
ered as atomic. These functions are used as primitive to build more
sophisticated mechanisms later. We illustrate the runtime packing
algorithm in Figure 3. In the beginning, the CS is encrypted (i.e.,
E[CS]) while the decrypt() function is executed (Figure 3-1). After
the decryption phase, the CS is plain (white color) and it is normally
executed (Figure 3-2). Finally, the encrypt() function is executed
and the CS gets encrypted again (Figure 3-3).

Together with the packing mechanism already explained, we
employ a parallel heartbeat as a response, which is depicted in
Figure 2-c. The heartbeat is implemented by calling a response()
function which resides within the trusted zone. The response’s duty
is to select a random CS and validate its hash value along with its
respective decrypt and encrypt function calls, the outcome of this
check is an encrypted packet shipped to a server that validates
the application status. The heartbeat does not prevent software
tampering, it is a responsive strategy to alert a central system about
an attack. To implement a heartbeat, it is possible to adopt differ-
ent strategies, e.g., we can set a dedicated thread which is risen
according to a time series, or else we can merge the heartbeat with
a communication channel between the client and the server (as we
opted in our proof-of-concept application).
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enc_prev(f)

function f()

dec_prev(f)

decrypt(CS)

f()

try {

}

encrypt(CS) }

Non-sensitive code Critical Section (CS)ECALL

trusted zone

decrypt(CS) {}

Trusted function/variable

encrypt(CS) {}

enc_prev(f) {}

dec_prev(f) {}

function main()

untrusted zone

private_key;

plain_cs;
a) b)

functions:

global variables:

stack_cs[f];

c)

response() {} enc_all() {}

catch() {

enc_all()

Figure 2: An overview of our schema for single-thread applications, the memory is split in trusted and untrusted zones. The
trusted zone contains all methods required for our technique, while in the untrusted zone we show the interaction of those
methods with the CSs.

Function Calls and Recursions. Since we allow a CS to host
function calls, a CS might remain plain after a call. This potentially
increases the attacker surface. To mitigate this issue, we desire
that a CS is encrypted once the control leaves the CS itself, and
decrypted again right after. This is achieved by introducing two
new functions, namely enc_prev(f) and dec_prev(f), which are
handled by the trusted module, as described in Figure 2-b. At com-
pilation time, we instrument all functions that are directly called
from within a CS by adding a function call toward enc_prev(f) in
their preamble, and toward dec_prev(f) for each of its exit point
(i.e., return operation). Both enc_prev(f) and dec_prev(f) func-
tions require a parameter f, this parameter identifies which is the
function that calls enc_prev(f) and dec_prev(f). Since several
CSs can call the same function f, we introduce a stack for each
function f to handle these cases, as depicted in Figure 2-c. These
stacks are global variable inside the trusted module, we identify the
stack for the function f as follows:

stack_cs[f ] = stack<CS>().

decrypt(CS)

E[CS]

encrypt(CS)

Critical Section (CS)ECALL

decrypt(CS)

CS

encrypt(CS)

decrypt(CS)

E[CS]

encrypt(CS)

1) 2) 3)

Figure 3: Packing mechanism of our schema.

The enc_prev(f), dec_prev(f) functions and the stack_cs[f]
interact through each other in the followingway. Once enc_prev(f)
is called, it identifies whether the control comes from a CS by check-
ing the global variable plain_cs. If it is the case, the function per-
forms two operations: (i) it pushes plain_cs in stack[f], and (ii) it
calls encrypt(plain_cs). Therefore, after calling enc_prev(f)
the system reaches this status: (i) the outer CS is encrypted (and
thus protected), (ii) plain_cs is set to NULL, and (iii) the thread is
ready to handle a newCS. Similarly, once the control leaves the func-
tion f, the epilogue calls dec_prev(f). This function performs two
operations: (i) it pops the last CS from stack[f] into plain_cs, and
(ii) it restores the previous CS status by calling decrypt(plain_cs).
As a result, the control can safe pass to the outer CS. In the opposite
scenario, once the control enters in the function f and the plain_cs
is set to NULL, it means that the function f was not called by a CS;
and therefore, enc_prev(f) and dec_prev(f) do nothing. Stacks
allow us to handle recursions, if the function f is repetitively called,
we trace all previous CSs.

Exceptions within Critical Section. We can handle exceptions
fromwithin a CS by introducing a new function, namely enc_all(),
which is handled by the trusted module, as described in Figure 2-c.
This function is an alias for encrypt(plain_cs). That is, we wrap
any CS with a try/catch block at compilation time, as described in
Figure 2-a. The exception block is made such that (i) to catch all
exceptions, (ii) to run enc_all(), (iii) to throw the exception again.
In this way, we restore the anti-tampering mechanism as soon as
an exception appears. Thus, after an exception, we encrypt all the
plain CSs and the application can continue normally. Note that the
response function has to be extended in order to protect the catch
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block, or else, an attacker might raise an exception in order force a
CS to be plain1.

Multi-threading programs. We can extend the previous tech-
niques in order to handle parallel computation, this is possible be-
cause some trusted computing technologies allow multi-threading
programming, like SGX (see Section 2.1). To achievemulti-threading,
we maintain a plain_cs and a stack_cs[f] for each thread. More-
over, we introduce a counter for each CS. These global variables
represent the number of threads which are executing a CS in a
specific moment. In the beginning, the CSs’ counters are set to
zero. Then, they are increased and decreased by decrypt() and
encrypt() functions respectively.

Ensuring a Secure Booting Phase. Our approach requires that
the program has a secure booting phase, which means having the
following assumptions for the encrypt, decrypt and response: the key
for crypto algorithms must be loaded in a secure way together with
a table which describes where the CSs are located (i.e., their address
and length) with their hash values. We refer to this table as block
table. We assume a trusted loading of this information by adopting
SGX sealing and attestationmechanisms. Thosemechanisms ensure
to store information on a disk or to establish a secure channel with
other enclaves within the same machine (i.e., local) or with a remote
one (i.e., remote) in a trusted way. Details on sealing and attestation
are discussed in Section 2.1.

5 IMPLEMENTATION
In this section, we describe a proof-of-concept implementation of
our anti-tampering technique, whose architecture is depicted in Fig-
ure 4. The application is composed by a central server that handles
a set of clients which are spread over a network. Each client is a
monitoring application that traces user’s activities (i.e., keystrokes
and mouse traces) and sends the data to the central server. As a
trusted module, we opted for the Intel Software Guard eXtension
(SGX) [40], however, it is possible to use other solutions that in-
volves the kernel (e.g., TPM [26]). We deployed the architecture in
a Windows environment. Through this application we describe the
specific technical solutions we adopted for the client, and how we
implemented installation phase, boot phase, and response.

5.1 Client
We describe the internal structure of the client in order to clarify
some practical implementation strategies. We developed this ap-
plication in C++ and we deployed it on Windows machines. For
sake of simplicity, we did not implement Address Space Layout
Randomization (ASLR) [45], however, it is possible to deduct the
right address offset by employing a Drawbridge system [39].

Software Architecture. The client is formed by three modules:
the main program, and two dynamic linked libraries (DLL) namely
untrusted DLL and trusted DLL. This architecture is depicted in
Figure 5, the application communicates with the untrusted DLL
to call the functions described in Section 4. The untrusted DLL
works together with the trusted DLL (i.e., the enclave) to handle
the whole anti-tampering technique. We choose this architecture to
1We do not deal with runtime attacks to exception handlers, such as SEH, since they
do not belong to anti-tampering problems.

simplify the integration of our anti-tampering system. In this way,
the developer can focus on the main program and integrate the
anti-tampering system later. Each component of the architecture is
described as follows:

• Application: this is the client that we aim to enforce. Na-
tively, it contains all the functionalities for collecting infor-
mation from the underline OS and ship them to the server.

• Untrusted DLL: this contains the untrusted functions for
interacting with the enclave. Also, it keeps track of the status
of the enclave (i.e., enclave pointer) and exposes routines
procedures.

• Trusted DLL (enclave): this is the enclave. It contains the
trusted functions described in Section 4 (e.g., checkers, re-
sponse) along with some extra routine functions (i.e., instal-
lation and boot).

Critical Section Definition. Since this client is a monitoring
agent, we identify as CSs those functions used to collect the infor-
mation issued by the OS: PAKeyStroked, which collects keystroked,
and its twin PAMouseMovement, which collects mouse events. These
functions are callback risen by the OS along with the relative event
information. For sake of simplicity, we trust in argument passed by
the OS. The main duties of these functions are: (i) collecting the
data, (ii) crafting a packet with the data collected, (iii) signing the

Client Server

Data collected:
- Mouse trace
- Keystroke
- File system 

activities
- ...

Database

Activities:
- Verify heartbeat
- Collect data
- Release license key

Data:
- License keys
- Collected data

Figure 4: The architecture of proof-of-concept program. The
client is a monitoring agent which collects user’s activities,
the server handles clients, and the database stores collect
data and license keys.

Untrusted DLL

Trusted DLL (enclave)

Untrusted memory region

Trusted memory region

Application Untrusted DLL Trusted DLL

trusted zoneuntrusted zone

anti-tampering system

Figure 5: The software organization of the client.
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packet, and finally (iv) shipping it to the server. Since in our im-
plementation we required only integrity, we implemented a digital
fingerprint.

Packaging Algorithm. The packaging algorithm adopted is an
AES-GCM encryption schema [55] between the assembly code and
the license key. SGX natively provides an implementation of this
algorithm [25].

Heartbeat. The heartbeat is implemented as a digital fingerprint
which is used on all packets exchanged between client and server,
our strategy allows the server to validate client status by testing the
digital fingerprint itself and also for mitigating denial-of-service.

The digital fingerprint is created by feeding a sha256 function
with the concatenation of the message to sign, the license key, and
a special byte called check byte, which can have two values (safe,
or corrupted) according to the status of the program. The digital
fingerprint algorithm randomly selects a CS and sets the check
byte accordingly. Then, the server verifies the digital fingerprint by
guessing the check byte value used at the client side. That is, the
server crafts the two digital fingerprints by using the two possible
values of the check byte. If one of the generated digital fingerprints
matches the original one, the server can infer the status of the client
(i.e., it is healthy or tampered). Otherwise, that means the message
was corrupted, or it was originated by the wrong machine. This
simple heartbeat implementation allows the sever to identify denial-
of-service at client side. If an attacker switches off the monitor agent,
the communication will be immediately affected.

In our implementation, we adopted semaphores in order to avoid
conflicts with checking functions, and we added timestamps to
exchanged packets for avoiding replay attacks.

Block Table. Packaging and heartbeat functions require the co-
ordinates of all CSs (start address, size, and hash-value) along with
the license key for running. This information can be handled mainly
in two ways: a) the client loads the entire table in the enclave mem-
ory; b) the client loads the entire table in the untrusted zone and
adds a digital fingerprint to guarantee entries integrity.

Both approaches have pro and cons. The first approach guaran-
tees also confidentiality at the table. Moreover, since the table is
stored in the enclave, all trusted functions can retrieve the entries
faster. On the other hand, if the table is too large the enclave might
be overloaded. The second approach is lighter in term of memory
consumption because it keeps all rows within the untrusted zone.
However, in this case, the algorithm results slowly because it has to
inspect the untrusted zone to retrieve the entries and to verify their
integrity. In our implementation, we opted for the second option
where each entry is protected by using the license key and stored
within the untrusted memory region.

5.2 Installation Phase
We achieve a secure installation by using an authentication protocol
based on SGX remote attestation, the entire protocol is depicted in
Figure 6. In this scenario, the server has a database which contains
all license keys, all the CSs, and the block table of each client. On
the other side, each client is only formed by the program to protect,
with the encrypted CSs already replaced, and its enclave, which
contains checkers, responses, and installation routines.

Licensing System The goal of the installation phase is to deliver
the correct license key to the respective client in a secure fashion.
To achieve this, each client instance uses a different private key to
decrypt its CSs. The private key is directly derived from the license
key. That is, each client instance requires its own license key to
work properly. In the following paragraph, we exploit this fact to
authenticate a client to the server.

Installation Procedure In this phase, the aim of the client is to
perform a remote attestation with the server, this latter then verifies
client’s identity and releases the relative license key and the block
table, which allows the client to run properly. In order to establish a
remote attestation, the enclave is signed by a certification authority
and the server is awarded for the certificates shared with clients.

In the beginning, the client and the server follow the remote
attestation mechanism described by Intel in [24] (Figure 6-0). After
this, both entities can rely on a secure end-to-end channel. Also,
this allows the server to obtain the client measurement, which is
a cryptographic hash that probes the client enclave version and
the client hardware. This information is used by the server to bind
client identity and license key. Once the channel is created, the
client sends an installation request to the server (Figure 6-I), the
request is an encrypted CS which is randomly taken from the client
itself. The server receives the installation requests, and it verifies
which license key belongs to the CSs. Then, the server binds the
client measurements with the license key, and it releases this latter
to the client along with the block table (Figure 6-II). When the
enclave receives the license key and the block table, it will seal
all in the client machine. At this point, only the client can read
these information through SGX sealing process (Figure 6-III). Even
if a malicious client forces a signed enclave to send an installation
request with a CS to the server, the retrieved license key will be
sealed on the machine, and only the signed enclave can read it.

At this point, the installation phase is concluded: the server has
the information about the location of the client and the key license
and block table are securely stored on the client machine.

6 EVALUATION
We evaluated our technique from different perspectives. At first,
we quantify the overhead in terms of Lines of Code (LoC), execu-
tion time (microbenchmark), and memory required by our enclave.
Then, we discuss the impact of several security threats to the in-
frastructure proposed. Finally, we perform an empirical evaluation
of the likelihood to accomplish a just-in-time attack.

6.1 Lines-of-Code Overhead
A useful metric to measure the impact of our technique is the
amount of code added to the original program, this is illustrated in
Table 1. Looking at the table, it is possible to notice that the majority
part of the code is contained in the main program (96, 5%). The
Untrusted and Trusted DLL, which implement our anti-tampering
technique, require respectively 2, 0% and 1, 5% of the code. Within
the main program, each CS contains only two lines of code, one
for calling decrypt() function and another for calling encrypt()
function. We remark that through our technique it is possible to
protect an indefinite number of CSs by using always the same
amount of code in the enclave.
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Client Server

(I) Installation Request

(II) Resp. License Key
(III) Key Sealing (II) Key Fetch

Key Repository

K1

K3

(0) Remote attestation

Figure 6: Secure installation protocol between client and server.

Table 1: Number of LoC for each module

Module LoC Perc.

Main program 12175 96,5%
Untrusted DLL 248 2,0%
Trusted DLL 186 1,5%

6.2 Microbenchmark Measurements
In these experiments, we perform a set of microbenchmark to mea-
sure the overhead in time introduced by our technique. As a use case,
we measure the execution time of the CSs in our proof-of-concept
monitoring agent (see Section 5). At first, we briefly introduce the
experiment setup. Then, we measure the execution time of the CSs
with and without our anti-tampering technique. Finally, we mea-
sure the execution time of the CSs in case of multiple instances. All
execution times are measured in milliseconds.

User-Simulator Bot. For performing the following tests, we
developed a user-simulator bot which mimics the standard user
activity by stroking keys and moving the cursor. The bot is a Python
script which is based on the PyWin32 library. Since we aim at
measuring the monitoring agent’s performances, we designed a
very basic user-simulator’s behavior. The user-simulator generates
keystrokes on a text program (i.e., notepad) and randomly moves
the mouse around the screen. Keystroke frequency is around 100
words perminute, while mouse speed is around 500 pixel per second.
This bot allows us to easily repeat the experiments.

Single Instance Microbenchmark. We measure the impact of
our anti-tampering technique to the performances of the CSs in
our proof-of-concept monitoring agent. In this experiment, we
performed 5 exercises, each of one is composed by two runs, namely
with and without the anti-tampering technique. For each run, we
traced the CS’s execution time. The outcome of the experiment
is plotted in Figure 7. In the plot, each bar represents the average
elapsed time for a run and each pair of bars represents a single
exercise. More precisely, orange bars mean runs with the anti-
tampering technique active, while blue bars mean runs without.
Looking at the graph, we can see that functions require on average
between 2ms and 2.4ms for being executed. It is also evident that
with the anti-tampering technique the performances are slightly
degraded. On average, the delta time is 0.12ms, with a peak of
0.34ms for the second instance. Also, time overhead is less than
6% on average, with a peak of 16.61% in the second instance. This

peak depends on the system status at execution time. According to
our experiments, we conclude that the performances degradation
is negligible after the introduction of our anti-tampering system.

Multiple Instances. We empirically investigate whether our
approach can be deployed over multiple processes at the same time.
We performed this test by running a different number of instances
of our proof-of-concept monitoring agent and then measuring the
average execution time of their CSs.

The outcome of the experiment is depicted in Figure 8. The plot
shows the average execution time of the CS on the y-axis (expressed
in milliseconds), while the number of instances is indicated on the
x-axis (from 10 to 90). Looking at the plot, it is possible to notice
that the average execution time grows linearly w.r.t. the number
of instances. The average execution time is around 5ms in case of
10 parallel instances, while it degrades to 11ms in case of 90. This
means that the performances get only halved after decupling the
number of instances; therefore, our technique results scalable.

6.3 Enclave Size Considerations
In our proof-of-concept monitoring agent, we used an enclave
that occupies at around 300KB. As we stated, in our approach the
enclave size does not depend by the size of the software to protect.
This allows us to estimate the number of processes we can protect
at the same time. In a common machine SGX featured (e.g., Dell
XPS 13 9370), we can dedicate at most 128MB for enclaves. If we

Figure 7: Average response time with and without anti-
tampering technique
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consider the enclave used in our proof-of-concept, we can roughly
estimate at around 400 enclaves contemporaneously loaded that
will protect the same number of processes.

6.4 Threat Mitigation
We explain how our approach mitigates threats according to the
attacker model described in Section 3.

Protection of checkers and responses. In our approach, the
functions for anti-tamperingmechanisms (e.g., checker and response)
reside in a trusted module. Since we assume trusted computing
guarantees hardware isolation, those functions are protected by
design.

Protection against disarm. An attacker can always disarm a
function by removing its invocation. Moreover, SGX is prone to
denial-of-service attacks due to its nature (see Section 2.1). We pro-
tect trusted invocations by adopting the packaging tactic discussed
in Section 4. The software contains parts of code which are en-
crypted and they need checkers action for being executed properly.

Just-in-time Patch & Repair Mitigation. After a decryption
function is run, the CS is plain and ready to be executed. At this
moment, there is a chance for the attacker to replace the code
within a CS and restore it before the next encryption. This is called
just-in-time patch & repair attack.

Assuming the attacker cannot directly tamper with the task
scheduler (as described in Section 3), it is still possible to perform
attacks from the user-space [19]. However, those attacks are not
strong enough to bypass our defense for mainly three reasons:
(i) they are tailored for specific contexts (e.g., single core, OS ver-
sion), (ii) they aim at slowing down a process and not to achieve a
perfect synchronization between adversary and victim, (iii) modern
OSs mount task schedulers which are designed to resist (or at least
mitigate) such attacks [27]. To achieve an on-line tampering, as
introduced in Section 3, an attacker must replace a CS code such
that encrypt() and decrypt() functions do not notice the replace-
ment. This means that a single error will be detected by the server.

Figure 8: Average response time with multiple instances

None of the attacks from user-space can achieve such precision. An
alternative approach is to adopt virtualization to debug a process
step-by-step at runtime, but this contradicts the assumptions of
our threat model (i.e., the original infrastructure is not altered). We,
however, try to estimate the likelihood that this attack might hap-
pen by performing an empirical experiment which will be described
in Section 6.5.

Reverse Engineering. An attacker may attempt to reverse the
application code in order to extract the plain code hidden in the
encrypted blocks, and then build a new executable which does
not contain any checker. The new executable is therefore prone to
any manipulation. This goal can be achieved by using debuggers
and/or analyzers. Even though the literature contains several anti-
debugging techniques and most of them can be enforced by using
our anti-tampering technique, we assume that an attacker can
bypass all of them. However, an attacker cannot debug the software
inside the trusted zone, which is true for SGX enclaves compiled
in release mode [23]. The best an attacker can do is debugging
the code within the untrusted memory region and considering the
enclave as a black box. After applying these considerations, we
can state an attacker can manage to dump the plain code after
that decryption functions are called, and even make a new custom
application. However, this attack is still coherent with our threat
model (see Section 3) because the new application cannot work into
the original infrastructure (i.e., the heartbeat cannot work properly)
and therefore it is useless. For instance, in the implementation
presented in Section 5, the monitoring agent can work properly
only if the software contains all the functions employed by our
technique along with the original CSs. If this is not respected (i.e., by
removing checkers) the application cannot emit a correct heartbeat,
and therefore the attack is not considered accomplished.

6.5 Study of Just-in-Time Patch & Repair
Attack

In this experiment, we investigate the likelihood of a just-in-time
patch & repair attack in a real context. Here, the attacker’s goal
is to temporarily replace the bytecode within a CS such that the
injected code is executed but the system cannot realize the attack.
The setup is formed by a victim process (i.e., our agent) and an
attacker process. Also, we consider a trusted task scheduler, and
that each process is executed on a dedicated core. Both attacker
and victim are written in C++ and developed for Windows, the
experiments were run on a Windows 10 machine with 16GB RAM
and Intel® Core™ i7-7500 2, 70GHz processor.

The victim process is formed by an infinite loop which contin-
uously updates an internal variable through a CS. This latter is
enforced by self-checking mechanisms. Moreover, the victim pro-
cess contains a checker to validate the status of the program. If
the internal status is set wrongly, that will be logged. The attacker
process, instead, is a concurrent process which can edit the victim
process at runtime. Attacker’s goal is to replace the victim CS such
that the internal variable of the victim process will contain an in-
congruent value. We attempted the attack for 10.000 times, but the
self-checking mechanism managed to detect all attacks. Therefore,
we consider that this kind of attack is not practical in case of a
trusted task scheduler.
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6.6 Discussion
We have shown how to implement our technique by means of a case
study involving a monitor agent, however there are few aspects
to note about the validity of our evaluation effort. First, although
the application code is protected, an attacker can still analyze and
change variable values at runtime, thus potentially harming its nor-
mal execution. Note that our approach could be extended in order
to mitigate this issue by using cryptographic hashes to validate
the integrity of certain critical variables. Moreover, our design and
implementation requires a healthy kernel, otherwise it would be
possible to mount attacks such as the just-in-time patch and repair
attack we discussed previously (by manipulating the scheduler). We
believe that even with a compromised kernel mounting those at-
tacks would require significant effort, but we leave a more thorough
investigation for future work. Other aspects, such as an evaluation
of applying our technique a different granularities (such as basic-
block level), or extending protection to PLT, GOT, and exception
table are also left for future work.

7 RELATEDWORK
We considered works which deal with to Intel Software Guard
eXtension (SGX) [40] and anti-tampering techniques.

Anti-tampering techniquesMorang et al. [35], Ghost et al. [18],
and Dewan et al. [15], base their anti-tampering techniques on
hyper-visor level. In all works, authors rely trustiness on the hyper-
visor, while we propose a self-checking mechanism which is built
on top of a trusted module. Feng et al. [17] propose an anti-cheating
mechanism for video-games. In their approach, they simulating
client logic on a server to identify inconsistencies. Unlike them, we
spot client anomalies by using a self-checking system.

Viticchié et al. [51] developed an anti-tampering mechanism
which is based on a remote attestation. Here, the client is moved to
a trusted server. Their approach is substantially different than ours
because they do not rely on a trustedmodule. Also, their mechanism
forces an application to be partially moved to a server, while we do
not alter client structure.

Commercial anti-tampering solutions for video-games, such
as [16, 50], perform a software signature which communicates with
a trusted server; however, they do not consider trusted computing
for improving software protection.

Software protection by using SGX The first strategy for pro-
tecting applications by using SGX was moving the whole code
inside an enclave. This was proposed by Baumann et al. [7], and
by Tsai et al. [47] after. They respectively developed Haven (for
Windows) and Graphene (for Linux), which are tools that allow
one to execute legacy applications inside an enclave. Their attacker
model is the Iago attacker, which consider the host OS as malicious,
while our attacker model aims at modifying code at runtime from
user-space. These tools contain a micro-kernel inside an enclave
that communicates through a Drawbridge system with the host
OS [39]. A spin in this direction was proposed by Seo et al. [42],
who extend the project Graphene by adding Address Space Lay-
out Randomization (ASLR) features. Arnautov et al. [4], instead,
deployed previous approaches to Docker containers in their tool
SCONE. All these systems have a common approach: they run the
whole application in an enclave. However, they need to introduce

some compromise: Haven and Graphene need specific libraries
for the OS. Moreover, they limit applications’ features (e.g., Haven
does not allow graphical interfaces, SCONE do not support fork()
operations), also, they limit application size because of the enclave
limitation. Our approach, instead ,can protect a vast code surface
exploiting few code lines in the enclave without any additional
library or limitation in term of features.

Another approach for SGX technology is to move into enclave
only those parts of the application which are considered secure-
sensitive. This approach was adopted by Schuster et al. [41], who
combined MapReduce framework and SGX enclaves to perform
big data analysis. In this work, authors define ad-hoc enclave for
their application. This approach was then automatized by Joshua
et al.[30], who proposed a tool (Glamdring) that moves critical
sections (and variables) into automatically generated enclaves. Our
approach is different because we protect critical sections without
moving them inside enclaves.

8 CONCLUSION
In this work, we presented a novel anti-tampering technique which
leverages trusted computing technologies. We achieved this by
adopting a packing strategy that is similar to the one used by mal-
ware to hide its functionality. Our approach forces a program to call
trusted functions in order to be executed properly (by unpacking a
piece of software from a trusted container).

We implemented a proof-of-concept prototype of our technique
by using Intel Software Guard eXtension (SGX) [40] technology. We
illustrated our approach by protecting an agent that was designed
to collect user’s event and ship them to a central server. Through
this implementation, we showed how our architecture can guaran-
tee further security properties such as a secure installation and a
continuous client monitoring.

Using our prototype, we measured the overhead in terms of lines
of code (less than 10 lines), execution time (on average 5.7% more),
and space required for the trusted container (300KB). In sum, our
approach results in a scalable and practical software protection
solution.
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